JP2015094235A - Fuel injection valve temperature inhibition mechanism for internal combustion engine and internal combustion engine equipped with this mechanism - Google Patents

Fuel injection valve temperature inhibition mechanism for internal combustion engine and internal combustion engine equipped with this mechanism Download PDF

Info

Publication number
JP2015094235A
JP2015094235A JP2013232434A JP2013232434A JP2015094235A JP 2015094235 A JP2015094235 A JP 2015094235A JP 2013232434 A JP2013232434 A JP 2013232434A JP 2013232434 A JP2013232434 A JP 2013232434A JP 2015094235 A JP2015094235 A JP 2015094235A
Authority
JP
Japan
Prior art keywords
heat transfer
combustion engine
internal combustion
fuel injection
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013232434A
Other languages
Japanese (ja)
Other versions
JP6250366B2 (en
Inventor
貴芳 寺門
Takayoshi Terakado
貴芳 寺門
山本 高之
Takayuki Yamamoto
高之 山本
山田 哲
Satoru Yamada
哲 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013232434A priority Critical patent/JP6250366B2/en
Publication of JP2015094235A publication Critical patent/JP2015094235A/en
Application granted granted Critical
Publication of JP6250366B2 publication Critical patent/JP6250366B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection valve temperature inhibition mechanism for an internal combustion engine capable of inhibiting temperature increasing at the extremity end of a nozzle part.SOLUTION: This invention comprises at least one heat transfer enhancement member 11 made of material having a higher coefficient of thermal conductivity than that of material forming a cylinder head 6 and showing a ring shape as seen in a plan view; and an annular groove 12 formed to be sunk from an inner circumferential surface of a mounting hole 4 formed at the cylinder head 6 toward a radial outer side and storing the heat transfer enhancement member 11. At the time of operation of an internal combustion engine, the heat transfer enhancement member 11 is formed in such a way that an entire inner circumferential surface 11a is contacted with an outer circumferential surface 2a of a nozzle part 2 and an entire outer circumferential surface 11b is contacted with an inner circumferential surface 12a of the annular groove 12.

Description

本発明は、内燃機関の燃料噴射弁温度抑制機構およびこれを備えた内燃機関に関するものである。   The present invention relates to a fuel injection valve temperature suppression mechanism for an internal combustion engine and an internal combustion engine including the same.

図12に示すように、一般に内燃機関の燃料噴射弁1は、先端のノズル部2が内燃機関の燃焼室3と連通する取付け孔4に沿って所定の間隙5を保って位置するように、内燃機関のシリンダヘッド(シリンダカバー)6に取付けられる。そのため、ノズル部2が燃焼室3の高温の燃焼ガスに曝され、ノズル部2の温度が上昇し、ノズル部2の内部の燃料が残存しているとデポジットがノズル部2の内部や噴孔7に付着して、燃料噴射量の低下を招くという不具合が生じる。
この不具合を解決するため、下記特許文献1〜3に記載された発明が知られている。
なお、図12中の符号8は、冷却水が通水される冷却水通路を示している。
As shown in FIG. 12, in general, the fuel injection valve 1 of an internal combustion engine is positioned so that a nozzle portion 2 at the tip is positioned with a predetermined gap 5 along a mounting hole 4 communicating with a combustion chamber 3 of the internal combustion engine. It is attached to a cylinder head (cylinder cover) 6 of the internal combustion engine. Therefore, when the nozzle part 2 is exposed to the high-temperature combustion gas in the combustion chamber 3, the temperature of the nozzle part 2 rises, and the fuel inside the nozzle part 2 remains, deposits are formed inside the nozzle part 2 and the nozzle holes. 7 causes a problem that the fuel injection amount is reduced.
In order to solve this problem, the inventions described in Patent Documents 1 to 3 below are known.
In addition, the code | symbol 8 in FIG. 12 has shown the cooling water channel | path through which cooling water is flowed.

特開平9−310660号公報JP-A-9-310660 特開平9−126089号公報Japanese Patent Application Laid-Open No. 9-126089 特許第4710944号公報Japanese Patent No. 4710944

上記特許文献1の図5に記載されたものでは、ノズル部8の先端部に金属バネシール14を装着し、この金属バネシール14をエンジンヘッド15の取付け孔の内周面およびノズル部8の外周面の双方に当接させ、燃焼ガスの進入を阻止し、ノズル部8の燃焼ガスに曝される面積(軸方向長さ)を少なくしてノズル部8の先端部の温度を低下させデポジットの付着を抑止するようにしている。   5, the metal spring seal 14 is attached to the tip of the nozzle portion 8, and the metal spring seal 14 is attached to the inner peripheral surface of the mounting hole of the engine head 15 and the outer peripheral surface of the nozzle portion 8. To prevent the ingress of combustion gas, reduce the area (axial length) of the nozzle portion 8 exposed to the combustion gas, lower the temperature of the tip portion of the nozzle portion 8, and deposit adhesion Is to be suppressed.

しかしながら、上記特許文献1の図5に記載されたものでは、金属バネシール14が燃焼ガスに曝されて高温となり熱変形し、燃焼ガスがノズル部8の上部まで漏れてしまうおそれがある。その際、ノズル部8の側面部が燃焼ガスに曝され、ノズル部8の先端部の温度が上昇してしまうおそれがある。   However, in what is described in FIG. 5 of the above-mentioned Patent Document 1, the metal spring seal 14 is exposed to the combustion gas, becomes hot, and is thermally deformed, and the combustion gas may leak to the upper part of the nozzle portion 8. At that time, the side surface portion of the nozzle portion 8 is exposed to the combustion gas, and the temperature of the tip portion of the nozzle portion 8 may increase.

また、上記特許文献2の図1,図7に記載されたものでは、ノズル部12(燃料噴射弁本体)の先端部に環状溝16を形成し、この環状溝16に2つの金属製リング部材17A、17Bを装着して燃焼ガスの侵入を抑止するようにしている。   Moreover, in what was described in FIG. 1, FIG. 7 of the said patent document 2, the annular groove 16 was formed in the front-end | tip part of the nozzle part 12 (fuel injection valve main body), and two metal ring members are formed in this annular groove 16 17A and 17B are installed to prevent the intrusion of combustion gas.

しかしながら、上記特許文献2では、金属製リング部材17A、17Bをノズル部12へ装着するため、金属製リング部材17A、17Bに切り欠き(スリット)17Cを設ける必要がある。   However, in Patent Document 2, in order to mount the metal ring members 17A and 17B to the nozzle portion 12, it is necessary to provide notches (slits) 17C in the metal ring members 17A and 17B.

金属製リング部材17A、17Bを環状溝16に装着する際には切り欠き17Cを互いにずらしてシール性を保つようにしているが、高温高圧の燃焼ガスは一方の切り欠きから他方の切り欠きを通り抜けてノズル部の上部まで漏れてしまうおそれがある。その際、ノズル部12の側面部が燃焼ガスに曝され、ノズル部12の先端部の温度が上昇してしまうおそれがある。   When the metal ring members 17A and 17B are mounted in the annular groove 16, the notches 17C are shifted from each other to maintain the sealing performance. However, the high-temperature and high-pressure combustion gas is not cut from one notch to the other notch. There is a risk of passing through and leaking to the top of the nozzle. In that case, the side part of the nozzle part 12 may be exposed to combustion gas, and the temperature of the front-end | tip part of the nozzle part 12 may rise.

そこで、燃焼ガスがノズル部の上部まで漏れることによって、ノズル部の側面部が燃焼ガスに曝され、ノズル部の先端部の温度が上昇してしまうことを抑止するものとして上記特許文献3に記載されたものがある。   Therefore, it is described in Patent Document 3 that the combustion gas leaks to the upper part of the nozzle part to prevent the side surface part of the nozzle part from being exposed to the combustion gas and the temperature of the tip part of the nozzle part from rising. There is something that was done.

上記特許文献3に記載されたものでは、ポリテトラフルオロエチレン等の耐熱性の環状シール部材12と、ステンレス等の耐熱性弾性金属13とにより燃焼ガスのノズル部2の外周部2a後端側への進入が抑止されるようになっている。
しかしながら、上記特許文献3に記載されたものでは、噴孔5,6が形成されたノズル部2の先端面は、依然として燃焼ガスに曝される状態にあり、この燃焼ガスによってノズル部2の先端部の温度が上昇してしまうおそれがある。
In the above-mentioned Patent Document 3, the outer peripheral portion 2a of the combustion gas nozzle portion 2 is moved to the rear end side by a heat-resistant annular seal member 12 such as polytetrafluoroethylene and a heat-resistant elastic metal 13 such as stainless steel. The entry of is to be deterred.
However, in the device described in Patent Document 3, the tip surface of the nozzle portion 2 in which the nozzle holes 5 and 6 are formed is still exposed to the combustion gas, and the tip of the nozzle portion 2 is exposed to the combustion gas. The temperature of the part may increase.

本発明は、上記課題を解決するためになされたものであり、ノズル部の先端部における温度上昇を抑制することができる内燃機関の燃料噴射弁温度抑制機構およびこれを備えた内燃機関を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a fuel injection valve temperature suppression mechanism for an internal combustion engine that can suppress a temperature rise at the tip of a nozzle portion, and an internal combustion engine including the same. For the purpose.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の第1の態様に係る内燃機関の燃料噴射弁温度抑制機構は、内燃機関の燃焼室と連通する取付け孔に沿って所定の間隙を保って位置するように、前記内燃機関のシリンダヘッドに燃料噴射弁のノズル部が取付けられる内燃機関の燃料噴射弁温度抑制機構であって、平面視リング形状を呈する少なくとも1本の伝熱促進部材と、前記シリンダヘッドに形成された前記取付け孔の内周面から半径方向外側に向かって掘り下げられるようにして形成され、かつ、前記伝熱促進部材を収容する環状溝と、を備え、前記内燃機関の運転時において、前記伝熱促進部材は、内周面の全体が前記ノズル部の外周面と接し、かつ、外周面の全体および/または該外周面に接続された端面の全周が前記環状溝の内面と接するようにして形成されていることを特徴とする。
In order to solve the above problems, the present invention employs the following means.
The fuel injection valve temperature suppression mechanism for an internal combustion engine according to the first aspect of the present invention is such that the cylinder head of the internal combustion engine is positioned so as to maintain a predetermined gap along an attachment hole communicating with the combustion chamber of the internal combustion engine. A fuel injection valve temperature suppression mechanism for an internal combustion engine to which a nozzle portion of a fuel injection valve is attached to at least one heat transfer promoting member having a ring shape in plan view, and an attachment hole formed in the cylinder head. An annular groove that is formed so as to be dug down radially outward from the inner peripheral surface, and that accommodates the heat transfer promotion member, and during operation of the internal combustion engine, the heat transfer promotion member is The entire inner peripheral surface is in contact with the outer peripheral surface of the nozzle portion, and the entire outer peripheral surface and / or the entire periphery of the end surface connected to the outer peripheral surface is in contact with the inner surface of the annular groove. about And features.

