JP2015096638A - Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member - Google Patents

Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member Download PDF

Info

Publication number
JP2015096638A
JP2015096638A JP2013236925A JP2013236925A JP2015096638A JP 2015096638 A JP2015096638 A JP 2015096638A JP 2013236925 A JP2013236925 A JP 2013236925A JP 2013236925 A JP2013236925 A JP 2013236925A JP 2015096638 A JP2015096638 A JP 2015096638A
Authority
JP
Japan
Prior art keywords
film
heat
resistant member
barrier coating
thermal barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013236925A
Other languages
Japanese (ja)
Inventor
田中 滋
Shigeru Tanaka
田中  滋
秀行 有川
Hideyuki Arikawa
秀行 有川
岳志 泉
Takeshi Izumi
岳志 泉
忠 粕谷
Tadashi Kasuya
忠 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2013236925A priority Critical patent/JP2015096638A/en
Publication of JP2015096638A publication Critical patent/JP2015096638A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat resistant member which has a porous structure capable of blowing out cooling medium from the entire surface, and has a TBC film in which strength reliability of the film is secured.SOLUTION: There is provided a heat resistant member having a thermal barrier coating film formed on a metal base via a bonding layer, which has a structure that the metal base and the bonding layer have through-holes penetrating them, the thermal barrier coating film is a porous body having a large number of voids, the large number of voids are connected via cracks, and gas flowing through the through-holes passes from a bottom part of the thermal barrier coating film to a surface part.

Description

本発明は、耐熱部材及びそれを用いたガスタービン部材並びに耐熱部材の製造方法に関する。   The present invention relates to a heat resistant member, a gas turbine member using the heat resistant member, and a method for manufacturing the heat resistant member.

地球温暖化防止のために各産業界で炭酸ガス排出抑制技術の開発が盛んに行われている。ガスタービンによる発電事業に関しては、燃焼ガスを高温化して発電効率を上げることで、燃料消費量を抑えることが有効である。現状、燃焼ガス温度は1300℃級であるが、近い将来1500℃から1700℃に上昇すると予想されている。このように燃焼ガスが高温になるにしたがい、ガスタービン部材への熱的負荷は増大する。そのため、ガスタービン部材には、耐熱性の高い超合金が求められ、合金組成、合金組織の適正化による研究開発が継続的に行われている。   In order to prevent global warming, various industries are actively developing carbon dioxide emission control technology. In the power generation business using gas turbines, it is effective to reduce fuel consumption by increasing the temperature of combustion gas to increase power generation efficiency. Currently, the combustion gas temperature is in the 1300 ° C class, but is expected to rise from 1500 ° C to 1700 ° C in the near future. As the combustion gas becomes higher in temperature, the thermal load on the gas turbine member increases. Therefore, a superalloy having high heat resistance is required for the gas turbine member, and research and development by optimizing the alloy composition and the alloy structure is continuously performed.

一方、このような金属材料開発と併行するように、ガスタービン部材の冷却技術が、その重要性を増している。すなわちガスタービン部材の中でも、熱的負荷の大きな動翼や静翼では、その内部に冷却媒体を流す複雑な通路が形成されている。またその表面には、高温燃焼ガスからの遮熱を目的にした遮熱コーティング膜(Thermal Barrier Coating:TBC)が設けられている。TBC膜は、一般に高融点でかつ低熱伝導のセラミックス膜が用いられており、良く知られているのがY(イットリア)を始めとするランタノイド系酸化物が添加されて部分安定化されたZrO(ジルコニア)セラミックス(YSZあるいはPSZと略す)である。コーティング方法としては、材料粉末を溶射する大気中プラズマ溶射法(APS)、または材料を原子オーダーで蒸着する電子ビーム物理蒸着法(EB‐PVD)が用いられている。 On the other hand, the gas turbine member cooling technology is becoming more important in parallel with such metal material development. That is, among the gas turbine members, a moving passage or a stationary blade having a large thermal load has a complicated passage through which a cooling medium flows. Further, a thermal barrier coating (TBC) for thermal insulation from high-temperature combustion gas is provided on the surface. The TBC film is generally made of a ceramic film having a high melting point and low thermal conductivity. The well-known TBC film is partially stabilized by the addition of a lanthanoid oxide such as Y 2 O 3 (yttria). ZrO 2 (zirconia) ceramics (abbreviated as YSZ or PSZ). As a coating method, an atmospheric plasma spraying method (APS) for spraying a material powder or an electron beam physical vapor deposition method (EB-PVD) for depositing a material on an atomic order is used.

ガスタービン部材の冷却性能は、特に下記非特許文献1に示されているように、このTBC膜の性状、組織が多大な影響を及ぼす。APSやEB−PVDの膜形成条件を適正に制御することで、膜内部に適度なクラック(縦状、横状)を導入することや、膜の緻密性・多孔性を制御する技術が行われている(非特許文献2)。すなわちTBC膜の微構造制御が冷却技術のキーとなっている。   As shown in Non-Patent Document 1 below, the properties and structure of the TBC film have a great influence on the cooling performance of the gas turbine member. Appropriate control of APS and EB-PVD film formation conditions introduces appropriate cracks (vertical and horizontal) inside the film, and technology to control the film's denseness and porosity. (Non-Patent Document 2). That is, the microstructure control of the TBC film is the key to the cooling technology.

MRS BULLETIN,vol.37,(2012),pp.891−898.MRS BULLETIN, vol. 37, (2012), pp. 891-898. 日本金属学会誌,vol.71(No.1),(2007),pp. 47−54.Journal of the Japan Institute of Metals, vol. 71 (No. 1), (2007), pp. 47-54.

TBC膜によるガスタービン部材・翼(金属部)への遮熱効果は、一義的には膜材料およびその組織によって決定される。膜に求められる要件は、(1)金属部内部を経て流れてきた冷却媒体(空気)がTBC膜全体(全面)を通して外部へ吹き出される構造であること、(2)タービン運転時にTBC膜剥離や欠損のない構造強度信頼性が高いこと、の2点である。そのため、TBC膜構造の検討では、「多孔質でありながら、構造強度は高い」という課題を解決することを目指している。ここで「多孔質」は2種類に分けられる。一つは、TBC膜を形成するYSZ粒子間の結合が弱く、膜内部に多量の気孔が入った密度の低い状態であり、もう一つは、意図的に膜内部に空隙(空間部)を導入し、かつ母体であるYSZ粒子間の結合は強く、強度が確保されている状態である。TBC膜として望ましい形態は、上記(2)の状態である。さらに言えば、導入した空隙が独立に存在するのではなく、繋がっていることが望まれる。   The heat shielding effect on the gas turbine member / blade (metal part) by the TBC film is primarily determined by the film material and its structure. The requirements for the membrane are: (1) the cooling medium (air) that has flowed through the inside of the metal part is blown out through the entire TBC membrane (entire surface), and (2) the TBC membrane is peeled off during turbine operation. It is two points of high structural strength reliability without defects. Therefore, in the study of the TBC film structure, the aim is to solve the problem of “structural strength is high while being porous”. Here, “porous” is classified into two types. One is a low-density state in which the bonds between the YSZ particles forming the TBC film are weak and a large amount of pores enter the inside of the film, and the other is intentionally creating voids (spaces) inside the film. The bond between the YSZ particles introduced and the matrix is strong and the strength is ensured. A desirable form for the TBC film is the state (2). Furthermore, it is desirable that the introduced voids are not independently present but connected.

