JP2015093314A - Welding method of rust-proof steel plate - Google Patents

Welding method of rust-proof steel plate Download PDF

Info

Publication number
JP2015093314A
JP2015093314A JP2013235579A JP2013235579A JP2015093314A JP 2015093314 A JP2015093314 A JP 2015093314A JP 2013235579 A JP2013235579 A JP 2013235579A JP 2013235579 A JP2013235579 A JP 2013235579A JP 2015093314 A JP2015093314 A JP 2015093314A
Authority
JP
Japan
Prior art keywords
rust
welding
proof steel
weld
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013235579A
Other languages
Japanese (ja)
Inventor
雄一 浅井
Yuichi Asai
雄一 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2013235579A priority Critical patent/JP2015093314A/en
Publication of JP2015093314A publication Critical patent/JP2015093314A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Arc Welding Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent pores caused by ejection of zinc (Zn) gas from being produced on a weld bead and to reliably prevent rust on the surface of rust-proof steel plate caused by un-attachment of coating material or the peeling of attached coating material from occurring when welding the rust-proof steel plate to be coated by electrodeposition along a predetermined weld line.SOLUTION: A positive electrode 3a and a negative electrode 3b are arranged on both side surface parts of rust-preventive steel plates 1a, 1b as both ends of a weld line 2, electric current is supplied between both electrodes 3a, 3b and a current path 4 through which the electric current flows in the direction of the weld line 2 in a range of a prescribed width including the weld line 2 of the rust-proof steel plates 1a, 1b, is formed. At this time, electric current of a direction opposite to a weld direction X is made to flow through the current path 4 formed in the prescribed range including the weld line 2, and thereby, a magnetic field M around the current path 4 is interlinked with an arc A, force is operated on the arc A, the arc A precedes a weld wire 7 and is moved, and Zn is melted and evaporated with heat of the arc A before a weld bead 8 is formed.

Description

本発明は、電着塗装される防錆鋼板を、所定の溶接線に沿って溶接する防錆鋼板の溶接方法に関する。   The present invention relates to a method for welding a rust-proof steel sheet in which a rust-proof steel sheet to be electrodeposited is welded along a predetermined weld line.

通常、自動車のボデーを構成する外板面は、鋼板をプレスおよび溶接することにより所定形状に加工されて形成され、この場合の溶接には、炭酸ガス(COガス)や、アルゴン(Ar)とCOとの比率が8:2のMAG(Metal Active Gas)をシールドガスとして用いるアーク溶接を適用するのが一般的である。 Usually, the outer plate surface constituting the body of an automobile is formed by pressing and welding a steel plate into a predetermined shape. For welding in this case, carbon dioxide gas (CO 2 gas) or argon (Ar) is used. In general, arc welding using MAG (Metal Active Gas) having a ratio of CO 2 to CO 2 of 8: 2 as a shielding gas is applied.

ところが、COガスやMAGを用いたアーク溶接の場合、形成された溶接ビードに酸化物であるスラグが生じ、このスラグが絶縁物であるために、その後にボデーを電着塗装すると、溶接ビード上に塗料が付着し難く、せっかく付着しても付着力が弱く塗料が剥離し易いため、自動車ボデーの外板面の錆の発生を招くという問題があった。 However, in the case of arc welding using CO 2 gas or MAG, slag that is an oxide is generated in the formed weld bead, and this slag is an insulator. There is a problem that the paint does not easily adhere to the top, and even if it adheres, the adhesion is weak and the paint is easily peeled off, which causes rusting on the outer plate surface of the automobile body.

そこで、電着塗装が必要な母材の溶接方法として、COガスやMAGを用いたアーク溶接によるスラグの発生を低減或いは防止するために、シールドガスに含まれる酸化成分を除去し、Arガス100%をシールドガスとしたMIG(Metal Inert Gas)溶接を適用することが考えられるが、この場合、アークが溶接母材であるボデー用鋼板の外板表面上で電子を放出しやすい酸化物を求めて激しく動き回るため、図4に示すように、母材Wに形成される溶接ビードBが所定の溶接線からずれて大きく蛇行するという不都合が生じる。 Therefore, as a base metal welding method that requires electrodeposition coating, in order to reduce or prevent the generation of slag by arc welding using CO 2 gas or MAG, the oxidizing component contained in the shield gas is removed, and Ar gas is used. It is conceivable to apply MIG (Metal Inert Gas) welding with 100% shielding gas. In this case, an oxide that easily emits electrons on the outer plate surface of the steel plate for the body, which is the welding base material, is used. As shown in FIG. 4, the weld bead B formed on the base material W is displaced from a predetermined weld line and greatly inconveniences.

