JP2015096015A - Electrical rear-wheel-drive-power regulation device - Google Patents

Electrical rear-wheel-drive-power regulation device Download PDF

Info

Publication number
JP2015096015A
JP2015096015A JP2013236052A JP2013236052A JP2015096015A JP 2015096015 A JP2015096015 A JP 2015096015A JP 2013236052 A JP2013236052 A JP 2013236052A JP 2013236052 A JP2013236052 A JP 2013236052A JP 2015096015 A JP2015096015 A JP 2015096015A
Authority
JP
Japan
Prior art keywords
temperature
cooling fan
rotational speed
inverter
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013236052A
Other languages
Japanese (ja)
Inventor
慎一郎 宇木
Shinichiro Uki
慎一郎 宇木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013236052A priority Critical patent/JP2015096015A/en
Publication of JP2015096015A publication Critical patent/JP2015096015A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for sufficiently regulating the number of revolutions of a cooling fan for air-cooling an electrical rear-wheel-drive-power regulation device for regulating drive power applied to rear wheels of a four-wheel drive vehicle.SOLUTION: A current detector detecting a carrying current for carrying a current to a motor regulating drive power applied to rear wheels from an inverter, and an integration unit integrating current values detected within previous predetermined time are prepared. The number of revolutions of a cooling fan is determined according to a rule that the number of revolution becomes higher as temperature detected by a temperature detector is higher, and the number of revolutions becomes lower as the integration current value integrated by the integration unit is smaller. In summer in which a calorific value is small, the cooling fan is prevented from unnecessary rotation due to reduction in the number of revolutions.

Description

本明細書では、四輪駆動自動車の後輪に加える駆動力を調整する電動装置(以下では、電動式後輪駆動力調整装置という)を開示する。特に、冷却ファンを回転させて空冷する電動式後輪駆動力調整装置を開示する。   In the present specification, an electric device that adjusts the driving force applied to the rear wheels of a four-wheel drive vehicle (hereinafter referred to as an electric rear wheel driving force adjusting device) is disclosed. In particular, an electric rear wheel driving force adjustment device that rotates a cooling fan to cool the air is disclosed.

四輪駆動自動車の後輪に加える駆動力を調整すると、スリップを防止でき、走行安定性を向上させることができる。そこで、後輪の駆動軸にモーターを接続し、そのモーターにインバーターから通電することで、後輪に加える駆動力を調整する電動装置が開発されている。
電動式後輪駆動力調整装置は、動作すると発熱することから空冷する必要がある。本明細書でいう電動式後輪駆動力調整装置は、後輪に加える駆動力を調整するための装置であって、動作時に空冷する必要がある電動装置をいい、インバーター単体、モーター単体、あるいはインバーターとモーターの組み合わせのことをいう。すなわち、本明細書で開示する技術は、インバーターを空冷する冷却ファンにも適用できれば、モーターを空冷する冷却ファンにも適用できれば、インバーターとモーターの双方を空冷する冷却ファンにも適用できる。
When the driving force applied to the rear wheels of the four-wheel drive vehicle is adjusted, slipping can be prevented and driving stability can be improved. Therefore, an electric device has been developed that adjusts the driving force applied to the rear wheel by connecting a motor to the drive shaft of the rear wheel and energizing the motor from an inverter.
Since the electric rear wheel driving force adjusting device generates heat when it operates, it needs to be air-cooled. The electric rear wheel driving force adjusting device referred to in the present specification is a device for adjusting the driving force applied to the rear wheel, and means an electric device that needs to be air-cooled during operation, such as an inverter alone, a motor alone, or A combination of an inverter and a motor. In other words, the technology disclosed in this specification can be applied to a cooling fan that cools an inverter, and can also be applied to a cooling fan that cools both an inverter and a motor.

特許文献1に、電気自動車を駆動するモーターに通電するインバーターを水冷する技術が開示されている。特許文献1の技術では、インバーターの温度が高いほど冷却水量を増加させるとともに、インバーターの温度上昇率が高いほど冷却水量を増加させる。インバーターの温度だけに依存して冷却水量を調整する技術によると、応答遅れによってインバーターが過熱することがある。特許文献1の技術では、温度のみならず温度上昇率をも加味して冷却水量を調整することから、インバーターが過熱することを防止することができる。   Patent Document 1 discloses a technique for water-cooling an inverter that energizes a motor that drives an electric vehicle. In the technique of Patent Document 1, the amount of cooling water is increased as the temperature of the inverter is higher, and the amount of cooling water is increased as the temperature increase rate of the inverter is higher. According to the technology that adjusts the cooling water amount depending only on the temperature of the inverter, the inverter may overheat due to a response delay. In the technique of Patent Document 1, since the amount of cooling water is adjusted in consideration of not only the temperature but also the rate of temperature increase, the inverter can be prevented from overheating.

