JP2015096977A - Laser driving device, optical scanner, and image formation apparatus - Google Patents

Laser driving device, optical scanner, and image formation apparatus Download PDF

Info

Publication number
JP2015096977A
JP2015096977A JP2015014346A JP2015014346A JP2015096977A JP 2015096977 A JP2015096977 A JP 2015096977A JP 2015014346 A JP2015014346 A JP 2015014346A JP 2015014346 A JP2015014346 A JP 2015014346A JP 2015096977 A JP2015096977 A JP 2015096977A
Authority
JP
Japan
Prior art keywords
light
laser
light source
amount
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015014346A
Other languages
Japanese (ja)
Other versions
JP2015096977A5 (en
Inventor
石田 雅章
Masaaki Ishida
雅章 石田
大森 淳史
Atsufumi Omori
淳史 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2015014346A priority Critical patent/JP2015096977A/en
Publication of JP2015096977A publication Critical patent/JP2015096977A/en
Publication of JP2015096977A5 publication Critical patent/JP2015096977A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laser driving device that can output a laser beam in the same optical waveform even when an amount of light of the laser beam is changed, and to provide an optical scanner and an image formation apparatus.SOLUTION: A laser driving device used for an image formation apparatus comprises: a surface emission laser beam source 1 emitting a laser beam; a light source drive control unit 5a performing an on/off drive control of the surface emission laser beam source 1 while an amount of light of the laser beam emitted from the surface emission laser beam source 1 is maintained constant; an amount of light adjustment element 3 arranged on an optical path of the laser beam emitted from the surface emission laser beam source 1, and capable of electrically converting the transmissivity or reflection rate of the incident laser beam; and a peak amount of light control unit 5b that, while an amount of light of the laser beam emitted from the surface emission laser beam source 1 is maintained constant, controls the transmissivity or the reflection rate of the amount of light adjustment element 3 and that adjusts a peak amount of light of the laser beam emitted from the amount of light adjustment element 3 by transmission or reflection in the amount of light adjustment element 3.

Description

本発明はレーザ駆動装置、光走査装置並びに画像形成装置に関し、より詳細には、レーザプリンタ、光デイスク装置、デジタル複写機、光通信装置等における光源の光出力を制御する半導体レーザ駆動回路を有するレーザ駆動装置、該レーザ駆動装置を備える光走査装置、並びに該光走査装置を備える画像形成装置に関する。   The present invention relates to a laser driving device, an optical scanning device, and an image forming apparatus, and more specifically, includes a semiconductor laser driving circuit that controls the light output of a light source in a laser printer, an optical disk device, a digital copying machine, an optical communication device, and the like. The present invention relates to a laser driving device, an optical scanning device including the laser driving device, and an image forming apparatus including the optical scanning device.

電子写真方式の画像形成装置では、光源となる半導体レーザと該半導体レーザを駆動するドライバからなるレーザ駆動装置を備えた光走査装置が広く用いられている。この光走査装置では、感光体ドラムの軸方向にポリゴンミラー等の偏向手段を用いてレーザ光を走査しつつ、感光体ドラムを回転させ静電潜像を形成する方法が一般的に採用されている。   2. Description of the Related Art In an electrophotographic image forming apparatus, an optical scanning device including a laser driving device including a semiconductor laser serving as a light source and a driver for driving the semiconductor laser is widely used. In this optical scanning device, a method of forming an electrostatic latent image by rotating a photosensitive drum while scanning laser light using a deflecting means such as a polygon mirror in the axial direction of the photosensitive drum is generally employed. Yes.

また、このような通常の半導体レーザのドライバは、半導体レーザ若しくは半導体レーザアレーや垂直共振器型面発光半導体レーザ(VCSEL)の光量を調節する機能と高速に変調する機能の両方を持ち、例えばカラー画像形成装置において、各色の感光体や光学系の効率に応じた最適な光量を選択し、その光量において光源を高速にON/OFF変調する構成が一般的である(特許文献1〜5参照。)。   In addition, such a normal semiconductor laser driver has both a function of adjusting the amount of light of a semiconductor laser, a semiconductor laser array, and a vertical cavity surface emitting semiconductor laser (VCSEL) and a function of performing high-speed modulation. In a forming apparatus, it is common to select an optimal amount of light according to the efficiency of each color photoconductor or optical system, and to quickly turn on / off the light source with that amount of light (see Patent Documents 1 to 5). .

ここで、半導体レーザのドライバのみで各色の感光体ドラムや光学系の効率に応じた最適な光量を選択しようとする場合には、例えば光学系の効率が2倍の範囲があり、感光体の感度ばらつきが2倍の範囲があるとすると、4倍の範囲の光量調整が必要となる。例えば、半導体レーザの最大出力を10mWとすると、4倍の範囲であるので、2.5mW〜10mWまでのダイナミックレンジが必要となる。ドライバの出力電流自身のダイナミックレンジとしてはこれらぐらいの範囲は十分網羅できる。   Here, when trying to select an optimum light amount according to the efficiency of the photosensitive drum or optical system of each color using only the semiconductor laser driver, for example, the efficiency of the optical system has a range twice that of the photosensitive drum. If the sensitivity variation is in the double range, the light amount adjustment in the quadruple range is required. For example, if the maximum output of the semiconductor laser is 10 mW, the range is four times, so a dynamic range of 2.5 mW to 10 mW is required. The dynamic range of the driver output current itself can cover these ranges.

しかしながら、このようなレーザ駆動装置において、半導体レーザの駆動電流が異なる場合つまり光出力が異なる場合に、レーザ特性、とりわけレーザ出力のドループ特性が異なるため、同じ光波形とはならず、結果的にこのレーザ光を用いて画像を形成する場合に、画像の濃度変動を引き起こす原因となり、画像の安定した均一濃度が得られない問題があった。   However, in such a laser driving apparatus, when the driving current of the semiconductor laser is different, that is, when the optical output is different, the laser characteristics, particularly the droop characteristics of the laser output are different, so that the same optical waveform is not obtained. When an image is formed using this laser light, there is a problem that the density of the image is fluctuated, and a stable uniform density of the image cannot be obtained.

本発明は、以上の従来技術における課題に鑑みてなされたものであり、レーザ光の光量を変化させても同じ光波形で出力することのできるレーザ駆動装置、光走査装置並びに画像形成装置を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and provides a laser driving device, an optical scanning device, and an image forming apparatus that can output with the same optical waveform even when the amount of laser light is changed. The purpose is to do.

前記課題を解決するために提供する本発明は、以下の通りである。なお、カッコ内に本発明を実施するための形態において対応する部位及び符号等を示す。
〔1〕 画像形成装置に用いるレーザ駆動装置であって、レーザ光を出射する面発光レーザ光源(光源1)と、前記面発光レーザ光源から出射するレーザ光の光量を一定として前記面発光レーザ光源のオンオフ駆動制御を行う光源駆動制御部(光源駆動制御部5a)と、前記面発光レーザ光源から出射されたレーザ光の光路上に配置され、入射するレーザ光の透過率または反射率を電気的に変更可能な光量調整素子(光量調整素子3,3’)と、前記面発光レーザ光源から出射するレーザ光の光量を一定として、前記光量調整素子の透過率または反射率を制御して、該光量調整素子における透過または反射により、該光量調整素子から出射されるレーザ光のピーク光量を調整するピーク光量制御部(ピーク光量制御部5b)と、を備えることを特徴とするレーザ駆動装置(レーザ駆動装置10、図3,図11)。
〔2〕 前記面発光レーザ光源は複数の発光部を有し、前記光源駆動制御部は、前記複数の発光部それぞれの発光光量が所望値に調整されたレーザ光源についてオンオフ駆動制御を行うことを特徴とする前記〔1〕に記載のレーザ駆動装置。
〔3〕 前記光量調整素子は、液晶偏光素子、可変式ND素子、音響光学素子、ファラデー素子のいずれかであることを特徴とする前記〔1〕または〔2〕に記載のレーザ駆動装置(図4〜図6)。
〔4〕 前記〔1〕〜〔3〕のいずれかに記載のレーザ駆動装置(レーザ駆動装置10)を備える光走査装置(光走査装置100、図9)。
〔5〕 前記〔4〕に記載の光走査装置(光走査装置100)を備えることを特徴とする画像形成装置(画像形成装置200、図10)。
〔6〕 前記ピーク光量制御部は、形成した画像の濃度偏差に基づいて前記光量調整素子の透過率または反射率を制御して、該光量調整素子から出射されるレーザ光のピーク光量を調整することを特徴とする前記〔5〕に記載の画像形成装置。
The present invention provided to solve the above problems is as follows. In addition, the site | part and code | symbol etc. which respond | correspond in the form for implementing this invention in parentheses are shown.
[1] A laser driving apparatus used in an image forming apparatus, the surface emitting laser light source (light source 1) emitting laser light, and the surface emitting laser light source with a constant light quantity of laser light emitted from the surface emitting laser light source A light source drive control unit (light source drive control unit 5a) that performs on / off drive control of the laser, and is disposed on the optical path of the laser light emitted from the surface emitting laser light source, and electrically transmits or reflects the incident laser light The light quantity adjustment element (light quantity adjustment element 3, 3 ') that can be changed to the above and the light quantity of the laser light emitted from the surface emitting laser light source is constant, and the transmittance or reflectance of the light quantity adjustment element is controlled, A peak light amount control unit (peak light amount control unit 5b) that adjusts the peak light amount of the laser light emitted from the light amount adjustment element by transmission or reflection in the light amount adjustment element. The laser driving apparatus according to symptoms (laser driving device 10, FIG. 3, FIG. 11).
[2] The surface-emitting laser light source has a plurality of light emitting units, and the light source drive control unit performs on / off drive control for a laser light source in which the light emission amounts of the plurality of light emitting units are adjusted to desired values. The laser drive device according to [1], which is characterized in that
[3] The laser driving device according to [1] or [2], wherein the light amount adjusting element is any one of a liquid crystal polarizing element, a variable ND element, an acoustooptic element, and a Faraday element (see FIG. 4 to 6).
[4] An optical scanning device (optical scanning device 100, FIG. 9) provided with the laser driving device (laser driving device 10) according to any one of [1] to [3].
[5] An image forming apparatus (image forming apparatus 200, FIG. 10), comprising the optical scanning apparatus (optical scanning apparatus 100) according to [4].
[6] The peak light amount control unit adjusts the peak light amount of the laser light emitted from the light amount adjusting element by controlling the transmittance or reflectance of the light amount adjusting element based on the density deviation of the formed image. The image forming apparatus as described in [5] above.