本発明の第2の態様に係る内燃機関の燃料噴射弁温度抑制機構は、内燃機関の燃焼室と連通する取付け孔に沿って所定の間隙を保って位置するように、前記内燃機関のシリンダヘッドに燃料噴射弁のノズル部が取付けられる内燃機関の燃料噴射弁温度抑制機構であって、平面視リング形状を呈する少なくとも1本の伝熱促進部材と、前記ノズル部の外周面から半径方向内側に向かって掘り下げられるようにして形成され、かつ、前記伝熱促進部材を収容する環状溝と、を備え、前記内燃機関の運転時において、前記伝熱促進部材は、内周面の全体および/または該内周面に接続された端面の全周が前記環状溝の内面と接し、かつ、外周面の全体が前記取付け孔の内周面と接するようにして形成されていることを特徴とする。   The fuel injection valve temperature suppression mechanism for an internal combustion engine according to the second aspect of the present invention is such that the cylinder head of the internal combustion engine is positioned so as to maintain a predetermined gap along an attachment hole communicating with the combustion chamber of the internal combustion engine. A fuel injection valve temperature suppression mechanism for an internal combustion engine, to which a nozzle portion of a fuel injection valve is attached, having at least one heat transfer promotion member having a ring shape in plan view, and radially inward from an outer peripheral surface of the nozzle portion And an annular groove that accommodates the heat transfer promoting member, and during operation of the internal combustion engine, the heat transfer promoting member is disposed on the entire inner peripheral surface and / or The entire circumference of the end face connected to the inner peripheral surface is in contact with the inner surface of the annular groove, and the entire outer peripheral surface is in contact with the inner peripheral surface of the mounting hole.

本発明の第1の態様に係る内燃機関の燃料噴射弁温度抑制機構および本発明の第2の態様に係る内燃機関の燃料噴射弁温度抑制機構によれば、伝熱促進部材によってノズル部からシリンダヘッドへと向かう熱輸送ルートを形成することができるので、ノズル部の先端部に入った熱は、伝熱促進部材を介して燃料噴射弁よりも熱容量の大きいシリンダヘッドへ速やかに伝達され、ノズル部の先端部における温度上昇を抑制することができる。   According to the fuel injection valve temperature suppression mechanism of the internal combustion engine according to the first aspect of the present invention and the fuel injection valve temperature suppression mechanism of the internal combustion engine according to the second aspect of the present invention, the cylinder is moved from the nozzle portion by the heat transfer promotion member. Since a heat transport route toward the head can be formed, the heat that has entered the tip of the nozzle portion is quickly transmitted to the cylinder head having a larger heat capacity than the fuel injection valve via the heat transfer promoting member. Temperature rise at the tip of the part can be suppressed.

上記内燃機関の燃料噴射弁温度抑制機構において、前記伝熱促進部材が高さ方向に少なくとも2本積み重ねられており、これら伝熱促進部材のうち、一の伝熱促進部材の合口と、前記一の伝熱促進部材に隣接して配置された他の伝熱促進部材の合口とが、180°反対の方向を向くようにして前記環状溝内に収容されているとさらに好適である。   In the fuel injection valve temperature suppression mechanism of the internal combustion engine, at least two heat transfer promoting members are stacked in the height direction, and among these heat transfer promoting members, the joint of one heat transfer promoting member and the one It is more preferable that the joint of another heat transfer promotion member disposed adjacent to the heat transfer promotion member is accommodated in the annular groove so as to face in the opposite direction of 180 °.

このような内燃機関の燃料噴射弁温度抑制機構によれば、伝熱促進部材の下方から伝熱促進部材の上方に向かう燃焼ガスの噴き抜けを低減させることができ、伝熱促進部材の上方に位置するノズル部の側面部からの入熱を低減させることができて、ノズル部の先端部における温度上昇をさらに抑制することができる。   According to such a fuel injection valve temperature suppression mechanism for an internal combustion engine, it is possible to reduce the injection of combustion gas from below the heat transfer promotion member to above the heat transfer promotion member, and above the heat transfer promotion member. The heat input from the side part of the nozzle part located can be reduced, and the temperature rise in the front-end | tip part of a nozzle part can further be suppressed.

上記内燃機関の燃料噴射弁温度抑制機構において、前記伝熱促進部材を、前記シリンダヘッドを形成する材料よりも熱伝導率の高い材料とするとさらに好適である。   In the fuel injection valve temperature suppression mechanism of the internal combustion engine, it is more preferable that the heat transfer promoting member is made of a material having a higher thermal conductivity than a material forming the cylinder head.

上記内燃機関の燃料噴射弁温度抑制機構において、前記伝熱促進部材の触火面全体に、耐熱コーティングが施されているとさらに好適である。   In the fuel injection valve temperature suppression mechanism of the internal combustion engine, it is more preferable that a heat-resistant coating is applied to the entire contact surface of the heat transfer promoting member.

このような内燃機関の燃料噴射弁温度抑制機構によれば、触火面から伝熱促進部材への入熱を低減させることができ、ノズル部からシリンダヘッドへの伝熱効率をさらに向上させることができる。   According to such a fuel injection valve temperature suppression mechanism for an internal combustion engine, heat input from the contact surface to the heat transfer promoting member can be reduced, and heat transfer efficiency from the nozzle portion to the cylinder head can be further improved. it can.

上記内燃機関の燃料噴射弁温度抑制機構において、前記シリンダヘッドの内部に形成された冷却水通路の、前記燃焼室の側に位置する端部に、前記冷却水通路の内面から前記ノズル部の側に向かって掘り下げられた拡大部が設けられているとさらに好適である。   In the fuel injection valve temperature suppression mechanism of the internal combustion engine, the end of the cooling water passage formed inside the cylinder head is located on the combustion chamber side from the inner surface of the cooling water passage to the nozzle portion side. It is more preferable that an enlarged portion dug down toward is provided.

このような内燃機関の燃料噴射弁温度抑制機構によれば、ノズル部からシリンダヘッドに伝達された熱を効率よく冷却水通路内の冷却水に伝達させることができ、ノズル部の先端部における温度上昇をより一層抑制することができる。   According to such a fuel injection valve temperature suppression mechanism for an internal combustion engine, the heat transmitted from the nozzle part to the cylinder head can be efficiently transmitted to the cooling water in the cooling water passage, and the temperature at the tip part of the nozzle part The rise can be further suppressed.

本発明に係る内燃機関は、上記いずれかの内燃機関の燃料噴射弁温度抑制機構を具備していることを特徴とする。   An internal combustion engine according to the present invention includes any one of the above-described fuel injection valve temperature suppression mechanisms for the internal combustion engine.

本発明に係る内燃機関によれば、ノズル部の先端部における温度上昇を抑制することができる内燃機関の燃料噴射弁温度抑制機構を具備しているので、ノズル部の内部や噴孔へのデポジットの付着を防止することができ、燃料噴射量の低下を防止することができて、当該内燃機関の信頼性を向上させることができる。   The internal combustion engine according to the present invention includes the fuel injection valve temperature suppression mechanism for the internal combustion engine that can suppress the temperature rise at the tip of the nozzle portion. Can be prevented, the fuel injection amount can be prevented from decreasing, and the reliability of the internal combustion engine can be improved.

本発明に係る内燃機関の燃料噴射弁温度抑制機構およびこれを備えた内燃機関によれば、ノズル部の先端部における温度上昇を抑制することができるという効果を奏する。   The fuel injection valve temperature suppression mechanism for an internal combustion engine according to the present invention and the internal combustion engine equipped with the same have an effect of suppressing a temperature rise at the tip of the nozzle portion.

本発明の第1実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 1st Embodiment of this invention. 図1に示す伝熱促進部材の平面図である。It is a top view of the heat-transfer promotion member shown in FIG. 本発明の第2実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 5th Embodiment of this invention. 図6に示す伝熱促進部材の平面図である。It is a top view of the heat-transfer promotion member shown in FIG. 本発明の第6実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 7th Embodiment of this invention. 本発明の第8実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on 8th Embodiment of this invention. 本発明の他の実施形態に係る内燃機関の燃料噴射弁温度抑制機構の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve temperature suppression mechanism of the internal combustion engine which concerns on other embodiment of this invention. 従来の問題点を説明するための図であって、図1等と同様、要部を拡大して示す断面図である。It is a figure for demonstrating the conventional problem, Comprising: It is sectional drawing which expands and shows a principal part like FIG.

〔第1実施形態〕
以下、本発明の第1実施形態に係る内燃機関の燃料噴射弁温度抑制機構10について、図1および図2を参照しながら説明する。
図1に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構10は、伝熱促進部材11と、この伝熱促進部材11を収容する環状溝12と、を備えている。
[First Embodiment]
Hereinafter, a fuel injection valve temperature suppression mechanism 10 for an internal combustion engine according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the fuel injection valve temperature suppression mechanism 10 for the internal combustion engine according to the present embodiment includes a heat transfer promotion member 11 and an annular groove 12 that accommodates the heat transfer promotion member 11.

伝熱促進部材11は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなり、図2に示すように、平面視リング形状を呈する部材であり、ピストンリングと同様、合口13が設けられている。
また、伝熱促進部材11は、内周面11aの全体がノズル部2の外周面2aと接し、かつ、外周面11bの全体が環状溝12の内周面(底面)12aと接するよう、内径がノズル部2の外径と同じとなり、外径が環状溝12の内径と同じとなるようにして形成されている。
なお、本実施形態では、合口13の一具体例として直角合口(ストレート)を挙げて説明しているが、本実施形態に係る伝熱促進部材11の合口13は直角合口に限定されるものではなく、合口13として、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)を採用することもできる。
The heat transfer accelerating member 11 is made of a material (for example, gold, silver, copper, aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6, and as shown in FIG. It is a member having a ring shape, and an abutment 13 is provided as in the piston ring.
The heat transfer promoting member 11 has an inner diameter such that the entire inner peripheral surface 11 a is in contact with the outer peripheral surface 2 a of the nozzle portion 2 and the entire outer peripheral surface 11 b is in contact with the inner peripheral surface (bottom surface) 12 a of the annular groove 12. Is the same as the outer diameter of the nozzle portion 2, and the outer diameter is the same as the inner diameter of the annular groove 12.
In this embodiment, a right angle joint (straight) is described as a specific example of the joint 13, but the joint 13 of the heat transfer promotion member 11 according to the present embodiment is not limited to a right angle joint. Alternatively, other joints (an oblique joint (angle), a stepped joint (step), etc.) can be employed as the joint 13.