TBC膜内部に、空間部を形成するためには、原理的に先述したEB−PVD法ではほとんど不可能であり、溶射法を用いて試みられている。具体的には、母体材料であるYSZ粉に、分解性の有機樹脂粉末を混ぜ、この混合粉を溶射し、TBC膜内に残存した有機樹脂分を熱処理することで分解、揮散させる方法が検討されている。TBC膜の空隙率は、原料粉の混合割合で制御される。しかし、硬質のセラミックス粉YSZと軟質の有機樹脂とを同時に溶射した場合、YSZによって有機樹脂粒子が削られるために、溶射後の膜には有機樹脂による空隙は残存せず、緻密な膜になる。溶射速度や、プラズマ温度条件、雰囲気など溶射条件を調節して、樹脂粒子を残存しようとすると、必然的に溶射条件が、低速、低温側になるために、結果として、空隙は残存するものの、YSZ母体の堅牢性は失われてしまい、強度信頼性に欠けることになる。緻密なTBC膜を形成しておき、後工程でこれに機械的加工により縦状に貫通孔を設ける技術や、EB−PVDに作製されるTBC膜の羽毛状構造では、貫通孔の周りだけが冷却効果が高く、膜全体でみると、不均一な冷却状態となり、膜へ不可避な熱応力が負荷されるなど、構造信頼性という観点から、このような方法では、望ましいTBC膜を作製することは困難である。このように、TBC膜としての堅牢性・信頼性を維持しつつ、その膜自体に冷却空気の吹き出し効果を同時に持たせることが、高特性なTBCコーティング分野の技術的課題となっている。   In order to form the space inside the TBC film, it is almost impossible with the EB-PVD method described above in principle, and an attempt has been made using a thermal spraying method. Specifically, a method of decomposing and volatilizing by mixing the decomposable organic resin powder with the YSZ powder as the base material, spraying this mixed powder, and heat-treating the organic resin remaining in the TBC film is examined. Has been. The porosity of the TBC film is controlled by the mixing ratio of the raw material powder. However, when hard ceramic powder YSZ and soft organic resin are sprayed at the same time, organic resin particles are scraped by YSZ, so that no voids due to organic resin remain in the film after spraying, and the film becomes dense. . Adjusting the spraying conditions such as the spraying speed, plasma temperature conditions, atmosphere, etc., and trying to leave the resin particles, the spraying conditions inevitably become low speed and low temperature side. The robustness of the YSZ matrix is lost and the strength reliability is lacking. In a technique in which a dense TBC film is formed and a through-hole is vertically formed by mechanical processing in a later process, or in a feather-like structure of a TBC film manufactured in EB-PVD, only the periphery of the through-hole is formed. From the viewpoint of structural reliability, such as a cooling effect is high and the film as a whole is in a non-uniform cooling state and an inevitable thermal stress is applied to the film, a desirable TBC film is produced by such a method. It is difficult. Thus, maintaining the robustness and reliability of the TBC film and simultaneously providing the film itself with a cooling air blowing effect is a technical problem in the high-characteristic TBC coating field.

本発明の目的は、上記事情に鑑みて、多孔質で冷却媒体を膜全面から吹き出すことが出来る構造を有し、かつ膜の強度信頼性が確保されたTBC膜を有する耐熱部材を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a heat-resistant member having a TBC film having a porous structure capable of blowing a cooling medium from the entire surface of the film and ensuring the film strength reliability. It is in.

本発明の一態様は、上記目的を達成するため、金属基材上に結合層を介して形成される遮熱コーティング膜を有する耐熱部材において、
前記金属基材及び前記結合層は、これらを貫通する貫通孔を有し、
前記遮熱コーティング膜は、多数の空間部を有する多孔質体であり、かつ前記多数の空間部がクラックを介して連結されており、
前記貫通孔を流れる冷却媒体が、前記遮熱コーティング膜の底部から表面部まで前記空間部及び前記クラックを介して通過する構造を有することを特徴とする耐熱部材を提供する。
In one aspect of the present invention, in order to achieve the above object, in a heat resistant member having a thermal barrier coating film formed on a metal substrate via a bonding layer,
The metal substrate and the bonding layer have a through-hole penetrating them,
The thermal barrier coating film is a porous body having a large number of spaces, and the numerous spaces are connected through cracks,
There is provided a heat-resistant member having a structure in which a cooling medium flowing through the through hole passes through the space and the crack from the bottom to the surface of the thermal barrier coating film.

本発明によれば、多孔質で冷却媒体を全面から吹き出すことが出来る構造を有し、かつ膜の強度信頼性が確保されたTBC膜を有する耐熱部材を提供することができる。そのため、本発明の耐熱部材を用いることで、冷却性能が高く、長期使用時における信頼性が高いガスタービン部材を提供することができる。   According to the present invention, it is possible to provide a heat-resistant member having a TBC film having a porous structure capable of blowing a cooling medium from the entire surface and ensuring the film strength reliability. Therefore, by using the heat-resistant member of the present invention, it is possible to provide a gas turbine member that has high cooling performance and high reliability during long-term use.

本発明に係る耐熱部材の一部の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a part of heat resistant member which concerns on this invention.