特開平10−210790号公報JP-A-10-210790

特許文献1の技術では、インバーターの温度のみならず温度上昇率をも加味して冷却水量を決定する。空冷技術に適用する場合には、温度のみならず温度上昇率をも加味して冷却ファンの回転数を決定することになる。しかしながら、温度のみならず温度上昇率をも加味して冷却ファンの回転数を決定するようにしても、電動式後輪駆動力調整装置の場合には問題が生じる。   In the technique of Patent Document 1, the amount of cooling water is determined in consideration of not only the temperature of the inverter but also the rate of temperature increase. When applied to the air cooling technique, the rotational speed of the cooling fan is determined in consideration of not only the temperature but also the rate of temperature increase. However, even if the rotational speed of the cooling fan is determined in consideration of not only the temperature but also the rate of temperature increase, there is a problem in the case of the electric rear wheel driving force adjusting device.

空冷する電動式後輪駆動力調整装置の場合、発熱部から空冷部に至るまでの伝熱経路の熱容量が大きいことから、単位時間当たりの発熱量が増大したタイミングから温度上昇率が増大し始めるタイミングまでの間の時間差が大きい。また、冷却ファンの回転数を増大させたタイミングから発熱部での冷却量が増大し始めるタイミングまでの時間差が大きい。このために、温度上昇率を指標として冷却ファンの回転数を調整する技術では、応答遅れが解消しない。応答遅れがあっても電動式後輪駆動力調整装置が過熱しないようにするためには、応答遅れを見越して冷却ファンの回転数を決定しなければならない。   In the case of an electric rear wheel driving force adjusting device that cools by air, the heat capacity of the heat transfer path from the heat generating part to the air cooling part is large, so the temperature increase rate starts to increase from the timing when the heat generation amount per unit time increases. The time difference between timings is large. Further, there is a large time difference from the timing at which the number of rotations of the cooling fan is increased to the timing at which the cooling amount at the heat generating portion starts to increase. For this reason, in the technique of adjusting the rotation speed of the cooling fan using the temperature increase rate as an index, the response delay is not eliminated. In order to prevent the electric rear wheel driving force adjusting device from overheating even if there is a response delay, the rotational speed of the cooling fan must be determined in anticipation of the response delay.

電動式後輪駆動力調整装置は、スリップの発生を防止して走行安定性を高める装置であり、雪道走行中は頻繁に動作するのに対し、夏季には動作頻度が低下する。雪道走行中は発熱持続時間が長く、夏季には発熱持続時間が短いという特性を備えている。
電動式後輪駆動力調整装置の温度と温度上昇率に基づいて冷却ファンの回転数を決定する技術では、発熱持続時間が長い条件下でも電動式後輪駆動力調整装置が過熱しない回転数としなければならない。電動式後輪駆動力調整装置を空冷する場合、上記した応答遅れの問題があるために、応答遅れを見越した回転数であって、発熱持続時間が長い条件下でも妥当な回転数としなければならない。
The electric rear wheel driving force adjusting device is a device that prevents the occurrence of slip and enhances running stability, and operates frequently during running on snowy roads, but its operating frequency decreases in summer. It has the characteristics that the duration of heat generation is long while driving on snowy roads and the duration of heat generation is short in summer.
In the technology that determines the rotation speed of the cooling fan based on the temperature of the electric rear wheel driving force adjustment device and the rate of temperature rise, the electric rear wheel driving force adjustment device does not overheat even under long heat generation conditions. There must be. When air-cooling the electric rear wheel drive force adjustment device, due to the above-mentioned problem of response delay, it is necessary to set the rotation speed in anticipation of the response delay and a reasonable rotation speed even under the condition of long heat generation duration. Don't be.