このような不都合を解消するために、従来、母材表面にMnOおよびSiOが1:1の混合物である酸化物系物質を溶接線に沿って塗布し、MIG溶接におけるアークを誘導し、溶接ビードの蛇行を防止することが考えられている(例えば、特許文献1)。 In order to eliminate such inconvenience, conventionally, an oxide-based material, which is a 1: 1 mixture of MnO and SiO 2, is applied along the weld line to the base metal surface to induce an arc in MIG welding, It is considered to prevent meandering of beads (for example, Patent Document 1).

特開平2−258174号公報(第2頁左上欄第2行〜左下欄第1行参照)JP-A-2-258174 (see page 2, upper left column, second line to lower left column, first line)

しかし、上記した特許文献1の方法では、塗布した酸化物系物質はスラグと同等であり、溶接ビードに塗布した酸化物系物質が残存すると、母材であるボデー用鋼板を電着塗装したときに、塗料の未付着や付着した塗料の剥離が生じ、その結果、自動車ボデーの外板面の錆の発生を防止できないという問題点がある。   However, in the method of Patent Document 1 described above, the applied oxide-based material is equivalent to slag, and when the oxide-based material applied to the weld bead remains, the steel plate for body, which is the base material, is electrodeposited. In addition, there is a problem in that the paint does not adhere or the attached paint peels off, and as a result, the occurrence of rust on the outer surface of the automobile body cannot be prevented.

また、自動車ボデーの外板面の錆の発生を防止する策として、一般にボデー用鋼板に亜鉛めっきを予め施しておき、亜鉛めっきした鋼板を上記したアーク溶接することも考えられるが、上記したMIG溶接、MAG溶接のいずれであっても、溶融した亜鉛(Zn)がガスとなってビードBから噴出するため、図5に示すように、ビードBにZnガスの噴出によりピットあるいはブローホールと呼ばれる気孔Hが生じ、ビードBの品質劣化の原因となる。   Further, as a measure for preventing the occurrence of rust on the outer plate surface of an automobile body, it is generally considered that the steel plate for the body is preliminarily galvanized and the galvanized steel plate is arc-welded as described above. In both welding and MAG welding, since molten zinc (Zn) becomes a gas and is ejected from the bead B, as shown in FIG. 5, it is called a pit or a blow hole by the ejection of Zn gas to the bead B. The pores H are generated, and the quality of the bead B is deteriorated.

本発明は、電着塗装される防錆鋼板を所定の溶接線に沿って溶接する場合に、溶接ビードに亜鉛(Zn)ガスの噴出による気孔が生じることを防止するとともに、塗料の未付着や、付着した塗料の剥離による防錆鋼板表面の錆の発生を確実に防止できるようにすることを目的とする。   The present invention prevents the formation of pores due to the ejection of zinc (Zn) gas in the weld bead when the rust-proof steel sheet to be electrodeposited is welded along a predetermined welding line, An object of the present invention is to reliably prevent the occurrence of rust on the surface of a rust-proof steel sheet due to the peeling of the adhered paint.

上記した目的を達成するために、本発明の防錆鋼板の溶接方法は、電着塗装される防錆鋼板を所定の溶接線に沿ってアーク溶接する防錆鋼板の溶接方法において、前記防錆鋼板の前記溶接線を含む所定範囲に前記溶接線方向に電流が流れる電流路を形成し、シールドガスとしてアルゴンガス100%を使用して、前記電流路に溶接方向と逆向きに電流を流しつつ、前記溶接線に沿って前記溶接ワイヤを移動させて溶接ビードを形成することを特徴としている(請求項1)。   In order to achieve the above-described object, the method for welding a rust-proof steel sheet according to the present invention is a method for welding a rust-proof steel sheet in which a rust-proof steel sheet to be electrodeposited is arc-welded along a predetermined welding line. A current path in which a current flows in the weld line direction is formed in a predetermined range including the weld line of the steel plate, and 100% argon gas is used as a shielding gas, and a current is passed through the current path in a direction opposite to the welding direction. A welding bead is formed by moving the welding wire along the welding line (claim 1).