(本発明の基本思想)
本発明者は、効率の良い冷却能力を示すTBC膜構造を種々検討している段階で、膜としての強度(構造)信頼性が維持できる程度に多孔質で、かつ、冷却媒体が膜表面全面から均質に外部へ吹き出る構造が良いこと、これを実現するには、TBC膜内に意図的に空間部を設けること、溶射膜構造の特徴を維持したまま、これらの空間部を相互に連結させることが重要であると考えた。溶射膜構造の特徴を維持したままとは、十分に強度信頼性があり、膜形成時の熱的履歴から、膜内には微小クラックを設けることができるという、溶射法に特有の技術を用いることを意味している。
(Basic idea of the present invention)
The present inventor is studying various TBC film structures exhibiting efficient cooling capacity, and is porous to the extent that the strength (structure) reliability as the film can be maintained, and the cooling medium is the entire surface of the film. In order to realize this, the structure that blows out uniformly from the outside is good, and in order to achieve this, the space part is intentionally provided in the TBC film, and these space parts are interconnected while maintaining the characteristics of the sprayed film structure. I thought it was important. Maintaining the characteristics of the sprayed film structure is sufficiently reliable in strength, and uses a technique unique to the spraying method that allows the formation of microcracks in the film from the thermal history during film formation. It means that.

そこで、本発明者は溶射材料組成、空間部形成法などを種々検討した結果、意図的に空間部を設ける際には、従来の有機樹脂粒子を援用する方法ではなく、TBC膜の組成に近い無機化合物を用いることで、多孔質で冷却空気を全面から吹き出すことが出来る構造を有し、かつ膜の強度信頼性が高いTBC膜を作製できることを見出した。本発明は、該知見に基づくものである。   Therefore, as a result of various studies on the thermal spray material composition, the space portion formation method, etc., the present inventor is close to the composition of the TBC film, not the conventional method using the organic resin particles when intentionally providing the space portion. It has been found that by using an inorganic compound, a TBC film having a porous structure capable of blowing cooling air from the entire surface and having a high strength reliability of the film can be produced. The present invention is based on this finding.

以下、本発明の実施形態について説明する。ただし、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。   Hereinafter, embodiments of the present invention will be described. However, the present invention is not limited to the embodiments described here, and can be appropriately combined and improved without departing from the technical idea of the present invention.

(耐熱部材)
図1は本発明に係る耐熱部材の一部の一例を示す断面模式図である。以下、図1に基づいて本発明に係る耐熱部材について説明する。図1に示したように、本発明に係る耐熱部材10は、金属基材(耐熱金属)1表面に耐食性に優れた合金による結合層(Bond Coating Layer:BC層)2が形成される。金属基材1およびBC層2内部には、これらを貫通するように機械加工で冷却媒体(空気等)の通路となる貫通孔6が形成される。結合層2表面には、遮熱コーティング膜(TBC膜、トップコート層)7が設けられる。TBC膜7は、多数の空間部4を有する多孔質体3であり、これら多数の空間部4が微小なクラック5を介して連結されている。このような構造を有することで、貫通孔を流れる冷却媒体がTBC膜7の底部から表面部まで、該空間部及びクラックを介して通過する(吹き出す)ことができる。TBC膜7の空間部4は意図的に形成されたものであり、多孔質体3が元々有する空孔とは異なるものである。その形成方法については、追って詳述する。
(Heat resistant material)
FIG. 1 is a schematic cross-sectional view showing an example of a part of a heat-resistant member according to the present invention. Hereinafter, the heat-resistant member according to the present invention will be described with reference to FIG. As shown in FIG. 1, in the heat-resistant member 10 according to the present invention, a bonding layer (bonding layer: BC layer) 2 made of an alloy having excellent corrosion resistance is formed on the surface of a metal substrate (heat-resistant metal) 1. A through hole 6 serving as a passage for a cooling medium (air or the like) is formed in the metal base 1 and the BC layer 2 by machining so as to penetrate the metal base 1 and the BC layer 2. A thermal barrier coating film (TBC film, topcoat layer) 7 is provided on the surface of the bonding layer 2. The TBC film 7 is a porous body 3 having a large number of space portions 4, and the large number of space portions 4 are connected via minute cracks 5. By having such a structure, the cooling medium flowing through the through-hole can pass (blow out) from the bottom portion to the surface portion of the TBC film 7 through the space portion and the crack. The space 4 of the TBC film 7 is intentionally formed and is different from the pores originally possessed by the porous body 3. The formation method will be described in detail later.

金属基材1としては、ガスタービン部材(タービン翼等の部材)に使用可能な耐熱性金属を用いる。具体的には、当該分野で既知なNi基超合金が好ましい。しかしNi基超合金に限らず耐熱性が維持できるCo基合金を用いることも可能である。   As the metal base 1, a heat-resistant metal that can be used for a gas turbine member (member such as a turbine blade) is used. Specifically, a Ni-base superalloy known in the art is preferable. However, it is possible to use not only the Ni-base superalloy but also a Co-base alloy that can maintain heat resistance.

BC層2の材料組成は、良く知られたCo(コバルト)‐Ni(ニッケル)‐Cr(クロム)‐Al(アルミニウム)‐Y(イットリウム)合金が好ましいしいが、これに限定されるものではない。耐腐食性及び耐熱性を有し、TBC膜7(材質:セラミックス)と接合強度が確保できるものであれば、その種類は限定されない。   The material composition of the BC layer 2 is preferably a well-known Co (cobalt) -Ni (nickel) -Cr (chromium) -Al (aluminum) -Y (yttrium) alloy, but is not limited thereto. . The type is not limited as long as it has corrosion resistance and heat resistance and can secure the bonding strength with the TBC film 7 (material: ceramics).

金属基材1及びBC層2を貫通する貫通孔6は、機械加工により設けられる。これは金属基材1内部から流れてきた冷却媒体を流すための冷却通路である。加工方法について特に限定は無く、従来の方法を適用することができる。   The through hole 6 penetrating the metal base 1 and the BC layer 2 is provided by machining. This is a cooling passage for flowing the cooling medium flowing from the inside of the metal substrate 1. There is no particular limitation on the processing method, and a conventional method can be applied.

BC層2表面に形成されたTBC膜7の多孔質体3は、セラミックスからなる。このセラミックス層としては、従来のYSZが最も実績があり好ましいが、Yの代わりに、いわゆるランタノイド系列元素の酸化物、Sc(スカンジウム)酸化物、Hf(ハフニウム)酸化物で安定化(添加)されたZrOであっても構わない。またZrOの代わりにAl(アルミナ)でも構わない。そのほか低熱伝導で高融点が期待できるパイロクロア型の酸化物を用いることもできる。 The porous body 3 of the TBC film 7 formed on the surface of the BC layer 2 is made of ceramics. As this ceramic layer, conventional YSZ is most proven and preferable. However, instead of Y 2 O 3 , it is stabilized with an oxide of a so-called lanthanoid series element, Sc (scandium) oxide, or Hf (hafnium) oxide ( ZrO 2 added) may be used. Al 2 O 3 (alumina) may be used instead of ZrO 2 . In addition, a pyrochlore type oxide that can be expected to have a low melting point and a high melting point can also be used.

