JP2015093809A - Raw material composition - Google Patents

Raw material composition Download PDF

Info

Publication number
JP2015093809A
JP2015093809A JP2013234323A JP2013234323A JP2015093809A JP 2015093809 A JP2015093809 A JP 2015093809A JP 2013234323 A JP2013234323 A JP 2013234323A JP 2013234323 A JP2013234323 A JP 2013234323A JP 2015093809 A JP2015093809 A JP 2015093809A
Authority
JP
Japan
Prior art keywords
fly ash
raw material
coal fly
material composition
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013234323A
Other languages
Japanese (ja)
Other versions
JP6235874B2 (en
Inventor
伊藤 弘樹
Hiroki Ito
弘樹 伊藤
山崎 裕司
Yuji Yamazaki
裕司 山崎
直樹 椙山
Naoki Sugiyama
直樹 椙山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2013234323A priority Critical patent/JP6235874B2/en
Publication of JP2015093809A publication Critical patent/JP2015093809A/en
Application granted granted Critical
Publication of JP6235874B2 publication Critical patent/JP6235874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a raw material composition from which a hardening body having excellent physical properties is obtained without melting or crushing coal flyash.SOLUTION: A raw material composition of an aluminosilicate hardening body contains coal flyash and an alkali metal salt. The coal flyash has a sum of amorphous SiOand AlOof 60 mass% or more and a ratio of amorphous SiO/AlOof 3.0 or less. Preferably, the coal flyash has a sum of amorphous SiOand AlOof 70 mass% or more and a ratio of amorphous SiO/AlOof 2.5 or less.

Description

本発明は、アルミノケイ酸塩硬化体に関するものである。   The present invention relates to a cured aluminosilicate.

近年、環境問題への意識が高まっており、企業においては、地球温暖化問題への対策として、二酸化炭素の排出を抑制する取り組みや、産業廃棄物を有効利用する取り組みが行われている。それらの取り組みの一つとして、アルミノケイ酸塩硬化体の開発が行われている。   In recent years, awareness of environmental issues has increased, and companies have taken measures to reduce carbon dioxide emissions and effectively use industrial waste as countermeasures against global warming. As one of those efforts, development of aluminosilicate hardened body is being carried out.

例えば、特許文献1には、溶融された石炭飛灰が気体中に噴霧されて得られた、比表面積5〜100m/gである無機質粉体100重量部と、水溶液濃度が1%以上のアルカリ金属水酸化物水溶液もしくはアルカリ金属珪酸塩水溶液10〜300重量部からなることを特徴とする硬化性無機質組成物が記載されている。特許文献1の組成物及びその製造方法によれば、セメントを使用しないので、二酸化炭素の排出を低減できるとともに、産業廃棄物の有効利用にも繋がる。しかし、特許文献1の組成物では、溶融した石炭飛灰を用いるので、石炭飛灰を溶融することにより二酸化炭素排出の抑制効果が薄れてしまう。また、工程が増え、作業性が悪い。石炭飛灰を溶融せず使用すると、特許文献1にも記載があるように、熱的処理を施さない石炭飛灰は結晶性が高く、アルカリ金属珪酸塩水溶液との反応性に乏しいので、加熱硬化させる時に長時間を要する、又、得られる硬化体の強度が低いという問題がある。石炭飛灰を粉砕して用いたとしても流動性は向上するが、得られる硬化体の物性は大幅には変わらない。 For example, Patent Document 1 discloses that 100 parts by weight of an inorganic powder having a specific surface area of 5 to 100 m 2 / g obtained by spraying molten coal fly ash into a gas, and an aqueous solution concentration of 1% or more. A curable inorganic composition comprising 10 to 300 parts by weight of an aqueous alkali metal hydroxide solution or an aqueous alkali metal silicate solution is described. According to the composition of Patent Document 1 and the method for producing the composition, since no cement is used, the emission of carbon dioxide can be reduced and the industrial waste can be effectively used. However, since the composition of Patent Document 1 uses molten coal fly ash, the effect of suppressing carbon dioxide emission is weakened by melting the coal fly ash. In addition, the number of processes increases and workability is poor. When coal fly ash is used without melting, as described in Patent Document 1, coal fly ash not subjected to thermal treatment has high crystallinity and is poor in reactivity with an aqueous alkali metal silicate solution. There is a problem that it takes a long time to cure and the strength of the obtained cured product is low. Even if coal fly ash is used after being pulverized, the fluidity is improved, but the physical properties of the resulting cured product are not significantly changed.

