JP2015096634A - Method of forming heat-shielding film for internal engine - Google Patents

Method of forming heat-shielding film for internal engine Download PDF

Info

Publication number
JP2015096634A
JP2015096634A JP2013236677A JP2013236677A JP2015096634A JP 2015096634 A JP2015096634 A JP 2015096634A JP 2013236677 A JP2013236677 A JP 2013236677A JP 2013236677 A JP2013236677 A JP 2013236677A JP 2015096634 A JP2015096634 A JP 2015096634A
Authority
JP
Japan
Prior art keywords
film
forming
combustion chamber
sealing agent
alumite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013236677A
Other languages
Japanese (ja)
Other versions
JP6052142B2 (en
Inventor
英男 山下
Hideo Yamashita
英男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013236677A priority Critical patent/JP6052142B2/en
Publication of JP2015096634A publication Critical patent/JP2015096634A/en
Application granted granted Critical
Publication of JP6052142B2 publication Critical patent/JP6052142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming a heat-shielding film for internal engines which can prevent occurrence of cracking of an anode oxide film when the temperature of a combustion chamber becomes high.SOLUTION: A method of forming a heat-shielding film for an internal engine is based on forming an anode oxide film on members constituting a wall surface of a combustion chamber of an internal engine and includes a step of forming an alumite film on the surface of a member and a step of subjecting the alumite film to a sealing treatment at such a temperature that the member undergoes thermal expansion.

Description

この発明は、内燃機関の遮熱膜の形成方法に関する。   The present invention relates to a method for forming a thermal barrier film for an internal combustion engine.

従来、内燃機関の燃焼室の壁面を構成する部材に遮熱膜を形成する技術が知られている。例えば、特許文献1には、アルミニウムやその合金を母材とする燃焼室の壁面を構成する部材にアルマイトからなる陽極酸化皮膜を形成する技術が開示されている。燃焼室の壁面を構成する部材に陽極酸化皮膜のような遮熱膜が形成されることにより、燃焼室の壁面における断熱性が向上する。この結果、内燃機関における燃焼の熱効率を向上させることができる。   Conventionally, a technique for forming a thermal barrier film on a member constituting a wall surface of a combustion chamber of an internal combustion engine is known. For example, Patent Document 1 discloses a technique for forming an anodized film made of alumite on a member constituting a wall surface of a combustion chamber whose base material is aluminum or an alloy thereof. By forming a thermal barrier film such as an anodized film on the member constituting the wall surface of the combustion chamber, the heat insulating property on the wall surface of the combustion chamber is improved. As a result, the thermal efficiency of combustion in the internal combustion engine can be improved.

特開2013−060620号公報JP2013-060620A

ところで、上記の陽極酸化皮膜は、内燃機関の燃焼室内で高温に曝されると、燃焼室の壁面を構成する部材の熱膨張に引っ張られて亀裂が発生することがある。この結果、燃焼ガスと燃焼室の壁面を構成する部材とが直接接触して、内燃機関における断熱性が損なわれる恐れがある。   By the way, when the anodic oxide film is exposed to a high temperature in the combustion chamber of the internal combustion engine, a crack may be generated by being pulled by thermal expansion of a member constituting the wall surface of the combustion chamber. As a result, the combustion gas and the members constituting the wall surface of the combustion chamber are in direct contact with each other, which may impair the heat insulation in the internal combustion engine.

この発明は、上述のような課題を解決するためになされたもので、燃焼室が高温になった際の陽極酸化皮膜の亀裂の発生を防止することができる内燃機関の遮熱膜の形成方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and a method for forming a thermal barrier film for an internal combustion engine that can prevent the occurrence of cracks in the anodized film when the combustion chamber becomes hot. The purpose is to provide.

第1の発明は、上記の目的を達成するため、
内燃機関の燃焼室の壁面を構成する部材に陽極酸化皮膜を形成する内燃機関の遮熱膜の形成方法であって、
前記部材の表面にアルマイト皮膜を形成する工程と、
前記部材が熱膨張を引き起こす温度で前記アルマイト皮膜に封孔処理を行う工程と、
を備えることを特徴とする。
In order to achieve the above object, the first invention provides
A method for forming a thermal barrier film of an internal combustion engine, wherein an anodized film is formed on a member constituting a wall surface of a combustion chamber of the internal combustion engine,
Forming an alumite film on the surface of the member;
Performing a sealing treatment on the alumite film at a temperature at which the member causes thermal expansion;
It is characterized by providing.