上記の必要性を満たすことができる「冷却ファンの回転数と、電動式後輪駆動力調整装置の温度と温度上昇率」の関係を作成したところ、発熱持続時間が短くなる夏季に、冷却ファンが不必要に回転したり、あるいは不必要な高速度で回転したりする問題が発生することが判明した。たとえば、発熱持続時間が長い雪道走行中の過熱を防止するためには、電動式後輪駆動力調整装置が30℃程度に加熱された時に、冷却ファンの回転を開始する必要がある場合がある。温度上昇率が高くなるほど回転数を上げる技術を併用しても、前記の応答遅れの問題があることから、冷却ファンの回転開始時温度をさほど上昇させることができない。例えば、温度上昇率が高くなるほど回転数を上げる技術を併用しても、冷却ファンの回転開始時温度を35℃程度に設定しないと、発熱持続時間が長い雪道走行中に過熱することを防止することができないことがある。この場合、夏季には、電動式後輪駆動力調整装置が動作していないのに冷却ファンを回転させるといった問題が発生する。あるいは、発熱持続時間が短い場合に必要な回転数よりも高速度で冷却ファンを回転させるといった問題が発生する。冷却ファンを不必要に回転させたり、不必要な高速度で回転させたりすると、冷却ファンの寿命が不必要に低下してしまう。   The relationship between the "cooling fan speed and the temperature and temperature rise rate of the electric rear wheel drive force adjustment device" that can meet the above needs was created. It turns out that the problem of rotating unnecessarily or rotating at an unnecessary high speed occurs. For example, in order to prevent overheating during running on a snowy road having a long heat generation duration, it may be necessary to start rotation of the cooling fan when the electric rear wheel driving force adjusting device is heated to about 30 ° C. is there. Even when a technique for increasing the number of revolutions as the temperature increase rate increases is used, the temperature at the start of rotation of the cooling fan cannot be increased so much due to the problem of the response delay. For example, even when using a technology that increases the number of revolutions as the temperature rise rate increases, if the temperature at the start of the cooling fan rotation is not set to about 35 ° C, it will prevent overheating while running on a snowy road with a long heat generation duration There are things you can't do. In this case, in summer, there is a problem that the cooling fan is rotated even though the electric rear wheel driving force adjusting device is not operating. Alternatively, there is a problem that the cooling fan is rotated at a speed higher than that required when the heat generation duration is short. If the cooling fan is rotated unnecessarily or at an unnecessary high speed, the life of the cooling fan is unnecessarily reduced.

本明細書では、電動式後輪駆動力調整装置を空冷する冷却ファンの回転数を過不足なく調整する技術を提供する。   The present specification provides a technique for adjusting the number of rotations of a cooling fan for air-cooling an electric rear wheel driving force adjusting device without excess or deficiency.

本明細書で開示する電動装置は、四輪駆動自動車の後輪に加える駆動力を調整して走行安定性を向上させる。この電動装置は、電動装置に通電している電流を検出する電流検出部と、電流検出部で直前の所定時間内に検出された電流値を積算する積算部と、電動装置の温度を検出する温度検出部と、電動装置を空冷する冷却ファンと、冷却ファンの回転数を制御する制御部を備えている。制御部は、温度検出部で検出された温度が高温であるほど回転数を上げ、積算部で積算された積算電流値が小さいほど回転数を下げる規則に従って、冷却ファンの回転数を制御する。   The electric device disclosed in the present specification adjusts the driving force applied to the rear wheels of the four-wheel drive vehicle to improve traveling stability. The electric device detects a current flowing in the electric device, a current detector that integrates current values detected within a predetermined time immediately before the current detector, and detects a temperature of the electric device. A temperature detection unit, a cooling fan that air-cools the electric device, and a control unit that controls the number of rotations of the cooling fan are provided. The control unit controls the number of rotations of the cooling fan according to a rule that increases the number of rotations as the temperature detected by the temperature detection unit is higher, and decreases the number of rotations as the integrated current value integrated by the integration unit decreases.

積算部で積算される積算電流値は、所定時間内の積算発熱量に比例する。上記装置によると、「温度が高いほど高速であるとともに積算発熱量が低いほど低速である」という規則に従って回転数が決まる。この方式によると、前記した応答遅れの問題が軽減される。応答遅れを見越した回転数を決定する必要性が薄れ、真に必要な回転数に近づけることができる。このために、発熱持続時間が長い雪道走行中の過熱を防ぐことができるとともに発熱持続時間が短い夏季に不必要に冷却ファンが回転することを防止できる。   The integrated current value integrated by the integrating unit is proportional to the integrated heat generation amount within a predetermined time. According to the above apparatus, the rotational speed is determined according to a rule that “the higher the temperature, the higher the speed and the lower the integrated heat generation amount, the lower the speed”. According to this method, the above-mentioned problem of response delay is reduced. The necessity of determining the rotational speed in anticipation of the response delay is reduced, and the rotational speed can be brought close to the truly required rotational speed. For this reason, it is possible to prevent overheating while running on a snowy road having a long heat generation duration, and to prevent the cooling fan from rotating unnecessarily in the summer when the heat generation duration is short.

本明細書で開示する技術の詳細、及び、さらなる改良は、発明を実施するための形態、及び実施例にて詳しく説明する。   Details of the technology disclosed in this specification and further improvements will be described in detail in the detailed description and examples.