特開平6−199517号公報JP-A-6-199517

したがって、本発明の課題は、石炭飛灰を溶融・粉砕することなく、物性に優れた硬化体を得ることができる原料組成物を提供するものである。   Therefore, the subject of this invention is providing the raw material composition which can obtain the hardening body excellent in the physical property, without fuse | melting and grind | pulverizing coal fly ash.

本発明は、アルミノケイ酸塩硬化体の製造において用いる原料組成物を提供する。原料組成物は、石炭飛灰と、アルカリ金属塩とを含有する。石炭飛灰は、非晶質のSiOとAlOの合計が60質量%以上であるとともに、非晶質のSiO/AlOが3.0以下である。本発明の原料組成物は、特定の石炭飛灰を含有するので、石炭飛灰とアルカリ金属塩の反応が進み、得られる硬化体は強度、寸法安定性、耐水性に優れる。なお、石炭飛灰は、非晶質のSiOとAlOの合計が70質量%以上である、非晶質のSiO/AlOが2.5以下であると、よりアルミノケイ酸塩の反応が進み、得られる硬化体の物性が向上するので好ましい。
また、石炭飛灰の未燃分が3質量%以下であると、得られる硬化体は顔料などによる着色性に優れるとともに強度等の物性にも優れるので好ましい。
更に、アルカリ金属塩を、固形分の質量比で石炭飛灰100に対し5〜40含有すると、石炭飛灰とアルカリ金属塩の反応が進み、得られる硬化体は強度、寸法安定性、耐水性に優れるので好ましい。
The present invention provides a raw material composition used in the production of a cured aluminosilicate. The raw material composition contains coal fly ash and an alkali metal salt. The coal fly ash has a total of amorphous SiO 2 and Al 2 O 3 of 60% by mass or more, and amorphous SiO 2 / Al 2 O 3 of 3.0 or less. Since the raw material composition of the present invention contains specific coal fly ash, the reaction between the coal fly ash and the alkali metal salt proceeds, and the obtained cured product is excellent in strength, dimensional stability, and water resistance. The coal fly ash is more aluminosilicate when the total of amorphous SiO 2 and Al 2 O 3 is 70 mass% or more, and amorphous SiO 2 / Al 2 O 3 is 2.5 or less. This is preferable because the reaction of the acid salt proceeds and the physical properties of the resulting cured product are improved.
Moreover, it is preferable that the unburned content of coal fly ash is 3% by mass or less because the obtained cured product is excellent in colorability by a pigment and the like, and is excellent in physical properties such as strength.
Furthermore, when the alkali metal salt is contained in a mass ratio of solid content of 5 to 40 with respect to the coal fly ash 100, the reaction between the coal fly ash and the alkali metal salt proceeds, and the obtained cured product has strength, dimensional stability, and water resistance. It is preferable because it is excellent.

本発明によれば、石炭飛灰を溶融・粉砕することなく、物性に優れた硬化体を得られる原料組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the raw material composition which can obtain the hardening body excellent in the physical property can be provided, without fuse | melting and grind | pulverizing coal fly ash.

以下、本発明の実施の形態を具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described.

本発明の原料組成物は、石炭飛灰と、アルカリ金属塩とを含有する。   The raw material composition of the present invention contains coal fly ash and an alkali metal salt.