空間部4の多孔質体3を占める体積比率が10%以上80%以下であることが好ましく、30%以上60%以下であることがより好ましい。空間部4の割合は冷却効率向上の観点では高いほど好ましいが、余り高くなると、TBC膜7の構造信頼性(強度)が失われる。TBC膜7の冷却効率と構造信頼性とを考慮し、空間部4の割合としては、上記範囲が好ましい。なお本発明において「体積率」は、SEM観察写真を画像解析した結果求めた値である。   The volume ratio of the space 4 occupying the porous body 3 is preferably 10% or more and 80% or less, and more preferably 30% or more and 60% or less. The ratio of the space portion 4 is preferably as high as possible from the viewpoint of improving the cooling efficiency, but if it is too high, the structural reliability (strength) of the TBC film 7 is lost. Taking the cooling efficiency and structural reliability of the TBC film 7 into consideration, the ratio of the space 4 is preferably in the above range. In the present invention, the “volume ratio” is a value obtained as a result of image analysis of the SEM observation photograph.

空間部4は図1に示したように楕円状であり、短辺が10μm以上60μm以下であり、かつ長辺が200μm以下であることが好ましい。短辺はさらに20μm以上50μm以下の範囲であることがより好ましい。空間部4の短辺が60μmより大きい場合には、空間部4相互のクラック5による連結状体が膜内で局所化されてしまい、内部冷却ガス(冷却媒体)がTBC膜7全面から均質に吹き出すという効果が損なわれる可能性がある。また空間部4の単辺が10μmより小さいと、冷却媒体を効率よく通過させることができない。   The space 4 is elliptical as shown in FIG. 1, and preferably has a short side of 10 μm or more and 60 μm or less and a long side of 200 μm or less. The short side is more preferably in the range of 20 μm to 50 μm. When the short side of the space part 4 is larger than 60 μm, the connected body due to the cracks 5 between the space parts 4 is localized in the film, and the internal cooling gas (cooling medium) is uniformly distributed from the entire surface of the TBC film 7. The effect of blowing out may be impaired. If the single side of the space 4 is smaller than 10 μm, the cooling medium cannot be passed efficiently.

また、空間部4の長辺が200μm以下であることが好ましい。200μmより大きい場合には、空間部相互のクラックによる連結状体が膜内で局所化されてしまい、内部冷却ガスがTBC膜全面から均質に吹き出すという効果が損なわれる可能性がある。なお、本発明における空間部4の短辺及び長辺の値は、SEM等の電子顕微鏡観察で得た画像から求めた値である。   Moreover, it is preferable that the long side of the space part 4 is 200 micrometers or less. When it is larger than 200 μm, the connected body due to the cracks in the spaces is localized in the film, and the effect that the internal cooling gas blows out uniformly from the entire surface of the TBC film may be impaired. In addition, the value of the short side and long side of the space part 4 in this invention is the value calculated | required from the image obtained by electron microscope observation, such as SEM.

空間部4を互いに連結させる微小クラック5のクラックの数や太さ、長さについては、特に限定されるものではない。なお、「多数の空間部4がクラック5を介して連結されている」とは、部材を効率良く冷却するのに十分な量の冷却媒体がTBC膜7の底部から表面部まで通過できる程度に空間部4が連結されていればよいものであるので、必ずしも全ての空間部4が微小クラック5で連結されている必要は無い。   The number, thickness, and length of the microcracks 5 that connect the space portions 4 to each other are not particularly limited. Note that “a large number of the space portions 4 are connected via the cracks 5” means that a sufficient amount of the cooling medium for efficiently cooling the member can pass from the bottom portion to the surface portion of the TBC film 7. Since it is only necessary that the space portions 4 are connected, it is not always necessary that all the space portions 4 are connected by the microcracks 5.

金属基材1の表面粗さ、結合層2の厚さ、TBC膜7の厚さには特に限定があるわけではなく、目的に合わせて自由に調節することができる。ただし、TBC膜7の厚みは、遮熱効果、空間部4を形成すること、構造強度信頼性の点から総合的に勘案して、300μm以上が好ましい。   The surface roughness of the metal substrate 1, the thickness of the bonding layer 2, and the thickness of the TBC film 7 are not particularly limited, and can be freely adjusted according to the purpose. However, the thickness of the TBC film 7 is preferably 300 μm or more in consideration of the heat shielding effect, the formation of the space portion 4 and the structural strength reliability.

本発明の重要な点は、TBC膜が多数の空間部を有する多孔質体でありながら、基材との密着性や、構造強度が緻密質TBC膜と同等以上の膜構造になっていることである。すなわち従来のTBC膜に求められる条件を満足しつつ、膜構造が制御されていることで、基材の冷却性を高めるという点を強調しておく。   The important point of the present invention is that the TBC film is a porous body having a large number of spaces, but has a film structure that is equal to or better than the dense TBC film in adhesion to the base material and structural strength. It is. That is, it is emphasized that the film structure is controlled while satisfying the conditions required for the conventional TBC film, thereby improving the cooling performance of the substrate.

(耐熱部材の製造方法)
次に、上述した本発明に係る耐熱部材の製造方法について説明する。本発明に係る耐熱部材の製造方法は、金属基材1上に形成されたBC層2上にTBC膜を形成する工程として、(i)TBC膜7の原料となる粒子と空間部形成材とを含有するTBC膜材料を調製するTBC膜材料調製工程と、(ii)BC層2上に上記TBC膜材料を溶射して溶射膜を形成する溶射膜形成工程と、(iii)上記溶射膜を還元雰囲気中で熱処理してTBC膜7を得る熱処理工程とを有する。
(Method for manufacturing heat-resistant members)
Next, the manufacturing method of the heat-resistant member which concerns on this invention mentioned above is demonstrated. In the method for producing a heat-resistant member according to the present invention, as a step of forming a TBC film on the BC layer 2 formed on the metal base material 1, (i) particles and a space portion forming material as raw materials for the TBC film 7 A TBC film material preparation step of preparing a TBC film material containing the following: (ii) a sprayed film forming step of spraying the TBC film material on the BC layer 2 to form a sprayed film; and (iii) the sprayed film. A heat treatment step of obtaining a TBC film 7 by heat treatment in a reducing atmosphere.

金属基材1上にBC層2を作製する方法としては、公知の溶射法(低圧プラズマ溶射、高速酸素燃料溶射)を用いることができ、密着性、機械的強度が確保できるのならば形成法に特に限定はない。以下に、上記(i)〜(iii)の工程について詳述する。   As a method for producing the BC layer 2 on the metal substrate 1, a known thermal spraying method (low pressure plasma spraying, high-speed oxygen fuel spraying) can be used, and if adhesion and mechanical strength can be ensured, a forming method is used. There is no particular limitation. The steps (i) to (iii) will be described in detail below.