実施例の電動式後輪駆動力調整装置の構成を示す図。The figure which shows the structure of the electrically driven rear-wheel drive force adjustment apparatus of an Example. 電動式後輪駆動力調整装置の温度と冷却ファンの回転数の関係を示す図。The figure which shows the relationship between the temperature of an electrically driven rear-wheel drive force adjustment apparatus, and the rotation speed of a cooling fan. 電動式後輪駆動力調整装置の温度と冷却ファンの回転数の関係を示す図。The figure which shows the relationship between the temperature of an electrically driven rear-wheel drive force adjustment apparatus, and the rotation speed of a cooling fan. 冷却ファンの制御手順図。The cooling fan control procedure figure. 電動式後輪駆動力調整装置の温度と季節の関係を示す図。The figure which shows the relationship between the temperature of an electrically driven rear-wheel drive force adjustment apparatus, and a season.

以下に説明する実施例の主要な特徴を下記に列記する。なお、以下に記載する技術要素は、それぞれが独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項記載の組合せに限定されるものではない。
(特徴1)後輪に加える駆動力を調整するモーターに通電するインバーターを冷却する。
(特徴2)温度と積算電流値に加えて冷却風温度をも加味して回転数を決定する。
(特徴3)温度と積算電流値に加えて温度上昇率をも加味して回転数を決定する。
(特徴4)温度が高温であるほど回転数を上げ、積算電流値が小さいほど回転数を下げる規則には、冷却風温度および/または温度上昇率をも加味して回転数を修正する規則が含まれる。すなわち、温度が高温であるほど回転数を上げ、積算電流値が小さいほど回転数を下げるという規則は、少なくとも温度と積算電流値を加味して回転数を決定するものをいい、他の要素を加味することを排除しない。
The main features of the embodiments described below are listed below. The technical elements described below are independent technical elements and exhibit technical usefulness alone or in various combinations, and are limited to the combinations described in the claims at the time of filing. It is not a thing.
(Characteristic 1) The inverter that energizes the motor that adjusts the driving force applied to the rear wheels is cooled.
(Characteristic 2) The number of revolutions is determined in consideration of the cooling air temperature in addition to the temperature and the integrated current value.
(Characteristic 3) The number of revolutions is determined in consideration of the temperature rise rate in addition to the temperature and the integrated current value.
(Characteristic 4) The rule for increasing the rotational speed as the temperature is higher and lowering the rotational speed as the integrated current value is smaller is a rule for correcting the rotational speed in consideration of the cooling air temperature and / or the temperature increase rate. included. That is, the rule that the rotational speed is increased as the temperature is higher and the rotational speed is decreased as the integrated current value is smaller is to determine the rotational speed by taking at least the temperature and the integrated current value into account. Do not exclude the addition.

図1は、実施例に係る電動式後輪駆動力調整装置の構成を示す。参照番号2は車載バッテリであり、参照番号14はモーターである。モーター14は四輪駆動自動車の後輪16に加える駆動力を調整するためのものであり、後輪16を駆動軸に連結されている。参照番号4は、車載バッテリ2から供給される直流電圧を3相交流に変換してモーター14に通電するインバーターである。インバーター4には、インバーター4に通電している電流を検出する電流検出部6、インバーター4を空冷する冷却ファン8、インバーター4のケースの温度を検出する温度検出部10が取り付けられている。参照番号18は、インバーター4を制御する装置(インバーターECU又はインバーター制御装置という)であり、インバーター4が内蔵している複数個のスイッチング素子のオン・オフを制御し、冷却ファン8の回転数を制御する。電流検出部6、冷却ファン8、温度検出部10は、インバーター制御装置18に接続されている。インバーター制御装置18は、冷却ファン8が送風する空気の温度を検出する冷却風温度検出部12にも接続されている。インバーターは、車両後方のトランクルーム内に置かれている。従来はスペアタイヤを収容していたスペースに配置されている。   FIG. 1 shows a configuration of an electric rear wheel driving force adjusting device according to an embodiment. Reference numeral 2 is an in-vehicle battery, and reference numeral 14 is a motor. The motor 14 is for adjusting the driving force applied to the rear wheel 16 of the four-wheel drive vehicle, and the rear wheel 16 is connected to the drive shaft. Reference numeral 4 is an inverter that converts a DC voltage supplied from the in-vehicle battery 2 into a three-phase AC and energizes the motor 14. The inverter 4 is provided with a current detection unit 6 that detects a current flowing through the inverter 4, a cooling fan 8 that air-cools the inverter 4, and a temperature detection unit 10 that detects the temperature of the case of the inverter 4. Reference numeral 18 is a device for controlling the inverter 4 (referred to as an inverter ECU or an inverter control device), which controls on / off of a plurality of switching elements incorporated in the inverter 4 and controls the rotation speed of the cooling fan 8. Control. The current detection unit 6, the cooling fan 8, and the temperature detection unit 10 are connected to the inverter control device 18. The inverter control device 18 is also connected to a cooling air temperature detector 12 that detects the temperature of the air blown by the cooling fan 8. The inverter is placed in the trunk room behind the vehicle. Conventionally, it is arranged in a space that accommodates a spare tire.