石炭飛灰とは、石炭を燃焼させ、発生した飛灰を集塵して得られた灰であり、SiOとAlOを主成分とする無機粉体である。石炭飛灰は急冷されているため多くの非晶質成分を含むが、コントロールされて冷却している訳ではないので、結晶質成分も含む。結晶質成分はアルカリ金属塩との反応が悪いので、本発明では、非晶質成分の含有量と、SiO/AlO比に着目している。すなわち、本発明の石炭飛灰は、非晶質のSiOとAlOの合計が60質量%以上であるとともに、非晶質のSiO/AlOが3.0以下である。なお、非晶質のSiOとAlOの測定は、例えば、蛍光X線分析による成分分析結果(結晶質成分と非晶質成分を含む)とXRD(X線回折)内部標準法による結晶質成分の分析結果との差から求めることができるが、これに限定されない。
アルカリ金属塩としては、アルカリ金属水酸化物、ケイ酸アルカリ、炭酸アルカリ、炭酸水素アルカリがある。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどあり、ケイ酸アルカリとしては、ケイ酸ナトリウム、ケイ酸カリウムなどがあり、炭酸アルカリとしては炭酸ナトリウム、炭酸カリウムなどがあり、炭酸水素アルカリとしては炭酸水素ナトリウム、炭酸水素カリウムなどがある。これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。なお、アルカリ金属塩は、固形分の質量比で石炭飛灰100に対し5〜40含有すると、石炭飛灰とアルカリ金属塩の反応が進み、得られる硬化体は強度、寸法安定性、耐水性に優れるので好ましい。
Coal fly ash is an ash obtained by burning coal and collecting the generated fly ash, and is an inorganic powder mainly composed of SiO 2 and Al 2 O 3 . Coal fly ash contains many amorphous components because it is rapidly cooled, but also contains crystalline components because it is not controlled and cooled. Since the crystalline component does not react well with the alkali metal salt, the present invention focuses on the content of the amorphous component and the SiO 2 / Al 2 O 3 ratio. That is, in the coal fly ash of the present invention, the total of amorphous SiO 2 and Al 2 O 3 is 60% by mass or more, and amorphous SiO 2 / Al 2 O 3 is 3.0 or less. . In addition, the measurement of amorphous SiO 2 and Al 2 O 3 is based on, for example, a component analysis result (including a crystalline component and an amorphous component) by X-ray fluorescence analysis and an XRD (X-ray diffraction) internal standard method. Although it can obtain | require from the difference with the analysis result of a crystalline component, it is not limited to this.
Examples of the alkali metal salt include an alkali metal hydroxide, an alkali silicate, an alkali carbonate, and an alkali hydrogen carbonate. Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, and potassium hydroxide. Examples of the alkali silicate include sodium silicate and potassium silicate. Examples of the alkali carbonate include sodium carbonate and potassium carbonate. Yes, examples of the alkali hydrogen carbonate include sodium hydrogen carbonate and potassium hydrogen carbonate. Among these substances, only one of them may be contained, or two or more kinds may be contained. In addition, when the alkali metal salt is contained in an amount of solid content of 5 to 40 with respect to the coal fly ash 100, the reaction between the coal fly ash and the alkali metal salt proceeds, and the obtained cured product has strength, dimensional stability, and water resistance. It is preferable because it is excellent.