また、前記防錆鋼板の溶接面と反対面側に、前記溶接線方向に電流が流れる電極を配置し、前記電極に溶接方向と逆向きに電流を流すことにより、前記電極の周囲に前記防錆鋼板を内包可能な磁場を形成しつつ、シールドガスとしてアルゴンガス100%を使用して前記溶接線に沿って前記溶接ワイヤを移動させて溶接ビードを形成するようにしてもよい(請求項2)。   Further, an electrode through which a current flows in the weld line direction is disposed on the opposite side of the rust-proof steel plate to the weld surface, and a current is passed through the electrode in a direction opposite to the weld direction, so that the anti-corrosion steel plate is surrounded by the electrode. A welding bead may be formed by moving the welding wire along the welding line using 100% argon gas as a shielding gas while forming a magnetic field capable of containing a rust steel plate. ).

請求項1に係る発明によれば、シールドガスとしてアルゴンガス100%を使用して、防錆鋼板の溶接線を含む所定範囲に形成された電流路に溶接方向と逆向きに電流を流しつつ、溶接線に沿って溶接ワイヤを移動させて溶接ビードを形成するため、電流路の周囲に右ねじの法則による磁場が形成され、この磁場がアークに鎖交することによってアークに対してフレミングの左手の法則による力が働く。このとき、電流路の電流の向きが溶接方向と逆向きであるため、電流路の周囲に発生する磁場によりアークに作用する力は溶接方向と同じになり、溶接方向に溶接ワイヤが移動する際にはアークが先行する。その結果、先行するアークの熱によって、溶接ビードが形成される前に防錆鋼板表面の亜鉛が溶融して蒸発し、亜鉛が除去された溶接線部分に溶接ビードが形成されることになる。   According to the invention according to claim 1, using 100% argon gas as a shielding gas, while passing a current in a direction opposite to the welding direction in a current path formed in a predetermined range including the weld line of the rust-proof steel plate, In order to move the welding wire along the weld line to form a weld bead, a magnetic field according to the right-handed screw law is formed around the current path. The power of the law of works. At this time, since the current direction of the current path is opposite to the welding direction, the force acting on the arc by the magnetic field generated around the current path is the same as the welding direction, and the welding wire moves in the welding direction. Is preceded by an arc. As a result, due to the heat of the preceding arc, the zinc on the surface of the rust-proof steel plate is melted and evaporated before the weld bead is formed, and a weld bead is formed in the weld line portion from which the zinc has been removed.

したがって、電着塗装される防錆鋼板を所定の溶接線に沿って溶接する場合に、従来のように溶接ビードに亜鉛ガスの噴出による気孔が生じるのを未然に防止することができ、しかもアルゴンガス100%をシールドガスとするアーク溶接により、防錆鋼板に形成された溶接ビードにスラグが発生することがなく、その後に防錆鋼板を電着塗装しても、スラグによる塗料の未付着や、付着した塗料の剥離が生じることを防止でき、防錆鋼板表面の錆の発生を確実に防止することができる。   Therefore, when the rust-proof steel sheet to be electrodeposited is welded along a predetermined welding line, it is possible to prevent the formation of pores due to the injection of zinc gas in the weld bead as in the past, and in addition to argon By arc welding using 100% gas as the shielding gas, no slag is generated on the weld bead formed on the rust-proof steel sheet. It is possible to prevent the attached paint from being peeled off, and to reliably prevent the occurrence of rust on the rust-proof steel plate surface.