インバーター制御装置18は、電流検出部6で検出される通電電流を一定の周期で入力し、直前に入力した所定個数の通電電流検出値を合計して積算電流値を計算する。この処理は、直前の所定時間にわたって通電電流値を積分した値を求めることに等しい。   The inverter control device 18 inputs the energization current detected by the current detection unit 6 at a constant cycle, and calculates the integrated current value by summing the predetermined number of energization current detection values input immediately before. This process is equivalent to obtaining a value obtained by integrating the energization current value over the predetermined time immediately before.

図2は、インバーター制御装置18が内蔵している、インバーターの温度(温度検出部10で検出される)と、積算電流値と、冷却ファン8の回転数の関係を示している。
図2(1)のグラフC1は、積算電流値が基準範囲内にある場合の温度と回転数の関係を示している。温度が高いほど回転数が高くなる関係に設定されている。図2(1)のグラフC2は、積算電流値が基準範囲以上である場合の温度と回転数の関係を示している。グラフC1に比較すると、同じ温度でも回転数を高くする。図2(1)のグラフC3は、積算電流値が基準範囲以下である場合の温度と回転数の関係を示している。グラフC1に比較すると、同じ温度でも回転数を低くする。図2の(1)は、温度検出部10で検出された温度が高温であるほど回転数を上げ、積算部で積算された積算電流値が小さいほど回転数を下げる一例を示している。
FIG. 2 shows the relationship between the inverter temperature (detected by the temperature detection unit 10), the integrated current value, and the rotational speed of the cooling fan 8 built in the inverter control device 18.
A graph C1 in FIG. 2A shows the relationship between the temperature and the rotation speed when the integrated current value is within the reference range. The relationship is set such that the higher the temperature, the higher the rotational speed. Graph C2 in FIG. 2 (1) shows the relationship between the temperature and the rotation speed when the integrated current value is equal to or greater than the reference range. Compared to the graph C1, the rotational speed is increased even at the same temperature. Graph C3 in FIG. 2 (1) shows the relationship between the temperature and the rotation speed when the integrated current value is below the reference range. Compared to the graph C1, the rotational speed is lowered even at the same temperature. (1) of FIG. 2 shows an example in which the number of rotations is increased as the temperature detected by the temperature detection unit 10 is higher, and the number of rotations is decreased as the integrated current value integrated by the integration unit is smaller.

図2(2)のグラフC1は、図2(1)のグラフC1に等しい。図2(2)のグラフC4は、積算電流値が基準範囲以上である場合の温度と回転数の関係を示している。グラフC1に比較すると、同じ温度でも回転数を高くする。また、冷却ファンの回転を開始させる温度が低くなっている。図2(2)のグラフC5は、積算電流値が基準範囲以下である場合の温度と回転数の関係を示している。グラフC1に比較すると、同じ温度でも回転数を低くする。また、冷却ファンの回転を開始させる温度が高くなっている。図2(2)も、温度検出部10で検出された温度が高温であるほど回転数を上げ、積算部で積算された積算電流値が小さいほど回転数を下げる一例を示している。
実際には、図2の(1)と(2)の関係を併用してもよい。すなわち、図2(1)に示すように、積算電流値が小さいほど温度上昇に対する回転数の上昇率を低下させ、なおかつ、図2(2)に示すように、積算電流値が小さいほど冷却ファンの回転開始時温度を上昇させてもよい。
The graph C1 in FIG. 2 (2) is equal to the graph C1 in FIG. 2 (1). Graph C4 in FIG. 2 (2) shows the relationship between the temperature and the rotational speed when the integrated current value is equal to or greater than the reference range. Compared to the graph C1, the rotational speed is increased even at the same temperature. Further, the temperature at which the cooling fan starts to rotate is low. Graph C5 in FIG. 2 (2) shows the relationship between the temperature and the rotation speed when the integrated current value is below the reference range. Compared to the graph C1, the rotational speed is lowered even at the same temperature. Further, the temperature at which the cooling fan starts to rotate is high. FIG. 2 (2) also shows an example in which the rotational speed is increased as the temperature detected by the temperature detection unit 10 is higher, and the rotational speed is decreased as the integrated current value integrated by the integrating unit is smaller.
Actually, the relationship of (1) and (2) in FIG. 2 may be used together. That is, as shown in FIG. 2 (1), the smaller the integrated current value, the lower the rate of increase of the rotational speed with respect to the temperature rise, and as shown in FIG. 2 (2), the smaller the integrated current value, the cooling fan. The temperature at the start of rotation may be increased.