本発明のレーザ駆動装置によれば、光源から良好なドループ特性及び高速光応答特性のレーザ光を一定出力で出射した上で、光量調整素子で減衰して出射するので、ドループ特性も高速光応答特性もその良好な特性を損なうことなく単純に減衰させたものとなり、任意の光量で同じ光波形を再現でき、非常に安定したレーザ駆動を実現することができる。
また本発明の光走査装置によれば、本発明のレーザ駆動装置を用いているので、非常に安定な光波形のレーザ光を利用することができ、半導体レーザの特性に依存する事のない安定した光書込みを実現することができる。
また本発明の画像形成装置によれば、本発明の光走査装置を用いるので、正確な光走査が可能となり、高画質の画像を形成することができる。特に、カラーレーザプリンタやカラーデジタル複写機に適用した場合に、色ずれの少ない高画質のカラー画像を形成することができる。
According to the laser driving device of the present invention, a laser beam having a good droop characteristic and a high-speed optical response characteristic is emitted from the light source at a constant output, and then attenuated by the light amount adjusting element and emitted, so that the droop characteristic also has a high-speed optical response. The characteristics are simply attenuated without damaging the good characteristics, the same optical waveform can be reproduced with an arbitrary amount of light, and a very stable laser drive can be realized.
Further, according to the optical scanning device of the present invention, since the laser driving device of the present invention is used, it is possible to use laser light having a very stable optical waveform, and stable without depending on the characteristics of the semiconductor laser. Optical writing can be realized.
Further, according to the image forming apparatus of the present invention, since the optical scanning apparatus of the present invention is used, accurate optical scanning is possible, and a high-quality image can be formed. In particular, when applied to a color laser printer or a color digital copying machine, a high-quality color image with little color misregistration can be formed.

一般的な半導体レーザのドループ特性を表す図である。It is a figure showing the droop characteristic of a general semiconductor laser. 一般的な半導体レーザの高速光応答波形の例を示す図である。It is a figure which shows the example of the high-speed optical response waveform of a general semiconductor laser. 本発明に係るレーザ駆動装置の構成例を示す概略図である。It is the schematic which shows the structural example of the laser drive device which concerns on this invention. 光量調整素子としての液晶偏光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the liquid crystal polarizing element as a light quantity adjustment element. 光量調整素子としての可変式ND素子の構成を示す概略図である。It is the schematic which shows the structure of the variable ND element as a light quantity adjustment element. 光量調整素子としてのファラデー素子の構成を示す概略図である。It is the schematic which shows the structure of the Faraday element as a light quantity adjustment element. 本発明のレーザ駆動装置におけるレーザ光のドループ特性を表す図である。It is a figure showing the droop characteristic of the laser beam in the laser drive device of this invention. 本発明のレーザ駆動装置におけるレーザ光の高速光応答波形の例を示す図である。It is a figure which shows the example of the high-speed optical response waveform of the laser beam in the laser drive device of this invention. 本発明に係る光走査装置の構成例を示す概略図である。It is the schematic which shows the structural example of the optical scanner which concerns on this invention. 本発明に係る画像形成装置の構成例を示す概略図である。1 is a schematic diagram illustrating a configuration example of an image forming apparatus according to the present invention. 本発明に係るレーザ駆動装置のその他の構成例を示す概略図である。It is the schematic which shows the other structural example of the laser drive device which concerns on this invention.

本発明の前提となるレーザの特性及び駆動制御の考え方は次のとおりである。
図1に、一般的な半導体レーザのドループ特性を表す。
図1では、駆動電流の大きさを3種類に分けた場合の駆動電流1,2,3と光出力の波形(光波形)との関係を示している。なお、この図では、駆動電流の大きさに関わらずΔPは同じとしているが、これは説明のための簡単化であり、実際には多少値が変化することが知られている。ただし、その量は駆動電流の変化、つまりピーク光量の変化に追随するような量ではなく、ほぼ同じぐらいの値と考えてよい。
The concept of laser characteristics and drive control, which are the premise of the present invention, are as follows.
FIG. 1 shows a droop characteristic of a general semiconductor laser.
FIG. 1 shows the relationship between the drive currents 1, 2, and 3 and the optical output waveform (optical waveform) when the magnitude of the drive current is divided into three types. In this figure, ΔP is the same regardless of the magnitude of the drive current, but this is a simplification for the sake of explanation, and it is known that the value actually varies somewhat. However, the amount is not an amount that follows the change in the drive current, that is, the change in the peak light amount, but may be considered to be approximately the same value.

一般的なレーザでは、自己発熱による効率低下によるドループの絶対量に関しては光量依存があまりないことが知られており、結果的に図1に示すように、駆動電流の大きさに寄らずほぼ同じパワー(図中ΔP)だけ光出力が低下する。このため、半導体レーザのドループ特性は、光量(定常状態の光出力)が小さいほどピーク光量(最初の光出力)との比でより大きく影響を受けることになり、光量変動の比率が大きくなってしまう。   In general lasers, it is known that the absolute amount of droop due to efficiency reduction due to self-heating does not depend much on the amount of light, and as a result, as shown in FIG. The light output is reduced by the power (ΔP in the figure). For this reason, the droop characteristic of the semiconductor laser is more affected by the ratio with the peak light amount (first light output) as the light amount (steady state light output) is smaller, and the ratio of light amount fluctuation becomes larger. End up.

従って、より均一の光量を得る、つまりより均一の画像濃度を得るためには、半導体レーザの光量をより上げて、ピーク光量に対してよりドループの影響(比率)が小さくなる動作状況で使用する事が望ましい。例えば画像形成装置で半導体レーザを使用する場合、図1において、勿論駆動電流1の場合つまり駆動電流及び発光量のどちらも大きい場合(図1(a1),(a2))には、相対的にドループ値が小さくなるため、より画像濃度の均一化に適している、つまりより安定な画像が形成できる。   Therefore, in order to obtain a more uniform light quantity, that is, to obtain a more uniform image density, the semiconductor laser light quantity is increased to be used in an operating situation in which the influence (ratio) of droop is smaller than the peak light quantity. Things are desirable. For example, when a semiconductor laser is used in the image forming apparatus, in FIG. 1, of course, when the drive current is 1, that is, when both the drive current and the light emission amount are large (FIG. 1 (a1), (a2)), Since the droop value is reduced, it is possible to form a more suitable image that is more suitable for uniform image density.

しかしながら、画像形成装置の光利用効率は、レンズのばらつきや感光体感度のばらつきや経時変化により変化するため、そのために半導体レーザの発光量を変えざるを得ない。この場合には、例えば駆動電流3の条件(光量が少なくて良いので、画像形成装置の光利用効率が良い条件(図1(c1),(c2)))とするが、半導体レーザのドループ特性の影響をより大きく受けて、レーザ発光量のピーク値変動がおき、結果的に画像濃度の変動を引き起こしてしまう。   However, since the light use efficiency of the image forming apparatus changes due to lens variations, photoconductor sensitivity variations, and changes over time, the light emission amount of the semiconductor laser must be changed. In this case, for example, the condition of the drive current 3 (the condition that the light utilization efficiency of the image forming apparatus is good because the amount of light is small (FIGS. 1 (c1) and (c2))) is the droop characteristic of the semiconductor laser. As a result, the peak value fluctuation of the laser emission amount occurs, resulting in fluctuations in image density.

また、光量を変更することは、光出力において立上り時間(Tr)/立下り時間(Tf)やドループ特性等の光応答波形も変化してしまうので、その変動も結果的に画像の濃度変動となってしまう問題がある(図2)。   In addition, changing the light amount also changes the optical response waveform such as rise time (Tr) / fall time (Tf) and droop characteristics in the light output, so that the fluctuation also results in the density fluctuation of the image. There is a problem that becomes (FIG. 2).