環状溝12は、シリンダヘッド6に形成された取付け孔4の、燃焼室3の側(図1において下側)に位置する端部に設けられた周溝であり、取付け孔4の内周面から半径方向外側に向かって掘り下げられるようにして形成されている。
また、環状溝12は、内周面12aが伝熱促進部材11の外周面11bと接するよう、内径が伝熱促進部材11の外径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図1に示すように、伝熱促進部材11および環状溝12のそれぞれが、伝熱促進部材11の外周面11bに接続された一端面(上面)11cの全周が環状溝12の一端面(上面)12bと接し、かつ、伝熱促進部材11の外周面11bに接続された他端面(下面)11dの全周が環状溝12の他端面(下面)12cと接するよう、伝熱促進部材11の高さと環状溝12の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝12との接触面を、外周面11b、一端面11c及び他端面11dのいずれかとしても良い。
The annular groove 12 is a circumferential groove provided at an end portion of the mounting hole 4 formed in the cylinder head 6 on the combustion chamber 3 side (lower side in FIG. 1), and the inner peripheral surface of the mounting hole 4. It is formed so that it can be dug down radially outward from.
The annular groove 12 has an inner diameter that is the same as the outer diameter of the heat transfer promoting member 11 so that the inner peripheral surface 12a contacts the outer peripheral surface 11b of the heat transfer promoting member 11 and is continuous along the circumferential direction. Is formed.
As shown in FIG. 1, the entire circumference of one end surface (upper surface) 11 c of each of the heat transfer promotion member 11 and the annular groove 12 connected to the outer peripheral surface 11 b of the heat transfer promotion member 11 is one of the annular grooves 12. Heat transfer enhancement so that the entire circumference of the other end surface (lower surface) 11d that is in contact with the end surface (upper surface) 12b and connected to the outer peripheral surface 11b of the heat transfer promoting member 11 is in contact with the other end surface (lower surface) 12c of the annular groove 12 It is more preferable that the height of the member 11 and the height of the annular groove 12 are the same. Alternatively, the contact surface with the annular groove 12 may be any one of the outer peripheral surface 11b, the one end surface 11c, and the other end surface 11d.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構10によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、伝熱促進部材11を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。   According to the fuel injection valve temperature suppression mechanism 10 for an internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed, so that heat that has entered the tip portion of the nozzle portion 2 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 through the heat transfer promotion member 11, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.

〔第2実施形態〕
本発明の第2実施形態に係る燃料噴射弁温度抑制機構20について、図3を参照しながら説明する。
図3に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構20は、伝熱促進部材21と、この伝熱促進部材21を収容する環状溝22と、を備えている。
[Second Embodiment]
A fuel injection valve temperature suppression mechanism 20 according to a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 3, the fuel injection valve temperature suppression mechanism 20 of the internal combustion engine according to the present embodiment includes a heat transfer promotion member 21 and an annular groove 22 that accommodates the heat transfer promotion member 21.

伝熱促進部材21は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなるとともに、平面視リング形状を呈する部材であり、ピストンリングと同様、合口(図示せず)が設けられている。
また、伝熱促進部材21は、内周面21aの全体が環状溝22の外周面(底面)22aと接し、かつ、外周面21bの全体が取付け孔4の内周面と接するよう、内径が環状溝12の外径と同じとなり、外径が取付け孔4の内径と同じとなるようにして形成されている。
なお、合口としては、直角合口(ストレート)や、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)が採用される。
The heat transfer promoting member 21 is made of a material (for example, gold, silver, copper, or aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6 and has a ring shape in plan view. Yes, as with the piston ring, a joint (not shown) is provided.
Further, the heat transfer promoting member 21 has an inner diameter such that the entire inner peripheral surface 21 a is in contact with the outer peripheral surface (bottom surface) 22 a of the annular groove 22, and the entire outer peripheral surface 21 b is in contact with the inner peripheral surface of the mounting hole 4. The outer diameter of the annular groove 12 is the same, and the outer diameter is the same as the inner diameter of the mounting hole 4.
In addition, as a joint, a right angle joint (straight) and other joints (an oblique joint (angle), a stepped joint (step), etc.) are employ | adopted.

環状溝22は、ノズル部2の、燃焼室3の側(図3において下側)に位置する端部に設けられた周溝であり、ノズル部2の外周面2aから半径方向内側に向かって掘り下げられるようにして形成されている。
また、環状溝22は、外周面22aが伝熱促進部材21の内周面21aと接するよう、外径が伝熱促進部材21の内径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図3に示すように、伝熱促進部材21および環状溝22のそれぞれが、伝熱促進部材21の内周面21aに接続された一端面(上面)21cが環状溝22の一端面(上面)22bの全周と接し、かつ、伝熱促進部材21の内周面21aに接続された他端面(下面)21dが環状溝22の他端面(下面)22cの全周と接するよう、伝熱促進部材21の高さと環状溝22の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝22との接触面を、内周面21a、一端面22b及び他端面22cのいずれかとしても良い。
The annular groove 22 is a circumferential groove provided at an end portion of the nozzle portion 2 located on the combustion chamber 3 side (lower side in FIG. 3), and is directed radially inward from the outer peripheral surface 2 a of the nozzle portion 2. It is formed so that it can be dug down.
The annular groove 22 has an outer diameter that is the same as the inner diameter of the heat transfer promoting member 21 so that the outer peripheral surface 22a is in contact with the inner peripheral surface 21a of the heat transfer promoting member 21 and is continuous along the circumferential direction. Is formed.
As shown in FIG. 3, each of the heat transfer promotion member 21 and the annular groove 22 has one end surface (upper surface) 21 c connected to the inner peripheral surface 21 a of the heat transfer promotion member 21, and one end surface of the annular groove 22 ( (Upper surface) 22b is in contact with the entire circumference of the heat transfer promoting member 21, and the other end surface (lower surface) 21d connected to the inner peripheral surface 21a of the heat transfer promoting member 21 is in contact with the entire circumference of the other end surface (lower surface) 22c of the annular groove 22. More preferably, the heat promoting member 21 and the annular groove 22 are formed to have the same height. Alternatively, the contact surface with the annular groove 22 may be any of the inner peripheral surface 21a, the one end surface 22b, and the other end surface 22c.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構20によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、伝熱促進部材21を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。   According to the fuel injection valve temperature suppression mechanism 20 of the internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed, so that the heat that has entered the tip portion of the nozzle portion 2 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 via the heat transfer promoting member 21, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.

〔第3実施形態〕
本発明の第3実施形態に係る内燃機関の燃料噴射弁温度抑制機構30について、図4を参照しながら説明する。
図4に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構30は、伝熱促進部材31と、この伝熱促進部材31を収容する環状溝32と、を備えている。
[Third Embodiment]
A fuel injection valve temperature suppression mechanism 30 for an internal combustion engine according to a third embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 4, the fuel injection valve temperature suppression mechanism 30 of the internal combustion engine according to the present embodiment includes a heat transfer promotion member 31 and an annular groove 32 that accommodates the heat transfer promotion member 31.

伝熱促進部材31は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなるとともに、平面視リング形状を呈するスリーブ状の部材であり、ピストンリングと同様、合口(図示せず)が設けられている。
また、伝熱促進部材31は、内周面31aの全体がノズル部2の外周面2aと接し、かつ、外周面31bの全体が環状溝32の内周面(底面)32aと接するよう、内径がノズル部2の外径と同じとなり、外径が環状溝32の内径と同じとなるようにして形成されている。
なお、合口としては、直角合口(ストレート)や、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)が採用される。
The heat transfer promotion member 31 is made of a material (for example, gold, silver, copper, aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6 and has a sleeve shape that has a ring shape in plan view. As with the piston ring, a joint (not shown) is provided.
The heat transfer promoting member 31 has an inner diameter such that the entire inner peripheral surface 31 a is in contact with the outer peripheral surface 2 a of the nozzle portion 2 and the entire outer peripheral surface 31 b is in contact with the inner peripheral surface (bottom surface) 32 a of the annular groove 32. Is the same as the outer diameter of the nozzle portion 2, and the outer diameter is the same as the inner diameter of the annular groove 32.
In addition, as a joint, a right angle joint (straight) and other joints (an oblique joint (angle), a stepped joint (step), etc.) are employ | adopted.

環状溝32は、シリンダヘッド6に形成された取付け孔4の、燃焼室3の側(図4において下側)に位置する端部に設けられた周溝であり、取付け孔4の内周面から半径方向外側に向かって掘り下げられるようにして形成されている。
また、環状溝32は、内周面32aが伝熱促進部材31の外周面31bと接するよう、内径が伝熱促進部材31の外径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図4に示すように、伝熱促進部材31および環状溝32のそれぞれが、伝熱促進部材31の外周面31bに接続された一端面(上面)31cの全周が環状溝32の一端面(上面)32bと接し、かつ、伝熱促進部材31の外周面31bに接続された他端面(下面)31dの全周が環状溝32の他端面(下面)32cと接するよう、伝熱促進部材31の高さと環状溝32の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝32との接触面を、外周面31b、一端面31c及び他端面31dのいずれかとしても良い。
また、本実施形態において、伝熱促進部材31の高さは、第1実施形態のところで説明した伝熱促進部材11の高さの2倍とされている。
The annular groove 32 is a circumferential groove provided at an end portion of the mounting hole 4 formed in the cylinder head 6 on the combustion chamber 3 side (lower side in FIG. 4), and the inner peripheral surface of the mounting hole 4. It is formed so that it can be dug down radially outward from.
The annular groove 32 has an inner diameter that is the same as the outer diameter of the heat transfer promoting member 31 so that the inner peripheral surface 32a is in contact with the outer peripheral surface 31b of the heat transfer promoting member 31 and is continuous along the circumferential direction. Is formed.
As shown in FIG. 4, the entire circumference of one end surface (upper surface) 31 c of the heat transfer promotion member 31 and the annular groove 32 connected to the outer peripheral surface 31 b of the heat transfer promotion member 31 is one of the annular grooves 32. Heat transfer enhancement so that the entire circumference of the other end surface (lower surface) 31d in contact with the end surface (upper surface) 32b and connected to the outer peripheral surface 31b of the heat transfer promoting member 31 is in contact with the other end surface (lower surface) 32c of the annular groove 32. It is more preferable that the height of the member 31 and the height of the annular groove 32 are the same. Alternatively, the contact surface with the annular groove 32 may be any one of the outer peripheral surface 31b, the one end surface 31c, and the other end surface 31d.
In the present embodiment, the height of the heat transfer promoting member 31 is twice the height of the heat transfer promoting member 11 described in the first embodiment.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構30によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、伝熱促進部材31を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。
また、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構30によれば、伝熱促進部材31の高さが、第1実施形態のところで説明した伝熱促進部材11の高さの2倍とされているので、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
According to the fuel injection valve temperature suppression mechanism 30 of the internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed, so that the heat that has entered the tip portion of the nozzle portion 2 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 through the heat transfer promotion member 31, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.
Further, according to the fuel injection valve temperature suppression mechanism 30 of the internal combustion engine according to the present embodiment, the height of the heat transfer promotion member 31 is twice the height of the heat transfer promotion member 11 described in the first embodiment. Therefore, the heat transfer efficiency from the nozzle part 2 to the cylinder head 6 can be further improved.