第1の発明によれば、燃焼室の壁面を構成する部材の熱膨張による陽極酸化皮膜の分断を防止することができる。この結果、アルマイト皮膜の内部への燃焼ガス及び燃料の侵入を抑制することができる。また、陽極酸化皮膜の断熱性が損なわれることを防止できる。   According to the first invention, it is possible to prevent the anodized film from being divided by the thermal expansion of the members constituting the wall surface of the combustion chamber. As a result, the intrusion of combustion gas and fuel into the alumite film can be suppressed. Moreover, it can prevent that the heat insulation of an anodized film is impaired.

本実施の形態における遮熱膜について表した図である。It is a figure showing the thermal barrier film in this Embodiment. 封孔処理を行う温度について説明するための図である。It is a figure for demonstrating the temperature which performs a sealing process. 陽極酸化皮膜の製膜処理工程と、エンジン内が高温場になった場合の陽極酸化皮膜について表した図である。It is the figure showing about the film-forming process of an anodized film, and the anodized film when the inside of an engine becomes a high temperature field. 封孔剤構成1について説明するための図である。It is a figure for demonstrating the sealing agent structure 1. FIG. 封孔剤構成2について説明するための図である。It is a figure for demonstrating the sealing agent structure 2. FIG.

実施の形態1.
以下、本実施の形態に係る内燃機関の遮熱膜の形成方法について、図1、図2、そして図3を参照しながら説明する。
Embodiment 1 FIG.
Hereinafter, a method for forming a thermal barrier film for an internal combustion engine according to the present embodiment will be described with reference to FIGS. 1, 2, and 3.

図1は、内燃機関の燃焼室の壁面を構成する部材に形成されている遮熱膜について表した図である。図1(a)には、内燃機関の燃焼室の壁面を構成する部材(以下、部材10という。)が表されている。部材10は、アルミニウム合金が母材である。部材10の表面には、遮熱膜として陽極酸化皮膜20が形成されている。以下に、陽極酸化皮膜20について説明する。   FIG. 1 is a view showing a heat shield film formed on a member constituting a wall surface of a combustion chamber of an internal combustion engine. FIG. 1A shows a member (hereinafter referred to as a member 10) constituting the wall surface of the combustion chamber of the internal combustion engine. The member 10 is made of an aluminum alloy as a base material. On the surface of the member 10, an anodized film 20 is formed as a heat shield film. Hereinafter, the anodized film 20 will be described.

図1に示すように、陽極酸化皮膜20は、アルマイト皮膜14と封孔剤16とから構成されている。アルマイト皮膜14は、部材10の母材であるアルミニウム合金を陽極酸化処理することにより形成される多孔質皮膜である。アルマイト皮膜14と部材10との間には、バリア層12が形成されている。   As shown in FIG. 1, the anodic oxide film 20 is composed of an alumite film 14 and a sealing agent 16. The anodized film 14 is a porous film formed by anodizing an aluminum alloy that is a base material of the member 10. A barrier layer 12 is formed between the alumite film 14 and the member 10.

封孔剤16は、アルマイト皮膜14の内部に形成された連通孔Aを封止して、アルマイト皮膜14の内部への燃焼ガス及び燃料の侵入を抑制し、陽極酸化皮膜20の断熱性が損なわれることを防止する目的で設けられるものである。封孔剤16としては、塗布硬化後、シリカ等の耐熱性のある材質が主成分として作用する材料(好ましくはポリシラザン又は、ポリシロキサン)が用いられる。また、熱膨張による応力緩和のため、亀裂部のみは弾性係数の低い材料であっても構わない。さらに、封孔剤16を塗布することにより、陽極酸化皮膜20の表面の粗度を改善することができる。さらに、陽極酸化皮膜20の強度を向上させることができる。このように、封孔剤16は、陽極酸化皮膜20のもつ性能を維持し、陽極酸化皮膜20の信頼性を向上させるために塗布されている。   The sealing agent 16 seals the communication hole A formed inside the anodized film 14, suppresses the intrusion of combustion gas and fuel into the anodized film 14, and the heat insulating property of the anodized film 20 is impaired. It is provided for the purpose of preventing this. As the sealing agent 16, a material (preferably polysilazane or polysiloxane) in which a heat-resistant material such as silica acts as a main component after coating and curing is used. In addition, only the crack portion may be made of a material having a low elastic coefficient for stress relaxation due to thermal expansion. Furthermore, the roughness of the surface of the anodized film 20 can be improved by applying the sealing agent 16. Furthermore, the strength of the anodized film 20 can be improved. Thus, the sealing agent 16 is applied to maintain the performance of the anodized film 20 and improve the reliability of the anodized film 20.