図2に、半導体レーザの高速光応答波形の例を示す。図1では横軸の時間スケールがμsであり、立上り/立下りパターンは直線で記載しているが、図2ではもっと高速で短いパルス、例えばパルス幅10ns〜20nsくらいの場合の光応答波形例を示している。   FIG. 2 shows an example of a high-speed optical response waveform of the semiconductor laser. In FIG. 1, the time scale on the horizontal axis is μs, and the rising / falling pattern is described by a straight line. In FIG. Is shown.

このような高速光応答の場合には、駆動電流のパルス幅が全く同じに駆動しても、半導体レーザから発光する光は、図2の様に、駆動電流とは異なるパルス幅となってしまう事が知られている。このパルス幅が細くなる1つの原因は、半導体レーザの発振遅延現象であり、予めバイアス電流を十分流していればその遅延量は低減するが、例えば駆動電流0や微小電流から発光させた場合には、より遅延量が大きくなり、結果的に光のパルス幅が細くなってしまう。パルス幅が細くなるもう1つの原因は、半導体レーザとドライバとの間の寄生容量と抵抗成分によるローパスフィルタ効果でTr/Tfが遅くなってしまうために、結果的にパルス幅も細ってしまう。   In the case of such a high-speed optical response, even if the drive current has the same pulse width, the light emitted from the semiconductor laser has a pulse width different from that of the drive current as shown in FIG. Things are known. One cause of the narrowing of the pulse width is an oscillation delay phenomenon of the semiconductor laser. The delay amount is reduced if a sufficient bias current is supplied in advance, but for example, when light is emitted from a driving current of 0 or a minute current. In this case, the delay amount becomes larger, and as a result, the pulse width of the light becomes narrower. Another cause of the narrowing of the pulse width is that the Tr / Tf becomes slow due to the low-pass filter effect caused by the parasitic capacitance and the resistance component between the semiconductor laser and the driver. As a result, the pulse width is also narrowed.

したがって、図2に示すように、光量(光出力)が小さい場合(駆動電流3の場合(図2(c1),(c2))には、一般的にドループ特性も悪くなるが、高速応答特性であるTr/Tfも悪くなる。ただし、VCSELの様な面発光レーザの場合には、異なる特性が得られる場合もあるが、一定光量での使用が一番安定であることには変わりはない。例えば、光利用効率を吸収するために、複数のNDフィルタを用いて効率を変更する手法などもあり、この場合は確かに一部ダイナミックレンジを低減することができるが、光量の最適化には結果的に光源の光量を変更せざるを得ず、光波形のばらつきを生じてしまう。   Therefore, as shown in FIG. 2, when the light amount (light output) is small (in the case of the drive current 3 (FIG. 2 (c1), (c2)), the droop characteristic is generally deteriorated, but the high-speed response characteristic. However, in the case of a surface emitting laser such as a VCSEL, different characteristics may be obtained, but the use with a constant light quantity is still the most stable. For example, in order to absorb the light utilization efficiency, there is a method of changing the efficiency by using a plurality of ND filters, and in this case, the dynamic range can be partly reduced, but the light quantity can be optimized. As a result, the amount of light from the light source must be changed, resulting in variations in the optical waveform.

このように、駆動電流を増減する事で、確かに、半導体レーザのピーク光量はそれなりに増減する事が可能であるが、1つには半導体レーザのドループ特性、また1つには半導体レーザ及び系の高速応答特性により、レーザドライバ側が理想的な駆動電流波形であったとしても、光波形としては、ドループによるピーク光量変動、及び高速応答時のパルス細りを生じるため、今後より高精度の画像形成装置を考える場合には大きな課題となる。   Thus, by increasing or decreasing the drive current, the peak light amount of the semiconductor laser can certainly be increased or decreased accordingly, but one is the droop characteristic of the semiconductor laser, and the other is the semiconductor laser and Due to the high-speed response characteristics of the system, even if the laser driver has an ideal drive current waveform, the optical waveform will cause fluctuations in peak light intensity due to droop and pulse thinning during high-speed response, so that more accurate images will be used in the future. This is a major problem when considering a forming apparatus.

次に、現在レーザプリンタや複写機において、光源光量の使用範囲(ダイナミックレンジ)が大きくなってきている理由について説明する。レーザ光を走査して感光体に書き込む、所謂レーザプリンタやレーザ複写機では、一般的に次のような効率変動に対応するために光源の光量を変更する必要がある。   Next, the reason why the use range (dynamic range) of the light source quantity is increasing in laser printers and copiers now will be described. In a so-called laser printer or laser copying machine that scans and writes laser light on a photosensitive member, it is generally necessary to change the light amount of the light source in order to cope with the following fluctuation in efficiency.

(変動1)光学系の効率変動
レンズやポリゴンミラーの透過/反射のばらつきによって、一般的に約2倍程度の効率変動があるが、感光体が必要とするレーザパワーは感光体により決まるため、その光学的ばらつきを、レーザの光量を変える事で調整(ばらつきを吸収)する必要がある。
(Variation 1) Variation in efficiency of optical system Generally, there is a variation in efficiency of about twice due to variations in transmission / reflection of lenses and polygon mirrors, but the laser power required by the photoconductor is determined by the photoconductor. It is necessary to adjust the optical variation (absorb the variation) by changing the amount of laser light.

(変動2)感光体等のプロセス効率変動
感光体の感度にもばらつきがあり、また感光体の場合には、使用していく事による経時変化(劣化)もあるため、それらを含めて、光源の光量を変える事で調整する必要がある。特に最近では、上記感光体や現像の効率の経時変化を、マシン自身が定期的に調べて画像の最適濃度を保つように自己調整を行うプロセスコントロールという動作を行わせるようになってきているが、結果的にその調整は、光源の光量を変える事で調整を実施している。
(Variation 2) Process efficiency variation of the photoconductor, etc. The sensitivity of the photoconductor also varies, and in the case of the photoconductor, there is also a change with time (deterioration) due to use. It is necessary to adjust by changing the amount of light. In particular, recently, the machine itself has been inspected for changes over time in the efficiency of the photoconductor and development, and the process itself performs a process control operation that performs self-adjustment so as to maintain the optimum image density. As a result, the adjustment is performed by changing the light quantity of the light source.

(変動3)機種間の効率変動
色々な機種で共通の光源を使用することで工程の簡略化やコストダウン化が進んでおり、一般的に良く実施されるが、各機種における上記記載の光学系効率やプロセス効率に関しては全く同じではなく、また機種により生産性(例えばプリントアウト時間等)も異なるため、レーザの光出力が異なり、また変調する速度も異なるため、実際の光波形に関しては上記の理由でばらばらであり、使用する光量も異なる。
(Variation 3) Efficiency variation between models The use of a common light source for various models has led to simplification of the process and cost reduction. System efficiency and process efficiency are not exactly the same, and because the productivity (for example, printout time) differs depending on the model, the laser light output is different and the modulation speed is also different. The amount of light used is different.

これらのばらつきや系の効率を吸収する(補正/調整)ためには、現状で大体約10倍程度の光量ダイナミックレンジが必要となってきており、また今後ますます補正幅が大きくなる傾向があるため、光量に依存する光波形の変化は、今後ますます大きな課題になって来ている。   In order to absorb these variations and system efficiency (correction / adjustment), a light intensity dynamic range of about 10 times is required at present, and the correction range tends to increase in the future. For this reason, changes in the optical waveform depending on the amount of light have become increasingly important issues in the future.

更に、カラー機の場合、光源の光波形に依存して画像の安定性に対して課題を生じる。つまり、カラー機の場合、一般に色毎に独自の感光体を持っており(1個の感光体でカラーを出力する場合には生産性(速度)が落ちるため)、色毎のそれぞれの光学系、感光体の効率や経時状態が異なるため一般的に、各色における光源の出力はばらばらになっている。この場合、前述したように出力がばらばらの場合、光波形、言い換えれば感光体上における積分光量とその分布がばらばらのものにトナーを載せて、結果としてカラーの画像を形成するが、その色味や濃度は光波形のばらつきのため、変動してしまう。画像の領域が大きい場合にはその影響は積分されるため比較的安定となるが、ハイライト画像などにおいて、特に小さい画素の組合せでハイライト画像を形成する場合などにおいては、光波形のばらつきの影響が出てしまう。また、画像領域の大きい画像でも、レーザのドループ特性のように長周期の特性の影響で濃度変化をおこす場合もある。つまり、モノクロの場合に比べてより画像の安定化に課題がある。   Furthermore, in the case of a color machine, a problem arises with respect to the stability of the image depending on the light waveform of the light source. In other words, a color machine generally has its own photoconductor for each color (because productivity (speed) decreases when outputting color with a single photoconductor), and each optical system for each color. In general, the output of the light source in each color is scattered because the efficiency and time-dependent state of the photoconductor are different. In this case, if the output is different as described above, the toner is placed on the light waveform, in other words, the integrated light quantity and its distribution on the photoconductor, and a color image is formed as a result. And the density fluctuate due to variations in the optical waveform. When the area of the image is large, the effect is integrated and is relatively stable.However, in the case of a highlight image or the like, particularly when a highlight image is formed with a combination of small pixels, the variation of the optical waveform The effect will come out. Even in an image with a large image area, the density may change due to the influence of long-period characteristics such as laser droop characteristics. That is, there is a problem in image stabilization as compared with the monochrome case.