〔第4実施形態〕
本発明の第4実施形態に係る燃料噴射弁温度抑制機構40について、図5を参照しながら説明する。
図5に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構40は、伝熱促進部材41と、この伝熱促進部材41を収容する環状溝42と、を備えている。
[Fourth Embodiment]
A fuel injection valve temperature suppression mechanism 40 according to a fourth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 5, the fuel injection valve temperature suppression mechanism 40 of the internal combustion engine according to the present embodiment includes a heat transfer promotion member 41 and an annular groove 42 that houses the heat transfer promotion member 41.

伝熱促進部材41は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなるとともに、平面視リング形状を呈するスリーブ状の部材であり、ピストンリングと同様、合口(図示せず)が設けられている。
また、伝熱促進部材41は、内周面41aの全体が環状溝42の外周面(底面)42aと接し、かつ、外周面41bの全体が取付け孔4の内周面と接するよう、内径が環状溝42の外径と同じとなり、外径が取付け孔4の内径と同じとなるようにして形成されている。
なお、合口としては、直角合口(ストレート)や、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)が採用される。
The heat transfer promotion member 41 is made of a material (for example, gold, silver, copper, aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6 and has a sleeve shape that exhibits a ring shape in plan view. As with the piston ring, a joint (not shown) is provided.
The heat transfer promoting member 41 has an inner diameter such that the entire inner peripheral surface 41 a is in contact with the outer peripheral surface (bottom surface) 42 a of the annular groove 42 and the entire outer peripheral surface 41 b is in contact with the inner peripheral surface of the mounting hole 4. The outer diameter of the annular groove 42 is the same, and the outer diameter is the same as the inner diameter of the mounting hole 4.
In addition, as a joint, a right angle joint (straight) and other joints (an oblique joint (angle), a stepped joint (step), etc.) are employ | adopted.

環状溝42は、ノズル部2の、燃焼室3の側(図5において下側)に位置する端部に設けられた周溝であり、ノズル部2の外周面2aから半径方向内側に向かって掘り下げられるようにして形成されている。
また、環状溝42は、外周面42aが伝熱促進部材41の内周面41aと接するよう、外径が伝熱促進部材41の内径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図5に示すように、伝熱促進部材41および環状溝42のそれぞれが、伝熱促進部材41の内周面41aに接続された一端面(上面)41cが環状溝42の一端面(上面)42bの全周と接し、かつ、伝熱促進部材41の内周面41aに接続された他端面(下面)41dが環状溝42の他端面(下面)42cの全周と接するよう、伝熱促進部材41の高さと環状溝42の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝42との接触面を、内周面41a、一端面41c及び他端面41dのいずれかとしても良い。
また、本実施形態において、伝熱促進部材41の高さは、第2実施形態のところで説明した伝熱促進部材21の高さの2倍とされている。
The annular groove 42 is a circumferential groove provided at an end portion of the nozzle portion 2 that is located on the combustion chamber 3 side (lower side in FIG. 5), and is directed radially inward from the outer peripheral surface 2 a of the nozzle portion 2. It is formed so that it can be dug down.
The annular groove 42 has an outer diameter that is the same as the inner diameter of the heat transfer promoting member 41 so that the outer peripheral surface 42 a contacts the inner peripheral surface 41 a of the heat transfer promoting member 41 and is continuous along the circumferential direction. Is formed.
As shown in FIG. 5, each of the heat transfer promotion member 41 and the annular groove 42 has one end surface (upper surface) 41 c connected to the inner peripheral surface 41 a of the heat transfer promotion member 41 and one end surface of the annular groove 42 ( (Upper surface) 42b is in contact with the entire circumference of the heat transfer promoting member 41, and the other end surface (lower surface) 41d connected to the inner peripheral surface 41a of the heat transfer promoting member 41 is in contact with the entire circumference of the other end surface (lower surface) 42c of the annular groove 42. It is more preferable that the heat promotion member 41 and the annular groove 42 are formed to have the same height. Alternatively, the contact surface with the annular groove 42 may be any of the inner peripheral surface 41a, the one end surface 41c, and the other end surface 41d.
In the present embodiment, the height of the heat transfer promotion member 41 is twice the height of the heat transfer promotion member 21 described in the second embodiment.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構40によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、伝熱促進部材41を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。
また、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構40によれば、伝熱促進部材41の高さが、第2実施形態のところで説明した伝熱促進部材21の高さの2倍とされているので、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
According to the fuel injection valve temperature suppression mechanism 40 of the internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed, so that the heat that has entered the tip portion of the nozzle portion 2 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 through the heat transfer promotion member 41, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.
Moreover, according to the fuel injection valve temperature suppression mechanism 40 of the internal combustion engine according to the present embodiment, the height of the heat transfer promotion member 41 is twice the height of the heat transfer promotion member 21 described in the second embodiment. Therefore, the heat transfer efficiency from the nozzle part 2 to the cylinder head 6 can be further improved.

〔第5実施形態〕
本発明の第5実施形態に係る内燃機関の燃料噴射弁温度抑制機構50について、図6および図7を参照しながら説明する。
図6に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構50は、2本の伝熱促進部材51と、これら2本の伝熱促進部材51を収容する環状溝52と、を備えている。
[Fifth Embodiment]
A fuel injection valve temperature suppression mechanism 50 for an internal combustion engine according to a fifth embodiment of the present invention will be described with reference to FIGS. 6 and 7.
As shown in FIG. 6, the fuel injection valve temperature suppression mechanism 50 of the internal combustion engine according to the present embodiment includes two heat transfer promotion members 51, and an annular groove 52 that houses these two heat transfer promotion members 51. It is equipped with.

伝熱促進部材51は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなり、図7に示すように、平面視リング形状を呈する部材であり、ピストンリングと同様、合口53が設けられている。
また、伝熱促進部材51は、内周面51aの全体がノズル部2の外周面2aと接し、かつ、外周面51bの全体が環状溝52の内周面(底面)52aと接するよう、内径がノズル部2の外径と同じとなり、外径が環状溝52の内径と同じとなるようにして形成されている。
なお、本実施形態では、合口53の一具体例として直角合口(ストレート)を挙げて説明しているが、本実施形態に係る伝熱促進部材51の合口53は直角合口に限定されるものではなく、合口53として、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)を採用することもできる。
また、図7に示すように、高さ方向に積み重ねられた2本の伝熱促進部材51のうち、一方(上方)の伝熱促進部材51の合口13と、他方(下方)の伝熱促進部材51の合口13とが、180°反対の方向を向くようにして環状溝52内に収容されているとさらに好適である。
The heat transfer promoting member 51 is made of a material (for example, gold, silver, copper, or aluminum) having a higher thermal conductivity than that of the material (for example, cast iron) forming the cylinder head 6, and as shown in FIG. It is a member having a ring shape, and an abutment 53 is provided as in the piston ring.
The heat transfer promoting member 51 has an inner diameter such that the entire inner peripheral surface 51 a is in contact with the outer peripheral surface 2 a of the nozzle portion 2 and the entire outer peripheral surface 51 b is in contact with the inner peripheral surface (bottom surface) 52 a of the annular groove 52. Is the same as the outer diameter of the nozzle portion 2, and the outer diameter is the same as the inner diameter of the annular groove 52.
In the present embodiment, a right angle joint (straight) is described as a specific example of the joint 53, but the joint 53 of the heat transfer promotion member 51 according to the present embodiment is not limited to the right joint. Alternatively, other joints (an oblique joint (angle), a stepped joint (step), etc.) can be employed as the joint 53.
Moreover, as shown in FIG. 7, among the two heat transfer promotion members 51 stacked in the height direction, the joint 13 of one (upper) heat transfer promotion member 51 and the other (lower) heat transfer promotion. It is more preferable that the abutment 13 of the member 51 is accommodated in the annular groove 52 so as to face the opposite direction of 180 °.

環状溝52は、シリンダヘッド6に形成された取付け孔4の、燃焼室3の側(図6において下側)に位置する端部に設けられた周溝であり、取付け孔4の内周面から半径方向外側に向かって掘り下げられるようにして形成されている。
また、環状溝52は、内周面52aが伝熱促進部材51の外周面51bと接するよう、内径が伝熱促進部材51の外径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図6に示すように、高さ方向に積み重ねられた2本の伝熱促進部材51および環状溝52のそれぞれが、一方の伝熱促進部材51の外周面51bに接続された一端面(上面)51cの全周が環状溝52の一端面(上面)52bと接し、かつ、他方の伝熱促進部材51の外周面51bに接続された他端面(下面)51dの全周が環状溝52の他端面(下面)52cと接するよう、高さ方向に積み重ねられた2本の伝熱促進部材51の高さと環状溝52の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝52との接触面を、外周面51b、一端面51c及び他端面51dのいずれかとしても良い。
また、本実施形態において、各伝熱促進部材51の高さは、第1実施形態のところで説明した伝熱促進部材11と同じ高さとされている。
The annular groove 52 is a circumferential groove provided at an end portion of the mounting hole 4 formed in the cylinder head 6 on the combustion chamber 3 side (lower side in FIG. 6), and the inner peripheral surface of the mounting hole 4. It is formed so that it can be dug down radially outward from.
Further, the annular groove 52 has an inner diameter that is the same as the outer diameter of the heat transfer promoting member 51 so that the inner peripheral surface 52a is in contact with the outer peripheral surface 51b of the heat transfer promoting member 51 and is continuous along the circumferential direction. Is formed.
In addition, as shown in FIG. 6, one end surface in which each of the two heat transfer promotion members 51 and the annular groove 52 stacked in the height direction is connected to the outer peripheral surface 51 b of one heat transfer promotion member 51 ( The entire circumference of the upper surface 51 c is in contact with one end surface (upper surface) 52 b of the annular groove 52, and the entire circumference of the other end surface (lower surface) 51 d connected to the outer peripheral surface 51 b of the other heat transfer promoting member 51 is the annular groove 52. It is more preferable that the two heat transfer promoting members 51 stacked in the height direction and the annular groove 52 have the same height so as to be in contact with the other end surface (lower surface) 52c. is there. Alternatively, the contact surface with the annular groove 52 may be any one of the outer peripheral surface 51b, the one end surface 51c, and the other end surface 51d.
Moreover, in this embodiment, the height of each heat-transfer promotion member 51 is made the same height as the heat-transfer promotion member 11 demonstrated in 1st Embodiment.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構50によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、2本の伝熱促進部材51を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。
また、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構50によれば、伝熱促進部材51が高さ方向に2本積み重ねられており、これら伝熱促進部材51のうち、一の伝熱促進部材51の合口53と、一の伝熱促進部材51に隣接して配置された他の伝熱促進部材51の合口53とが、180°反対の方向を向くようにして環状溝内に収容されているので、伝熱促進部材51の下方から伝熱促進部材51の上方に向かう燃焼ガスの噴き抜けを低減させることができ、伝熱促進部材51の上方に位置するノズル部2の側面部からの入熱を低減させることができて、ノズル部2の先端部における温度上昇をさらに抑制することができる。
さらに、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構50によれば、2本の伝熱促進部材51が配置され、伝熱促進部材51全体としての高さが、第1実施形態のところで説明した伝熱促進部材11の高さの2倍とされているので、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
According to the fuel injection valve temperature suppression mechanism 50 for an internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 via the two heat transfer promoting members 51, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.
Further, according to the fuel injection valve temperature suppression mechanism 50 for an internal combustion engine according to the present embodiment, two heat transfer promotion members 51 are stacked in the height direction, and one of the heat transfer promotion members 51 is transferred. The joint 53 of the heat promotion member 51 and the joint 53 of another heat transfer promotion member 51 disposed adjacent to one heat transfer promotion member 51 are oriented in the opposite direction by 180 ° in the annular groove. Since it is accommodated, it is possible to reduce the blowout of the combustion gas from below the heat transfer promotion member 51 to above the heat transfer promotion member 51, and the side surface of the nozzle portion 2 located above the heat transfer promotion member 51. The heat input from the part can be reduced, and the temperature rise at the tip of the nozzle part 2 can be further suppressed.
Furthermore, according to the fuel injection valve temperature suppression mechanism 50 of the internal combustion engine according to the present embodiment, the two heat transfer promotion members 51 are arranged, and the overall heat transfer promotion member 51 has the height of the first embodiment. By the way, since it is set to twice the height of the heat transfer promotion member 11 demonstrated, the heat transfer efficiency from the nozzle part 2 to the cylinder head 6 can further be improved.