(i)TBC膜材料調製工程
上述したTBC膜7の原料となる粒子と空間部形成材とを含有するTBC膜材料を調製する。TBC膜7の原料となる粒子としては上述したYSZ等を用いる。空間部形成材としては無機化合物を用いることが好ましく、特にCoO(一酸化コバルト)、CuO(酸化銅(I))、ZnO(酸化亜鉛)、SnO(酸化錫)の群から選ばれた少なくとも1種類の無機酸化物を用いることが好ましい。空間部形成材は、後述する熱処理工程によって熱分解して昇華し、図1に示したような、TBC膜7の空間部4が形成される。
(I) TBC film material preparation process The TBC film material containing the particle | grains used as the raw material of the TBC film | membrane 7 mentioned above and the space part formation material is prepared. As the particles used as the raw material of the TBC film 7, the above-described YSZ or the like is used. As the space forming material, an inorganic compound is preferably used, and particularly selected from the group of CoO (cobalt monoxide), Cu 2 O (copper oxide (I)), ZnO (zinc oxide), and SnO 2 (tin oxide). It is preferable to use at least one kind of inorganic oxide. The space portion forming material is thermally decomposed and sublimated by a heat treatment process described later, and the space portion 4 of the TBC film 7 as shown in FIG. 1 is formed.

空間部形成材としては、熱処理条件によっては、上記無機酸化物以外の無機化合物(MgCO等)を適用しても構わない。重要な点は、TBC膜7の原料と混合して溶射したときに、溶射条件に影響を与えずに、TBC膜7の構造強度信頼性が担保できること、さらに金属基材1やTBC膜7に影響しない熱処理条件によって、ガス状となって揮散することを満たす材料であれば、どのような材料を選択しても構わない。また数種類を組み合わせて用いても本発明の効果に変わりはない。 As the space forming material, an inorganic compound (such as MgCO 3 ) other than the inorganic oxide may be applied depending on the heat treatment conditions. The important point is that the structural strength reliability of the TBC film 7 can be ensured without affecting the spraying conditions when mixed with the raw material of the TBC film 7 and sprayed, and further, the metal substrate 1 and the TBC film 7 Any material may be selected as long as the material satisfies the vaporization and volatilization depending on the heat treatment conditions that do not affect. Even if several types are used in combination, the effect of the present invention is not changed.

なお、TBC膜7の原料となる粒子及び空間部形成材は、原料粉として市販の溶射用粉末、造粒粉を用いることができるが、それぞれに含まれる不可避不純物成分、また混合時に混入する不可避不純物成分、その代表的なものとしてSiO(二酸化ケイ素)、Fe(酸化鉄(III))、TiO(酸化チタン)等が含まれていても良い。 The particles and the space forming material used as the raw material of the TBC film 7 may be commercially available powders for thermal spraying and granulated powders as raw material powders. Impurity components, typical examples of which may include SiO 2 (silicon dioxide), Fe 2 O 3 (iron oxide (III)), TiO 2 (titanium oxide), and the like.

(ii)溶射膜形成工程
上述した溶射膜材料をBC層2上に溶射する。溶射方法としては、公知の溶射法(大気中プラズマ溶射法(APS))を用いることができ、溶射条件に特に限定は無く、通常の緻密質YSZのTBC膜を作製する場合と同じ条件を適用することができる。
(Ii) Thermal spray film forming step The thermal spray film material described above is sprayed on the BC layer 2. As a thermal spraying method, a known thermal spraying method (atmospheric plasma spraying method (APS)) can be used, and there is no particular limitation on the thermal spraying conditions, and the same conditions as those for producing a normal dense YSZ TBC film are applied. can do.

(iii)熱処理工程
上記溶射膜工程で作製された溶射膜を、下記の熱処理を施すことで揮散させる。
(Iii) Heat treatment process The thermal spray film produced at the said thermal spray film process is volatilized by performing the following heat processing.

すなわち、溶射膜形成後の金属基材1に対して、金属基材1の融点を超えない温度で、還元雰囲気中で熱処理を行う。この熱処理中に、上述した空間部形成材は熱分解を起こし、ガスとなって昇華し、その部分が空間部4となる。熱分解の際に発生したガスは、溶射膜中に存在するクラックを通して、系外へ排出される。従来技術のように有機樹脂を用いる膜の多孔質化とは異なり、TBC膜のZrOやAlと同質の無機材料を用いることで、TBC膜7を形成するときと同等の溶射条件を適用できるため、TBC膜7の密着性及び多孔質体(母体)そのものの構造(強度)信頼性に悪影響を及ぼすことはない。空間部4の多孔質体3を占める体積比率は、溶射材料に混合する空間部形成材の量で調節され、両者はほぼ一致する。したがって、上述したように空間部の多孔質体を占める体積比率を10%以上80%以下とするためには、空間部形成材の混合量が、遮熱コーティング膜材料の10体積%以上80体積%以下とすることが好ましい。 That is, heat treatment is performed in a reducing atmosphere at a temperature not exceeding the melting point of the metal substrate 1 with respect to the metal substrate 1 after the sprayed film is formed. During this heat treatment, the space portion forming material described above undergoes thermal decomposition and sublimates as a gas, and that portion becomes the space portion 4. The gas generated during the thermal decomposition is discharged out of the system through cracks present in the sprayed film. Unlike the porous film using an organic resin as in the prior art, the same spraying conditions as when the TBC film 7 is formed by using an inorganic material similar to ZrO 2 or Al 2 O 3 of the TBC film. Therefore, the adhesiveness of the TBC film 7 and the structure (strength) reliability of the porous body (matrix) itself are not adversely affected. The volume ratio of the space portion 4 occupying the porous body 3 is adjusted by the amount of the space portion forming material mixed with the thermal spray material, and the two substantially coincide. Therefore, as described above, in order to make the volume ratio occupying the porous body in the space part 10% or more and 80% or less, the mixing amount of the space part forming material is 10% or more and 80% by volume of the thermal barrier coating film material. % Or less is preferable.

上記製造方法によって、図1に示したような断面構造をもつ耐熱部材を製造することができる。   By the above manufacturing method, a heat-resistant member having a cross-sectional structure as shown in FIG. 1 can be manufactured.