発明者らは、これらの課題を解決するために、鋭意検討を行い、半導体レーザをドループ特性がなく光応答波形も良好な高出力側で、かつ一定の光出力のまま使用し、光量そのものは別の手段で発光後に調整(減衰)させるようにするレーザ駆動装置及び該レーザ駆動装置を備える光走査装置を完成させ、またこの光走査装置を用いて画像濃度変動が小さく、安定した画像形成が可能な画像形成装置を実現した。
以下に、本発明に係るレーザ駆動装置、光走査装置並びに画像形成装置について説明する。
In order to solve these problems, the inventors have intensively studied and used a semiconductor laser on the high output side with no droop characteristic and good optical response waveform and with a constant light output, and the light quantity itself is A laser driving device that is adjusted (attenuated) after light emission by another means and an optical scanning device including the laser driving device are completed, and the optical scanning device is used to reduce image density fluctuation and achieve stable image formation. A possible image forming apparatus was realized.
The laser driving device, the optical scanning device, and the image forming apparatus according to the present invention will be described below.

図3は、本発明に係るレーザ駆動装置の構成例を示す概略図である。
レーザ駆動装置10は、図3に示すように、レーザ光を出射する半導体レーザである光源1と、光源1から出射するレーザ光の光量を一定として光源1のオンオフ駆動制御を行う光源駆動制御部5aと、光源1から出射されたレーザ光の光路上に配置され、内部を透過するレーザ光の透過率を電気的に変更可能な光量調整素子3と、当該レーザ駆動装置10から出力されるレーザ光が関係する光学部品(光学系)の光学特性等に応じて光量調整素子3の内部の透過率を制御して、該内部を透過し出射するレーザ光のピーク光量を調整するピーク光量制御部5bと、を備える。また、制御部5は、光源駆動制御部5aとピーク光量制御部5bとからなる制御装置あるいはドライバである。
FIG. 3 is a schematic diagram showing a configuration example of a laser driving device according to the present invention.
As shown in FIG. 3, the laser drive device 10 includes a light source 1 that is a semiconductor laser that emits laser light, and a light source drive control unit that performs on / off drive control of the light source 1 with a constant amount of laser light emitted from the light source 1. 5a, a light amount adjusting element 3 arranged on the optical path of the laser light emitted from the light source 1 and capable of electrically changing the transmittance of the laser light transmitted through the inside, and a laser output from the laser driving device 10 A peak light quantity control unit that controls the internal transmittance of the light quantity adjusting element 3 in accordance with the optical characteristics of an optical component (optical system) related to the light, and adjusts the peak light quantity of the laser light transmitted through and emitted from the inside. 5b. The control unit 5 is a control device or a driver including a light source drive control unit 5a and a peak light amount control unit 5b.

ここで、光源1は、光源駆動制御部5aから供給される駆動電流(LD信号)と光源1用のフォトディテクタ(PD)信号により、ドループ特性及び高速応答特性が良好となる所定出力(例えば10mW)で常に発光するものとなっている。これは例えば、図1,図2の駆動電流1の場合の状態である。   Here, the light source 1 has a predetermined output (for example, 10 mW) in which the droop characteristic and the high-speed response characteristic are improved by the drive current (LD signal) supplied from the light source drive control unit 5a and the photodetector (PD) signal for the light source 1. It always emits light. This is, for example, the state in the case of the drive current 1 in FIGS.

また、光源1と光量調整素子3の間に、光源1から出射されたレーザ光の光量を所定量に規定するアパーチャ2を備える。図3では、10mWで出力されたレーザ光を3mW一定のレーザ光としている。なお、コリメータレンズ等の光学素子を必要に応じて配置するとよい。   In addition, an aperture 2 is provided between the light source 1 and the light amount adjusting element 3 to regulate the light amount of the laser light emitted from the light source 1 to a predetermined amount. In FIG. 3, the laser beam output at 10 mW is a constant 3 mW laser beam. An optical element such as a collimator lens may be arranged as necessary.

なお、光源1がLDA(レーザダイオードアレイ)やVCSELなどの複数の発光部を有する多数光源構成である場合、光源駆動制御部5aは、前記複数の発光部それぞれの発光光量が所望値に調整された光源1についてオンオフ駆動制御を行うことが好ましい。   When the light source 1 has a multiple light source configuration having a plurality of light emitting units such as an LDA (laser diode array) or a VCSEL, the light source drive control unit 5a adjusts the light emission amount of each of the plurality of light emitting units to a desired value. It is preferable to perform on / off drive control for the light source 1.

光量調整素子3は、ピーク光量制御部5bからの信号(電気的制御)により内部の透過率が変化し、アパーチャ2からのレーザ光を所望のピーク光量(画像形成装置の光学系として必要となる光量)として出射可能な光学素子である。例えば光量調整素子3は、図3では、入射する3mWのレーザ光が内部を透過することにより、0.3mW〜3mWの範囲で任意に調整されて出射されるように、透過率の調整が可能となっている。   The light amount adjustment element 3 has an internal transmittance that is changed by a signal (electrical control) from the peak light amount control unit 5b, and the laser light from the aperture 2 is required as a desired peak light amount (optical system of the image forming apparatus). It is an optical element that can emit light as a light quantity. For example, in FIG. 3, the light amount adjusting element 3 can adjust the transmittance so that incident 3 mW laser light is transmitted through the inside so that it can be arbitrarily adjusted within the range of 0.3 mW to 3 mW and emitted. It has become.

また光量調整素子3は、前述した3つの効率変動(変動1〜3)に対応するために、電気的に少なくとも1秒以内に内部の透過率を変更できるものが好ましく、例えば、液晶偏光素子、可変式ND素子(連続ND素子)、音響光学素子、ファラデー素子のいずれかであることが好適である。   The light quantity adjusting element 3 is preferably one that can electrically change the internal transmittance within at least one second in order to cope with the three efficiency fluctuations (variations 1 to 3) described above. It is preferably a variable ND element (continuous ND element), an acoustooptic element, or a Faraday element.

このうち、液晶偏光素子は、テレビやビデオ、カメラのファインダー等の用途で汎用に用いられているものでよく、例えば図4に示すように、石英ガラスなどの透明基板3a上にITOなどの透明な電極3b及び配向膜3cを積層形成した1対の基板3dを配向膜3cが対向するようにしてスペーサ3sを介して配置し、内部に液晶層LCを充填したものである。この液晶偏光素子では、電極3b間に印加する電圧を変化させて液晶層LCの液晶配向を変化させることにより、内部全体の透過率が変化するようになっている。このように、光量調整素子3が液晶偏光素子であることにより、より安価で安定なレーザ駆動装置を実現することができる。またこのような液晶偏光素子は、広面積のものが比較的容易に得られるため、LDA(レーザダイオードアレイ)やVCSELなどの多数光源構成に好適である。   Among these, the liquid crystal polarizing element may be used for general purposes in applications such as TV, video, camera finder, etc. For example, as shown in FIG. 4, a transparent substrate 3a such as quartz glass is transparent on ITO or the like. A pair of substrates 3d on which a plurality of electrodes 3b and an alignment film 3c are laminated are arranged through spacers 3s so that the alignment film 3c faces each other, and the liquid crystal layer LC is filled therein. In this liquid crystal polarizing element, the transmittance of the entire interior is changed by changing the voltage applied between the electrodes 3b to change the liquid crystal alignment of the liquid crystal layer LC. Thus, since the light quantity adjusting element 3 is a liquid crystal polarizing element, a cheaper and more stable laser driving device can be realized. Such a liquid crystal polarizing element is suitable for a large number of light source configurations such as an LDA (laser diode array) and a VCSEL because a liquid crystal polarizing element can be obtained relatively easily.