〔第6実施形態〕
本発明の第6実施形態に係る燃料噴射弁温度抑制機構60について、図8を参照しながら説明する。
図8に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構60は、2本の伝熱促進部材61と、これら2本の伝熱促進部材61を収容する環状溝62と、を備えている。
[Sixth Embodiment]
A fuel injection valve temperature suppression mechanism 60 according to a sixth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 8, the fuel injection valve temperature suppression mechanism 60 of the internal combustion engine according to the present embodiment includes two heat transfer promotion members 61 and an annular groove 62 that accommodates these two heat transfer promotion members 61. It is equipped with.

伝熱促進部材61は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなるとともに、平面視リング形状を呈する部材であり、ピストンリングと同様、合口(図示せず)が設けられている。
また、伝熱促進部材61は、内周面61aの全体が環状溝62の外周面(底面)62aと接し、かつ、外周面61bの全体が取付け孔4の内周面と接するよう、内径が環状溝62の外径と同じとなり、外径が取付け孔4の内径と同じとなるようにして形成されている。
なお、合口としては、直角合口(ストレート)や、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)が採用される。
また、高さ方向に積み重ねられた2本の伝熱促進部材61のうち、一方(上方)の伝熱促進部材61の合口と、他方(下方)の伝熱促進部材61の合口とが、図7に示す2本の伝熱促進部材51と同様、180°反対の方向を向くようにして環状溝62内に収容されているとさらに好適である。
The heat transfer promoting member 61 is a member that is made of a material (for example, gold, silver, copper, and aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6 and has a ring shape in plan view. Yes, as with the piston ring, a joint (not shown) is provided.
The heat transfer promoting member 61 has an inner diameter such that the entire inner peripheral surface 61 a is in contact with the outer peripheral surface (bottom surface) 62 a of the annular groove 62 and the entire outer peripheral surface 61 b is in contact with the inner peripheral surface of the mounting hole 4. The outer diameter of the annular groove 62 is the same, and the outer diameter is the same as the inner diameter of the mounting hole 4.
In addition, as a joint, a right angle joint (straight) and other joints (an oblique joint (angle), a stepped joint (step), etc.) are employ | adopted.
Of the two heat transfer promotion members 61 stacked in the height direction, the joint of one (upper) heat transfer promotion member 61 and the joint of the other (lower) heat transfer promotion member 61 are illustrated in FIG. Similarly to the two heat transfer promotion members 51 shown in FIG.

環状溝62は、ノズル部2の、燃焼室3の側(図8において下側)に位置する端部に設けられた周溝であり、ノズル部2の外周面2aから半径方向内側に向かって掘り下げられるようにして形成されている。
また、環状溝62は、外周面62aが伝熱促進部材61の内周面61aと接するよう、外径が伝熱促進部材61の内径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図8に示すように、高さ方向に積み重ねられた伝熱促進部材61および環状溝62のそれぞれが、伝熱促進部材61の内周面61aに接続された一端面(上面)61cが環状溝62の一端面(上面)62bの全周と接し、かつ、伝熱促進部材61の内周面61aに接続された他端面(下面)61dが環状溝62の他端面(下面)62cの全周と接するよう、高さ方向に積み重ねられた2本の伝熱促進部材61の高さと環状溝62の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝62との接触面を、内周面61a、一端面61c及び他端面61dのいずれかとしても良い。
また、本実施形態において、各伝熱促進部材61の高さは、第2実施形態のところで説明した伝熱促進部材21と同じ高さとされている。
The annular groove 62 is a circumferential groove provided at an end portion of the nozzle portion 2 that is located on the combustion chamber 3 side (lower side in FIG. 8), and is directed radially inward from the outer peripheral surface 2 a of the nozzle portion 2. It is formed so that it can be dug down.
Further, the annular groove 62 has an outer diameter that is the same as the inner diameter of the heat transfer promoting member 61 so that the outer peripheral surface 62a is in contact with the inner peripheral surface 61a of the heat transfer promoting member 61 and is continuous along the circumferential direction. Is formed.
As shown in FIG. 8, each of the heat transfer promotion member 61 and the annular groove 62 stacked in the height direction has one end surface (upper surface) 61 c connected to the inner peripheral surface 61 a of the heat transfer promotion member 61. The other end surface (lower surface) 61 d that is in contact with the entire circumference of one end surface (upper surface) 62 b of the annular groove 62 and connected to the inner peripheral surface 61 a of the heat transfer promoting member 61 is the other end surface (lower surface) 62 c of the annular groove 62. It is more preferable that the two heat transfer promoting members 61 stacked in the height direction and the annular groove 62 are formed so as to have the same height so as to be in contact with the entire circumference. Alternatively, the contact surface with the annular groove 62 may be any of the inner peripheral surface 61a, the one end surface 61c, and the other end surface 61d.
Moreover, in this embodiment, the height of each heat transfer promotion member 61 is the same height as the heat transfer promotion member 21 described in the second embodiment.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構60によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、2本の伝熱促進部材61を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。
また、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構60によれば、伝熱促進部材61が高さ方向に2本積み重ねられており、これら伝熱促進部材61のうち、一の伝熱促進部材61の合口と、一の伝熱促進部材61に隣接して配置された他の伝熱促進部材61の合口とが、180°反対の方向を向くようにして環状溝内に収容されているので、伝熱促進部材61の下方から伝熱促進部材61の上方に向かう燃焼ガスの噴き抜けを低減させることができ、伝熱促進部材61の上方に位置するノズル部2の側面部からの入熱を低減させることができて、ノズル部2の先端部における温度上昇をさらに抑制することができる。
さらに、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構60によれば、2本の伝熱促進部材61が配置され、伝熱促進部材61全体としての高さが、第2実施形態のところで説明した伝熱促進部材21の高さの2倍とされているので、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
According to the fuel injection valve temperature suppression mechanism 60 of the internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 through the two heat transfer promoting members 61, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.
Further, according to the fuel injection valve temperature suppression mechanism 60 of the internal combustion engine according to the present embodiment, two heat transfer promotion members 61 are stacked in the height direction, and one of the heat transfer promotion members 61 is transferred. The joint of the heat promotion member 61 and the joint of the other heat transfer promotion member 61 disposed adjacent to the one heat transfer promotion member 61 are accommodated in the annular groove so as to face in the opposite direction of 180 °. Therefore, it is possible to reduce the blow-out of the combustion gas from the lower side of the heat transfer promotion member 61 to the upper side of the heat transfer promotion member 61, and from the side surface portion of the nozzle portion 2 located above the heat transfer promotion member 61. Heat input can be reduced, and temperature rise at the tip of the nozzle portion 2 can be further suppressed.
Furthermore, according to the fuel injection valve temperature suppression mechanism 60 of the internal combustion engine according to the present embodiment, the two heat transfer promotion members 61 are arranged, and the height of the heat transfer promotion member 61 as a whole is that of the second embodiment. By the way, since it is set as twice the height of the heat-transfer promotion member 21 demonstrated, the heat-transfer efficiency from the nozzle part 2 to the cylinder head 6 can further be improved.

〔第7実施形態〕
本発明の第7実施形態に係る内燃機関の燃料噴射弁温度抑制機構70について、図9を参照しながら説明する。
図9に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構70は、2本の伝熱促進部材71,72と、これら2本の伝熱促進部材71,72を収容する環状溝73と、を備えている。
[Seventh Embodiment]
A fuel injection valve temperature suppression mechanism 70 for an internal combustion engine according to a seventh embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 9, the fuel injection valve temperature suppression mechanism 70 for the internal combustion engine according to the present embodiment accommodates two heat transfer promotion members 71 and 72 and these two heat transfer promotion members 71 and 72. And an annular groove 73.

伝熱促進部材71,72は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなるとともに、平面視リング形状を呈する部材であり、ピストンリングと同様、合口(図示せず)が設けられている。
また、伝熱促進部材71,72は、内周面71a,72aの全体がノズル部2の外周面2aと接し、かつ、外周面71b,72bの全体が環状溝73の内周面(底面)73aと接するよう、内径がノズル部2の外径と同じとなり、外径が環状溝73の内径と同じとなるようにして形成されている。
なお、合口としては、直角合口(ストレート)や、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)が採用される。
また、高さ方向に積み重ねられた2本の伝熱促進部材71,72のうち、一方(上方)の伝熱促進部材71の合口と、他方(下方)の伝熱促進部材72の合口とが、図7に示す2本の伝熱促進部材51と同様、180°反対の方向を向くようにして環状溝73内に収容されているとさらに好適である。
The heat transfer promotion members 71 and 72 are made of a material (for example, gold, silver, copper, aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6 and have a ring shape in plan view. It is a member, and a joint (not shown) is provided similarly to the piston ring.
Further, the heat transfer promoting members 71 and 72 are such that the entire inner peripheral surfaces 71 a and 72 a are in contact with the outer peripheral surface 2 a of the nozzle portion 2, and the entire outer peripheral surfaces 71 b and 72 b are the inner peripheral surface (bottom surface) of the annular groove 73. The inner diameter is the same as the outer diameter of the nozzle portion 2 and the outer diameter is the same as the inner diameter of the annular groove 73 so as to be in contact with 73a.
In addition, as a joint, a right angle joint (straight) and other joints (an oblique joint (angle), a stepped joint (step), etc.) are employ | adopted.
Of the two heat transfer promotion members 71 and 72 stacked in the height direction, the joint of one (upper) heat transfer promotion member 71 and the joint of the other (lower) heat transfer promotion member 72 are Like the two heat transfer promotion members 51 shown in FIG. 7, it is more preferable that they are accommodated in the annular groove 73 so as to face in the opposite directions of 180 °.