本発明の原料組成物は、更に、粘土、補強材を含有することができる。
粘土としては、ベントナイト、カオリン等があり、これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。
補強材としては、無機補強材、有機補強材がある。無機補強材としては、珪砂、ケイ石粉、シリカ粉、珪藻土、シリカフューム、シラスバルーン、パーライト、バーミキュライト、マイカ、ガラス繊維、カーボン繊維、セラミック繊維、ロックウール、セピオライト、ワラストナイト、石綿等がある。有機補強材としては、木片、竹片、木粉、故紙、針葉樹未晒しクラフトパルプ(NUKP)、針葉樹晒しクラフトパルプ(NBKP)、広葉樹未晒しクラフトパルプ(LUKP)、広葉樹晒しクラフトパルプ(LBKP)等の木質補強材や、ポリエステル繊維、ポリアミド繊維、アクリル繊維、ポリ塩化ビニリデン繊維、アセテート繊維、ポリプロピレン繊維、ポリエチレン繊維、ビニロン繊維等の合成繊維、発泡性熱可塑性プラスチックビーズ、プラスチック発泡体等がある。本発明では、これらの物質のうち、いずれか1種のみを含有しても良いし、2種類以上を含有してもよい。なお、補強材は、固形分の質量比で石炭飛灰100に対し30〜300含有すると、得られる硬化体は強度、寸法安定性に優れるので好ましい。より好ましくは、100〜300である。
また、必要に応じて、スラグ、メタカオリン、真珠岩、アロフェン、パイロフィライト等を1種以上含有してもよい。
The raw material composition of the present invention can further contain clay and a reinforcing material.
Examples of the clay include bentonite and kaolin. Among these substances, only one of them may be contained, or two or more kinds may be contained.
As the reinforcing material, there are an inorganic reinforcing material and an organic reinforcing material. Examples of the inorganic reinforcing material include quartz sand, quartzite powder, silica powder, diatomaceous earth, silica fume, shirasu balloon, perlite, vermiculite, mica, glass fiber, carbon fiber, ceramic fiber, rock wool, sepiolite, wollastonite, asbestos and the like. Organic reinforcing materials include wood, bamboo, wood powder, waste paper, unexposed kraft pulp (NUKP), uncovered kraft pulp (NBKP), unexposed kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), etc. Wood reinforcing materials, synthetic fibers such as polyester fibers, polyamide fibers, acrylic fibers, polyvinylidene chloride fibers, acetate fibers, polypropylene fibers, polyethylene fibers, and vinylon fibers, expandable thermoplastic beads, and plastic foams. In the present invention, any one of these substances may be contained, or two or more kinds may be contained. In addition, when a reinforcing material contains 30-300 with respect to coal fly ash 100 by mass ratio of solid content, since the hardening body obtained is excellent in intensity | strength and dimensional stability, it is preferable. More preferably, it is 100-300.
Moreover, you may contain 1 or more types of slag, metakaolin, a pearlite, allophane, pyrophyllite, etc. as needed.

また、本発明の原料組成物は、質量比で、水を石炭飛灰100に対し8〜50含有すると、流動性に優れ、製造工程において、成形性に優れるので好ましい。   Moreover, the raw material composition of the present invention is preferably contained in a mass ratio of 8 to 50 water with respect to the coal fly ash 100 because it has excellent fluidity and excellent moldability in the production process.

そして、本発明の原料組成物は、原料混合物を製造する工程と、得られた原料混合物を成形する工程と、得られた成形物を養生する工程とを有する製造方法に用いられる。   And the raw material composition of this invention is used for the manufacturing method which has the process of manufacturing a raw material mixture, the process of shape | molding the obtained raw material mixture, and the process of curing the obtained molded object.

原料混合物を製造する工程は、石炭飛灰と、アルカリ金属塩とを混合することにより行う。用いる原料、配合については上述の通りである。   The process of manufacturing a raw material mixture is performed by mixing coal fly ash and an alkali metal salt. The raw materials to be used and the blending are as described above.

原料混合物を成形する工程としては、原料混合物を枠に流し込み、硬化後に脱型する方法、原料混合物を押出成形機により成形する方法、原料混合物を散布して形成したマットを型押しにより成形する方法などがある。   The step of forming the raw material mixture includes pouring the raw material mixture into a frame and demolding after curing, a method of forming the raw material mixture with an extruder, and a method of forming a mat formed by spraying the raw material mixture by embossing and so on.