本発明に係る耐熱部材は、高いレベルでバランスさせた冷却効率と強度とを有するため、タービン翼等のタービン部材に好適である。   The heat-resistant member according to the present invention is suitable for a turbine member such as a turbine blade because it has a cooling efficiency and strength balanced at a high level.

以下本発明を具体的実施例により説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to the following examples.

本実施例では図1に示した耐熱部材の試験用サンプルを作製し、構造観察及び強度評価を行った。試験用金属基材1として、Ni基超合金(Rene‐80(登録商標)、組成:Ni‐14%Cr‐4%Mo‐4%W‐3%Al‐5%Ti‐9.5%Co(mass%))、試料サイズ:縦5cm×横3cm×高さ3cm)を用意し、その表面にBC層2としてCo‐Ni‐Cr‐Al‐Y合金(組成:Co‐32%Ni‐21%Cr‐8%Al‐0.5%Y、(mass%))粉末を減圧雰囲気中プラズマ溶射で溶射した。なお、溶射前に膜密着性を高める目的でブラスト処理を施した。BC層厚さは100μmとした。   In this example, a test sample of the heat-resistant member shown in FIG. 1 was produced, and the structure was observed and the strength was evaluated. As a test metal substrate 1, a Ni-base superalloy (Rene-80 (registered trademark), composition: Ni-14% Cr-4% Mo-4% W-3% Al-5% Ti-9.5% Co (Mass%)), sample size: 5 cm long × 3 cm wide × 3 cm high) and a Co—Ni—Cr—Al—Y alloy (composition: Co-32% Ni-21) as the BC layer 2 on the surface thereof. % Cr-8% Al-0.5% Y, (mass%)) powder was sprayed by plasma spraying in a reduced pressure atmosphere. In addition, blasting was performed for the purpose of improving film adhesion before spraying. The BC layer thickness was 100 μm.

次に、平均粒径40μmの溶射用YSZ粉末(4mol%Y添加部分安定化ZrO)に空間部形成材としてZnO粉末(平均粒径30μm)を混合し、V型ミルで30分間混合した原料粉を作製し、溶射膜材料(溶射用混合粉)とした。ZnO粉末の混合量は、溶射膜材料の40体積%とした。これを、大気中プラズマ溶射法にてBC層2上に溶射した。溶射条件はプラズマ電流900A、Arガス(1%He含有)、溶射距離は75mmとした。プラズマトーチを1回掃引するごとに、マイクロメーターで膜厚を測定した。最終的に溶射膜の膜厚は、300μmに調節した。 Next, ZnO powder (average particle size of 30 μm) as a space portion forming material was mixed with YSZ powder for spraying (4 mol% Y 2 O 3 added partially stabilized ZrO 2 ) having an average particle size of 40 μm, and the mixture was mixed with a V-type mill for 30 minutes. A mixed raw material powder was prepared and used as a sprayed film material (mixed powder for thermal spraying). The mixing amount of the ZnO powder was 40% by volume of the sprayed film material. This was sprayed onto the BC layer 2 by an atmospheric plasma spraying method. The spraying conditions were a plasma current of 900 A, Ar gas (containing 1% He), and a spraying distance of 75 mm. Each time the plasma torch was swept once, the film thickness was measured with a micrometer. Finally, the thickness of the sprayed film was adjusted to 300 μm.

上記で得られたサンプルを、Arガス気流フロー(流量300ml/分)で900℃、2時間保持で熱処理し、実施例1のサンプルを得た。   The sample obtained above was heat-treated with Ar gas flow (flow rate 300 ml / min) at 900 ° C. for 2 hours to obtain a sample of Example 1.

比較例として、同じ金属基材1及びBC層を有し、ZnO粉末の代わりに同量(40体積%)のポリエチレン粉末(平均粒径100μm)を混ぜた混合粉を準備し、これを大気中溶射したサンプルを作製した。溶射条件はプラズマ電流を650A、Arガス(1%He含有)、溶射距離を150mmに調節した。上記で得られた比較例サンプルをポリエチレン粒子を加熱分解する目的で、大気中、600℃、2時間保持の条件で熱処理し、比較例のサンプルを得た。   As a comparative example, a mixed powder having the same metal substrate 1 and a BC layer and mixed with the same amount (40% by volume) of polyethylene powder (average particle size 100 μm) instead of ZnO powder is prepared in the atmosphere. A sprayed sample was prepared. The spraying conditions were adjusted to a plasma current of 650 A, Ar gas (containing 1% He), and a spraying distance of 150 mm. For the purpose of thermally decomposing polyethylene particles, the comparative sample obtained above was heat-treated in the atmosphere at 600 ° C. for 2 hours to obtain a comparative sample.

上記で作製した試料を切断し、鏡面研磨後、走査型電子線顕微鏡(SEM)で観察した。その結果、実施例1の本発明によるTBC膜内部は、添加物として加えたZnOが揮散して、その部分が空間部を形成していた。空間部は、溶射膜特有の扁平(楕円)状結晶粒が欠落したために、楕円状の空間であり、その短辺は、最大40μm、平均では約25μmで、その長辺は、最大70μm、平均では55μmであった。画像解析によって空間部の体積率を計測した結果、36%であり、添加したZnO量にほぼ対応していることが分かった。   The sample prepared above was cut, mirror-polished, and then observed with a scanning electron microscope (SEM). As a result, inside the TBC film according to the present invention of Example 1, ZnO added as an additive was volatilized, and the portion formed a space. The space portion is an elliptical space due to the lack of flat (elliptical) crystal grains peculiar to the sprayed film, the short side is a maximum of 40 μm, the average is about 25 μm, and the long side is a maximum of 70 μm, the average Then, it was 55 μm. As a result of measuring the volume ratio of the space portion by image analysis, it was found that it was 36% and substantially corresponds to the added ZnO amount.

TBC膜の元素分析をSEM付属のエネルギー分散型X線分析(EDX)で実施した結果、Zn成分は検出されず、主成分のZr、Y、およびO(酸素)のみが検出された。このことから、Ar中の還元熱処理により、ZnOが完全にTBC膜内から揮散したことが分かる。SEMによる観察では、意図的に形成された空間部の周辺には微小なクラックが存在しており、空間部同士を連結している構造をとっていることが分かった。   As a result of elemental analysis of the TBC film by energy dispersive X-ray analysis (EDX) attached to the SEM, the Zn component was not detected, and only the main components Zr, Y, and O (oxygen) were detected. This shows that ZnO was completely volatilized from the TBC film by the reduction heat treatment in Ar. Observation by SEM revealed that minute cracks exist around the intentionally formed space portion, and the space portions are connected to each other.