可変式ND素子としては、例えば回転体に連続してNDフィルタの透過光量が調整できる素子などを想定しており、その素子を例えばステッピングモータ等で回転量制御することで、透過するレーザ光のピーク光量を調整することが可能となる。アナログ的に濃度が連続して変化するND素子の場合には、所定の透過効率場所が狭いため、LDAやVCSELなどの多数光源には向いていないが、図5(a)に示すように、デジタル的ではあるが連続的に透過効率を変更できるようなND素子の場合には上記課題はなく、本発明を実現可能である。すなわち、図5(a)に示す可変式ND素子は、回転体である円盤の中心角について16分割し、分割領域(中心角22.5度)ごとに濃度の異なるNDフィルタを配置した構成例であり、円盤を回転させることにより透過率を変化させることができる。このとき、円盤上の分割数はもっと多い方がよりアナログ的に設定値(透過率)変更が容易であり、例えば256値(8ビット)程度以上のステップがあったほうが良い。
また、図5(b)に示す可変式ND素子は、異なる濃度のNDフィルタを複数毎重ねることにより所望の透過光量を得る構成例であり、例えば所定の1または複数のNDフィルタを選択して入射するレーザ光の光路上に配置することにより所望の濃度(透過率)を実現可能である。
As the variable ND element, for example, an element capable of adjusting the amount of light transmitted through the ND filter continuously with the rotating body is assumed. By controlling the amount of rotation of the element with, for example, a stepping motor, the transmitted laser light is transmitted. The peak light amount can be adjusted. In the case of an ND element in which the concentration continuously changes in an analog manner, the predetermined transmission efficiency place is narrow, so it is not suitable for a large number of light sources such as LDA and VCSEL, but as shown in FIG. In the case of an ND element that can change the transmission efficiency continuously though it is digital, the above problem does not occur and the present invention can be realized. That is, the variable ND element shown in FIG. 5A is divided into 16 with respect to the central angle of the disk that is a rotating body, and an ND filter having a different density is arranged for each divided region (central angle 22.5 degrees). The transmittance can be changed by rotating the disk. At this time, the larger the number of divisions on the disk, the easier it is to change the set value (transmittance) in an analog fashion. For example, there should be a step of about 256 values (8 bits) or more.
The variable ND element shown in FIG. 5B is a configuration example in which a desired amount of transmitted light is obtained by stacking a plurality of ND filters having different densities. For example, a predetermined one or a plurality of ND filters are selected. A desired density (transmittance) can be realized by placing the laser beam on the optical path of the incident laser light.

このような固定の透過効率を持つNDフィルタを複数枚利用し、駆動系により連続的に切り替えることで可変濃度を実現することが出来る。また、光量調整素子3が可変式ND素子であることにより、より容易に安価で安定なレーザ駆動装置を実現することができる。   A variable density can be realized by using a plurality of ND filters having such a fixed transmission efficiency and continuously switching them with a drive system. Further, since the light amount adjusting element 3 is a variable ND element, a cheap and stable laser driving device can be realized more easily.

音響光学素子(AOM素子)は、音響光学媒体に圧電素子を接着したものであり、該圧電素子に電気信号を加えて超音波を発生させて、内部を通るレーザ光を回折させることにより、透過光の光変調素子(あるいは光偏向素子、音響光学フィルタ)となる。このとき、圧電素子について一定の周波数での振幅変調させることによりレーザ光の透過率を変化させることができる。あるいは光偏向素子、音響光学フィルタとして用いるときには周波数変調及び振幅変調により出射するレーザ光の強度を調整する。   An acousto-optic element (AOM element) is an acousto-optic medium bonded with a piezoelectric element. An electric signal is applied to the piezoelectric element to generate an ultrasonic wave, which diffracts laser light passing through the inside. It becomes a light modulation element (or a light deflection element, an acousto-optic filter). At this time, the transmittance of the laser beam can be changed by amplitude-modulating the piezoelectric element at a constant frequency. Alternatively, when used as an optical deflection element or an acousto-optic filter, the intensity of the laser beam emitted is adjusted by frequency modulation and amplitude modulation.

このように、光量調整素子3が音響光学素子であることにより、より高速かつ高性能なレーザ駆動装置を実現することができる。なお一般に音響光学媒体は単結晶からなるため、複数光源の場合にはより大きな結晶が必要となる。   As described above, since the light amount adjusting element 3 is an acousto-optic element, a higher-speed and high-performance laser driving device can be realized. In general, since the acousto-optic medium is made of a single crystal, a larger crystal is required in the case of a plurality of light sources.

ファラデー素子とは、非線形光学素子に磁界をかけることにより磁気カー回転を行わせることで偏光する素子であり、フィルタとして用いるものである。例えば、図6に示すように、2枚の偏光子P1,P2の間にファラデー旋光子Fを挟み、磁界Hによりファラデー旋光子Fの回転を調整してレーザ光の透過率を変化させるものである。このように、光量調整素子3がファラデー素子であることにより、より高速かつ高性能なレーザ駆動装置を実現することができる。   A Faraday element is an element that is polarized by rotating a magnetic Kerr by applying a magnetic field to a nonlinear optical element, and is used as a filter. For example, as shown in FIG. 6, the Faraday rotator F is sandwiched between two polarizers P1 and P2, and the rotation of the Faraday rotator F is adjusted by the magnetic field H to change the transmittance of the laser light. is there. As described above, since the light quantity adjustment element 3 is a Faraday element, a higher-speed and high-performance laser driving device can be realized.

図7,図8に、レーザ駆動装置10から出射される光出力の波形を示す。図7はレーザ駆動装置10から出射される光出力の波形のドループ特性であり、図8はその高速光応答波形である。
レーザ駆動装置10において、前述した図1(c1),(c2)(駆動電流3の条件)の場合と同じ光出力のレーザ光を出射する場合を考えると、つぎの過程を経て出力される。
(S1) まず光源1には光源駆動制御部5aから常に図7(a),図8(a)に示す駆動電流1のLD信号が入力される。
(S2) 光源1からは図7(b)に示すように最初の光出力から△Pだけ低下して定常の光出力となる波形で、かつ図8(b)に示すようにレーザ発振が所定時間だけ遅延してパルス幅が細くなった、レーザ光が出射される。
(S3) ついで、光源1から出射されたレーザ光はアパーチャ2で光量が所定量に規定された後に光量調整素子3に入射する。
(S4) 光量調整素子3ではピーク光量制御部5bにより内部が所定の透過率に調整されており、入射したレーザ光が減衰され、出射される。このとき、図7(b),図8(b)の光波形が単純に減衰され、図7(c),図8(c)の光出力の波形で出射される。すなわち、図7(c)に示すように、ドループ特性による光出力のピーク変動値は、ΔP×駆動電流3/駆動電流1となり、光出力の大きさに比例してドループ特性の影響が小さくなる。また、図8(c)に示すように、光出力の高速光応答波形は、レーザ発振の遅延が変わることがなく、光出力のパルス幅が図8(b)と同じで光量が小さい波形となる。
7 and 8 show the waveform of the light output emitted from the laser driving device 10. FIG. 7 shows the droop characteristic of the waveform of the optical output emitted from the laser driving apparatus 10, and FIG. 8 shows the high-speed optical response waveform.
Considering the case where the laser drive device 10 emits laser light having the same light output as in the cases of FIGS. 1C1 and 1C2 (conditions of the drive current 3) described above, the laser light is output through the following process.
(S1) First, the LD signal of the drive current 1 shown in FIGS. 7A and 8A is always input to the light source 1 from the light source drive controller 5a.
(S2) The light source 1 has a waveform that decreases by ΔP from the initial light output as shown in FIG. 7B to a steady light output, and laser oscillation is predetermined as shown in FIG. 8B. A laser beam whose pulse width is narrowed with a delay is emitted.
(S3) Next, the laser light emitted from the light source 1 is incident on the light amount adjusting element 3 after the light amount is regulated to a predetermined amount by the aperture 2.
(S4) In the light amount adjusting element 3, the inside is adjusted to a predetermined transmittance by the peak light amount control unit 5b, and the incident laser light is attenuated and emitted. At this time, the optical waveforms in FIGS. 7B and 8B are simply attenuated and emitted with the optical output waveforms in FIGS. 7C and 8C. That is, as shown in FIG. 7C, the peak fluctuation value of the optical output due to the droop characteristic is ΔP × drive current 3 / drive current 1, and the influence of the droop characteristic becomes smaller in proportion to the magnitude of the optical output. . Further, as shown in FIG. 8C, the high-speed optical response waveform of the optical output is a waveform in which the delay of laser oscillation does not change, the pulse width of the optical output is the same as in FIG. Become.

以上のように、本発明のレーザ駆動装置10によれば、光源1から良好なドループ特性及び高速光応答特性のレーザ光を一定出力で出射した上で、光量調整素子3で減衰して出射するので、ドループ特性も高速光応答特性もその良好な特性を損なうことなく単純に減衰させたものとなり、レーザ駆動装置10から出射されるレーザ光の光出力の波形は従来のもの(図1,図2)に比べて非常に安定したものとなる。   As described above, according to the laser driving device 10 of the present invention, laser light having good droop characteristics and high-speed optical response characteristics is emitted from the light source 1 at a constant output, and then attenuated and emitted by the light quantity adjusting element 3. Therefore, both the droop characteristic and the high-speed optical response characteristic are simply attenuated without impairing the good characteristics, and the optical output waveform of the laser beam emitted from the laser driving device 10 is the conventional one (FIGS. 1 and 2). Compared with 2), it is very stable.

なお、レーザ駆動装置10から出射されたレーザ光の光量を透過型のフォトディテクタ(PD)でモニターしておき、その情報をピーク光量制御部5bにフィードバックして、出力される光量が一定になるように制御してもよい。   The amount of laser light emitted from the laser driving device 10 is monitored by a transmission type photo detector (PD), and the information is fed back to the peak light amount control unit 5b so that the output light amount becomes constant. You may control to.