ところで、エンジン運転中は、燃焼室内の温度が上昇して部材10が熱膨張を引き起こす。このときに、部材10の熱膨張に引っ張られて陽極酸化皮膜20に亀裂が生じることがある。これについて、以下に図1(b)を用いて説明する。なお、本明細書中において、部材10が熱膨張を引き起こす部材10の周囲の温度を高温場と表現する。   By the way, during engine operation, the temperature in the combustion chamber rises and the member 10 causes thermal expansion. At this time, the anodized film 20 may be cracked due to the thermal expansion of the member 10. This will be described below with reference to FIG. In the present specification, the temperature around the member 10 causing the member 10 to thermally expand is expressed as a high temperature field.

図1(b)は、エンジン運転中に引き起こされる陽極酸化皮膜20の変化について表した図である。図1(b)には、エンジン運転中に燃焼室内が高温場に変化した際に、陽極酸化皮膜20に亀裂が発生する様子が示されている。この亀裂は、燃焼室内が高温場になると熱膨張したアルミニウム合金に陽極酸化皮膜20が引っ張られることで発生する。これは、アルマイトの熱膨張率がアルミニウム合金の約1/5であるために引き起こされる。この亀裂の発生により、アルマイト皮膜14、バリア層12、そして封孔剤16が同時に分断してしまう。この結果、陽極酸化皮膜20のもつ性能が維持できなくなる。   FIG. 1B is a diagram showing changes in the anodic oxide film 20 caused during engine operation. FIG. 1B shows a state in which cracks occur in the anodized film 20 when the combustion chamber changes to a high temperature field during engine operation. This crack is generated when the anodized film 20 is pulled by the thermally expanded aluminum alloy when the combustion chamber becomes a high temperature field. This is caused by the fact that the coefficient of thermal expansion of alumite is about 1/5 that of an aluminum alloy. Due to the occurrence of this crack, the alumite film 14, the barrier layer 12, and the sealing agent 16 are divided at the same time. As a result, the performance of the anodized film 20 cannot be maintained.

そこで、本実施の形態では、部材10に陽極酸化皮膜20を形成する製膜処理において、温度を高温場に設定してアルマイト皮膜14に封孔剤16を塗布する封孔処理を行う。これにより、エンジン運転中に燃焼室が高温場になった場合でも、陽極酸化皮膜20のもつ性能が維持できる。以下、図2及び図3を参照して、この封孔処理について詳述する。   Therefore, in the present embodiment, in the film forming process for forming the anodic oxide film 20 on the member 10, the sealing process is performed in which the temperature is set to a high temperature field and the sealing agent 16 is applied to the alumite film 14. Thereby, even when the combustion chamber becomes a high temperature field during the engine operation, the performance of the anodized film 20 can be maintained. Hereinafter, the sealing process will be described in detail with reference to FIGS. 2 and 3.

図2は、封孔処理を行う温度について説明するための図である。図2の縦軸は、ピストンの温度変化を示している。ここで、ピストンは、部材10の具体例として用いられている。図2の横軸は、エンジン回転数の変化を示している。図2には、ピストンの温度変化とエンジン回転数との関係を示す実線が示されている。   FIG. 2 is a diagram for explaining the temperature at which the sealing process is performed. The vertical axis in FIG. 2 indicates the temperature change of the piston. Here, the piston is used as a specific example of the member 10. The horizontal axis in FIG. 2 indicates changes in engine speed. FIG. 2 shows a solid line showing the relationship between the temperature change of the piston and the engine speed.

図2に示される実線において、ピストン温度が最高値になる点が最高出力点として表示されている。また、図2には、アルミニウム合金が軟化する温度(以下、Al合金軟化温度という。)が示されている。ここで、本実施の形態において、封孔処理を行う温度である封孔剤塗布温度は、Al合金軟化温度と最高出力点との間の温度で設定される。これは、アルミニウム合金が軟化することなく、かつエンジンの燃焼室内で想定される最高温度以上の温度で封孔処理を行うためである。次に、封孔剤塗布温度で封孔処理を行う製膜処理の工程について、図3を参照して説明する。なお、部材10を高温場の環境に置くことにより、部材10の温度を封孔剤塗布温度にまで上昇させることができる。   In the solid line shown in FIG. 2, the point at which the piston temperature reaches the maximum value is displayed as the maximum output point. FIG. 2 shows the temperature at which the aluminum alloy softens (hereinafter referred to as the Al alloy softening temperature). Here, in this Embodiment, the sealing agent application temperature which is a temperature which performs a sealing process is set by the temperature between Al alloy softening temperature and a maximum output point. This is because the aluminum alloy is sealed without being softened and at a temperature equal to or higher than the maximum temperature assumed in the combustion chamber of the engine. Next, the film forming process for performing the sealing process at the sealing agent application temperature will be described with reference to FIG. In addition, the temperature of the member 10 can be raised to the sealing agent application temperature by placing the member 10 in a high temperature environment.