またTBC膜の強度は、スクラッチした程度では剥がれることはなく、従来の緻密質TBC膜と同等であった。   Further, the strength of the TBC film was not peeled off to the extent that it was scratched, and was equivalent to that of a conventional dense TBC film.

一方、比較例として作製したTBC膜では、ポリエチレン粒子分解による空隙部は一部認められたが、大部分は残存しておらず、結果として緻密なTBC(YSZ)膜となっていた。大気中プラズマ溶射条件が厳しく、硬質なセラミックス粒がポリエチレン粒子を溶射中に削って消失させたものと推定される。またプラズマ電流を弱め、溶射条件を緩和した別の比較例では、空間部は形成できたが、TBC膜(母体YSZ)の結合力が弱く、スクラッチすると基材から剥がれてくる程度の不完全な膜にしかならなかった。   On the other hand, in the TBC film produced as a comparative example, some voids due to the decomposition of the polyethylene particles were observed, but most of the voids did not remain, resulting in a dense TBC (YSZ) film. It is presumed that the conditions of atmospheric plasma spraying were severe, and hard ceramic particles were removed by scraping polyethylene particles during thermal spraying. In another comparative example in which the plasma current was weakened and the thermal spraying conditions were relaxed, the space could be formed, but the bonding strength of the TBC film (matrix YSZ) was weak and incomplete enough to peel off from the substrate when scratched. It only became a film.

TBC膜としてAlを用い、無機酸化物としてCoOを用いたこと以外は実施例1と同様の材料を用いて耐熱部材の試験用サンプルを作製した。CoOの平均粒径は25μmのものを用いた。CoOを30体積%Alに混合し、溶射膜材料とした。実施例1と同じ溶射条件で大気中溶射を行い、200μm厚さのTBC膜を形成し、これをAr中、850℃、2時間保持で熱処理し、実施例2のサンプルを得た。得られたサンプルの断面をSEMで観察したところ、実施例1と同様な楕円状(扁平状)の空間が形成されており、その短辺は20〜30μmで、長辺は40〜60μmであった。また、空間部の体積率は、23%であった。さらに、TBC膜の強度は、スクラッチした程度では剥がれることはなく、従来の緻密質TBC膜と同等であった。 A sample for testing a heat-resistant member was produced using the same material as in Example 1 except that Al 2 O 3 was used as the TBC film and CoO was used as the inorganic oxide. The average particle diameter of CoO was 25 μm. CoO was mixed with 30% by volume Al 2 O 3 to obtain a sprayed film material. Thermal spraying was performed under the same thermal spraying conditions as in Example 1 to form a TBC film having a thickness of 200 μm, and this was heat-treated in Ar at 850 ° C. for 2 hours to obtain a sample of Example 2. When the cross section of the obtained sample was observed with an SEM, an elliptical (flat) space similar to that in Example 1 was formed, the short side being 20 to 30 μm and the long side being 40 to 60 μm. It was. Moreover, the volume ratio of the space part was 23%. Further, the strength of the TBC film did not peel off to the extent that it was scratched, and was equivalent to that of a conventional dense TBC film.

多孔性TBCサンプルのガス透過性を調べた。実施例1で用いたBC/金属基材に1mmφの貫通孔をレーザー加工で設けた。この上に実施例1と同じ方法で、TBC膜を溶射し、Ar中熱処理で多孔質化させた。こうして得られたサンプルの金属基材側から0.1MPaの乾燥空気を流し、TBC側から吹き出してくる空気流量を調べた結果、0.2l/minの流量があることを確認できた。一方、比較例として作製した緻密質TBC膜では、TBC側に吹き出してくる空気量は確認できなかった。   The gas permeability of the porous TBC sample was examined. The BC / metal substrate used in Example 1 was provided with a 1 mmφ through hole by laser processing. On top of this, the TBC film was sprayed by the same method as in Example 1 and made porous by heat treatment in Ar. As a result of checking the flow rate of air blown from the TBC side by flowing 0.1 MPa dry air from the metal substrate side of the sample thus obtained, it was confirmed that there was a flow rate of 0.2 l / min. On the other hand, in the dense TBC film produced as a comparative example, the amount of air blown out to the TBC side could not be confirmed.

なお、CuO、SnOを空間部形成材として用いた場合であっても、実施例1及び実施例2と同様の効果があることを別途確認済みである。 Even when Cu 2 O and SnO 2 are used as the space portion forming material, it has been separately confirmed that the same effects as those of the first and second embodiments are obtained.

以上説明したように、本発明の耐熱部材によれば、多孔質で冷却媒体を吹き出すことが出来る構造を有し、かつ膜の強度信頼性が高いTBC膜を有する耐熱部材を提供できることが実証された。   As described above, according to the heat-resistant member of the present invention, it has been demonstrated that a heat-resistant member having a TBC film having a porous structure capable of blowing a cooling medium and having high film strength reliability can be provided. It was.

なお、上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、削除・他の構成に置換・他の構成の追加をすることが可能である。   The above-described embodiments and examples have been described for the purpose of facilitating understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. That is, according to the present invention, a part of the configurations of the embodiments and examples of the present specification can be deleted, replaced with other configurations, and added with other configurations.

1…金属基材、2…結合層(ボンドコート層)、3…多孔質体、4…空間部、5…微小クラック、6…貫通孔、7…遮熱コーティング膜、10…耐熱部材。 DESCRIPTION OF SYMBOLS 1 ... Metal base material, 2 ... Bonding layer (bond coat layer), 3 ... Porous body, 4 ... Space part, 5 ... Micro crack, 6 ... Through-hole, 7 ... Thermal barrier coating film, 10 ... Heat-resistant member.