つぎに、本発明に係る光走査装置の構成について説明する。
図9は、本発明に係る光走査装置の構成を示す概略図である。
光走査装置100は、図9に示すように、光源1,アパーチャ2,光量調整素子3,光源駆動制御部5a,ピーク光量制御部5bからなる本発明のレーザ駆動装置10と、シリンドリカルレンズ12と、主走査方向に偏向する手段(走査手段)であるポリゴンミラー13と、結像光学系でありfθレンズである偏向器側走査レンズ14a及び像面側走査レンズ14bと、感光体ドラム16側にレーザ光を折り返す折り返しミラー15と、これらをその所定位置に組み付けた図示しない光学ハウジング等を有している。
Next, the configuration of the optical scanning device according to the present invention will be described.
FIG. 9 is a schematic diagram showing the configuration of the optical scanning device according to the present invention.
As shown in FIG. 9, the optical scanning device 100 includes a laser driving device 10 of the present invention comprising a light source 1, an aperture 2, a light amount adjusting element 3, a light source drive control unit 5a, and a peak light amount control unit 5b, a cylindrical lens 12, and the like. The polygon mirror 13 which is a means for deflecting in the main scanning direction (scanning means), the deflector side scanning lens 14a and the image surface side scanning lens 14b which are imaging optical systems and fθ lenses, and the photosensitive drum 16 side. A folding mirror 15 for folding the laser beam and an optical housing (not shown) in which these mirrors are assembled at predetermined positions are provided.

本実施形態においては、XYZ3次元直交座標系において、シリンドリカルレンズ12の光軸に沿った方向をX軸方向、ポリゴンミラー13の回転軸に平行な方向をZ軸方向として説明する。また、便宜上、主走査方向に対応する方向を「主走査方向」と略述し、副走査方向に対応する方向を「副走査方向」と略述する。   In the present embodiment, in the XYZ three-dimensional orthogonal coordinate system, the direction along the optical axis of the cylindrical lens 12 is described as the X-axis direction, and the direction parallel to the rotation axis of the polygon mirror 13 is described as the Z-axis direction. For convenience, the direction corresponding to the main scanning direction is abbreviated as “main scanning direction”, and the direction corresponding to the sub scanning direction is abbreviated as “sub scanning direction”.

図9に示すように、光走査装置100において、レーザ駆動装置10から出射されたレーザ光はシリンドリカルレンズ12により副走査方向に集光され、走査手段として回転するポリゴンミラー13の偏向反射面(単に反射面ともいう)に入射する。ついで、偏向反射面により反射されたレーザ光は、ポリゴンミラー13の等速回転とともに等角速度的に偏向し、走査レンズ14a,14bを透過して、折り返しミラー15で折り返されて感光体ドラム(単に感光体ともいう)16の被走査面上に集光する。このように、レーザ駆動装置10から出射されたレーザ光は被走査面上に光スポットとして結像され、被走査面の光走査が行われる。   As shown in FIG. 9, in the optical scanning device 100, the laser light emitted from the laser driving device 10 is condensed in the sub-scanning direction by the cylindrical lens 12 and is simply deflected and reflected by the polygon mirror 13 rotating as the scanning means (simply). It is also incident on the reflecting surface. Next, the laser light reflected by the deflecting reflecting surface is deflected at a constant angular velocity along with the constant speed rotation of the polygon mirror 13, passes through the scanning lenses 14a and 14b, is folded back by the folding mirror 15, and is simply a photosensitive drum (simply). Condensed on the surface to be scanned 16 (also called photoconductor). As described above, the laser light emitted from the laser driving device 10 is imaged as a light spot on the surface to be scanned, and optical scanning of the surface to be scanned is performed.

このような構成の光走査装置100では、本発明のレーザ駆動装置10を用いているので、光源1の駆動電流を変更する従来の構成で得られない非常に安定な光波形のレーザ光を利用することができ、半導体レーザの特性に依存する事のない安定した光書込みを実現することができる。   Since the optical scanning device 100 having such a configuration uses the laser driving device 10 of the present invention, a laser beam having a very stable optical waveform that cannot be obtained by the conventional configuration for changing the driving current of the light source 1 is used. Therefore, stable optical writing that does not depend on the characteristics of the semiconductor laser can be realized.

つぎに、本発明に係る画像形成装置の構成について説明する。
図10は、本発明に係る画像形成装置の構成を示すものであり、本発明の光走査装置を用いた画像形成装置の全体側面図である。
図10において、電子写真装置である画像形成装置200は、各色の画像形成ユニット110,120,130,140を中間転写ベルト151上に配置し、中間転写ベルト151上にトナーによるカラー像を形成し、そのカラー像を給紙装置170から搬送される記録媒体である用紙に転写し、定着装置160で熱と圧力でトナーを溶融定着してカラー画像を形成する。
Next, the configuration of the image forming apparatus according to the present invention will be described.
FIG. 10 shows the configuration of the image forming apparatus according to the present invention, and is an overall side view of the image forming apparatus using the optical scanning device of the present invention.
In FIG. 10, an image forming apparatus 200 that is an electrophotographic apparatus arranges image forming units 110, 120, 130, and 140 for each color on an intermediate transfer belt 151, and forms a color image with toner on the intermediate transfer belt 151. Then, the color image is transferred to a sheet as a recording medium conveyed from the paper feeding device 170, and the toner is melted and fixed by heat and pressure by the fixing device 160 to form a color image.

画像形成ユニット110,120,130,140は4式あり、それぞれ黒色トナーを有するK現像ユニット110、シアン色トナーを有するC現像ユニット120、マゼンタ色トナーを有するM現像ユニット130、イエロー色トナーを有するY現像ユニット140である。   There are four types of image forming units 110, 120, 130, and 140, each having a K developing unit 110 having black toner, a C developing unit 120 having cyan toner, an M developing unit 130 having magenta toner, and a yellow toner. Y developing unit 140.

そして、例えば画像形成ユニット110として、感光体ドラム111(図9でいう感光体ドラム16である)と、感光体ドラム111の周囲に感光体ドラム111表面を高圧に帯電する帯電装置112、入力された画像データに基づいた本発明の光走査装置100の光書込みにより感光体ドラム111上に記録された静電潜像に現像ローラ114aから帯電したトナーを付着させて顕像化する現像装置114、感光体ドラム111に残ったトナーを掻き取って備蓄するクリーニング装置115が配置されている。画像形成ユニット120,130,140についても同様である。なお、前述したような光走査装置100によるリアルタイムな走査線の位置ずれ補正を、画像形成ユニット110,120,130,140のすべてに適用するとよい。   For example, as the image forming unit 110, a photosensitive drum 111 (which is the photosensitive drum 16 in FIG. 9) and a charging device 112 that charges the surface of the photosensitive drum 111 to a high voltage around the photosensitive drum 111 are input. A developing device 114 that visualizes the electrostatic latent image recorded on the photoconductive drum 111 by attaching the toner charged from the developing roller 114a to the electrostatic latent image recorded by the optical writing of the optical scanning device 100 of the present invention based on the obtained image data; A cleaning device 115 for scraping and storing the toner remaining on the photosensitive drum 111 is disposed. The same applies to the image forming units 120, 130, and 140. It should be noted that the real-time scanning line positional deviation correction by the optical scanning device 100 as described above may be applied to all of the image forming units 110, 120, 130, and 140.

中間転写ベルト151は、複数のローラに張架され回動される無端状のベルトであり、各画像形成ユニット110,120,130,140の感光体ドラム及び二次転写ローラ150と接触している。また、一次転写ローラ(不図示)は、感光体ドラム111などに対向して中間転写ベルト151内側に感光体ドラム111等に対向して配置される。   The intermediate transfer belt 151 is an endless belt that is stretched and rotated by a plurality of rollers, and is in contact with the photosensitive drum and the secondary transfer roller 150 of each of the image forming units 110, 120, 130, and 140. . Further, a primary transfer roller (not shown) is disposed opposite to the photosensitive drum 111 and the like, and is disposed inside the intermediate transfer belt 151 and opposed to the photosensitive drum 111 and the like.

用紙は、用紙を堆積した給紙装置170からピックアップローラ171で1枚ずつ引き出され、レジストローラ172を経て、二次転写ローラ150とその対向ローラにより押し付けられながら中間転写ベルト151と接触して画像が転写され、搬送ベルトを介して定着装置160へ至る。   The sheets are pulled out one by one by the pickup roller 171 from the sheet feeding device 170 on which the sheets are accumulated, and after passing through the registration rollers 172, come into contact with the intermediate transfer belt 151 while being pressed by the secondary transfer roller 150 and its opposing roller. Is transferred to the fixing device 160 via the conveyance belt.

定着装置160では、所定温度に加熱された定着部材と加圧部材とが所定の圧力で当接してニップ部が形成されており、ニップ部を通過する用紙に熱と圧力が付与されるようになっている。   In the fixing device 160, the fixing member heated to a predetermined temperature and the pressure member are brought into contact with each other with a predetermined pressure to form a nip portion, and heat and pressure are applied to the sheet passing through the nip portion. It has become.

画像形成装置200において画像を形成する場合、例えば画像形成ユニット110では感光体ドラム111上を帯電装置112で帯電させ、光走査装置100で画像に応じた光をあてて、感光体ドラム111上の電位を落とす。その部位が感光体ドラム111の回転により、現像装置114に達し、現像ローラ114a上のトナー層と接すると帯電しているトナーが画像位置に付着する。   When forming an image in the image forming apparatus 200, for example, the image forming unit 110 charges the photosensitive drum 111 with the charging device 112, and the optical scanning device 100 applies light according to the image to Drop the potential. The portion reaches the developing device 114 by the rotation of the photosensitive drum 111, and when it comes into contact with the toner layer on the developing roller 114a, the charged toner adheres to the image position.