また、請求項2に係る発明によれば、防錆鋼板の溶接面と反対面側に配置した電極に溶接方向と逆向きに電流を流すことにより、電極の周囲に防錆鋼板を内包可能な磁場を形成しつつ、シールドガスとしてアルゴンガス100%を使用して溶接線に沿って溶接ワイヤを移動させて溶接ビードを形成するため、電極の周囲に右ねじの法則による磁場が形成され、この磁場がアークに鎖交することによってアークに対してフレミングの左手の法則による力が働き、このときの電極を流れる電流の向きが溶接方向と逆向きであることから、電極周囲の磁場によりアークに作用する力は溶接方向と同じになり、溶接方向に溶接ワイヤが移動する際にはアークが先行し、先行するアークの熱によって、溶接ビードが形成される前に防錆鋼板表面の亜鉛が溶融して蒸発し、亜鉛が除去された溶接線部分に溶接ビードが形成される。このとき、電極の周囲に形成される磁場に防錆鋼板を内包可能にするには、磁場の鎖交によってアークに作用する力が溶接ワイヤの移動に先行可能な程度になるように、防錆鋼板の溶接線に直交する幅寸法が磁場に内包される程度に小さくし、電極に流れる電流値を設定すればよい。   Moreover, according to the invention which concerns on Claim 2, a rust-proof steel plate can be included in the circumference | surroundings of an electrode by sending an electric current through the electrode arrange | positioned on the opposite side to the welding surface of a rust-proof steel plate in the direction opposite to a welding direction. While forming the magnetic field, the welding wire is moved along the welding line by using 100% argon gas as a shielding gas to form a welding bead, so that a magnetic field is formed around the electrode according to the right-hand rule. As the magnetic field interlinks with the arc, Fleming's left-hand force acts on the arc, and the current flowing through the electrode at this time is opposite to the welding direction. The acting force is the same as the welding direction. When the welding wire moves in the welding direction, the arc precedes, and the heat of the preceding arc causes the zinc on the surface of the rust-proof steel sheet to form before the weld bead is formed. Melting and evaporated, the weld bead is formed on the weld line portion of zinc was removed. At this time, in order to allow the rust-proof steel sheet to be included in the magnetic field formed around the electrode, the rust-proofing is performed so that the force acting on the arc can be preceded by the movement of the welding wire by the linkage of the magnetic fields. The width dimension perpendicular to the weld line of the steel plate may be made small enough to be included in the magnetic field, and the current value flowing through the electrode may be set.

したがって、電着塗装される防錆鋼板を所定の溶接線に沿って溶接する場合に、従来のように溶接ビードに亜鉛ガスの噴出による気孔が生じるのを未然に防止することができ、しかもアルゴンガス100%をシールドガスとするアーク溶接により、防錆鋼板に形成された溶接ビードにスラグが発生することがなく、その後に防錆鋼板を電着塗装しても、スラグによる塗料の未付着や、付着した塗料の剥離が生じることを防止でき、防錆鋼板表面の錆の発生を確実に防止することができる。   Therefore, when the rust-proof steel sheet to be electrodeposited is welded along a predetermined welding line, it is possible to prevent the formation of pores due to the injection of zinc gas in the weld bead as in the past, and in addition to argon By arc welding using 100% gas as the shielding gas, no slag is generated on the weld bead formed on the rust-proof steel sheet. It is possible to prevent the attached paint from being peeled off, and to reliably prevent the occurrence of rust on the rust-proof steel plate surface.

本発明に係る防錆鋼板の溶接方法の第1実施形態の概略正面図である。It is a schematic front view of 1st Embodiment of the welding method of the rustproof steel plate which concerns on this invention. 第1実施形態における溶接動作の説明図である。It is explanatory drawing of the welding operation in 1st Embodiment. 本発明に係る防錆鋼板の溶接方法の第2実施形態の概略図である。It is the schematic of 2nd Embodiment of the welding method of the rustproof steel plate which concerns on this invention. 従来例における蛇行する溶接ビードの斜視図である。It is a perspective view of the welding bead which meanders in a prior art example. 従来例における気孔が生じた溶接ビードの斜視図である。It is a perspective view of the welding bead in which the pore produced in the conventional example.

<第1実施形態>
本発明の第1実施形態について、図1および図2を参照して詳細に説明する。
<First Embodiment>
A first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

図1、図2に示すように、溶接母材である2枚の防錆鋼板1a,1bが重なる溶接線2を溶接する場合に、溶接線2の両端にあたる防錆鋼板1a,1bの両側面部に正極3a、負極3bをそれぞれ防錆鋼板1a,1bに電気的に接続させて配置し、正極3a、負極3b間に電流(この場合、直流電流)を通流して防錆鋼板1a,1bの溶接線2含む所定幅の範囲に溶接線2の方向に電流が流れる電流路4を形成する。   As shown in FIG. 1 and FIG. 2, when welding a weld line 2 in which two rust-proof steel plates 1 a and 1 b as welding base materials overlap, both side portions of the rust-proof steel plates 1 a and 1 b corresponding to both ends of the weld line 2 The positive electrode 3a and the negative electrode 3b are electrically connected to the rust-proof steel plates 1a and 1b, respectively, and a current (in this case, a direct current) is passed between the positive-electrode 3a and the negative electrode 3b so that the rust-proof steel plates 1a and 1b A current path 4 through which a current flows in the direction of the weld line 2 is formed in a range of a predetermined width including the weld line 2.