Claims (8)

金属基材上に結合層を介して形成される遮熱コーティング膜を有する耐熱部材において、
前記金属基材及び前記結合層は、これらを貫通する貫通孔を有し、
前記遮熱コーティング膜は、多数の空間部を有する多孔質体であり、かつ前記多数の空間部がクラックを介して連結されており、
前記貫通孔を流れる冷却媒体が、前記遮熱コーティング膜の底部から表面部まで前記空間部及び前記クラックを介して通過する構造を有することを特徴とする耐熱部材。
In a heat-resistant member having a thermal barrier coating film formed on a metal substrate via a bonding layer,
The metal substrate and the bonding layer have a through-hole penetrating them,
The thermal barrier coating film is a porous body having a large number of spaces, and the numerous spaces are connected through cracks,
A heat-resistant member having a structure in which the cooling medium flowing through the through hole passes through the space and the crack from the bottom to the surface of the thermal barrier coating film.
前記空間部の前記多孔質体を占める体積比率が10%以上80%以下であることを特徴とする請求項1に記載の耐熱部材。   The heat-resistant member according to claim 1, wherein a volume ratio of the space portion occupying the porous body is 10% or more and 80% or less. 前記空間部は楕円状であり、短辺が10μm以上60μm以下であり、かつ長辺が200μm以下であることを特徴とする請求項1又は2に記載の耐熱部材。   The heat-resistant member according to claim 1 or 2, wherein the space portion has an elliptical shape, a short side is 10 µm or more and 60 µm or less, and a long side is 200 µm or less. 前記多孔質体は、セラミックスであることを特徴とする請求項1乃至3のいずれか1項に記載の耐熱部材。   The heat-resistant member according to claim 1, wherein the porous body is ceramic. 金属基材上に結合層を介して形成される遮熱コーティング膜を有する耐熱部材の製造方法において、
前記遮熱コーティング膜の原料となる粒子と空間部形成材とを含有する遮熱コーティング膜材料を調製する遮熱コーティング膜材料調製工程と、
前記結合層上に前記遮熱コーティング膜材料を溶射して溶射膜を形成する溶射膜形成工程と、
前記溶射膜を還元雰囲気中で熱処理して前記遮熱コーティング膜を得る熱処理工程とを有することを特徴とする耐熱部材の製造方法。
In the method for producing a heat-resistant member having a thermal barrier coating film formed on a metal substrate via a bonding layer,
A thermal barrier coating film material preparation step of preparing a thermal barrier coating film material containing particles and a space forming material as raw materials of the thermal barrier coating film;
A sprayed film forming step of spraying the thermal barrier coating film material on the bonding layer to form a sprayed film;
And a heat treatment step for obtaining the thermal barrier coating film by heat-treating the sprayed film in a reducing atmosphere.
前記空間部形成材が、CoO、CuO、ZnO、SnOから選ばれた少なくとも1種類であることを特徴とする請求項5に記載の耐熱部材の製造方法。 6. The method for manufacturing a heat-resistant member according to claim 5, wherein the space portion forming material is at least one selected from CoO, Cu 2 O, ZnO, and SnO 2 . 前記空間部形成材の混合量が、前記遮熱コーティング膜材料の10体積%以上80体積%以下であることを特徴とする請求項5又は6に記載の耐熱部材の製造方法。   The method for producing a heat-resistant member according to claim 5 or 6, wherein the mixing amount of the space portion forming material is 10% by volume or more and 80% by volume or less of the thermal barrier coating film material. 請求項1乃至4のいずれか1項に記載の耐熱部材を用いたことを特徴とするガスタービン部材。   A gas turbine member using the heat-resistant member according to any one of claims 1 to 4.
JP2013236925A 2013-11-15 2013-11-15 Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member Pending JP2015096638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236925A JP2015096638A (en) 2013-11-15 2013-11-15 Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236925A JP2015096638A (en) 2013-11-15 2013-11-15 Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member

Publications (1)

Publication Number Publication Date
JP2015096638A true JP2015096638A (en) 2015-05-21

Family

ID=53374052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236925A Pending JP2015096638A (en) 2013-11-15 2013-11-15 Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member

Country Status (1)

Country Link
JP (1) JP2015096638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157193A (en) * 2018-03-12 2019-09-19 日本特殊陶業株式会社 Heat insulation film
JP2019173101A (en) * 2018-03-28 2019-10-10 株式会社フジミインコーポレーテッド Spray coating material, and coating film and production method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019157193A (en) * 2018-03-12 2019-09-19 日本特殊陶業株式会社 Heat insulation film
JP2019173101A (en) * 2018-03-28 2019-10-10 株式会社フジミインコーポレーテッド Spray coating material, and coating film and production method for the same
JP7015199B2 (en) 2018-03-28 2022-02-02 株式会社フジミインコーポレーテッド Method for manufacturing thermal spray material and coating film

Similar Documents

Publication Publication Date Title
JP7271429B2 (en) Method for coating the surface of a solid substrate having a layer containing a ceramic compound, and the coated substrate obtained by the method
Guo et al. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density
Jamali et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings
Zhao et al. Restrained TGO growth in YSZ/NiCrAlY thermal barrier coatings by modified laser remelting
US20140334939A1 (en) High purity powders
Daroonparvar et al. Improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as third layer
Chen et al. Thermal stability of air plasma spray and solution precursor plasma spray thermal barrier coatings
Saremi et al. Thermal and mechanical properties of nano-YSZ–Alumina functionally graded coatings deposited by nano-agglomerated powder plasma spraying
Zhu et al. Microstructure and oxidation behavior of conventional and pseudo graded NiCrAlY/YSZ thermal barrier coatings produced by supersonic air plasma spraying process
Daroonparvar et al. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano‐YSZ Coatings
Ashofteh et al. Thermal shock behavior of multilayer and functionally graded micro-and nano-structured topcoat APS TBCs
Daroonparvar et al. Effect of Y2O3 stabilized ZrO2 coating with tri-model structure on bi-layered thermally grown oxide evolution in nano thermal barrier coating systems at elevated temperatures
Zhu et al. A study of the diffusion and pre-oxidation treatment on the formation of Al2O3 ceramic scale on NiCrAlY bond-coat during initial oxidation process
JP2021191899A (en) Adhesion promoter layer for joining high-temperature protection layer to substrate, and method for producing the same
Georgiopoulos et al. LaAlO3 as overlayer in conventional thermal barrier coatings
Dong et al. Effect of CeO2 doping on high temperature oxidation resistance of YSZ TBCs
Najafizadeh et al. Thermal barrier ceramic coatings
Das et al. Thermal cyclic behavior of glass–ceramic bonded thermal barrier coating on nimonic alloy substrate
Guo et al. Cyclic oxidation behaviors of EB-PVD Dy doped β-NiAl coatings at 1100° C
Kumar et al. Development of Gd2O3 doped yttria stabilized zirconia based thermal barrier coating for improved high temperature oxidation and erosion resistance
JP2006328499A (en) Thermal barrier coating, gas turbine high-temperature component, and gas turbine
JP2015096638A (en) Heat resistant member, gas turbine member using the same, and manufacturing method of heat resistant member
Tarasi et al. Thermal cycling of suspension plasma sprayed alumina‐YSZ coatings containing amorphous phases
Gao et al. Equiaxed and porous thermal barrier coatings deposited by atmospheric plasma spray using a nanoparticles powder
KR101598858B1 (en) Ni-YSZ COMPOSITE MATERIAL POWDER, MANUFACTURING METHOD THEREOF AND COATING METHOD USING THE POWDER