感光体ドラム111上のトナー画像は、一次転写ローラが中間転写ベルト151を感光体ドラム111に向かって押し付ける部位で、中間転写ベルト151上に転写される。各画像形成ユニット120、130、140でも同様にして感光体ドラム上のトナー画像が中間転写ベルト151上に転写され、カラーのトナー画像が形成される。そして、中間転写ベルト151の搬送により、二次転写ローラ150の部位で搬送されてきた用紙上にトナー画像は転写される。トナー画像が転写された用紙は、定着装置160に搬送され、熱と圧力により、トナーが溶融定着されカラー画像が形成され、排紙ローラ191により排紙トレイ190に排出される。   The toner image on the photosensitive drum 111 is transferred onto the intermediate transfer belt 151 at a portion where the primary transfer roller presses the intermediate transfer belt 151 toward the photosensitive drum 111. Similarly, in each of the image forming units 120, 130, and 140, the toner image on the photosensitive drum is transferred onto the intermediate transfer belt 151 to form a color toner image. As the intermediate transfer belt 151 is conveyed, the toner image is transferred onto the sheet conveyed at the site of the secondary transfer roller 150. The sheet onto which the toner image has been transferred is conveyed to the fixing device 160, where the toner is melted and fixed by heat and pressure to form a color image, and is discharged to the discharge tray 190 by the discharge roller 191.

なお、光走査装置100におけるレーザ駆動装置10の光量調整素子3の透過率の調整は、画像濃度情報に基づいて調整を行うとよい。画像濃度情報とは、例えばマシン自身が定期的に行うプロセスコントロール動作において、実際に形成した画像の画像濃度を濃度検知センサーを用いて測定した結果の情報である。本発明では、その画像濃度情報に基づいて、画像が所望の濃度になるようにピーク光量制御部5bが光量調整素子3を調整することにより、変動1(光学系の特性ばらつき(効率変動))や変動2(感光体等のプロセス効率変動(感度等のばらつきやプロセス経時変化))や変動3(機種間の効率変動)を同時に補正することが可能である。またその場合に、光源1自身の光量を変更していないため、光波形そのものは非常に良好で安定な方形波を得ることができる。そのためには、ある所望の一定時間である所望の透過率に変化できる、つまり動的な透過率連続可変機能が必要である。この動的な変化の速度によっては、シェーデイング特性補償にもちいることも可能である。   Note that the transmittance of the light amount adjusting element 3 of the laser driving device 10 in the optical scanning device 100 may be adjusted based on the image density information. The image density information is information on the result of measuring the image density of an actually formed image using a density detection sensor, for example, in a process control operation periodically performed by the machine itself. In the present invention, based on the image density information, the peak light quantity control unit 5b adjusts the light quantity adjusting element 3 so that the image has a desired density, thereby causing fluctuation 1 (variation in optical system characteristics (efficiency fluctuation)). And fluctuation 2 (process efficiency fluctuations of the photoconductor, etc. (variations in sensitivity, etc. and changes with time in the process)) and fluctuation 3 (efficiency fluctuations between models) can be corrected simultaneously. In that case, since the light quantity of the light source 1 itself is not changed, the optical waveform itself can obtain a very good and stable square wave. For that purpose, it is necessary to have a function of continuously changing the transmittance which can be changed to a desired transmittance for a certain desired period of time. Depending on the speed of this dynamic change, it can be used for shading characteristic compensation.

以上のように、本発明の画像形成装置によれば、本発明の光走査装置100を用いるので、正確な光走査が可能となり、高画質の画像を形成することができる。特に、カラーレーザプリンタやカラーデジタル複写機に適用した場合に、色ずれの少ない高画質のカラー画像を形成することができる。   As described above, according to the image forming apparatus of the present invention, since the optical scanning device 100 of the present invention is used, accurate optical scanning is possible and a high-quality image can be formed. In particular, when applied to a color laser printer or a color digital copying machine, a high-quality color image with little color misregistration can be formed.

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   Although the present invention has been described with the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, modifications, deletions, etc. Can be changed within the range that can be conceived, and any embodiment is included in the scope of the present invention as long as the effects and advantages of the present invention are exhibited.

例えば、図11に示すように、本発明のレーザ駆動装置10として、レーザ光を出射する光源1と、光源1から出射するレーザ光の光量を一定として光源1のオンオフ駆動制御を行う光源駆動制御部5aと、光源1から出射されたレーザ光の光路上に配置され、入射するレーザ光の反射率を電気的に変更可能な光量調整素子3’と、光量調整素子3’の反射率を制御して、光量調整素子3’における反射により出射されるレーザ光のピーク光量を調整するピーク光量制御部5bと、を備えることを特徴とするものとするとよい。この場合、光量調整素子3’は、前述した3つの効率変動(変動1〜3)に対応するために、電気的に少なくとも1秒以内に反射率を変更できるものが好ましく、例えば、反射型の液晶偏光素子が挙げられる。   For example, as shown in FIG. 11, as the laser driving device 10 of the present invention, the light source 1 that emits laser light and the light source drive control that performs on / off drive control of the light source 1 while keeping the light quantity of the laser light emitted from the light source 1 constant. The light amount adjusting element 3 ′ arranged on the optical path of the laser light emitted from the unit 5a and the light source 1 and capable of electrically changing the reflectance of the incident laser light, and the reflectance of the light amount adjusting element 3 ′ are controlled. The peak light quantity control unit 5b that adjusts the peak light quantity of the laser light emitted by the reflection at the light quantity adjustment element 3 ′ may be provided. In this case, the light quantity adjusting element 3 ′ is preferably one that can electrically change the reflectance within at least one second in order to cope with the three efficiency fluctuations (variations 1 to 3) described above. A liquid crystal polarizing element is mentioned.

このようなレーザ駆動装置10によっても、光源1から良好なドループ特性及び高速光応答特性のレーザ光を一定出力で出射した上で、光量調整素子3’で減衰して出射するので、ドループ特性も高速光応答特性もその良好な特性を損なうことなく単純に減衰させたものとなり、レーザ駆動装置10から出射されるレーザ光の光出力の波形は従来のもの(図1,図2)に比べて非常に安定したものとなる。   Also with such a laser driving device 10, since laser light having good droop characteristics and high-speed optical response characteristics is emitted from the light source 1 at a constant output, it is attenuated and emitted by the light quantity adjusting element 3 ', so that the droop characteristic is also obtained. The high-speed optical response characteristic is also simply attenuated without impairing its good characteristics, and the optical output waveform of the laser light emitted from the laser driving device 10 is compared with the conventional one (FIGS. 1 and 2). It will be very stable.

1 光源
2 アパーチャ
3,3’ 光量調整素子
3a 透明基板
3b 電極
3c 配向膜
3d 基板
3s スペーサ
5 制御部
5a 光源駆動制御部
5b ピーク光量制御部
10 レーザ駆動装置
12 シリンドリカルレンズ
13 ポリゴンミラー
14a,14b 走査レンズ
15 折り返しミラー
16,111 感光体ドラム
100 光走査装置
110,120,130,140 画像形成ユニット
112 帯電装置
114 現像装置
114a 現像ローラ
115 クリーニング装置
150 二次転写ローラ
151 中間転写ベルト
160 定着装置
170 給紙装置
171 ピックアップローラ
172 レジストローラ
190 排紙トレイ
191 排紙ローラ
200 画像形成装置
F ファラデー旋光子
H 磁界
LC 液晶層
P1,P2 偏光子
DESCRIPTION OF SYMBOLS 1 Light source 2 Aperture 3, 3 'Light quantity adjustment element 3a Transparent substrate 3b Electrode 3c Alignment film 3d Board | substrate 3s Spacer 5 Control part 5a Light source drive control part 5b Peak light quantity control part 10 Laser drive device 12 Cylindrical lens 13 Polygon mirror 14a, 14b Scanning Lens 15 Folding mirror 16, 111 Photosensitive drum 100 Optical scanning device 110, 120, 130, 140 Image forming unit 112 Charging device 114 Developing device 114a Developing roller 115 Cleaning device 150 Secondary transfer roller 151 Intermediate transfer belt 160 Fixing device 170 Supply Paper device 171 Pickup roller 172 Registration roller 190 Paper discharge tray 191 Paper discharge roller 200 Image forming device F Faraday rotator H Magnetic field LC Liquid crystal layer P1, P2 Polarizer

特開昭63−197037号公報Japanese Unexamined Patent Publication No. 63-197037 特開平5−063283号公報JP-A-5-063283 特開2004−128342号公報JP 2004-128342 A 特開2008−233115号公報JP 2008-233115 A 特開2008−292956号公報JP 2008-292956 A