環状溝73は、シリンダヘッド6に形成された取付け孔4の、燃焼室3の側(図9において下側)に位置する端部に設けられた周溝であり、取付け孔4の内周面から半径方向外側に向かって掘り下げられるようにして形成されている。
また、環状溝73は、内周面73aが伝熱促進部材71,72の外周面71b,72bと接するよう、内径が伝熱促進部材71,72の外径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図9に示すように、高さ方向に積み重ねられた2本の伝熱促進部材71,72および環状溝73のそれぞれが、一方の伝熱促進部材71の外周面71bに接続された一端面(上面)71cの全周が環状溝73の一端面(上面)73bと接し、かつ、他方の伝熱促進部材72の外周面72bに接続された他端面(下面)72dの全周が環状溝73の他端面(下面)73cと接するよう、高さ方向に積み重ねられた2本の伝熱促進部材71,72の高さと環状溝73の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝73との接触面を、外周面71b,72b、一端面71c及び他端面72dのいずれかとしても良い。
また、本実施形態において、伝熱促進部材71の高さは、第3実施形態のところで説明した伝熱促進部材31と同じ高さとされ、伝熱促進部材72の高さは、第1実施形態のところで説明した伝熱促進部材11と同じ高さとされている。
The annular groove 73 is a circumferential groove provided at an end portion of the mounting hole 4 formed in the cylinder head 6 on the combustion chamber 3 side (lower side in FIG. 9). It is formed so that it can be dug down radially outward from.
The annular groove 73 has the same inner diameter as the outer diameter of the heat transfer promotion members 71 and 72 so that the inner peripheral surface 73a is in contact with the outer peripheral surfaces 71b and 72b of the heat transfer promotion members 71 and 72, and in the circumferential direction. It is formed so as to be continuous along.
As shown in FIG. 9, each of the two heat transfer promotion members 71 and 72 and the annular groove 73 stacked in the height direction is connected to the outer peripheral surface 71 b of one heat transfer promotion member 71. The entire circumference of the end surface (upper surface) 71c is in contact with one end surface (upper surface) 73b of the annular groove 73, and the entire circumference of the other end surface (lower surface) 72d connected to the outer peripheral surface 72b of the other heat transfer promotion member 72 is annular. The two heat transfer promotion members 71 and 72 stacked in the height direction and the height of the annular groove 73 are formed so as to be in contact with the other end surface (lower surface) 73c of the groove 73. And more preferably. Alternatively, the contact surface with the annular groove 73 may be any one of the outer peripheral surfaces 71b and 72b, the one end surface 71c, and the other end surface 72d.
In this embodiment, the height of the heat transfer promotion member 71 is the same as that of the heat transfer promotion member 31 described in the third embodiment, and the height of the heat transfer promotion member 72 is the same as that of the first embodiment. The height is the same as the heat transfer promotion member 11 described above.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構70によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、2本の伝熱促進部材71,72を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。
また、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構70によれば、伝熱促進部材71,72が高さ方向に2本積み重ねられており、これら伝熱促進部材71,72のうち、一の伝熱促進部材71の合口と、一の伝熱促進部材71に隣接して配置された他の伝熱促進部材72の合口とが、180°反対の方向を向くようにして環状溝内に収容されているので、伝熱促進部材72の下方から伝熱促進部材71の上方に向かう燃焼ガスの噴き抜けを低減させることができ、伝熱促進部材71の上方に位置するノズル部2の側面部からの入熱を低減させることができて、ノズル部2の先端部における温度上昇をさらに抑制することができる。
さらに、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構70によれば、2本の伝熱促進部材71,72が配置され、伝熱促進部材71,72全体としての高さが、第1実施形態のところで説明した伝熱促進部材11の高さの3倍とされているので、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
According to the fuel injection valve temperature suppression mechanism 70 of the internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed, so that the heat that has entered the tip portion of the nozzle portion 2 can be formed. Is transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 through the two heat transfer promoting members 71 and 72, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.
Further, according to the fuel injection valve temperature suppression mechanism 70 of the internal combustion engine according to the present embodiment, two heat transfer promotion members 71 and 72 are stacked in the height direction, and among these heat transfer promotion members 71 and 72, An annular groove is formed such that the joint of one heat transfer promotion member 71 and the joint of another heat transfer promotion member 72 arranged adjacent to one heat transfer promotion member 71 face in the opposite direction of 180 °. Since it is housed in the nozzle portion 2, it is possible to reduce the injection of combustion gas from below the heat transfer promotion member 72 to above the heat transfer promotion member 71, and the nozzle portion 2 located above the heat transfer promotion member 71. The heat input from the side surface portion of the nozzle portion 2 can be reduced, and the temperature rise at the tip portion of the nozzle portion 2 can be further suppressed.
Furthermore, according to the fuel injection valve temperature suppression mechanism 70 of the internal combustion engine according to the present embodiment, the two heat transfer promotion members 71 and 72 are arranged, and the overall height of the heat transfer promotion members 71 and 72 is the first. Since the height of the heat transfer promoting member 11 described in the embodiment is three times the height, the heat transfer efficiency from the nozzle portion 2 to the cylinder head 6 can be further improved.

〔第8実施形態〕
本発明の第8実施形態に係る燃料噴射弁温度抑制機構80について、図10を参照しながら説明する。
図10に示すように、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構80は、2本の伝熱促進部材81,82と、これら2本の伝熱促進部材81,82を収容する環状溝83と、を備えている。
[Eighth Embodiment]
A fuel injection valve temperature suppression mechanism 80 according to an eighth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 10, the fuel injection valve temperature suppression mechanism 80 of the internal combustion engine according to the present embodiment accommodates two heat transfer promotion members 81 and 82 and these two heat transfer promotion members 81 and 82. And an annular groove 83.

伝熱促進部材81,82は、シリンダヘッド6を形成する材料(例えば、鋳鉄)よりも熱伝導率の高い材料(例えば、金、銀、銅、アルミニウム)からなるとともに、平面視リング形状を呈する部材であり、ピストンリングと同様、合口(図示せず)が設けられている。
また、伝熱促進部材81,82は、内周面81a,82aの全体が環状溝83の外周面(底面)83aと接し、かつ、外周面81b,82bの全体が取付け孔4の内周面と接するよう、内径が環状溝83の外径と同じとなり、外径が取付け孔4の内径と同じとなるようにして形成されている。
なお、合口としては、直角合口(ストレート)や、その他の合口(斜合口(アングル)や段付き合口(ステップ)等)が採用される。
また、高さ方向に積み重ねられた2本の伝熱促進部材81,82のうち、一方(上方)の伝熱促進部材81の合口と、他方(下方)の伝熱促進部材82の合口とが、図7に示す2本の伝熱促進部材51と同様、180°反対の方向を向くようにして環状溝83内に収容されているとさらに好適である。
The heat transfer promotion members 81 and 82 are made of a material (for example, gold, silver, copper, and aluminum) having a higher thermal conductivity than the material (for example, cast iron) forming the cylinder head 6 and have a ring shape in plan view. It is a member, and a joint (not shown) is provided similarly to the piston ring.
The heat transfer promotion members 81 and 82 are such that the entire inner peripheral surfaces 81 a and 82 a are in contact with the outer peripheral surface (bottom surface) 83 a of the annular groove 83, and the entire outer peripheral surfaces 81 b and 82 b are the inner peripheral surfaces of the mounting holes 4. The inner diameter is the same as the outer diameter of the annular groove 83, and the outer diameter is the same as the inner diameter of the mounting hole 4.
In addition, as a joint, a right angle joint (straight) and other joints (an oblique joint (angle), a stepped joint (step), etc.) are employ | adopted.
Of the two heat transfer promotion members 81 and 82 stacked in the height direction, the joint of one (upper) heat transfer promotion member 81 and the joint of the other (lower) heat transfer promotion member 82 are Like the two heat transfer promotion members 51 shown in FIG. 7, it is more preferable that they are accommodated in the annular groove 83 so as to face in directions opposite to 180 °.

環状溝83は、ノズル部2の、燃焼室3の側(図10において下側)に位置する端部に設けられた周溝であり、ノズル部2の外周面2aから半径方向内側に向かって掘り下げられるようにして形成されている。
また、環状溝83は、外周面83aが伝熱促進部材81,82の内周面81a,82aと接するよう、外径が伝熱促進部材81,82の内径と同じとなり、かつ、周方向に沿って連続するようにして形成されている。
なお、図10に示すように、高さ方向に積み重ねられた伝熱促進部材81,82および環状溝83のそれぞれが、伝熱促進部材81の内周面81aに接続された一端面(上面)81cが環状溝83の一端面(上面)83bの全周と接し、かつ、伝熱促進部材82の内周面82aに接続された他端面(下面)82dが環状溝83の他端面(下面)83cの全周と接するよう、高さ方向に積み重ねられた2本の伝熱促進部材81,82の高さと環状溝83の高さとが同じとなるようにして形成されているとさらに好適である。あるいは、環状溝82との接触面を、内周面81a,82a、一端面83bb及び他端面83cのいずれかとしても良い。
また、本実施形態において、伝熱促進部材81の高さは、第4実施形態のところで説明した伝熱促進部材41と同じ高さとされ、伝熱促進部材72の高さは、第2実施形態のところで説明した伝熱促進部材21と同じ高さとされている。
The annular groove 83 is a circumferential groove provided at an end portion of the nozzle portion 2 that is located on the combustion chamber 3 side (lower side in FIG. 10), and is directed radially inward from the outer peripheral surface 2 a of the nozzle portion 2. It is formed so that it can be dug down.
The annular groove 83 has the same outer diameter as the inner diameter of the heat transfer promotion members 81 and 82 so that the outer peripheral surface 83a is in contact with the inner peripheral surfaces 81a and 82a of the heat transfer promotion members 81 and 82, and in the circumferential direction. It is formed so as to be continuous along.
As shown in FIG. 10, one end surface (upper surface) in which each of the heat transfer promotion members 81 and 82 and the annular groove 83 stacked in the height direction is connected to the inner peripheral surface 81 a of the heat transfer promotion member 81. 81 c is in contact with the entire circumference of one end surface (upper surface) 83 b of the annular groove 83, and the other end surface (lower surface) 82 d connected to the inner peripheral surface 82 a of the heat transfer promoting member 82 is the other end surface (lower surface) of the annular groove 83. It is more preferable that the height of the two heat transfer promotion members 81 and 82 stacked in the height direction and the height of the annular groove 83 are the same so as to contact the entire circumference of 83c. . Alternatively, the contact surface with the annular groove 82 may be any of the inner peripheral surfaces 81a and 82a, the one end surface 83bb, and the other end surface 83c.
Moreover, in this embodiment, the height of the heat transfer promotion member 81 is the same height as the heat transfer promotion member 41 described in the fourth embodiment, and the height of the heat transfer promotion member 72 is the second embodiment. The height is the same as the heat transfer promoting member 21 described above.