図3は、実施例で採用する温度と回転数の関係を示す。実線で示すグラフC6は、積算電流値が基準範囲(20〜40A)内にある場合の温度と回転数の関係を示し、インバーター4のケース温度が10℃以下なら回転数=ゼロとし、10〜70℃の範囲では回転数=低速とし、70℃以上なら回転数=高速とする。グラフC7は、積算電流値が基準範囲以上(40A以上)にある場合の温度と回転数の関係を示し、-10℃以下なら回転数=ゼロとし、-10〜10℃の範囲では回転数=低速とし、10℃以上なら回転数=高速とする。上向き矢印で示すように、同じ温度でも積算電流値が高ければ回転数を上げる。グラフC8は、積算電流値が基準範囲以下(20A以下)にある場合の温度と回転数の関係を示し、40℃以下なら回転数=ゼロとし、40℃以上なら回転数=低速とする。下向き矢印で示すように、同じ温度でも積算電流値が小さければ回転数を下げる。これもまた、温度検出部10で検出された温度が高温であるほど回転数を上げ、積算部で積算された積算電流値が小さいほど回転数を下げる規則に従っている。
図3に例示したように、温度と回転数の関係、積算電流値と回転数の関係は、温度範囲または積算電流値の範囲に従って回転数を決める関係であってもよい。
FIG. 3 shows the relationship between the temperature and the number of revolutions employed in the example. A graph C6 indicated by a solid line shows the relationship between the temperature and the rotational speed when the integrated current value is within the reference range (20 to 40 A). If the case temperature of the inverter 4 is 10 ° C. or less, the rotational speed is zero. In the range of 70 ° C., the number of revolutions is low, and when it is 70 ° C. or more, the number of revolutions is high. Graph C7 shows the relationship between the temperature and the number of revolutions when the integrated current value is not less than the reference range (40 A or more), and the number of revolutions is zero if it is −10 ° C. or less. If the speed is low and 10 ° C. or higher, the rotation speed is high speed. As indicated by the upward arrow, the rotational speed is increased if the integrated current value is high even at the same temperature. Graph C8 shows the relationship between the temperature and the rotational speed when the integrated current value is below the reference range (20A or lower). The rotational speed is zero when the temperature is 40 ° C. or lower, and the rotational speed is low when the temperature is 40 ° C. or higher. As indicated by the downward arrow, if the integrated current value is small even at the same temperature, the rotational speed is lowered. This also follows the rule that the rotational speed is increased as the temperature detected by the temperature detection unit 10 is higher, and the rotational speed is decreased as the integrated current value integrated by the integrating unit is smaller.
As illustrated in FIG. 3, the relationship between the temperature and the rotational speed and the relationship between the integrated current value and the rotational speed may be a relationship that determines the rotational speed according to the temperature range or the range of the integrated current value.

図4は、冷却ファン8の制御手順を示している。ステップS2では、電流検出部6が検出している通電電流の大きさを入力する。ステップS4では、直前の所定時間(T時間)内の積算電流値を計算する。本実施例では、ステップS2を一定の周期で繰り返し実行する。そのために、直前の所定数の検出値を合計すれば、直前の所定時間内の積算電流値を計算することができる。ステップS6では、積算電流値に基づいて、図3のグラフC6,C7,C8のなかから一つのグラフを選択する。ステップS8では、選択したグラフと、インバーター4のケース温度によって、冷却ファン8の回転数を決定する。   FIG. 4 shows a control procedure of the cooling fan 8. In step S2, the magnitude of the energization current detected by the current detection unit 6 is input. In step S4, an integrated current value within a predetermined time (T time) immediately before is calculated. In this embodiment, step S2 is repeatedly executed at a constant cycle. Therefore, if the immediately preceding predetermined number of detection values are summed, the integrated current value within the immediately preceding predetermined time can be calculated. In step S6, one graph is selected from the graphs C6, C7, and C8 in FIG. 3 based on the integrated current value. In step S8, the rotational speed of the cooling fan 8 is determined based on the selected graph and the case temperature of the inverter 4.