図3は、陽極酸化皮膜20の製膜処理工程と、エンジン内が高温場になった場合の陽極酸化皮膜20について表した図である。図3(a)は、従来の技術で形成した陽極酸化皮膜20について表した図である。従来の技術では、常温場において陽極酸化処理が施されて、部材10にアルマイト皮膜14が形成される。ここで、常温場とは、アルミニウム合金が熱膨張を引き起こすことのない部材10の周囲の温度をいう。   FIG. 3 is a diagram illustrating the film forming process of the anodic oxide film 20 and the anodic oxide film 20 when the inside of the engine is in a high temperature field. FIG. 3A is a diagram showing an anodic oxide film 20 formed by a conventional technique. In the conventional technique, anodization is performed in a room temperature field, and an alumite film 14 is formed on the member 10. Here, the normal temperature field refers to the temperature around the member 10 at which the aluminum alloy does not cause thermal expansion.

次に、常温場において封孔処理が施されて、アルマイト皮膜14に封孔剤16が塗布される。   Next, a sealing treatment is performed in a room temperature field, and a sealing agent 16 is applied to the alumite film 14.

図3(a)には、エンジン運転中に燃焼室が高温場になった際、従来の技術によって形成された陽極酸化皮膜20に亀裂が発生する様子が示されている。従来の技術では、この亀裂が生じることで陽極酸化皮膜20のもつ性能が維持できなくなっていた。   FIG. 3A shows a state in which cracks occur in the anodized film 20 formed by the conventional technique when the combustion chamber becomes a high temperature field during engine operation. In the prior art, the performance of the anodized film 20 cannot be maintained due to the occurrence of this crack.

図3(b)は、本実施の形態の陽極酸化皮膜20の形成方法について説明するための図である。本実施の形態では、常温場において陽極酸化処理が施されて、部材10にアルマイト皮膜14が形成される。次に、アルマイト皮膜14が形成された部材10を高温場の環境に置くことにより、部材10が熱膨張を引き起こし、アルマイト皮膜14に亀裂が生じる。次に、亀裂が生じたアルマイト皮膜14に封孔剤16を塗布する。これにより、アルマイト皮膜14の亀裂が生じている部分にも封孔剤16が含浸する。   FIG. 3B is a diagram for explaining a method of forming the anodic oxide film 20 of the present embodiment. In the present embodiment, anodization is performed in a room temperature field, and an alumite film 14 is formed on the member 10. Next, by placing the member 10 on which the alumite film 14 is formed in an environment of a high temperature field, the member 10 causes thermal expansion, and the alumite film 14 is cracked. Next, the sealing agent 16 is applied to the alumite film 14 in which the crack has occurred. Thereby, the sealing agent 16 is also impregnated into the cracked portion of the alumite film 14.

このように、アルマイト皮膜14の亀裂が生じている部分にも封孔剤16を含浸させ封孔処理を行うことによって、エンジン運転中に燃焼室が高温場になり部材10が熱膨張を引き起こしたときにも、陽極酸化皮膜20の構造を維持させることができる。このため、部材10の熱膨張による陽極酸化皮膜20の分断を防止することができる。この結果、アルマイト皮膜14の内部への燃焼ガス及び燃料の侵入を抑制することができる。また、陽極酸化皮膜20の断熱性が損なわれることを防止できる。   Thus, by impregnating the sealing agent 16 in the cracked portion of the alumite film 14 and performing the sealing treatment, the combustion chamber became a high temperature field during engine operation, causing the member 10 to thermally expand. Sometimes, the structure of the anodized film 20 can be maintained. For this reason, the division | segmentation of the anodic oxide film 20 by the thermal expansion of the member 10 can be prevented. As a result, the intrusion of combustion gas and fuel into the alumite film 14 can be suppressed. Moreover, it can prevent that the heat insulation of the anodic oxide film 20 is impaired.