このとき、図1、図2中に矢印で示す溶接方向Xに対して逆向きの電流が、溶接線2を含む所定範囲に形成された電流路4に流れるように、正極3a、負極3bを配置して直流電流を流す。   At this time, the positive electrode 3a and the negative electrode 3b are set so that a current opposite to the welding direction X indicated by an arrow in FIGS. 1 and 2 flows in a current path 4 formed in a predetermined range including the welding line 2. Arrange and flow direct current.

そして、シールドガス6としてAr(アルゴン)ガス100%を用いたMIG溶接により、溶接線2に沿って溶接ワイヤ7を移動させて溶接ビード8を形成する。   Then, the welding bead 8 is formed by moving the welding wire 7 along the welding line 2 by MIG welding using Ar (argon) gas 100% as the shielding gas 6.

このように、図2に図示の如く正極3a、負極3b間に直流電流Iを流すと、両防錆鋼板1a,1bの電流路4の周囲に右ねじの法則による磁場Mが形成され、この磁場MがアークAに鎖交することによってアークAに対してフレミングの左手の法則による力が働き、電流路4の電流の向きが上記したように溶接方向Xと逆向きであるため、電流路4の周囲の磁場MによりアークAに作用する力は溶接方向と同じになり、溶接方向に溶接ワイヤ7が移動する際にはアークAが先行することになる。   In this way, when a direct current I is passed between the positive electrode 3a and the negative electrode 3b as shown in FIG. 2, a magnetic field M is formed around the current path 4 of both rust-proof steel plates 1a and 1b according to the right-handed screw law. Since the magnetic field M interlinks with the arc A, a force according to Fleming's left-hand rule acts on the arc A, and the current direction of the current path 4 is opposite to the welding direction X as described above. The force acting on the arc A by the magnetic field M around 4 is the same as that in the welding direction, and the arc A precedes when the welding wire 7 moves in the welding direction.

その結果、溶接線2に溶接ビード8が形成される前に、先行するアークAの熱によって防錆鋼板1a,1bの表面にめっきされた防錆用のZn(亜鉛)が溶融して蒸発し、溶接線2を含む所定範囲のZnが除去され、Znが除去された溶接線2部分に溶接ビード8が形成されることになり、溶接ビード8に従来のようなZnガスの噴出による気孔が生じることがなく、しかもArガス100%によるMIG溶接により、溶接ビード8にスラグが発生することもない。   As a result, before the weld bead 8 is formed on the weld line 2, the rust-preventing Zn (zinc) plated on the surfaces of the rust-proof steel plates 1a and 1b is melted and evaporated by the heat of the preceding arc A. Then, a predetermined range of Zn including the weld line 2 is removed, and the weld bead 8 is formed in the weld line 2 portion from which the Zn has been removed. No slag is generated in the weld bead 8 by MIG welding using Ar gas 100%.

したがって、上記した第1実施形態によれば、Arガス100%をシールドガス6とするMIG溶接においてアークAの動きをコントロールすることが可能になり、電着塗装される防錆鋼板1a,1bを溶接線2に沿って溶接する場合に、従来のように溶接ビード8にZnガスの噴出による気孔が生じるのを未然に防止することができ、しかもArガス100%をシールドガス6とするMIG溶接により、防錆鋼板1a,1bに形成された溶接ビード8にスラグが発生することがなく、その後に防錆鋼板1a,1bを電着塗装しても、スラグによる塗料の未付着や、付着した塗料の剥離が生じることを防止でき、防錆鋼板1a,1b表面の錆の発生を確実に防止することができ、例えば自動車のボデー用鋼板の溶接に好適である。   Therefore, according to the above-described first embodiment, it becomes possible to control the movement of the arc A in MIG welding using Ar gas 100% as the shielding gas 6, and the rust-proof steel plates 1a and 1b to be electrodeposited are attached. When welding along the weld line 2, it is possible to prevent the formation of pores due to the injection of Zn gas in the weld bead 8 as in the prior art, and MIG welding with Ar gas 100% as the shielding gas 6. Thus, no slag is generated in the weld beads 8 formed on the rust-proof steel plates 1a and 1b, and even if the rust-proof steel plates 1a and 1b are subsequently electrodeposited, the paint does not adhere to the slag or has adhered. The peeling of the paint can be prevented, and the occurrence of rust on the surfaces of the rust-proof steel plates 1a and 1b can be reliably prevented. For example, it is suitable for welding of steel plates for automobile bodies.