実施の際には、温度と積算電流値とによって回転数を決定した後に、ステップS10に示すように、冷却風の温度によって回転数を修正する処理を加えてもよい。冷却風温度に加えて、温度上昇率をも加味して回転数を修正してもよい。必要なことは、温度と積算電流値とによって回転数を決定することであり、その後に冷却風温度や温度上昇率を加味して回転数を修正してもよい。本明細書の技術は、温度と積算電流値以外の要素を加味することを排除するものでない。ステップS12では、インバーター制御装置18(制御部)が決定した回転数で冷却ファン8を回転させる。   At the time of implementation, after the rotational speed is determined based on the temperature and the integrated current value, processing for correcting the rotational speed based on the temperature of the cooling air may be added as shown in step S10. In addition to the cooling air temperature, the rotational speed may be corrected in consideration of the temperature increase rate. What is necessary is to determine the rotational speed based on the temperature and the integrated current value, and then the rotational speed may be corrected in consideration of the cooling air temperature and the temperature increase rate. The technology of this specification does not exclude adding factors other than temperature and integrated current value. In step S12, the cooling fan 8 is rotated at the rotational speed determined by the inverter control device 18 (control unit).

図5の縦軸は、温度を示している。グラフB1は、電動式後輪駆動力調整装置の冬季における初期温度に示している。冬季の初期温度は低温である。電動式後輪駆動力調整装置は雪道走行時に作動頻度が高く、連続発熱時間が長い。グラフB2は、電動式後輪駆動力調整装置を空冷しない場合に生じる温度を示し、許容温度以上に過熱されることを示している。グラフB3は、温度がT1にまで上昇したときに冷却ファンを回転させたときに生じる温度を示し、許容温度に抑えられる。
グラフB4は、電動式後輪駆動力調整装置の夏季における初期温度に示している。夏季における冷却ファンの回転開始温度をT1とすると、夏季には電動式後輪駆動力調整装置が作動していないのに冷却ファンを回転させることになってしまう。電動式後輪駆動力調整装置は夏季には作動頻度が低く、連続発熱時間が短い。グラフB5は、電動式後輪駆動力調整装置を空冷しない場合に生じる温度を示し、許容温度以上に過熱されることを示している。それでもグラフB2よりも低温で収まる。グラフB6は、温度がT2にまで上昇したときに冷却ファンを回転させたときに生じる温度を示し、許容温度に抑えられる。グラフB5がグラフB2よりも低温で収まることから、T2>T1としても過熱を防止できる。
The vertical axis | shaft of FIG. 5 has shown temperature. Graph B1 shows the initial temperature in winter of the electric rear wheel driving force adjusting device. The initial temperature in winter is low. The electric rear wheel driving force adjusting device is frequently operated when running on a snowy road and has a long continuous heat generation time. Graph B2 shows the temperature generated when the electric rear wheel driving force adjusting device is not air-cooled, and shows that the electric rear wheel driving force adjusting device is overheated to an allowable temperature or higher. Graph B3 shows the temperature generated when the cooling fan is rotated when the temperature rises to T1, and is suppressed to an allowable temperature.
Graph B4 shows the initial temperature in summer of the electric rear wheel driving force adjusting device. If the rotation start temperature of the cooling fan in the summer is T1, the cooling fan will be rotated in the summer even though the electric rear wheel driving force adjusting device is not operating. The electric rear wheel driving force adjusting device operates less frequently in summer and has a shorter continuous heat generation time. Graph B5 shows the temperature that occurs when the electric rear wheel driving force adjusting device is not air-cooled, and shows that the electric rear wheel driving force adjusting device is overheated to an allowable temperature or higher. It still fits at a lower temperature than graph B2. Graph B6 indicates the temperature that is generated when the cooling fan is rotated when the temperature rises to T2, and is suppressed to an allowable temperature. Since the graph B5 is stored at a lower temperature than the graph B2, overheating can be prevented even when T2> T1.

温度検出部10で検出された温度が高温であるほど回転数を上げ、積算部で積算された積算電流値が小さいほど回転数を下げる規則に従って回転数を決めると、冷却ファンの回転開始温度を、冬季にはT1とし、夏季にはT2とすることが可能となる。過熱の発生を防止しながら、冷却ファンが不必要に回転することを防止することができる
上記では、インバーターを空冷する冷却ファンに適用した実施例を示したが、モーターを空冷する冷却ファン、あるいはインバーターとモーター双方を空冷する冷却ファンに適用することもできる。
When the number of rotations is determined according to a rule that increases the number of rotations as the temperature detected by the temperature detection unit 10 is higher and the number of rotations decreases as the integrated current value integrated by the integration unit decreases, the rotation start temperature of the cooling fan is determined. It is possible to set T1 in winter and T2 in summer. In the above example, the cooling fan can be prevented from rotating unnecessarily while preventing overheating. In the above example, the inverter is applied to a cooling fan that air-cools. It can also be applied to a cooling fan that cools both the inverter and motor.