本実施形態に係る内燃機関の燃料噴射弁温度抑制機構80によれば、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、ノズル部2の先端部に入った熱は、2本の伝熱促進部材81,82を介して燃料噴射弁1よりも熱容量の大きいシリンダヘッド6へ速やかに伝達され、ノズル部2の先端部における温度上昇を抑制することができる。
また、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構80によれば、伝熱促進部材81,82が高さ方向に2本積み重ねられており、これら伝熱促進部材81,82のうち、一の伝熱促進部材81の合口と、一の伝熱促進部材81に隣接して配置された他の伝熱促進部材82の合口とが、180°反対の方向を向くようにして環状溝内に収容されているので、伝熱促進部材82の下方から伝熱促進部材81の上方に向かう燃焼ガスの噴き抜けを低減させることができ、伝熱促進部材81の上方に位置するノズル部2の側面部からの入熱を低減させることができて、ノズル部2の先端部における温度上昇をさらに抑制することができる。
さらに、本実施形態に係る内燃機関の燃料噴射弁温度抑制機構80によれば、2本の伝熱促進部材81,82が配置され、伝熱促進部材81,82全体としての高さが、第2実施形態のところで説明した伝熱促進部材21の高さの3倍とされているので、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
According to the fuel injection valve temperature suppression mechanism 80 of the internal combustion engine according to the present embodiment, a heat transport route from the nozzle portion 2 toward the cylinder head 6 can be formed, so that the heat that has entered the tip portion of the nozzle portion 2 can be formed. Is quickly transmitted to the cylinder head 6 having a larger heat capacity than the fuel injection valve 1 through the two heat transfer promoting members 81 and 82, and the temperature rise at the tip of the nozzle portion 2 can be suppressed.
Further, according to the fuel injection valve temperature suppression mechanism 80 of the internal combustion engine according to the present embodiment, two heat transfer promotion members 81 and 82 are stacked in the height direction, and among these heat transfer promotion members 81 and 82, The annular groove is formed such that the joint of one heat transfer promotion member 81 and the joint of another heat transfer promotion member 82 disposed adjacent to one heat transfer promotion member 81 face in the opposite direction of 180 °. Since it is housed in the nozzle portion 2, it is possible to reduce the injection of combustion gas from below the heat transfer promotion member 82 to above the heat transfer promotion member 81, and the nozzle portion 2 located above the heat transfer promotion member 81. The heat input from the side surface portion of the nozzle portion 2 can be reduced, and the temperature rise at the tip portion of the nozzle portion 2 can be further suppressed.
Furthermore, according to the fuel injection valve temperature suppression mechanism 80 of the internal combustion engine according to the present embodiment, the two heat transfer promotion members 81 and 82 are arranged, and the overall height of the heat transfer promotion members 81 and 82 is the first. Since the height of the heat transfer promotion member 21 described in the second embodiment is three times the height, the heat transfer efficiency from the nozzle portion 2 to the cylinder head 6 can be further improved.

なお、本発明は上述した実施形態に限定されるものではなく、適宜必要に応じて変形・変更して実施することもできる。
例えば、伝熱促進部材を、シリンダヘッド6を形成する材料と同等の熱伝導率あるいは低い熱伝導率を有する材料としてもよい。この場合には、温度上昇を抑制する効果は上記の各実施形態よりも低減するが、ノズル部2からシリンダヘッド6へと向かう熱輸送ルートを形成することができるので、温度を下げることができる。
また、上述した実施形態において、伝熱促進部材11,21,31,41,72,82の他端面(下面)、他方(下方)の伝熱促進部材51,61の他端面(下面)、すなわち、触火面の全体に、断熱コーティング(例えば、セラミックスのコーティング)が施されているとさらに好適である。
これにより、触火面からこれら伝熱促進部材への入熱を低減させることができ、ノズル部2からシリンダヘッド6への伝熱効率をさらに向上させることができる。
In addition, this invention is not limited to embodiment mentioned above, It can also implement by changing and changing suitably as needed.
For example, the heat transfer promoting member may be a material having a thermal conductivity equivalent to or lower than that of the material forming the cylinder head 6. In this case, the effect of suppressing the temperature rise is reduced as compared with each of the above embodiments, but a heat transport route from the nozzle portion 2 to the cylinder head 6 can be formed, so that the temperature can be lowered. .
In the above-described embodiment, the other end surfaces (lower surfaces) of the heat transfer promotion members 11, 21, 31, 41, 72, 82 and the other end surfaces (lower surfaces) of the other (lower) heat transfer promotion members 51, 61, It is more preferable that a heat insulating coating (for example, a ceramic coating) is applied to the entire contact surface.
Thereby, the heat input from the contact surface to these heat transfer promoting members can be reduced, and the heat transfer efficiency from the nozzle portion 2 to the cylinder head 6 can be further improved.

また、上述した実施形態において、図11に示すように、冷却水通路9の、燃焼室3の側(図11において下側)に位置する端部に、冷却水通路9の内面からノズル部2の側に向かって掘り下げられた(拡げられた)拡大部9aが設けられているとさらに好適である。
これにより、ノズル部2からシリンダヘッド6に伝達された熱を効率よく冷却水通路9内の冷却水に伝達させることができ、ノズル部2の先端部における温度上昇をより一層抑制することができる。
なお、図11は、上述した第1実施形態に冷却水通路9を適用した例を示している。
Further, in the above-described embodiment, as shown in FIG. 11, the nozzle portion 2 extends from the inner surface of the cooling water passage 9 to the end portion of the cooling water passage 9 located on the combustion chamber 3 side (lower side in FIG. 11). It is more preferable that an enlarged portion 9a that is dug down (expanded) toward the side is provided.
Thereby, the heat transmitted from the nozzle part 2 to the cylinder head 6 can be efficiently transmitted to the cooling water in the cooling water passage 9, and the temperature rise at the tip part of the nozzle part 2 can be further suppressed. .
FIG. 11 shows an example in which the cooling water passage 9 is applied to the first embodiment described above.

1 燃料噴射弁
2 ノズル部
3 燃焼室
4 取付け孔
5 間隙
6 シリンダヘッド
9 冷却水通路
9a 拡大部
10 内燃機関の燃料噴射弁温度抑制機構
11 伝熱促進部材
12 環状溝
13 合口
20 内燃機関の燃料噴射弁温度抑制機構
21 伝熱促進部材
22 環状溝
30 内燃機関の燃料噴射弁温度抑制機構
31 伝熱促進部材
32 環状溝
40 内燃機関の燃料噴射弁温度抑制機構
41 伝熱促進部材
42 環状溝
50 内燃機関の燃料噴射弁温度抑制機構
51 伝熱促進部材
52 環状溝
60 内燃機関の燃料噴射弁温度抑制機構
61 伝熱促進部材
62 環状溝
70 内燃機関の燃料噴射弁温度抑制機構
71 伝熱促進部材
72 伝熱促進部材
73 環状溝
80 内燃機関の燃料噴射弁温度抑制機構
81 伝熱促進部材
82 伝熱促進部材
83 環状溝
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Nozzle part 3 Combustion chamber 4 Mounting hole 5 Gap 6 Cylinder head 9 Cooling water passage 9a Enlarged part 10 Fuel injection valve temperature control mechanism 11 of internal combustion engine Heat transfer promotion member 12 Annular groove 13 Joint 20 Fuel of internal combustion engine Injection valve temperature suppression mechanism 21 Heat transfer promotion member 22 Annular groove 30 Fuel injection valve temperature suppression mechanism 31 of an internal combustion engine Heat transfer promotion member 32 Annular groove 40 Fuel injection valve temperature suppression mechanism 41 of an internal combustion engine Heat transfer promotion member 42 Annular groove 50 Fuel injection valve temperature suppression mechanism 51 for internal combustion engine Heat transfer promotion member 52 Annular groove 60 Fuel injection valve temperature suppression mechanism 61 for internal combustion engine Heat transfer promotion member 62 Annular groove 70 Fuel injection valve temperature suppression mechanism 71 for internal combustion engine Heat transfer promotion member 72 Heat Transfer Promoting Member 73 Annular Groove 80 Fuel Injection Valve Temperature Suppression Mechanism 81 for Internal Combustion Engine Heat Transfer Promoting Member 82 Heat Transfer Promoting Member 83 Annular Groove

Claims (7)