[封孔剤構成1]
また、燃焼室内が高温場になっても陽極酸化皮膜20のもつ性能を維持させるために、封孔剤の熱膨張率をアルミニウム合金の熱膨張率と同等のものにする構成(以下、封孔剤構成1という。)をとる手法がある。以下に、封孔剤構成1について図4を参照して説明する。
[Sealing agent composition 1]
Further, in order to maintain the performance of the anodized film 20 even when the combustion chamber becomes a high temperature field, a configuration in which the thermal expansion coefficient of the sealing agent is equivalent to the thermal expansion coefficient of the aluminum alloy (hereinafter referred to as sealing) There is a method of taking the composition 1). Below, the sealing agent structure 1 is demonstrated with reference to FIG.

図4は、封孔剤構成1について説明するための図である。図4に示す陽極酸化皮膜20には、部材のアルミニウム合金と熱膨張率が同等の封孔剤160が封孔処理されている。図4には、部材10がエンジン運転中に熱膨張を引き起こす様子が表されている。図4には、部材10の熱膨張に引っ張られてアルマイト皮膜14に亀裂が生じる様子が表されている。しかし、封孔剤160は、部材10の熱膨張に引っ張られても、その構造を維持している。これは、封孔剤160が部材10と同等の熱膨張率を有するためである。このように、エンジン運転中に燃焼室が高温場になった場合でも封孔剤160には亀裂が生じない。   FIG. 4 is a diagram for explaining the sealant configuration 1. A sealing agent 160 having a thermal expansion coefficient equivalent to that of the aluminum alloy of the member is sealed in the anodic oxide film 20 shown in FIG. FIG. 4 shows how the member 10 causes thermal expansion during engine operation. FIG. 4 shows a state in which the alumite film 14 is cracked by being pulled by the thermal expansion of the member 10. However, the sealing agent 160 maintains its structure even when pulled by the thermal expansion of the member 10. This is because the sealing agent 160 has a thermal expansion coefficient equivalent to that of the member 10. Thus, even when the combustion chamber becomes a high temperature field during engine operation, the sealing agent 160 does not crack.

[封孔剤構成2]
また、燃焼室内が高温場になっても陽極酸化皮膜20のもつ性能を維持するために、封孔剤とアルマイト皮膜との間に熱膨張率がアルミニウム合金と同等の層を設ける構成(以下、封孔剤構成2という。)をとる手法がある。封孔剤構成2について、図5を参照して説明する。
[Sealing agent composition 2]
In addition, in order to maintain the performance of the anodized film 20 even when the combustion chamber is at a high temperature, a layer having a thermal expansion coefficient equivalent to that of an aluminum alloy is provided between the sealing agent and the alumite film (hereinafter referred to as “aluminum alloy”). There is a method of taking a sealing agent composition 2. The sealant configuration 2 will be described with reference to FIG.

図5は、封孔剤構成2について説明するための図である。図5に示す封孔剤構成2の陽極酸化皮膜20において、封孔剤16とアルマイト皮膜14との間に中間層18が設けられている。中間層18は、アルミニウム合金と同等の熱膨張率をもっている。中間層18は、アルマイト皮膜14と封孔剤16との熱膨張差を緩和する目的で設けられている。これにより、封孔剤16が部材10の熱膨張に引っ張られて分断することを防止できる。   FIG. 5 is a diagram for explaining the sealant configuration 2. In the anodic oxide film 20 having the sealing agent structure 2 shown in FIG. 5, an intermediate layer 18 is provided between the sealing agent 16 and the alumite film 14. The intermediate layer 18 has a thermal expansion coefficient equivalent to that of the aluminum alloy. The intermediate layer 18 is provided for the purpose of reducing the difference in thermal expansion between the alumite film 14 and the sealing agent 16. Thereby, it can prevent that the sealing agent 16 is pulled by the thermal expansion of the member 10, and is divided.

10 部材
12 バリア層
14 アルマイト皮膜
16 封孔剤
20 陽極酸化皮膜
10 Member 12 Barrier layer 14 Anodized film 16 Sealing agent 20 Anodized film

Claims (1)