成形物を養生する工程としては、自然養生、蒸気養生、オートクレーブ養生、水中養生などがある。通常、自然養生では、外気で1〜28日間養生し、蒸気養生は湿度50%以上、温度50〜85℃で7時間〜28日間養生し、オートクレーブ養生では、110〜185 ℃で7〜24時間養生し、水中養生では水中で1〜28日間養生する。   Examples of the process for curing the molded article include natural curing, steam curing, autoclave curing, and water curing. Usually, natural curing is performed for 1 to 28 days with outside air, steam curing is performed at a humidity of 50% or more and a temperature of 50 to 85 ° C. for 7 hours to 28 days, and autoclave curing is performed at 110 to 185 ° C. for 7 to 24 hours. Curing is performed, and underwater curing is performed for 1 to 28 days in water.

次に、本発明の実施例をあげる。   Next, examples of the present invention will be given.

各原料を、表1に示す組成で混合し、原料混合物を製造した。そして、該原料混合物を型枠に入れ、80℃、湿度80%で3日間蒸気養生して、試料1〜14の硬化体を製造した。なお、表1において、配合の値は、石炭飛灰の固形分質量を100とした場合の各原料の質量を表している。また、各試料において、硬化体の板厚は20mmとした。   Each raw material was mixed with the composition shown in Table 1, and the raw material mixture was manufactured. And this raw material mixture was put into the mold, and it vapor-cured for 3 days at 80 degreeC and 80% of humidity, and manufactured the hardening body of the samples 1-14. In Table 1, the compounding value represents the mass of each raw material when the solid content mass of coal fly ash is 100. In each sample, the thickness of the cured body was 20 mm.

そして、得られた試料1〜14の各硬化体について、比重、曲げ強度、吸水8日後寸法変化率、強度変化率を測定したので、その結果も表1に示す。
なお、石炭飛灰における非晶質のSiOとAlOは、蛍光X線分析により石炭飛灰全体(結晶質成分と非晶質成分を含む)の成分組成を求め、次に、XRD内部標準法により石炭飛灰の結晶質(クォーツとムライト)におけるSiOとAlOを求め、蛍光X線分析により得られた石炭飛灰全体(結晶質成分と非晶質成分を含む)のSiOとAlOからXRD内部標準法により得られた石炭飛灰の結晶質のSiOとAlOを差し引いて算出した。XRD内部標準法について詳しく説明すると、まず最初に、炭酸カルシウムにムライト又はクォーツを所定量添加(ムライト、クォーツの添加率は0%〜30%とした)し、さらに内部標準物質であるコランダムを10%添加した試料を作製し、作製した試料を用いて添加率毎のXRDのピークパターンを測定し、得られたピークパターンからムライト、クォーツのピーク面積とコランダムの面積との比をとって、ムライト、クォーツそれぞれの検量線を作成した。次に、コランダムを石炭飛灰に10%内添した試料を準備し、XRDのピークパターンを測定し、得られたピークパターンからムライト、クォーツのピーク面積とコランダムの面積との比をとり、作成しておいた検量線からムライトとクォーツの含有率を算出した。そして、得られたムライトとクォーツの含有率からAlOとSiOの結晶質成分量を計算した。
曲げ強度は、4×16cmとした試験片を用いること以外はJIS A 1408に準じて測定した。吸水8日後寸法変化率は、硬化体を60℃で3日間調湿後、常温まで冷やした状態での寸法を初期値として、8日間常温の水に浸漬し、浸漬後の寸法との差を初期値で除した値である。
強度変化率は、吸水8日後寸法変化率を測定後の硬化体を60℃で3日間調湿後、常温まで冷やした状態で曲げ強度を測定し、得られた曲げ強度と、吸水処理を行っていない硬化体の曲げ強度との差を、吸水処理を行っていない硬化体の曲げ強度で除した値である。
And about each obtained hardening body of the samples 1-14, since specific gravity, bending strength, the dimensional change rate after 8 days of water absorption, and the strength change rate were measured, the result is also shown in Table 1.
As for amorphous SiO 2 and Al 2 O 3 in coal fly ash, the component composition of the entire coal fly ash (including crystalline component and amorphous component) is determined by fluorescent X-ray analysis, and then XRD The total amount of coal fly ash (including crystalline and amorphous components) obtained by fluorescent X-ray analysis by determining SiO 2 and Al 2 O 3 in the crystalline (quartz and mullite) of coal fly ash by the internal standard method was calculated by subtracting the SiO 2 and Al 2 O 3 SiO 2 and Al 2 O 3 of coal fly ash obtained by XRD internal standard method crystalline. The XRD internal standard method will be described in detail. First, a predetermined amount of mullite or quartz is added to calcium carbonate (the addition rate of mullite and quartz is set to 0% to 30%), and further, corundum as an internal standard substance is added to 10%. % Of the sample was added, and the XRD peak pattern for each addition rate was measured using the prepared sample. From the obtained peak pattern, the ratio of the peak area of mullite and quartz to the area of corundum was calculated to obtain mullite. Calibration curves for quartz and quartz were created. Next, prepare a sample with 10% corundum added to coal fly ash, measure the XRD peak pattern, and calculate the ratio between the peak area of mullite and quartz and the area of corundum from the obtained peak pattern. The content of mullite and quartz was calculated from the calibration curve prepared. And the amount of crystalline components of Al 2 O 3 and SiO 2 was calculated from the obtained mullite and quartz content.
The bending strength was measured according to JIS A 1408 except that a test piece having a size of 4 × 16 cm was used. The rate of dimensional change after 8 days of water absorption is the difference between the dimensional change after immersion in water at room temperature for 8 days, with the cured product being conditioned at 60 ° C for 3 days and then cooled to room temperature. The value divided by the initial value.
The rate of change in strength was determined by measuring the bending strength of the cured product after measuring the dimensional change rate after 8 days of water absorption at 60 ° C. for 3 days and then cooling to room temperature, and performing the obtained bending strength and water absorption treatment. It is a value obtained by dividing the difference from the bending strength of the cured body not yet divided by the bending strength of the cured body not subjected to the water absorption treatment.