<第2実施形態>
本発明の第2実施形態について、図3を参照して詳細に説明する。
Second Embodiment
A second embodiment of the present invention will be described in detail with reference to FIG.

図3に示すように、溶接母材である2枚の防錆鋼板1a,1bが重なる溶接線2を溶接する場合に、防錆鋼板1a,1bの溶接線2の反対面側に溶接線2に平行な長尺の棒状の電極10を配置し、図3中に矢印で示す溶接方向Xに対して逆向きの直流電流を電極10に通流する。なお、この電極10は、断面が円形に限らず矩形でもよい。   As shown in FIG. 3, when welding a weld line 2 in which two rust-proof steel plates 1 a and 1 b which are welding base materials are overlapped, a weld line 2 is formed on the opposite surface side of the rust-proof steel plates 1 a and 1 b. A long rod-like electrode 10 parallel to the electrode 10 is arranged, and a direct current in the direction opposite to the welding direction X indicated by an arrow in FIG. The electrode 10 is not limited to a circular cross section, and may be a rectangle.

そして、図3に示すように電極10に直流電流Iを通流することにより、電極10の周囲に防錆鋼板1a,1bを内包可能な磁場Mを形成しつつ、シールドガス6としてAr(アルゴン)ガス100%を用いたMIG溶接により、溶接線2に沿って溶接ワイヤ7を移動させて溶接ビード8を形成する。このとき、電極10の周囲に右ねじの法則による磁場Mが形成され、この磁場MがアークAに鎖交することによってアークAに対してフレミングの左手の法則による力が働き、電極10を流れる電流の向きが溶接方向Xと逆向きであることから、電極10の周囲の磁場MによりアークAに作用する力は溶接方向と同じになり、溶接方向に溶接ワイヤ7が移動する際にはアークが先行し、先行するアークAの熱によって、溶接ビード8が形成される前に防錆鋼板1a,1bの表面のZnが溶融して蒸発し、Znが除去された溶接線2部分に溶接ビード8を形成することができる。   As shown in FIG. 3, by passing a direct current I through the electrode 10, a magnetic field M capable of containing the rust-proof steel plates 1 a and 1 b is formed around the electrode 10, and Ar (argon) is used as the shielding gas 6. ) The welding bead 8 is formed by moving the welding wire 7 along the welding line 2 by MIG welding using 100% gas. At this time, a magnetic field M according to the right-handed screw law is formed around the electrode 10, and when this magnetic field M is linked to the arc A, a force according to the Fleming's left-hand law acts on the arc A and flows through the electrode 10. Since the direction of the current is opposite to the welding direction X, the force acting on the arc A by the magnetic field M around the electrode 10 is the same as the welding direction, and when the welding wire 7 moves in the welding direction, the arc Preceded by the heat of the preceding arc A, the Zn on the surface of the rust-proof steel plates 1a and 1b melts and evaporates before the weld bead 8 is formed, and the weld bead 2 is removed from the weld line 2 where the Zn is removed. 8 can be formed.

ところで、電極10の周囲に形成される磁場に防錆鋼板1a,1bを内包可能にするためには、防錆鋼板1a,1bの溶接線2に直交する幅寸法を磁場Mに内包される程度に小さくし、電極10に流れる電流値を設定すればよく、これにより磁場Mの鎖交によって溶接ワイヤ7の移動に先行するような力がアークAに働く。   By the way, in order to enable inclusion of the rust-proof steel plates 1a and 1b in the magnetic field formed around the electrode 10, the width dimension perpendicular to the weld line 2 of the rust-proof steel plates 1a and 1b is included in the magnetic field M. The current flowing through the electrode 10 may be set to a small value, and a force that precedes the movement of the welding wire 7 due to the linkage of the magnetic field M acts on the arc A.