前記課題を解決するために提供する本発明は、以下の通りである
画像形成装置に用いるレーザ駆動装置であって、レーザ光を出射する面発光レーザ光源(光源1)と、前記面発光レーザ光源から出射するレーザ光の光量を一定として前記面発光レーザ光源のオンオフ駆動制御を行う光源駆動制御部(光源駆動制御部5a)と、前記面発光レーザ光源から出射されたレーザ光の光路上に配置され、入射するレーザ光の透過率または反射率を電気的に変更可能な光量調整素子(光量調整素子3,3’)と、前記面発光レーザ光源から出射するレーザ光の光量を一定として、前記光量調整素子の透過率または反射率を制御して、該光量調整素子における透過または反射により、該光量調整素子から出射されるレーザ光のピーク光量を調整するピーク光量制御部(ピーク光量制御部5b)と、を備えることを特徴とするレーザ駆動装置(レーザ駆動装置10、図3,図11)
The present invention provided to solve the above problems is as follows .
A laser driving device used in an image forming apparatus, wherein a surface emitting laser light source (light source 1) emitting laser light and on / off driving of the surface emitting laser light source with a constant light quantity of laser light emitted from the surface emitting laser light source A light source drive control unit (light source drive control unit 5a) that performs control and an optical path of the laser light emitted from the surface emitting laser light source, and can electrically change the transmittance or reflectance of the incident laser light A light amount adjusting element (light amount adjusting element 3, 3 ') and the light amount of the laser light emitted from the surface-emitting laser light source are constant, and the light amount adjusting element is controlled by controlling the transmittance or reflectance of the light amount adjusting element. And a peak light amount control unit (peak light amount control unit 5b) for adjusting the peak light amount of the laser light emitted from the light amount adjusting element by transmission or reflection at Laser driving device (laser driving device 10, FIGS. 3 and 11) .

Claims (6)

画像形成装置に用いるレーザ駆動装置であって、
レーザ光を出射する面発光レーザ光源と、
前記面発光レーザ光源から出射するレーザ光の光量を一定として前記面発光レーザ光源のオンオフ駆動制御を行う光源駆動制御部と、
前記面発光レーザ光源から出射されたレーザ光の光路上に配置され、入射するレーザ光の透過率または反射率を電気的に変更可能な光量調整素子と、
前記面発光レーザ光源から出射するレーザ光の光量を一定として、前記光量調整素子の透過率または反射率を制御して、該光量調整素子における透過または反射により、該光量調整素子から出射されるレーザ光のピーク光量を調整するピーク光量制御部と、
を備えることを特徴とするレーザ駆動装置。
A laser driving device used in an image forming apparatus,
A surface emitting laser light source for emitting laser light;
A light source drive control unit that performs on / off drive control of the surface emitting laser light source with a constant amount of laser light emitted from the surface emitting laser light source;
A light amount adjusting element that is disposed on the optical path of the laser light emitted from the surface emitting laser light source and can electrically change the transmittance or reflectance of the incident laser light;
A laser emitted from the light amount adjusting element by transmission or reflection at the light amount adjusting element by controlling the transmittance or reflectance of the light amount adjusting element while keeping the light amount of the laser light emitted from the surface emitting laser light source constant. A peak light quantity control unit for adjusting the peak light quantity of light;
A laser driving device comprising:
前記面発光レーザ光源は複数の発光部を有し、
前記光源駆動制御部は、前記複数の発光部それぞれの発光光量が所望値に調整されたレーザ光源についてオンオフ駆動制御を行うことを特徴とする請求項1に記載のレーザ駆動装置。
The surface emitting laser light source has a plurality of light emitting portions,
2. The laser drive device according to claim 1, wherein the light source drive control unit performs on / off drive control for a laser light source in which a light emission amount of each of the plurality of light emitting units is adjusted to a desired value.
前記光量調整素子は、液晶偏光素子、可変式ND素子、音響光学素子、ファラデー素子のいずれかであることを特徴とする請求項1または2に記載のレーザ駆動装置。   3. The laser driving apparatus according to claim 1, wherein the light amount adjusting element is any one of a liquid crystal polarizing element, a variable ND element, an acousto-optic element, and a Faraday element. 請求項1〜3のいずれかに記載のレーザ駆動装置を備える光走査装置。   An optical scanning device comprising the laser driving device according to claim 1. 請求項4に記載の光走査装置を備えることを特徴とする画像形成装置。   An image forming apparatus comprising the optical scanning device according to claim 4. 前記ピーク光量制御部は、形成した画像の濃度偏差に基づいて前記光量調整素子の透過率または反射率を制御して、該光量調整素子から出射されるレーザ光のピーク光量を調整することを特徴とする請求項5に記載の画像形成装置。   The peak light amount control unit adjusts the peak light amount of the laser light emitted from the light amount adjusting element by controlling the transmittance or reflectance of the light amount adjusting element based on the density deviation of the formed image. The image forming apparatus according to claim 5.
JP2015014346A 2015-01-28 2015-01-28 Laser driving device, optical scanner, and image formation apparatus Pending JP2015096977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014346A JP2015096977A (en) 2015-01-28 2015-01-28 Laser driving device, optical scanner, and image formation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014346A JP2015096977A (en) 2015-01-28 2015-01-28 Laser driving device, optical scanner, and image formation apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010132727A Division JP2011258796A (en) 2010-06-10 2010-06-10 Laser driving device, optical scanning apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2015096977A true JP2015096977A (en) 2015-05-21
JP2015096977A5 JP2015096977A5 (en) 2015-08-27

Family

ID=53374258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014346A Pending JP2015096977A (en) 2015-01-28 2015-01-28 Laser driving device, optical scanner, and image formation apparatus

Country Status (1)

Country Link
JP (1) JP2015096977A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703003A (en) * 2021-08-09 2021-11-26 北京一径科技有限公司 Laser scanning control method and device and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082501A (en) * 2000-09-08 2002-03-22 Ricoh Co Ltd Image forming device
JP2002211038A (en) * 2001-01-22 2002-07-31 Ricoh Co Ltd Method and apparatus for imaging
JP2004233704A (en) * 2003-01-31 2004-08-19 Hitachi Printing Solutions Ltd Printing control method and image forming apparatus
JP2005091932A (en) * 2003-09-18 2005-04-07 Ricoh Printing Systems Ltd Color image forming apparatus
JP2008209687A (en) * 2007-02-27 2008-09-11 Noritsu Koki Co Ltd Method for adjusting laser output
JP2010055056A (en) * 2008-07-28 2010-03-11 Ricoh Co Ltd Optical scanning device, image forming apparatus, and optical scanning method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082501A (en) * 2000-09-08 2002-03-22 Ricoh Co Ltd Image forming device
JP2002211038A (en) * 2001-01-22 2002-07-31 Ricoh Co Ltd Method and apparatus for imaging
JP2004233704A (en) * 2003-01-31 2004-08-19 Hitachi Printing Solutions Ltd Printing control method and image forming apparatus
JP2005091932A (en) * 2003-09-18 2005-04-07 Ricoh Printing Systems Ltd Color image forming apparatus
JP2008209687A (en) * 2007-02-27 2008-09-11 Noritsu Koki Co Ltd Method for adjusting laser output
JP2010055056A (en) * 2008-07-28 2010-03-11 Ricoh Co Ltd Optical scanning device, image forming apparatus, and optical scanning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113703003A (en) * 2021-08-09 2021-11-26 北京一径科技有限公司 Laser scanning control method and device and storage medium

Similar Documents

Publication Publication Date Title
JP2011258796A (en) Laser driving device, optical scanning apparatus and image forming apparatus
US8005321B2 (en) Pixel clock generator, optical scanner, and image forming apparatus
US7515170B2 (en) Optical scanner and image forming apparatus
US20070058255A1 (en) Optical scanner and image forming apparatus
JP2007226130A (en) Optical scanner, image forming apparatus, and phase modulation method
JP4634881B2 (en) Optical scanning device and image forming device
JP5649287B2 (en) Image forming apparatus
JP5729545B2 (en) Optical scanning apparatus and image forming apparatus
JP5505617B2 (en) Optical scanning apparatus and image forming apparatus
JP4007807B2 (en) Optical scanning device and image forming apparatus using the same
US7995088B2 (en) Optical scanning apparatus and image forming apparatus comprising the same
JP2004287380A (en) Light scanning device, scanning line adjusting method, scanning line adjusting control method, image forming apparatus and image forming method
JP2015096977A (en) Laser driving device, optical scanner, and image formation apparatus
KR20100077717A (en) Light scanning unit caparable of compensating for zigzag error, image forming apparatus employing the same, and method of compensating for zigzag error of the light scanning unit
JP2008181104A (en) Optical scanning device and image forming device equipped with the optical scanning device
JP2017196824A (en) Image formation apparatus
JP5713702B2 (en) Image forming apparatus
US8446443B2 (en) Image forming apparatus and method for controlling image forming method
JP2007160508A (en) Optical scanner and image forming apparatus
JP5397633B2 (en) Optical scanning apparatus and image forming apparatus
JP2009258533A (en) Liquid crystal optical device, optical path switching device, optical scanner, and image forming apparatus
JP5361010B2 (en) Optical scanning device and image forming apparatus having the same
JP2013061567A (en) Optical scanning device, image forming apparatus, and optical scanning method
JP2004184527A (en) Optical scanning device and image forming device
JP4197431B2 (en) Optical scanning apparatus and image forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719