Figure 2015093809
Figure 2015093809

得られた試料1〜11は、曲げ強度に優れ、高い寸法安定性を有し、強度変化も小さく、耐水性も高かった。これは、試料1〜11の原料混合物で用いた石炭飛灰は非晶質成分の含有量が多く、非晶質成分がアルミノシリケート反応したためである。特に、石炭飛灰の非晶質成分含有量が多い試料1〜4、8〜11は、曲げ強度が高いとともに強度変化率が小さく、耐水性が高かった。なお、同じ石炭飛灰を用いた試料2、8〜11を比較した場合、補強材の固形分含有量が石炭飛灰100に対して100以上である試料2、9、10は特に物性に優れた。
一方、試料12〜14は、曲げ強度としては実施例と比較して大きく劣るわけではないが、寸法変化率が大きく、強度低下による強度変化率が大きかった。これは、アルカリ金属塩により非晶質成分の少ない石炭飛灰でもアルミノシリケート反応は進むが、反応量が小さく、アルカリ金属塩が残留するため、耐水性が下がり、強固な硬化体が得られず、寸法変化率が大きく、耐水性が悪化したと推定される。
The obtained Samples 1 to 11 were excellent in bending strength, had high dimensional stability, small strength change, and high water resistance. This is because the coal fly ash used in the raw material mixtures of Samples 1 to 11 has a large content of the amorphous component, and the amorphous component has undergone an aluminosilicate reaction. In particular, samples 1 to 4 and 8 to 11 having a high amorphous component content of coal fly ash had a high bending strength, a small strength change rate, and a high water resistance. When samples 2 and 8 to 11 using the same coal fly ash are compared, samples 2, 9, and 10 in which the solid content of the reinforcing material is 100 or more with respect to coal fly ash 100 are particularly excellent in physical properties. It was.
On the other hand, Samples 12 to 14 were not significantly inferior in bending strength to the Examples, but had a large dimensional change rate and a large strength change rate due to strength reduction. This is because the aluminosilicate reaction proceeds even with coal fly ash with a small amount of amorphous components due to the alkali metal salt, but the reaction amount is small and the alkali metal salt remains, so the water resistance decreases and a hardened body cannot be obtained. It is estimated that the dimensional change rate is large and the water resistance is deteriorated.