したがって、上記した第2実施形態によれば、Arガス100%をシールドガス6とするMIG溶接においてアークAの動きをコントロールすることが可能になり、電着塗装される防錆鋼板1a,1bを溶接線2に沿って溶接する場合に、従来のように溶接ビード8にZnガスの噴出による気孔が生じるのを未然に防止することができ、しかもArガス100%をシールドガス6とするMIG溶接により、防錆鋼板1a,1bに形成された溶接ビード8にスラグが発生することがなく、その後に防錆鋼板を電着塗装しても、スラグによる塗料の未付着や、付着した塗料の剥離が生じることを防止でき、防錆鋼板表面の錆の発生を確実に防止することができる。特に、溶接線2に直交方向の幅寸法が小さい防錆鋼板1a,1bの溶接に好適である。   Therefore, according to the second embodiment described above, it becomes possible to control the movement of the arc A in MIG welding using 100% Ar gas as the shielding gas 6, and the rust-proof steel plates 1a and 1b to be electrodeposited are attached. When welding along the weld line 2, it is possible to prevent the formation of pores due to the injection of Zn gas in the weld bead 8 as in the prior art, and MIG welding with Ar gas 100% as the shielding gas 6. As a result, no slag is generated in the weld beads 8 formed on the rust-proof steel plates 1a and 1b. Even if the rust-proof steel plate is subsequently electrodeposited, the paint does not adhere to the slag or the attached paint is peeled off. Can be prevented, and the occurrence of rust on the rust-proof steel plate surface can be reliably prevented. In particular, it is suitable for welding the rust-proof steel plates 1a and 1b whose width dimension in the direction orthogonal to the weld line 2 is small.

なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能である。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.

例えば、上記した第1実施形態では、溶接線2の両端にあたる防錆鋼板1a,1bの両側面部に正極3a、負極3bをそれぞれ防錆鋼板1a,1bに電気的に接続させて配置し、これら正極3a、負極3b間に電流(この場合、直流電流)を通流して防錆鋼板1a,1bの溶接線2含む所定幅の範囲に溶接線2の方向に電流が流れる電流路4を形成するようにしたが、要するに防錆鋼板1a,1bの溶接線2を含む電流路に直流電流を通流して生じる磁場がアークに鎖交可能になるように、電流路が形成できればよい。   For example, in the above-described first embodiment, the positive electrode 3a and the negative electrode 3b are disposed on both side surfaces of the rust-proof steel plates 1a and 1b corresponding to both ends of the weld line 2, and are electrically connected to the rust-proof steel plates 1a and 1b, respectively. By passing a current (in this case, a direct current) between the positive electrode 3a and the negative electrode 3b, a current path 4 through which a current flows in the direction of the weld line 2 is formed in a range of a predetermined width including the weld line 2 of the rust-proof steel plates 1a and 1b. In short, it is only necessary to form a current path so that a magnetic field generated by passing a direct current through the current path including the weld line 2 of the rust-proof steel plates 1a and 1b can be linked to the arc.

また、上記した両実施形態では2枚の防錆鋼板1a,1bの溶接線2を溶接する場合について説明したが、1枚の防錆鋼板の溶接線をアーク溶接する場合であっても本発明を同様に実施することができるのはいうまでもない。   Moreover, although both above-described embodiment demonstrated the case where the welding line 2 of the two rust-proof steel plates 1a and 1b was welded, even if it is a case where the welding line of one rust-proof steel plate is arc-welded, this invention. It goes without saying that can be implemented in the same manner.

1a,1b …防錆鋼板
2 …溶接線
4 …電流路
6 …シールドガス
7 …溶接ワイヤ
8 …溶接ビード
10 …電極
M …磁場
A …アーク
DESCRIPTION OF SYMBOLS 1a, 1b ... Rust-proof steel plate 2 ... Welding wire 4 ... Current path 6 ... Shielding gas 7 ... Welding wire 8 ... Welding bead 10 ... Electrode M ... Magnetic field A ... Arc

Claims (2)