以上、本明細書が開示する技術の実施例について詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
As mentioned above, although the Example of the technique which this specification discloses was described in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

2:車載バッテリ
4:インバーター
6:電流検出部
8:冷却ファン
10:温度検出部
12:冷却風温度検出部
14:モーター
16:後輪
18:インバーター制御装置(インバーターECU、制御部)
2: Vehicle battery 4: Inverter 6: Current detection unit 8: Cooling fan 10: Temperature detection unit 12: Cooling air temperature detection unit 14: Motor 16: Rear wheel 18: Inverter control device (inverter ECU, control unit)

Claims (1)

四輪駆動自動車の後輪に加える駆動力を調整する電動装置であり、
前記電動装置の通電電流を検出する電流検出部と、
前記電流検出部で直前の所定時間内に検出された電流値を積算する積算部と、
前記電動装置の温度を検出する温度検出部と、
前記電動装置を空冷する冷却ファンと、
前記冷却ファンの回転数を制御する制御部とを備えており、
前記制御部が、前記温度検出部で検出された温度が高温であるほど回転数を上げ、前記積算部で積算された積算電流値が小さいほど回転数を下げる規則に従って、前記冷却ファンの回転数を制御することを特徴とする電動式後輪駆動力調整装置。
An electric device that adjusts the driving force applied to the rear wheels of a four-wheel drive vehicle,
A current detection unit for detecting an energization current of the electric device;
An integration unit for integrating the current values detected within the predetermined time immediately before by the current detection unit;
A temperature detector for detecting the temperature of the electric device;
A cooling fan for air-cooling the electric device;
A control unit for controlling the number of rotations of the cooling fan,
According to the rule that the controller increases the rotational speed as the temperature detected by the temperature detector is higher, and decreases the rotational speed as the integrated current value integrated by the integrating unit decreases, the rotational speed of the cooling fan An electric rear wheel driving force adjusting device characterized by controlling the motor.
JP2013236052A 2013-11-14 2013-11-14 Electrical rear-wheel-drive-power regulation device Pending JP2015096015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236052A JP2015096015A (en) 2013-11-14 2013-11-14 Electrical rear-wheel-drive-power regulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236052A JP2015096015A (en) 2013-11-14 2013-11-14 Electrical rear-wheel-drive-power regulation device

Publications (1)

Publication Number Publication Date
JP2015096015A true JP2015096015A (en) 2015-05-18

Family

ID=53198079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236052A Pending JP2015096015A (en) 2013-11-14 2013-11-14 Electrical rear-wheel-drive-power regulation device

Country Status (1)

Country Link
JP (1) JP2015096015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191358A (en) * 2019-05-21 2020-11-26 日立オートモティブシステムズ株式会社 Electronic control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020191358A (en) * 2019-05-21 2020-11-26 日立オートモティブシステムズ株式会社 Electronic control device
JP7289720B2 (en) 2019-05-21 2023-06-12 日立Astemo株式会社 electronic controller

Similar Documents

Publication Publication Date Title
EP2058941B1 (en) Motor control device, control method, and control program
RU2484986C1 (en) Device to control electrified transport facility
US20140117909A1 (en) Driving motor for electric vehicles and control method of the same
JP5649918B2 (en) Battery cooling system and cooling method
JP2004088985A (en) Method for controlling battery temperature of electric automobile, and control system
JP2003505002A (en) Method of controlling a power drive system
JP2019152551A (en) Battery degradation determining device
JPWO2016013063A1 (en) Motor control device and motor control method
US8862302B1 (en) Vehicle and method for controlling an electric machine
WO2015068240A1 (en) Protection device for vehicle inverter
US20220407388A1 (en) Cooling control device, electric system, and cooling control method
JP2014120457A (en) Power supply device
JP2015096015A (en) Electrical rear-wheel-drive-power regulation device
JP2018070122A (en) Cooling system for vehicle
JP6701158B2 (en) Vehicle control device and vehicle control method
JP4968163B2 (en) Vehicle motor control device
JP2002213242A (en) Cooling controller for movable body
JP4967868B2 (en) Hybrid vehicle drive apparatus and control method
JP2012166593A (en) Drive device for hybrid vehicle and control method
JP2015154632A (en) electric vehicle
JP6453629B2 (en) Vehicle control apparatus and vehicle control method
KR20220144694A (en) Apparatus and method for controlling motor torque of electric vehicle
CN108448997B (en) Temperature calculation method and device for automobile skylight driving motor
JP2012209109A5 (en)
JP7278926B2 (en) Electric motor control device, electric vehicle, electric motor control method