以上に本発明の一実施形態について説明したが、本発明はこれに限定されず、特許請求の範囲に記載の発明の範囲において種々の変形態を取り得る。   Although one embodiment of the present invention has been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the invention described in the claims.

以上説明したように、本発明によれば、石炭飛灰を溶融・粉砕することなく、物性に優れた硬化体を得ることができる原料組成物を提供することができる。   As described above, according to the present invention, it is possible to provide a raw material composition capable of obtaining a cured product having excellent physical properties without melting and pulverizing coal fly ash.

Claims (5)

アルミノケイ酸塩硬化体の原料組成物であって、
原料組成物は、石炭飛灰と、アルカリ金属塩とを含有し、
石炭飛灰は、非晶質のSiOとAlOの合計が60質量%以上であるとともに、非晶質のSiO/AlOが3.0以下である
ことを特徴とする原料組成物。
A raw material composition of a cured aluminosilicate,
The raw material composition contains coal fly ash and an alkali metal salt,
Coal fly ash is characterized in that the total of amorphous SiO 2 and Al 2 O 3 is 60% by mass or more and amorphous SiO 2 / Al 2 O 3 is 3.0 or less. Raw material composition.
石炭飛灰は、非晶質のSiOとAlOの合計が70質量%以上である
ことを特徴とする請求項1に記載の原料組成物。
The raw material composition according to claim 1, wherein the coal fly ash has a total of 70% by mass or more of amorphous SiO 2 and Al 2 O 3 .
石炭飛灰は、非晶質のSiO/AlOが2.5以下である
ことを特徴とする請求項1又は請求項2に記載の原料組成物。
The raw material composition according to claim 1 or 2 , wherein the coal fly ash has an amorphous SiO 2 / Al 2 O 3 of 2.5 or less.
石炭飛灰の未燃分は3質量%以下である
ことを特徴とする請求項1〜3のいずれかに記載の原料組成物。
The unburned part of coal fly ash is 3 mass% or less. The raw material composition according to any one of claims 1 to 3.
アルカリ金属塩を、固形分の質量比で石炭飛灰100に対し5〜40含有する
ことを特徴とする請求項1〜4のいずれかに記載の原料組成物。
The raw material composition according to any one of claims 1 to 4, wherein the alkali metal salt is contained in an amount of 5 to 40 with respect to the coal fly ash 100 in a mass ratio of the solid content.
JP2013234323A 2013-11-12 2013-11-12 Raw material composition Active JP6235874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013234323A JP6235874B2 (en) 2013-11-12 2013-11-12 Raw material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013234323A JP6235874B2 (en) 2013-11-12 2013-11-12 Raw material composition

Publications (2)

Publication Number Publication Date
JP2015093809A true JP2015093809A (en) 2015-05-18
JP6235874B2 JP6235874B2 (en) 2017-11-22

Family

ID=53196466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013234323A Active JP6235874B2 (en) 2013-11-12 2013-11-12 Raw material composition

Country Status (1)

Country Link
JP (1) JP6235874B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211557A (en) * 1993-01-19 1994-08-02 Sekisui Chem Co Ltd Hardenable inorganic composition
JPH08169749A (en) * 1994-12-20 1996-07-02 Sekisui Chem Co Ltd Base treating material
JPH10158007A (en) * 1996-11-25 1998-06-16 Sekisui Chem Co Ltd Inorganic powder and hardenable inorganic composition
JP2008297148A (en) * 2007-05-30 2008-12-11 Mie Prefecture Treatment method of fly ash, fly ash cement using modified fly ash and concrete composition using the fly ash cement
JP2010280532A (en) * 2009-06-04 2010-12-16 Central Res Inst Of Electric Power Ind Method of producing zeolite-containing hardened body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06211557A (en) * 1993-01-19 1994-08-02 Sekisui Chem Co Ltd Hardenable inorganic composition
JPH08169749A (en) * 1994-12-20 1996-07-02 Sekisui Chem Co Ltd Base treating material
JPH10158007A (en) * 1996-11-25 1998-06-16 Sekisui Chem Co Ltd Inorganic powder and hardenable inorganic composition
JP2008297148A (en) * 2007-05-30 2008-12-11 Mie Prefecture Treatment method of fly ash, fly ash cement using modified fly ash and concrete composition using the fly ash cement
JP2010280532A (en) * 2009-06-04 2010-12-16 Central Res Inst Of Electric Power Ind Method of producing zeolite-containing hardened body

Also Published As

Publication number Publication date
JP6235874B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
Rajan et al. Sustainable development of geopolymer binder using sodium silicate synthesized from agricultural waste
Sun et al. Synthesis and thermal behavior of geopolymer-type material from waste ceramic
KR101691526B1 (en) Manufacturing method of non-firing lightweight board, and lightweight board manufactured thereby
Takeda et al. Fabrication and characterization of hardened bodies from Japanese volcanic ash using geopolymerization
CN102584176B (en) Method for preparing ceramic wall and floor tile by utilizing construction waste
Valente et al. Geopolymers vs. cement matrix materials: How nanofiller can help a sustainability approach for smart construction applications—A review
Marczyk et al. Hybrid materials based on fly ash, metakaolin, and cement for 3D printing
MX2007014740A (en) Natural aluminosilicate composites and aggregates synthesized in alkaline environment and their manufacturing process.
Coppola et al. Role of natural stone wastes and minerals in the alkali activation process: A review
Price et al. Investigating effects of introduction of corncob ash into portland cements concrete: Mechanical and thermal properties
Winters et al. Toward carbon-neutral concrete through biochar–cement–calcium carbonate composites: A critical review
Novais et al. Simple and effective route to tailor the thermal, acoustic and hygrothermal properties of cork-containing waste derived inorganic polymer composites
Almadani et al. Geopolymer-based artificial aggregates: A review on methods of producing, properties, and improving techniques
Haq et al. Sustainable geopolymers from polyethylene terephthalate waste and industrial by-products: a comprehensive characterisation and performance predictions
Zhang et al. Influence of sodium silicate to precursor ratio on mechanical properties and durability of the metakaolin/fly ash alkali-activated sustainable mortar using manufactured sand
Wan Ibrahim et al. Development of fly ash-based geopolymer lightweight bricks using foaming agent-a review
JP5871685B2 (en) Calcium silicate molded body and method for producing the same
Abdulkareem et al. Strength and porosity characterizations of blended biomass wood ash-fly ash-based geopolymer mortar
JP6235874B2 (en) Raw material composition
JP6624822B2 (en) Lightweight aerated concrete panel
JP6548426B2 (en) Raw material composition
Poowancum et al. Utilisation of low-reactivity fly ash for fabricating geopolymer materials
JP2007261901A (en) Ceramic formed by using waste as main material, and its manufacturing method
Mastura et al. Mechanical performances of fly ash geopolymer bricks
RU2006108607A (en) METHOD FOR PRODUCING GRANULATE FOR THE PRODUCTION OF FOAM GLASS AND FOAM-GLASS-CRYSTAL MATERIALS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171027

R150 Certificate of patent or registration of utility model

Ref document number: 6235874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150