電着塗装される防錆鋼板を所定の溶接線に沿ってアーク溶接する防錆鋼板の溶接方法において、
前記防錆鋼板の前記溶接線を含む所定範囲に前記溶接線方向に電流が流れる電流路を形成し、
シールドガスとしてアルゴンガス100%を使用して、前記電流路に溶接方向と逆向きに電流を流しつつ、前記溶接線に沿って前記溶接ワイヤを移動させて溶接ビードを形成する
ことを特徴とする防錆鋼板の溶接方法。
In the welding method of the rust-proof steel sheet that arc-welds the rust-proof steel sheet to be electrodeposited along a predetermined welding line,
Forming a current path through which a current flows in the weld line direction in a predetermined range including the weld line of the rust-proof steel plate;
100% argon gas is used as a shielding gas, and a welding bead is formed by moving the welding wire along the welding line while flowing a current in the direction opposite to the welding direction in the current path. A method for welding rust-proof steel sheets.
電着塗装される防錆鋼板を所定の溶接線に沿ってアーク溶接する防錆鋼板の溶接方法において、
前記防錆鋼板の溶接面と反対面側に、前記溶接線方向に電流が流れる電極を配置し、
前記電極に溶接方向と逆向きに電流を流すことにより、前記電極の周囲に前記防錆鋼板を内包可能な磁場を形成しつつ、
シールドガスとしてアルゴンガス100%を使用して前記溶接線に沿って前記溶接ワイヤを移動させて溶接ビードを形成する
ことを特徴とする防錆鋼板の溶接方法。
In the welding method of the rust-proof steel sheet that arc-welds the rust-proof steel sheet to be electrodeposited along a predetermined welding line,
An electrode through which current flows in the weld line direction is arranged on the opposite side of the weld surface of the rust-proof steel plate,
By forming a magnetic field capable of enclosing the rust-proof steel plate around the electrode by passing a current in the opposite direction to the welding direction to the electrode,
A welding method for a rust-proof steel sheet, wherein a welding bead is formed by using 100% argon gas as a shielding gas and moving the welding wire along the welding line.
JP2013235579A 2013-11-14 2013-11-14 Welding method of rust-proof steel plate Pending JP2015093314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235579A JP2015093314A (en) 2013-11-14 2013-11-14 Welding method of rust-proof steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235579A JP2015093314A (en) 2013-11-14 2013-11-14 Welding method of rust-proof steel plate

Publications (1)

Publication Number Publication Date
JP2015093314A true JP2015093314A (en) 2015-05-18

Family

ID=53196086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235579A Pending JP2015093314A (en) 2013-11-14 2013-11-14 Welding method of rust-proof steel plate

Country Status (1)

Country Link
JP (1) JP2015093314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877165A (en) * 2019-11-24 2020-03-13 太原理工大学 Double-heat-source combined action method for improving welding and welding seam surface layer performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877165A (en) * 2019-11-24 2020-03-13 太原理工大学 Double-heat-source combined action method for improving welding and welding seam surface layer performance

Similar Documents

Publication Publication Date Title
US10155276B2 (en) Method of welding surface-treated members using a welding wire
CN101678513B (en) Aluminum deoxidizing welding wire
CN102126084A (en) Laser welding method for steel sheet
JP2012254469A (en) Two-electrode welding method
CA3008220C (en) Consumable electrode type gas shield arc welding method and arc welding portion
US20060231540A1 (en) Method and apparatus for short-circuit welding
JP2009233707A (en) High speed gas shielded arc welding method of steel sheet
JP2007098459A (en) High-speed gas-shielded arc welding method of zinc-based metal-plated steel plate
KR102004103B1 (en) Welding method of galvanized steel sheet
JP6439882B2 (en) Vertical narrow groove gas shielded arc welding method
US20160045972A1 (en) Method for manufacturing welded article, welding method, and welding device
JP2015093314A (en) Welding method of rust-proof steel plate
JP6412817B2 (en) Welding method of galvanized steel sheet
Farkade et al. Modification in weld overlay for productivity and corrosion resistance
JP6676553B2 (en) MAG welding wire for high strength thin steel sheet and pulse MAG welding method using the same
WO2022230903A1 (en) Arc welded joint and arc welding method
WO2024095614A1 (en) Lap fillet arc welding method, and method for producing welding joint
JP7435932B1 (en) Gas shielded arc welding method and welded joint manufacturing method
WO2024095613A1 (en) Gas-shielded arc welding method and method for welded-joint production
JP7435931B1 (en) Gas shielded arc welding method and welded joint manufacturing method
WO2022230905A1 (en) Arc-welded joint and arc-welding method
WO2024095612A1 (en) Gas-shielded arc welding method and method for welded-joint production
WO2022230904A1 (en) Arc-welded joint and arc-welding method
KR102424484B1 (en) Tandem gas shield arc welding method and welding device
JP6101724B2 (en) Welding method of galvanized steel sheet