内燃機関の燃焼室の壁面を構成する部材に陽極酸化皮膜を形成する内燃機関の遮熱膜の形成方法であって、
前記部材の表面にアルマイト皮膜を形成する工程と、
前記部材が熱膨張を引き起こす温度で前記アルマイト皮膜に封孔処理を行う工程と、
を備えることを特徴とする内燃機関の遮熱膜の形成方法。
A method for forming a thermal barrier film of an internal combustion engine, wherein an anodized film is formed on a member constituting a wall surface of a combustion chamber of the internal combustion engine,
Forming an alumite film on the surface of the member;
Performing a sealing treatment on the alumite film at a temperature at which the member causes thermal expansion;
A method for forming a thermal barrier film for an internal combustion engine.
JP2013236677A 2013-11-15 2013-11-15 Method for forming thermal barrier film of internal combustion engine Active JP6052142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236677A JP6052142B2 (en) 2013-11-15 2013-11-15 Method for forming thermal barrier film of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236677A JP6052142B2 (en) 2013-11-15 2013-11-15 Method for forming thermal barrier film of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2015096634A true JP2015096634A (en) 2015-05-21
JP6052142B2 JP6052142B2 (en) 2016-12-27

Family

ID=53374048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236677A Active JP6052142B2 (en) 2013-11-15 2013-11-15 Method for forming thermal barrier film of internal combustion engine

Country Status (1)

Country Link
JP (1) JP6052142B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155639A (en) * 2016-03-01 2017-09-07 トヨタ自動車株式会社 Combustion chamber structure of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192887A (en) * 1991-08-18 1994-07-12 Joseph Yahalom Protective covering for metal part for use at high temperature
JPH08158095A (en) * 1994-12-07 1996-06-18 Tateyama Alum Ind Co Ltd Aluminum material and aluminum alloy material having linear pattern and production thereof
JP2005298945A (en) * 2004-04-15 2005-10-27 Mitsubishi Heavy Ind Ltd Corrosion resistant surface treated article and its production method
JP2005350741A (en) * 2004-06-11 2005-12-22 Yoshino Kk Oxide film structure of iodine or iodine compound-sealed metallic material base and its forming method and applied article having the film structure
JP2013060620A (en) * 2011-09-12 2013-04-04 Toyota Motor Corp Internal combustion engine and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192887A (en) * 1991-08-18 1994-07-12 Joseph Yahalom Protective covering for metal part for use at high temperature
JPH08158095A (en) * 1994-12-07 1996-06-18 Tateyama Alum Ind Co Ltd Aluminum material and aluminum alloy material having linear pattern and production thereof
JP2005298945A (en) * 2004-04-15 2005-10-27 Mitsubishi Heavy Ind Ltd Corrosion resistant surface treated article and its production method
JP2005350741A (en) * 2004-06-11 2005-12-22 Yoshino Kk Oxide film structure of iodine or iodine compound-sealed metallic material base and its forming method and applied article having the film structure
JP2013060620A (en) * 2011-09-12 2013-04-04 Toyota Motor Corp Internal combustion engine and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155639A (en) * 2016-03-01 2017-09-07 トヨタ自動車株式会社 Combustion chamber structure of internal combustion engine

Also Published As

Publication number Publication date
JP6052142B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6070631B2 (en) Piston of internal combustion engine
JP6269297B2 (en) Piston top surface coating method
JP5607582B2 (en) Manufacturing method of engine valve
JP6052142B2 (en) Method for forming thermal barrier film of internal combustion engine
WO2017057250A1 (en) Thermal insulation structure of engine combustion chamber
JP5998696B2 (en) Engine combustion chamber insulation structure
KR20170127903A (en) Cylinder Liner for Insert Casting and Method for Manufacturing thereof
JP2016099184A (en) Gas sensor
JP2014159612A5 (en)
JP6217552B2 (en) Formation method of heat insulation film
JP3214402U (en) Heat dissipation structure with excellent overall performance and its manufacturing process
JP2006177345A (en) Combustion chamber cooling structure of engine
JP5971372B1 (en) Engine manufacturing method
CN204298259U (en) The sealing structure of vacuum glass pumping hole
JP2019071403A (en) Thermoelectric conversion module
CN102996283B (en) Sealing assembly structure of glass material and metal for rocket engine
JP2016089264A (en) Production method of heat insulation film of internal combustion engine
JP6090282B2 (en) Method for forming a heat insulating layer on the inner peripheral surface of a cylindrical hole
JP2007180042A (en) Double tube cold-cathode fluorescent lamp
CN209383308U (en) Hydraulic jack seal structural part
JPH06196247A (en) Spark plug for internal combustion engine
JP2012087347A (en) Porous material
JP5808799B2 (en) Method of aluminizing a surface by progressive deposition of platinum and nickel layers
CN210426075U (en) Lead sealing device of box-type resistance furnace
JP2007184132A (en) Electromagnetic relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R151 Written notification of patent or utility model registration

Ref document number: 6052142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151