内燃機関の燃焼室と連通する取付け孔に沿って所定の間隙を保って位置するように、前記内燃機関のシリンダヘッドに燃料噴射弁のノズル部が取付けられる内燃機関の燃料噴射弁温度抑制機構であって、
平面視リング形状を呈する少なくとも1本の伝熱促進部材と、
前記シリンダヘッドに形成された前記取付け孔の内周面から半径方向外側に向かって掘り下げられるようにして形成され、かつ、前記伝熱促進部材を収容する環状溝と、を備え、
前記内燃機関の運転時において、前記伝熱促進部材は、内周面の全体が前記ノズル部の外周面と接し、かつ、外周面の全体および/または該外周面に接続された端面の全周が前記環状溝の内面と接するようにして形成されていることを特徴とする内燃機関の燃料噴射弁温度抑制機構。
A fuel injection valve temperature suppression mechanism for an internal combustion engine in which a nozzle portion of the fuel injection valve is attached to a cylinder head of the internal combustion engine so as to be positioned along a mounting hole communicating with the combustion chamber of the internal combustion engine. There,
At least one heat transfer promoting member having a ring shape in plan view;
An annular groove that is formed so as to be dug down radially outward from an inner peripheral surface of the mounting hole formed in the cylinder head, and that accommodates the heat transfer promoting member,
During the operation of the internal combustion engine, the heat transfer promoting member has the entire inner peripheral surface in contact with the outer peripheral surface of the nozzle portion, and the entire outer peripheral surface and / or the entire periphery of the end surface connected to the outer peripheral surface. Is formed so as to be in contact with the inner surface of the annular groove, the fuel injection valve temperature suppression mechanism of the internal combustion engine.
内燃機関の燃焼室と連通する取付け孔に沿って所定の間隙を保って位置するように、前記内燃機関のシリンダヘッドに燃料噴射弁のノズル部が取付けられる内燃機関の燃料噴射弁温度抑制機構であって、
平面視リング形状を呈する少なくとも1本の伝熱促進部材と、
前記ノズル部の外周面から半径方向内側に向かって掘り下げられるようにして形成され、かつ、前記伝熱促進部材を収容する環状溝と、を備え、
前記内燃機関の運転時において、前記伝熱促進部材は、内周面の全体および/または該内周面に接続された端面の全周が前記環状溝の内面と接し、かつ、外周面の全体が前記取付け孔の内周面と接するようにして形成されていることを特徴とする内燃機関の燃料噴射弁温度抑制機構。
A fuel injection valve temperature suppression mechanism for an internal combustion engine in which a nozzle portion of the fuel injection valve is attached to a cylinder head of the internal combustion engine so as to be positioned along a mounting hole communicating with the combustion chamber of the internal combustion engine. There,
At least one heat transfer promoting member having a ring shape in plan view;
An annular groove that is formed so as to be dug down radially outward from the outer peripheral surface of the nozzle part, and that accommodates the heat transfer promoting member,
During the operation of the internal combustion engine, the heat transfer promoting member is configured such that the entire inner peripheral surface and / or the entire periphery of the end surface connected to the inner peripheral surface is in contact with the inner surface of the annular groove and the entire outer peripheral surface. Is formed so as to come into contact with the inner peripheral surface of the mounting hole.
前記伝熱促進部材が高さ方向に少なくとも2本積み重ねられており、これら伝熱促進部材のうち、一の伝熱促進部材の合口と、前記一の伝熱促進部材に隣接して配置された他の伝熱促進部材の合口とが、180°反対の方向を向くようにして前記環状溝内に収容されていることを特徴とする請求項1または2に記載の内燃機関の燃料噴射弁温度抑制機構。   At least two of the heat transfer promoting members are stacked in the height direction, and among these heat transfer promoting members, the joint of one heat transfer promoting member and the one heat transfer promoting member are disposed adjacent to each other. The fuel injection valve temperature of the internal combustion engine according to claim 1 or 2, wherein the joint of another heat transfer promoting member is accommodated in the annular groove so as to face in a direction opposite to 180 °. Suppression mechanism. 前記伝熱促進部材は、前記シリンダヘッドを形成する材料よりも熱伝導率の高い材料からなることを特徴とする請求項1から3のいずれか一項に記載の内燃機関の燃料噴射弁温度抑制機構。   The fuel injection valve temperature control for an internal combustion engine according to any one of claims 1 to 3, wherein the heat transfer promoting member is made of a material having a higher thermal conductivity than a material forming the cylinder head. mechanism. 前記伝熱促進部材の触火面全体に、耐熱コーティングが施されていることを特徴とする請求項1から4のいずれか一項に記載の内燃機関の燃料噴射弁温度抑制機構。   The fuel injection valve temperature suppression mechanism for an internal combustion engine according to any one of claims 1 to 4, wherein a heat-resistant coating is applied to the entire contact surface of the heat transfer promoting member. 前記シリンダヘッドの内部に形成された冷却水通路の、前記燃焼室の側に位置する端部に、前記冷却水通路の内面から前記ノズル部の側に向かって掘り下げられた拡大部が設けられていることを特徴とする請求項1から5のいずれか一項に記載の内燃機関の燃料噴射弁温度抑制機構。   An enlarged portion dug down from the inner surface of the cooling water passage toward the nozzle portion is provided at an end portion of the cooling water passage formed inside the cylinder head and located on the combustion chamber side. The fuel injection valve temperature suppression mechanism for an internal combustion engine according to any one of claims 1 to 5, wherein: 請求項1から6のいずれか一項に記載の内燃機関の燃料噴射弁温度抑制機構を具備していることを特徴とする内燃機関。   An internal combustion engine comprising the internal combustion engine fuel injection valve temperature suppression mechanism according to any one of claims 1 to 6.
JP2013232434A 2013-11-08 2013-11-08 Fuel injection valve temperature suppression mechanism for internal combustion engine and internal combustion engine provided with the same Expired - Fee Related JP6250366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013232434A JP6250366B2 (en) 2013-11-08 2013-11-08 Fuel injection valve temperature suppression mechanism for internal combustion engine and internal combustion engine provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013232434A JP6250366B2 (en) 2013-11-08 2013-11-08 Fuel injection valve temperature suppression mechanism for internal combustion engine and internal combustion engine provided with the same

Publications (2)

Publication Number Publication Date
JP2015094235A true JP2015094235A (en) 2015-05-18
JP6250366B2 JP6250366B2 (en) 2017-12-20

Family

ID=53196826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013232434A Expired - Fee Related JP6250366B2 (en) 2013-11-08 2013-11-08 Fuel injection valve temperature suppression mechanism for internal combustion engine and internal combustion engine provided with the same

Country Status (1)

Country Link
JP (1) JP6250366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3085724B1 (en) * 2018-09-10 2021-05-07 Renault Sas COOLING PROCESS OF AN INJECTOR FOR ENGINE WITH DIRECT GASOLINE INJECTION

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486371A (en) * 1990-07-30 1992-03-18 Yamaha Motor Co Ltd Air-fuel injection device for internal combustion engine
JPH09126089A (en) * 1995-11-02 1997-05-13 Nissan Motor Co Ltd Structure of fuel injection valve
JPH09310660A (en) * 1996-05-21 1997-12-02 Mitsubishi Electric Corp Electromagnetic fuel injection valve
JPH1089192A (en) * 1996-09-10 1998-04-07 Toyota Central Res & Dev Lab Inc Deposit reducing-type fuel injection valve
JP2000045862A (en) * 1998-05-27 2000-02-15 Toyota Motor Corp Piston ring
JP2001132582A (en) * 1999-11-10 2001-05-15 Mitsubishi Electric Corp Fuel injection valve for cylinder injection
JP2001221123A (en) * 2000-02-07 2001-08-17 Nissan Diesel Motor Co Ltd Strut for cooling fuel injection nozzle
JP2002161827A (en) * 2000-11-29 2002-06-07 Toyota Motor Corp Fuel system for internal combustion engine
JP2003254195A (en) * 2002-03-04 2003-09-10 Mitsubishi Heavy Ind Ltd Fuel injection valve mounting structure and cooling structure
JP2005155394A (en) * 2003-11-25 2005-06-16 Toyota Motor Corp Combustion gas seal for fuel injection valves
FR2906576A1 (en) * 2006-10-03 2008-04-04 Renault Sas Injector cooling arrangement for motor vehicle, has stack of washers placed between cylindrical nozzle and wall of section for permitting conductive transmission by of heat accumulated in nozzle to heat engine element
JP2009197660A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Sealing structure of fuel injection valve
JP2009236017A (en) * 2008-03-27 2009-10-15 Komatsu Ltd Auxiliary chamber type gas engine
JP2009236104A (en) * 2008-03-06 2009-10-15 Denso Corp Fuel injection valve
JP2009264255A (en) * 2008-04-25 2009-11-12 Daihatsu Diesel Mfg Co Ltd Cooling device of fuel injection valve
JP2010138778A (en) * 2008-12-11 2010-06-24 Mitsubishi Heavy Ind Ltd Cooling structure of fuel injection valve
JP2011064124A (en) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd Fuel injection valve

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486371A (en) * 1990-07-30 1992-03-18 Yamaha Motor Co Ltd Air-fuel injection device for internal combustion engine
JPH09126089A (en) * 1995-11-02 1997-05-13 Nissan Motor Co Ltd Structure of fuel injection valve
JPH09310660A (en) * 1996-05-21 1997-12-02 Mitsubishi Electric Corp Electromagnetic fuel injection valve
JPH1089192A (en) * 1996-09-10 1998-04-07 Toyota Central Res & Dev Lab Inc Deposit reducing-type fuel injection valve
JP2000045862A (en) * 1998-05-27 2000-02-15 Toyota Motor Corp Piston ring
JP2001132582A (en) * 1999-11-10 2001-05-15 Mitsubishi Electric Corp Fuel injection valve for cylinder injection
JP2001221123A (en) * 2000-02-07 2001-08-17 Nissan Diesel Motor Co Ltd Strut for cooling fuel injection nozzle
JP2002161827A (en) * 2000-11-29 2002-06-07 Toyota Motor Corp Fuel system for internal combustion engine
JP2003254195A (en) * 2002-03-04 2003-09-10 Mitsubishi Heavy Ind Ltd Fuel injection valve mounting structure and cooling structure
JP2005155394A (en) * 2003-11-25 2005-06-16 Toyota Motor Corp Combustion gas seal for fuel injection valves
FR2906576A1 (en) * 2006-10-03 2008-04-04 Renault Sas Injector cooling arrangement for motor vehicle, has stack of washers placed between cylindrical nozzle and wall of section for permitting conductive transmission by of heat accumulated in nozzle to heat engine element
JP2009197660A (en) * 2008-02-20 2009-09-03 Toyota Motor Corp Sealing structure of fuel injection valve
JP2009236104A (en) * 2008-03-06 2009-10-15 Denso Corp Fuel injection valve
JP4710944B2 (en) * 2008-03-06 2011-06-29 株式会社デンソー Fuel injection valve
JP2009236017A (en) * 2008-03-27 2009-10-15 Komatsu Ltd Auxiliary chamber type gas engine
JP2009264255A (en) * 2008-04-25 2009-11-12 Daihatsu Diesel Mfg Co Ltd Cooling device of fuel injection valve
JP2010138778A (en) * 2008-12-11 2010-06-24 Mitsubishi Heavy Ind Ltd Cooling structure of fuel injection valve
JP2011064124A (en) * 2009-09-17 2011-03-31 Hitachi Automotive Systems Ltd Fuel injection valve

Also Published As

Publication number Publication date
JP6250366B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
JP6070816B2 (en) Poppet valve
US10240475B2 (en) Heat shields for air seals
US20150167557A1 (en) Seal for gas turbine engines
JPWO2017099045A1 (en) Valve stem seal
JP2016527460A (en) piston ring
JP6250366B2 (en) Fuel injection valve temperature suppression mechanism for internal combustion engine and internal combustion engine provided with the same
JP2015124728A (en) Turbocharger
JP5886620B2 (en) Blow-by gas recirculation passage structure
JP5909043B2 (en) Internal combustion engine cooling structure
JP6109945B2 (en) Engine valve and method for manufacturing engine valve
JP2014034917A (en) Piston structure of engine
JP2008138649A (en) Hollow valve
JP2009144633A (en) Turbine heat-shielding device
CN102953863A (en) Manifold gasket assembly
JP6490440B2 (en) Monoblock engine cylinder structure
JP2011106389A (en) Cooling structure for internal combustion engine
JP7066990B2 (en) Cylinder head, internal combustion engine and gasket
JP6261857B2 (en) Cylinder cover, cylinder head gasket and internal combustion engine
JP2007132300A (en) Piston for internal combustion engine
JP2017066868A (en) Piston structure of engine
JP2009191672A (en) Fuel injection valve device
JP2007263068A (en) Piston abrasion resistant ring
JP2008014424A (en) Piston ring structure
JP6397709B2 (en) engine
JP5015681B2 (en) Bundling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees