JP2015091202A - Member for preventing magnet flotation and shatter, and rotor - Google Patents

Member for preventing magnet flotation and shatter, and rotor Download PDF

Info

Publication number
JP2015091202A
JP2015091202A JP2013230824A JP2013230824A JP2015091202A JP 2015091202 A JP2015091202 A JP 2015091202A JP 2013230824 A JP2013230824 A JP 2013230824A JP 2013230824 A JP2013230824 A JP 2013230824A JP 2015091202 A JP2015091202 A JP 2015091202A
Authority
JP
Japan
Prior art keywords
magnet
rotor
carbon fiber
prevention member
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013230824A
Other languages
Japanese (ja)
Other versions
JP6592230B2 (en
Inventor
雄二 木下
Yuji Kinoshita
雄二 木下
猛 長谷川
Takeshi Hasegawa
猛 長谷川
田中 浩
Hiroshi Tanaka
浩 田中
裕一 川合
Yuichi Kawai
裕一 川合
孝弘 飯吉
Takahiro Iiyoshi
孝弘 飯吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arisawa Mfg Co Ltd
Kawasaki Heavy Industries Ltd
Original Assignee
Arisawa Mfg Co Ltd
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg Co Ltd, Kawasaki Heavy Industries Ltd filed Critical Arisawa Mfg Co Ltd
Priority to JP2013230824A priority Critical patent/JP6592230B2/en
Publication of JP2015091202A publication Critical patent/JP2015091202A/en
Application granted granted Critical
Publication of JP6592230B2 publication Critical patent/JP6592230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member for preventing magnet flotation and shatter, achieving weight reduction of a rotor, capable of preventing magnet flotation and shatter during high-speed rotation and to provide a rotor.SOLUTION: The cylindrical member for preventing magnet flotation and shatter that prevents flotation and shatter of a magnet 2 includes: a shaft 1; and the magnet 2 formed by coupling in cylindrical shape split bodies provided around the shaft 1, and is provided on an outside of the magnet 2 of a rotor that rotates at a speed of equal to or more than 5000 rpm. A member 3 of preventing magnet flotation and shatter is made of a carbon fiber reinforced resin formed by winding and laminating carbon fibers along an external circumferential direction of the magnet 2. A volume content of the carbon fiber is equal to or more than 75 vol%.

Description

本発明は、例えば、送風機用電動機のロータの磁石の浮上り及び飛散を防止するための磁石浮上り及び飛散防止部材、並びにロータに関するものである。   The present invention relates to, for example, a magnet floating and scattering preventing member for preventing floating and scattering of a magnet of a rotor of a blower motor, and a rotor.

高速回転(5000rpm〜50000rpm)する電動機のロータ軸部に直接、羽根車(翼)を取付けた構造の送風機は、増速機が不要となるため、コンパクトで、機械的損失が小さく、従来機よりも高効率となり、必要な動力が小さくなる。しかし、ロータの外周部に円筒状の磁石を固定した構造の高速で回転するロータは、外周部の磁石が遠心力により浮上ったり、飛散するという問題がある。   A blower with a structure in which an impeller (blade) is directly attached to a rotor shaft portion of an electric motor that rotates at high speed (5000 rpm to 50000 rpm) does not require a speed increaser. Is also highly efficient and requires less power. However, a rotor rotating at a high speed with a structure in which a cylindrical magnet is fixed to the outer periphery of the rotor has a problem that the magnet on the outer periphery floats or scatters due to centrifugal force.

そこで、上記問題を解決するために、磁石の外周面全体を円筒状の補強材で覆うことで磁石の浮上りと飛散を防止することが一般的に行われている。   Therefore, in order to solve the above problem, it is generally performed to prevent the magnet from rising and scattering by covering the entire outer peripheral surface of the magnet with a cylindrical reinforcing material.

この補強材としては、例えば特許文献1に開示されるような、ガラス繊維等を樹脂で含浸して固めた所謂繊維強化樹脂(FRP)製のものがある。   As this reinforcing material, there is a material made of so-called fiber reinforced resin (FRP) in which glass fiber or the like is impregnated with resin and hardened as disclosed in Patent Document 1, for example.

特開2010−200440号公報JP 2010-200440 A

ところが、高速回転するロータの磁石の浮上りと飛散を上記FRP製の補強材で防止する場合、ガラス繊維のような引張弾性率の低い繊維では、FRP全体の剛性が低くなるため、遠心力の影響を受け、ひずみや変形が発生してしまう。   However, when the FRP reinforcing material prevents the floating and scattering of the magnet of the rotor that rotates at high speed, the fiber with low tensile elastic modulus such as glass fiber has a low rigidity of the entire FRP. It is affected and distortion and deformation occur.

さらに、ロータが回転する方向に繊維を配していない場合、FRPは遠心力に対する耐力を得られず、磁石の浮上りと飛散を防ぐことはできない(FRPは繊維が配向していない方向に対する耐力が弱いため。)。   Furthermore, when the fiber is not arranged in the direction in which the rotor rotates, the FRP cannot obtain the strength against centrifugal force and cannot prevent the magnet from floating and scattering (FRP is the strength against the direction in which the fibers are not oriented). Because it is weak.)

また、FRPは繊維の含有率が比較的低い(繊維の体積含有率が40〜60vol%)ため、仮に引張弾性率の高い繊維を用い、且つロータの回転方向に繊維を配した場合であっても、磁石の浮上りと飛散を防止する効果は十分でない。   In addition, since FRP has a relatively low fiber content (fiber volume content is 40 to 60 vol%), it is assumed that a fiber having a high tensile elastic modulus is used and the fiber is arranged in the rotational direction of the rotor. However, the effect of preventing the floating and scattering of the magnet is not sufficient.

即ち、FRPを用いて磁石の浮上りと飛散を防止するためには、a)引張弾性率の高い繊維を用いて、b)ロータが回転する方向に繊維を配し、且つc)FRPの繊維含有率を高くすることが不可欠となる。   That is, in order to prevent the floating and scattering of the magnet using FRP, a) using a fiber having a high tensile elastic modulus, b) arranging the fiber in the direction in which the rotor rotates, and c) the fiber of the FRP It is essential to increase the content.

本発明は、本発明者等の上述のような知見に基づいて完成したもので、ロータの軽量化を達成し、且つ高速回転時の磁石の浮上りと飛散を防ぐことができる実用性に秀れた磁石浮上り及び飛散防止部材並びにロータを提供するものである。   The present invention has been completed on the basis of the above-mentioned knowledge of the present inventors and the like, and is excellent in practicality that can achieve weight reduction of the rotor and can prevent the magnet from rising and scattering during high-speed rotation. A magnet floating and scattering prevention member and a rotor are provided.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

シャフト1と該シャフト1の周りに設けられる分割体を筒状に連設して成る磁石2とを有して5000rpm以上で回転するロータの該磁石2の外側に設けられ、前記磁石2の浮上り及び飛散を防止する筒状の磁石浮上り及び飛散防止部材であって、この磁石浮上り及び飛散防止部材3は、炭素繊維を前記磁石2の外周方向に沿って巻回積層して成る炭素繊維強化樹脂製のものであり、前記炭素繊維の体積含有率は75vol%以上であることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   The magnet 1 is provided outside the magnet 2 of a rotor that has a shaft 1 and a magnet 2 formed by continuously connecting the divided bodies provided around the shaft 1 in a cylindrical shape, and rotates at 5000 rpm or more. This is a cylindrical magnet floating and scattering preventing member that prevents scatter and scattering, and this magnet floating and scattering preventing member 3 is a carbon formed by winding and laminating carbon fibers along the outer peripheral direction of the magnet 2. It is a thing made from fiber reinforced resin, and the volume content rate of the said carbon fiber concerns on the magnet floating and scattering prevention member characterized by being 75 vol% or more.

また、請求項1記載の磁石浮上り及び飛散防止部材において、前記炭素繊維は引張弾性率が230GPa以上のものであることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   2. The magnet lifting and scattering prevention member according to claim 1, wherein the carbon fiber has a tensile elastic modulus of 230 GPa or more.

また、請求項2記載の磁石浮上り及び飛散防止部材において、前記炭素繊維は引張弾性率が475GPa以下のものであることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   The magnet floating and scattering preventing member according to claim 2, wherein the carbon fiber has a tensile elastic modulus of 475 GPa or less.

また、請求項1〜3いずれか1項に記載の磁石浮上り及び飛散防止部材において、マトリックス樹脂のガラス転移温度は150℃以上であることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   Further, in the magnet lifting and scattering prevention member according to any one of claims 1 to 3, the glass transition temperature of the matrix resin is 150 ° C or more, and the magnet lifting and scattering prevention member is characterized in that It is.

また、請求項1〜4いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記炭素繊維の巻回角度は前記シャフト1の回転軸に対して85°以上90°未満に設定されていることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   Further, in the magnet lifting and scattering prevention member according to any one of claims 1 to 4, the winding angle of the carbon fiber is set to 85 ° or more and less than 90 ° with respect to the rotation axis of the shaft 1. The present invention relates to a magnet floating and scattering preventing member characterized by having

また、請求項1〜5いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記炭素繊維をフィラメントワインディング法により巻回積層して成るものであることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   The magnet floating and scattering prevention member according to any one of claims 1 to 5, wherein the carbon fiber is wound and laminated by a filament winding method. This relates to the prevention member.

また、請求項1〜6いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記炭素繊維の体積含有率は85vol%以下であることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   Further, in the magnet lifting and scattering prevention member according to any one of claims 1 to 6, the volume content of the carbon fiber is 85 vol% or less, and the magnet lifting and scattering prevention member is provided. Is.

また、請求項1〜7いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記磁石2は適宜な固定方法によりシャフト1に固定されていることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   The magnet floating and scattering prevention member according to any one of claims 1 to 7, wherein the magnet 2 is fixed to the shaft 1 by an appropriate fixing method. It concerns the member.

また、請求項1〜8いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記ロータは50000rpm以下で回転するロータであることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   The magnet floating and scattering preventing member according to any one of claims 1 to 8, wherein the rotor is a rotor rotating at 50000 rpm or less, and the magnet floating and scattering preventing member is characterized in that is there.

また、請求項1〜9いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記ロータは電動機用または発電機用のロータであることを特徴とする磁石浮上り及び飛散防止部材に係るものである。   The magnet floating and scattering prevention member according to any one of claims 1 to 9, wherein the rotor is a rotor for an electric motor or a generator. Is.

また、シャフト1と該シャフト1の周りに設けられた分割体を筒状に連設して成る磁石2とを設けた5000rpm以上で回転するロータであって、このロータは、請求項1〜10いずれか1項に記載の磁石浮上り及び飛散防止部材が設けられていることを特徴とするロータに係るものである。   A rotor that rotates at a speed of 5000 rpm or more provided with a shaft 1 and a magnet 2 that is formed by continuously connecting divided bodies provided around the shaft 1 in a cylindrical shape. This invention relates to a rotor characterized in that the magnet lifting and scattering prevention member according to any one of the above items is provided.

本発明は上述のように構成したから、ロータの軽量化を達成し、且つ高速回転時の磁石の浮上りと飛散を防ぐことができる実用性に秀れた磁石浮上り及び飛散防止部材並びにロータとなる。   Since the present invention is configured as described above, it is possible to reduce the weight of the rotor and to prevent the floating and scattering of the magnet during high-speed rotation, and the magnet floating and scattering preventing member and the rotor excellent in practicality can be prevented. It becomes.

本実施例の概略説明斜視図である。It is a schematic explanatory perspective view of a present Example. 本実施例の概略説明側面図である。It is a schematic explanatory side view of a present Example. 本実施例の概略説明断面図である。It is a schematic explanatory sectional drawing of a present Example. 本実施例の実施形態の概略説明断面図である。It is a schematic explanatory sectional drawing of embodiment of a present Example. 本実施例の実施形態の概略説明断面図である。It is a schematic explanatory sectional drawing of embodiment of a present Example. 炭素繊維の導入角度を説明する概略説明図である。It is a schematic explanatory drawing explaining the introduction angle of carbon fiber. 実験条件及び実験結果を示す表である。It is a table | surface which shows an experimental condition and an experimental result. 本実施例のVfと必要張力に対する余裕率との関係を示す図である。It is a figure which shows the relationship between Vf of a present Example, and the margin factor with respect to required tension | tensile_strength.

好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。   An embodiment of the present invention which is considered to be suitable will be briefly described with reference to the drawings showing the operation of the present invention.

例えば、送風機用電動機に設けたロータを5000rpm以上で高速回転させる。この際、磁石2の外周方向に沿って配される炭素繊維により遠心力に対する耐力が十分に発揮され、磁石2をシャフト1に強固に固着して磁石2の浮上りと飛散を良好に防止することができる。   For example, the rotor provided in the blower motor is rotated at a high speed of 5000 rpm or more. At this time, the carbon fiber disposed along the outer circumferential direction of the magnet 2 sufficiently exhibits the resistance to centrifugal force, and the magnet 2 is firmly fixed to the shaft 1 to prevent the magnet 2 from rising and scattering well. be able to.

また、炭素繊維の体積含有率が75vol%以上と非常に高いため、軽量で且つ高弾性である炭素繊維の特性が強調され、全体の剛性を確保しつつ軽量化を達成できる。   In addition, since the volume content of the carbon fiber is as high as 75 vol% or more, the characteristics of the carbon fiber that is lightweight and highly elastic are emphasized, and weight reduction can be achieved while ensuring the overall rigidity.

従って、本発明は、軽量であることは勿論、5000rpm以上の高速回転時においても、ひずみや変形が生じることなく、且つ磁石2をシャフト1に強固に固着させることで良好に磁石2の浮上りと飛散を防止でき、高速回転が可能な磁石浮上り及び飛散防止部材3となる。   Therefore, in the present invention, the magnet 2 can be lifted well by firmly fixing the magnet 2 to the shaft 1 without being strained or deformed even at a high speed of 5000 rpm or more, as well as being lightweight. Thus, the magnet floating and scattering preventing member 3 that can prevent scattering and can rotate at high speed are obtained.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、シャフト1と該シャフト1の周りに設けられた分割体を筒状に連設して成る磁石2とを有して5000rpm以上で回転するロータの該磁石2の外側に設けられ、前記磁石2の浮上りと飛散を防止する筒状の磁石浮上り及び飛散防止部材であって、この磁石浮上り及び飛散防止部材3は、炭素繊維を前記磁石2の外周方向に沿って巻回積層して成る炭素繊維強化樹脂製のものであり、前記炭素繊維の体積含有率は75vol%以上であるものである。   This embodiment is provided outside the magnet 2 of a rotor having a shaft 1 and a magnet 2 formed by continuously connecting the divided bodies provided around the shaft 1 in a cylindrical shape and rotating at 5000 rpm or more. A cylindrical magnet floating and scattering preventing member that prevents the magnet 2 from floating and scattering, and the magnet floating and scattering preventing member 3 winds carbon fiber along the outer circumferential direction of the magnet 2. It is made of carbon fiber reinforced resin formed by laminating, and the volume content of the carbon fiber is 75 vol% or more.

具体的には、シャフト1の磁石2と協働してロータを回転駆動するステータを備えた、5000rpm以上、50000rpm以下で回転する電動機のロータ端部に設けた羽根車で送風を行う送風機のロータに適用した例である。   Specifically, a rotor of a blower that blows air with an impeller provided at an end of a rotor of an electric motor that rotates at 5000 rpm or more and 50000 rpm or less, provided with a stator that rotates the rotor in cooperation with the magnet 2 of the shaft 1. It is an example applied to.

各部を具体的に説明する。   Each part will be specifically described.

シャフト1は金属製であり、シャフト1の軸方向中央部には、シャフト1と同芯の金属製で円柱状の下地部材4が固着されている。この下地部材4の外周面には、タイル状の磁石2が、全体としてシャフト1と同芯の円筒状を成すように適宜な固定方法により複数固定されている(図1〜3)。従って、シャフト1と磁石2とは一体に回転する。本実施例においては、磁石2は下地部材4の外周面略全面を覆うように取付けられている。磁石2を下地部材4に固定するための方法としては、接着剤(例えば、エポキシ系)による固定、図4に示すような、ネジ7・ボルトによる固定(図4(a)及び(c)参照)、または電気絶縁テープ8などを周囲に巻回することによる固定(図4(b)参照)などが採用できる。なお、図4(a)は、磁石2の中央部にネジ7を貫通させて下地部材4に固定する例であり、図4(c)は、押え板9を介して、磁石2の分割体の境界部分にネジ7を通して下地部材4に固定する例である。図4(c)においては、ネジ7は隣接する磁石2の角部を夫々面取りして形成したひし形の切欠部10を通すようにしている。   The shaft 1 is made of metal, and a columnar base member 4 made of metal concentric with the shaft 1 is fixed to the central portion of the shaft 1 in the axial direction. A plurality of tile-shaped magnets 2 are fixed to the outer peripheral surface of the base member 4 by an appropriate fixing method so as to form a cylindrical shape concentric with the shaft 1 as a whole (FIGS. 1 to 3). Therefore, the shaft 1 and the magnet 2 rotate integrally. In the present embodiment, the magnet 2 is attached so as to cover substantially the entire outer peripheral surface of the base member 4. As a method for fixing the magnet 2 to the base member 4, fixing with an adhesive (for example, epoxy), fixing with screws 7 and bolts as shown in FIG. 4 (see FIGS. 4A and 4C). ), Or fixing by winding the electrical insulating tape 8 or the like around (see FIG. 4B). 4A is an example in which a screw 7 is passed through the center of the magnet 2 and is fixed to the base member 4. FIG. 4C is a divided body of the magnet 2 through a presser plate 9. FIG. This is an example of fixing to the base member 4 through the screw 7 at the boundary portion. In FIG. 4C, the screw 7 passes through the diamond-shaped notch 10 formed by chamfering the corners of the adjacent magnets 2.

下地部材4及び磁石2については、図1〜3で示した形状の他、様々な形状のものを適宜採用できる。例えば、下地部材4としては、全長の約半分の長さを有する筒状の下地部材4を、シャフト1の軸方向の中央付近で連結したものや、シャフト1と(下地部材4が)一体となったものを採用できる。また、磁石2としては、半円状の磁石2を筒状に連結したものを採用できる。上述した種々の下地部材4、及び磁石2を、適宜組合せたロータの態様を、図5に示す。図5(a)〜(f)は縦断面図、(g)及び(h)は横断面図である。図5(a)は本実施例、(b)は(a)においてシャフト1と下地部材4とを一体とした例、(c)は(a)において下地部材4及び磁石2をシャフト軸方向で2分割した例、(d)は(a)において磁石2をシャフト軸方向で多数分割した例、(e)は(d)において下地部材4とシャフト1とを一体とした例、(f)は(c)において磁石2をシャフト軸方向で更に多数分割した例、(g)は磁石2を上下2分割の半円筒状とした例、(h)は本実施例である。   About the base member 4 and the magnet 2, the thing of various shapes other than the shape shown in FIGS. 1-3 can be employ | adopted suitably. For example, as the base member 4, a cylindrical base member 4 having a length that is about half of the total length is connected near the center in the axial direction of the shaft 1, or the shaft 1 (the base member 4) is integrated. Can be adopted. Moreover, as the magnet 2, what connected the semicircle magnet 2 in the cylinder shape is employable. FIG. 5 shows a rotor mode in which the various base members 4 and magnets 2 described above are appropriately combined. 5A to 5F are longitudinal sectional views, and FIGS. 5G and 5H are transverse sectional views. 5A shows the present embodiment, FIG. 5B shows an example in which the shaft 1 and the base member 4 are integrated in FIG. 5A, and FIG. 5C shows the base member 4 and the magnet 2 in the shaft axial direction in FIG. (D) is an example in which the magnet 2 is divided into a large number in the shaft axial direction in (a), (e) is an example in which the base member 4 and the shaft 1 are integrated in (d), (f) is In (c), an example in which the magnet 2 is further divided into a large number in the shaft axis direction, (g) is an example in which the magnet 2 is divided into a semi-cylindrical shape in two upper and lower parts, and (h) is this embodiment.

本実施例は、この磁石2の外周面略全面を覆うように被嵌せしめられている。   In the present embodiment, the magnet 2 is fitted so as to cover substantially the entire outer peripheral surface.

具体的には、本実施例は、公知のフィラメントワインディング法を用いて樹脂を含浸した炭素繊維を前記磁石2上に精度良く巻回積層して形成される炭素繊維強化樹脂製であり、シャフト1の軸心に対する繊維の巻回角度が85°以上90°未満(より好ましくは88°以上90°未満)のフープ巻きにより形成されている。   Specifically, the present embodiment is made of a carbon fiber reinforced resin formed by accurately winding and laminating carbon fibers impregnated with a resin on the magnet 2 using a known filament winding method. Is formed by hoop winding with a fiber winding angle of 85 ° or more and less than 90 ° (more preferably 88 ° or more and less than 90 °).

従って、炭素繊維が磁石2の外周方向に沿って(ロータの回転方向に対して略平行に)配されることで、遠心力に対する耐力が十分に発揮されることになる。   Therefore, the carbon fiber is disposed along the outer circumferential direction of the magnet 2 (substantially parallel to the rotation direction of the rotor), so that the resistance to centrifugal force is sufficiently exhibited.

また、本実施例の炭素繊維の体積含有率(Vf)は、75vol%以上85vol%以下に設定されている。75vol%未満であると炭素繊維の特性が十分に生かされず耐力が不十分となる。また、85vol%より大きくすると繊維がバラけ易くなり耐力が不十分となる。   Moreover, the volume content (Vf) of the carbon fiber of a present Example is set to 75 vol% or more and 85 vol% or less. If it is less than 75 vol%, the characteristics of the carbon fiber are not fully utilized and the proof stress becomes insufficient. On the other hand, if it is larger than 85 vol%, the fibers are easily broken and the proof stress is insufficient.

ここで、Vfを75vol%以上とするためには、繊維に含浸される樹脂量を、一般的なFRPを成形する場合の約半分の18wt%程度としなければならない。しかし、この樹脂量では、繊維の配向を制御するために必要な樹脂量を確保できず、繊維がバラけ易くなってしまう。   Here, in order to make Vf 75 vol% or more, the amount of resin impregnated in the fiber must be about 18 wt%, which is about half of the case of molding a general FRP. However, with this amount of resin, the amount of resin necessary to control the fiber orientation cannot be secured, and the fibers are likely to be scattered.

この点、本実施例においては、磁石2の外周に炭素繊維を巻回積層する際には、図6に図示したように、ボビン5から引き出される炭素繊維6の磁石2への導入角度がシャフト1の軸心に対し可及的に90°に近くなるようにボビン5と巻回部位との位置関係を設定することで、糸道を最適化している。また、繊維に加わる張力を、均一化することで最適化している。   In this regard, in this embodiment, when the carbon fiber is wound and laminated on the outer periphery of the magnet 2, the angle of introduction of the carbon fiber 6 drawn from the bobbin 5 into the magnet 2 is determined as shown in FIG. The yarn path is optimized by setting the positional relationship between the bobbin 5 and the winding part so as to be as close to 90 ° as possible with respect to one axis. Further, the tension applied to the fiber is optimized by making it uniform.

これにより、繊維の体積含有率を可及的に高めるために樹脂量を可及的に少なくしても、繊維をバラけさせることなく繊維配向を制御することが可能となる。   Thereby, even if the amount of resin is reduced as much as possible in order to increase the volume content of the fiber as much as possible, the fiber orientation can be controlled without causing the fibers to be separated.

また、上述したように、円周上の磁石2に繊維を巻きつけるためには、磁石2の曲面に繊維が追従しなければならない。この追従性は、繊維の伸びが大きいほど良好となる。ここで、基材繊維がガラス繊維の場合、伸びが大きく追従性が高いことから、円周上の磁石2に繊維を良好に巻きつけることができる。一方、炭素繊維は、伸びがガラス繊維の半分以下であり、追従性が低いことから、円周上の磁石2に繊維を良好に巻きつけることが一般的には困難となるが、本実施例においては、上述したように糸道及び繊維に加わる張力を最適化することで、追従性が低い繊維であっても、円周上の磁石2へ良好に巻き付けられるようにしている。   Further, as described above, in order to wind the fiber around the magnet 2 on the circumference, the fiber must follow the curved surface of the magnet 2. This followability becomes better as the elongation of the fiber is larger. Here, when the base fiber is a glass fiber, the elongation is large and the followability is high, so that the fiber can be wound well around the magnet 2 on the circumference. On the other hand, the carbon fiber has an elongation of less than half that of the glass fiber and has low followability, so that it is generally difficult to wind the fiber well around the magnet 2 on the circumference. In the above, by optimizing the tension applied to the yarn path and the fiber as described above, even a fiber having low followability can be satisfactorily wound around the magnet 2 on the circumference.

また、本実施例は、母材としてガラス転移温度(Tg)が150℃以上となるような樹脂を採用している。具体的には、主剤としての多官能エポキシ樹脂と酸無水物系硬化剤との混合物から成るものを採用している。従って、高速回転で生じる発熱に対しても剛性を維持できることになり、磁石2の浮上りと飛散防止をより確実に達成できる。   In this example, a resin having a glass transition temperature (Tg) of 150 ° C. or higher is used as a base material. Specifically, what consists of the mixture of the polyfunctional epoxy resin as a main ingredient and an acid anhydride type hardening | curing agent is employ | adopted. Therefore, rigidity can be maintained against heat generated by high-speed rotation, and the floating and scattering prevention of the magnet 2 can be achieved more reliably.

炭素繊維としては、密度が1.76g/cm以上1.88g/cm以下で、引張弾性率が230GPa以上475GPa以下のものを採用する。例えば、東レ株式会社製のT300(密度1.76g/cm、引張弾性率230GPa)や、M50JB(密度1.88g/cm、引張弾性率475GPa)等を採用できる。なお、上述した炭素繊維はPAN系であるが、同等の引張弾性率を有するピッチ系の炭素繊維を用いることも可能である。 As the carbon fiber, density of 1.76 g / cm 3 or more 1.88 g / cm 3 or less, the tensile modulus to adopt the following 475GPa least 230 GPa. For example, it can be employed in manufactured by Toray Industries, Inc. T300 (density 1.76 g / cm 3, tensile modulus 230 GPa) and, M50JB (density 1.88 g / cm 3, tensile modulus 475GPa) and the like. The carbon fibers described above are PAN-based, but pitch-based carbon fibers having an equivalent tensile elastic modulus can also be used.

一方、ガラス繊維は一般的に、密度が2.54g/cm、引張弾性率が7.0GPaである。これを、引張弾性率と密度とのバランスを示す指標値(引張弾性率/密度)で示すと、7.0/2.54≒2.76となる。これに対して、本実施例の上記炭素繊維の上記指標値は、230/1.76〜475/1.88≒131〜253となる。指標値が高いほど、その繊維が、軽さと引張弾性率のバランスに優れていることを示す。即ち、上記炭素繊維は、軽さと引張弾性率のバランスの点で、ガラス繊維より大幅に優れた繊維であり、ロータに用いられるFRPの繊維基材に適した基材と言える。 On the other hand, the glass fiber generally has a density of 2.54 g / cm 3 and a tensile elastic modulus of 7.0 GPa. When this is indicated by an index value (tensile modulus / density) indicating the balance between the tensile modulus and density, 7.0 / 2.54≈2.76. On the other hand, the index value of the carbon fiber of the present example is 230 / 1.76 to 475 / 1.88≈131 to 253. A higher index value indicates that the fiber has a better balance between lightness and tensile modulus. That is, the carbon fiber is a fiber significantly superior to glass fiber in terms of the balance between lightness and tensile elastic modulus, and can be said to be a base material suitable for the fiber base material of FRP used in the rotor.

上記構成に係る炭素繊維強化樹脂の剛性が高いメカニズムについて説明する。   A mechanism in which the carbon fiber reinforced resin according to the above configuration has high rigidity will be described.

FRPの弾性率は、(Ef×Vf)+(Em×Vm)という式から算出される。ここで、Efは繊維の引張弾性率、Vfは繊維の体積含有率、Emは樹脂の弾性率、Vmは樹脂の体積含有率のことである。VfがそのFRPにおいて定められると、EfはEmと比べて、3オーダー以上大きいことから、FRPの弾性率は、Ef×Vf(特にEf)の値に大きく依存する。   The elastic modulus of FRP is calculated from the equation (Ef × Vf) + (Em × Vm). Here, Ef is the tensile modulus of the fiber, Vf is the volume content of the fiber, Em is the elastic modulus of the resin, and Vm is the volume content of the resin. If Vf is determined in the FRP, Ef is 3 orders or more larger than Em, and the elastic modulus of FRP greatly depends on the value of Ef × Vf (particularly Ef).

本実施例で採用する炭素繊維は、例えば引張弾性率が475GPaであり、FRPのVfは75vol%以上である。これより、Ef×Vfの値は、475×0.75で、356.25以上となる。一方、一般的なガラス繊維を用いた場合、ガラス繊維の引張弾性率は7.0GPaであり、(ガラス繊維を用いたFRPの)平均的なVfは55vol%である。これより、Ef×Vfの値は、7.0×0.55=3.85となる。   The carbon fiber employed in this example has a tensile modulus of 475 GPa, for example, and the VRP of FRP is 75 vol% or more. Accordingly, the value of Ef × Vf is 475 × 0.75, which is 356.25 or more. On the other hand, when a general glass fiber is used, the tensile elastic modulus of the glass fiber is 7.0 GPa, and the average Vf (of FRP using the glass fiber) is 55 vol%. Thus, the value of Ef × Vf is 7.0 × 0.55 = 3.85.

以上より、上記構成に係る炭素繊維強化樹脂は、ガラス繊維を用いた一般的なFRPと比べて弾性率が大幅に高く、ロータの高速回転部材として非常に優れた部材となる。   As described above, the carbon fiber reinforced resin according to the above configuration has a significantly higher elastic modulus than a general FRP using glass fibers, and is an excellent member as a high-speed rotating member of a rotor.

本実施例は上述のように構成したから、高速回転する電動機に設けたロータを5000rpm以上で高速回転させる際、磁石2の外周方向に沿って配される炭素繊維により遠心力に対する耐力が十分に発揮され、磁石2をシャフト1に強固に固着して磁石2の浮上りと飛散を良好に防止することができる。   Since the present embodiment is configured as described above, when the rotor provided in the motor that rotates at high speed is rotated at a high speed of 5000 rpm or higher, the carbon fiber disposed along the outer circumferential direction of the magnet 2 is sufficiently resistant to centrifugal force. As a result, the magnet 2 can be firmly fixed to the shaft 1 and the floating and scattering of the magnet 2 can be satisfactorily prevented.

また、炭素繊維の体積含有率が75vol%以上と非常に高いため、軽量で且つ高弾性である炭素繊維の特性が強調され、全体の剛性を確保しつつ軽量化を達成できる。
従って、本実施例は、軽量であることは勿論、5000rpm以上の高速回転時においてもひずみや変形が生じることなく、且つ磁石2をシャフト1に強固に固着させることで良好に磁石2の浮上りと飛散を防止できる、高速回転が可能な磁石浮上り及び飛散防止部材3となる。
In addition, since the volume content of the carbon fiber is as high as 75 vol% or more, the characteristics of the carbon fiber that is lightweight and highly elastic are emphasized, and weight reduction can be achieved while ensuring the overall rigidity.
Therefore, in this embodiment, the magnet 2 can be lifted well by firmly fixing the magnet 2 to the shaft 1 without being strained or deformed even at a high speed of 5000 rpm or more, as well as being lightweight. Thus, the magnet floating and scattering preventing member 3 capable of high-speed rotation can be prevented.

本実施例の効果を裏付ける実験例について説明する。   An experimental example supporting the effect of the present embodiment will be described.

図7は、磁石浮上り及び飛散防止部材3のVf、繊維の引張弾性率、ガラス転移温度を変化させてロータの外観(変形の有無等)を評価した実験条件及び実験結果を示す表である。全てのサンプルはフィラメントワインディング法を用いたフープ巻きにより形成されている。また、比較例3を除くサンプルのマトリックス樹脂は、多官能エポキシ樹脂と酸無水物との混合物とし、比較例3は2官能エポキシ樹脂と酸無水物との混合物としている。   FIG. 7 is a table showing experimental conditions and experimental results for evaluating the appearance of the rotor (such as the presence or absence of deformation) by changing the Vf of the magnet floating and scattering prevention member 3, the tensile modulus of the fiber, and the glass transition temperature. . All samples are formed by hoop winding using a filament winding method. Moreover, the matrix resin of the sample except the comparative example 3 is made into the mixture of a polyfunctional epoxy resin and an acid anhydride, and the comparative example 3 is made into the mixture of a bifunctional epoxy resin and an acid anhydride.

実験結果から、Vfが75%未満の比較例1や、炭素繊維でなくガラス繊維を用いた比較例2や、ガラス転移温度が150℃未満である比較例3では、FRPの破損若しくは磁石の一部の浮上りを生じてしまうことが確認できた。一方、実施例1〜3は変形等が生じず、磁石2をシャフト1に強固に固着しておけることが確認できた。   From the experimental results, in Comparative Example 1 in which Vf is less than 75%, Comparative Example 2 in which glass fiber is used instead of carbon fiber, and Comparative Example 3 in which the glass transition temperature is less than 150 ° C., FRP breakage or magnet It was confirmed that the floating of the part would occur. On the other hand, it was confirmed that Examples 1 to 3 were not deformed and the magnet 2 could be firmly fixed to the shaft 1.

図8は、本実施例の磁石浮上り及び飛散防止部材3におけるVfと、必要張力に対する余裕率との関係を示したグラフである。必要張力に対する余裕率は、ロータの回転数が5000rpmの場合において、ひずみや変形が生じない下限の、必要張力に対する余裕率を基準(100%)として、その相対値をパーセント表示したものである。同グラフから、必要張力に対する余裕率が100%を上回るために必要なVf、即ち、ロータの回転数が5000rpmの場合において、ひずみや変形を生じないために必要なVfを把握することができる。   FIG. 8 is a graph showing the relationship between Vf in the magnet lifting and scattering prevention member 3 of this embodiment and the margin ratio with respect to the required tension. The margin ratio with respect to the required tension is the relative value expressed as a percentage with the margin ratio with respect to the required tension as a reference (100%), which is the lower limit at which no distortion or deformation occurs when the rotational speed of the rotor is 5000 rpm. From the graph, it is possible to grasp Vf necessary for the margin ratio with respect to the necessary tension to exceed 100%, that is, Vf necessary for preventing distortion and deformation when the rotational speed of the rotor is 5000 rpm.

ここで、同グラフから、Vfが75.0%以上であれば、必要張力に対する余裕率が100%を上回ることを確認できた。即ち、ロータの回転数が5000rpmの場合、磁石浮上り及び飛散防止部材3のVfが75.0%以上であれば、(本実施例の磁石浮上り及び飛散防止部材3は)ひずみや変形を生じないことを確認できた。ひずみや変形が生じないことで、磁石浮上り及び飛散防止部材3は、磁石2をシャフト1に強固に固着して磁石2の浮上りと飛散を良好に防止することができる。   Here, it can be confirmed from the graph that when Vf is 75.0% or more, the margin ratio to the required tension exceeds 100%. That is, when the rotational speed of the rotor is 5000 rpm and the Vf of the magnet lifting and scattering prevention member 3 is 75.0% or more (the magnet lifting and scattering prevention member 3 of this embodiment) is not distorted or deformed. It was confirmed that it did not occur. By preventing distortion and deformation, the magnet lifting and scattering prevention member 3 can firmly prevent the magnet 2 from rising and scattering by firmly fixing the magnet 2 to the shaft 1.

以上から、本発明の構成によれば、ロータの高速回転時において磁石2の浮上りと飛散を良好に防止できる磁石浮上り及び飛散防止部材3が得られることが確認できた。   From the above, according to the configuration of the present invention, it was confirmed that the magnet lifting and scattering preventing member 3 capable of satisfactorily preventing the lifting and scattering of the magnet 2 during high-speed rotation of the rotor can be obtained.

本発明に係る磁石浮上り及び飛散防止部材3並びにロータは、高速回転する電動機、発電機等の回転電機はもちろんのこと、これらを使用した送風機、ブロワ、圧縮機、タービン、ポンプ等の産業機器などの用途にも幅広く適用できる。   The magnet lifting and scattering prevention member 3 and the rotor according to the present invention are not only a rotating electric machine such as an electric motor and a generator rotating at high speed, but also an industrial apparatus such as a blower, a blower, a compressor, a turbine, and a pump using these. It can be applied to a wide range of applications.

1 シャフト
2 磁石
3 磁石浮上り及び飛散防止部材
1 Shaft 2 Magnet 3 Magnet floating and scattering prevention member

Claims (11)

シャフトと該シャフトの周りに設けられる分割体を筒状に連設して成る磁石とを有して5000rpm以上で回転するロータの該磁石の外側に設けられ、前記磁石の浮上り及び飛散を防止する筒状の磁石浮上り及び飛散防止部材であって、この磁石浮上り及び飛散防止部材は、炭素繊維を前記磁石の外周方向に沿って巻回積層して成る炭素繊維強化樹脂製のものであり、前記炭素繊維の体積含有率は75vol%以上であることを特徴とする磁石浮上り及び飛散防止部材。   It is provided outside the magnet of the rotor that has a shaft and a magnet formed by continuously connecting the divided bodies provided around the shaft in a cylindrical shape and rotates at 5000 rpm or more, and prevents the magnet from rising and scattering. A cylindrical magnet floating and scattering prevention member, which is made of carbon fiber reinforced resin formed by winding and laminating carbon fibers along the outer circumferential direction of the magnet. A magnet floating and scattering prevention member, wherein the carbon fiber has a volume content of 75 vol% or more. 請求項1記載の磁石浮上り及び飛散防止部材において、前記炭素繊維は引張弾性率が230GPa以上のものであることを特徴とする磁石浮上り及び飛散防止部材。   The magnet lifting and scattering prevention member according to claim 1, wherein the carbon fiber has a tensile elastic modulus of 230 GPa or more. 請求項2記載の磁石浮上り及び飛散防止部材において、前記炭素繊維は引張弾性率が475GPa以下のものであることを特徴とする磁石浮上り及び飛散防止部材。   The magnet floating and scattering preventing member according to claim 2, wherein the carbon fiber has a tensile elastic modulus of 475 GPa or less. 請求項1〜3いずれか1項に記載の磁石浮上り及び飛散防止部材において、マトリックス樹脂のガラス転移温度は150℃以上であることを特徴とする磁石浮上り及び飛散防止部材。   The magnet floating and scattering prevention member according to any one of claims 1 to 3, wherein the matrix resin has a glass transition temperature of 150 ° C or higher. 請求項1〜4いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記炭素繊維の巻回角度は前記シャフトの回転軸に対して85°以上90°未満に設定されていることを特徴とする磁石浮上り及び飛散防止部材。   5. The magnet lifting and scattering prevention member according to claim 1, wherein a winding angle of the carbon fiber is set to be 85 ° or more and less than 90 ° with respect to a rotation axis of the shaft. Characteristic magnet lifting and scattering prevention member. 請求項1〜5いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記炭素繊維をフィラメントワインディング法により巻回積層して成るものであることを特徴とする磁石浮上り及び飛散防止部材。   The magnet floating and scattering preventing member according to any one of claims 1 to 5, wherein the carbon fiber is wound and laminated by a filament winding method. . 請求項1〜6いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記炭素繊維の体積含有率は85vol%以下であることを特徴とする磁石浮上り及び飛散防止部材。   The magnet lifting and scattering prevention member according to any one of claims 1 to 6, wherein the carbon fiber has a volume content of 85 vol% or less. 請求項1〜7いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記磁石は適宜な固定方法によりシャフトに固定されていることを特徴とする磁石浮上り及び飛散防止部材。   The magnet floating and scattering preventing member according to any one of claims 1 to 7, wherein the magnet is fixed to the shaft by an appropriate fixing method. 請求項1〜8いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記ロータは50000rpm以下で回転するロータであることを特徴とする磁石浮上り及び飛散防止部材。   The magnet floating and scattering prevention member according to any one of claims 1 to 8, wherein the rotor is a rotor rotating at 50000 rpm or less. 請求項1〜9いずれか1項に記載の磁石浮上り及び飛散防止部材において、前記ロータは電動機用または発電機用のロータであることを特徴とする磁石浮上り及び飛散防止部材。   The magnet floating and scattering prevention member according to any one of claims 1 to 9, wherein the rotor is a rotor for an electric motor or a generator. シャフトと該シャフトの周りに設けられた分割体を筒状に連設して成る磁石とを設けた5000rpm以上で回転するロータであって、このロータは、請求項1〜10いずれか1項に記載の磁石浮上り及び飛散防止部材が設けられていることを特徴とするロータ。   A rotor that rotates at 5000 rpm or more provided with a shaft and a magnet formed by continuously connecting divided bodies provided around the shaft in a cylindrical shape, and the rotor according to any one of claims 1 to 10 A rotor characterized in that the magnet lifting and scattering prevention member is provided.
JP2013230824A 2013-11-07 2013-11-07 Magnet floating and scattering prevention member and rotor Active JP6592230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230824A JP6592230B2 (en) 2013-11-07 2013-11-07 Magnet floating and scattering prevention member and rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230824A JP6592230B2 (en) 2013-11-07 2013-11-07 Magnet floating and scattering prevention member and rotor

Publications (2)

Publication Number Publication Date
JP2015091202A true JP2015091202A (en) 2015-05-11
JP6592230B2 JP6592230B2 (en) 2019-10-16

Family

ID=53194503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230824A Active JP6592230B2 (en) 2013-11-07 2013-11-07 Magnet floating and scattering prevention member and rotor

Country Status (1)

Country Link
JP (1) JP6592230B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129212A1 (en) * 2017-12-08 2019-06-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor with cooling
CN110247490A (en) * 2018-03-08 2019-09-17 三菱重工业株式会社 Motor
JP2020089068A (en) * 2018-11-26 2020-06-04 松尾 栄人 Permanent magnet embedded rotor
JP2020092565A (en) * 2018-12-07 2020-06-11 株式会社豊田自動織機 Rotor of dynamo-electric machine, and dynamo-electric machine
US10910894B2 (en) 2018-05-15 2021-02-02 Toyota Jidosha Kabushiki Kaisha Rotor
JPWO2021149772A1 (en) * 2020-01-24 2021-07-29
WO2021219572A1 (en) * 2020-04-27 2021-11-04 Siemens Aktiengesellschaft Electric rotating machine, electric motor, or liquid pump with air gap sleeve
US20220388686A1 (en) * 2019-11-11 2022-12-08 Mitsubishi Heavy Industries, Ltd. Rotor manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356050A (en) * 1989-07-25 1991-03-11 Arisawa Mfg Co Ltd Binder for rotor
JPH09322450A (en) * 1996-06-04 1997-12-12 Toyota Motor Corp Rotor for electric motor
JPH1051985A (en) * 1996-08-02 1998-02-20 Shinko Electric Co Ltd Rotor shrink ring for high-speed synchronous generator and its manufacturing method
JPH1189142A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Permanent magnet type synchronous electric motor, its manufacture and centrifugal compressor provided with the permanent magnet type synchronous electric motor
JPH11146583A (en) * 1997-11-05 1999-05-28 Mitsubishi Heavy Ind Ltd Rotor and motor
JP2011109774A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Rotating electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356050A (en) * 1989-07-25 1991-03-11 Arisawa Mfg Co Ltd Binder for rotor
JPH09322450A (en) * 1996-06-04 1997-12-12 Toyota Motor Corp Rotor for electric motor
JPH1051985A (en) * 1996-08-02 1998-02-20 Shinko Electric Co Ltd Rotor shrink ring for high-speed synchronous generator and its manufacturing method
JPH1189142A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Permanent magnet type synchronous electric motor, its manufacture and centrifugal compressor provided with the permanent magnet type synchronous electric motor
JPH11146583A (en) * 1997-11-05 1999-05-28 Mitsubishi Heavy Ind Ltd Rotor and motor
JP2011109774A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Rotating electric machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129212A1 (en) * 2017-12-08 2019-06-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor with cooling
US10985624B2 (en) 2017-12-08 2021-04-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor with cooling
CN110247490B (en) * 2018-03-08 2021-03-12 三菱重工业株式会社 Motor
CN110247490A (en) * 2018-03-08 2019-09-17 三菱重工业株式会社 Motor
JP2019161758A (en) * 2018-03-08 2019-09-19 三菱重工業株式会社 motor
US10910894B2 (en) 2018-05-15 2021-02-02 Toyota Jidosha Kabushiki Kaisha Rotor
JP2020089068A (en) * 2018-11-26 2020-06-04 松尾 栄人 Permanent magnet embedded rotor
JP2020092565A (en) * 2018-12-07 2020-06-11 株式会社豊田自動織機 Rotor of dynamo-electric machine, and dynamo-electric machine
US20220388686A1 (en) * 2019-11-11 2022-12-08 Mitsubishi Heavy Industries, Ltd. Rotor manufacturing method
US11952148B2 (en) * 2019-11-11 2024-04-09 Mitsubishi Heavy Industries, Ltd. Rotor manufacturing method
JPWO2021149772A1 (en) * 2020-01-24 2021-07-29
WO2021149772A1 (en) * 2020-01-24 2021-07-29 三菱重工業株式会社 Pole piece device for magnetic gear, magnetic gear, and production method for pole piece device for magnetic gear
JP7263561B2 (en) 2020-01-24 2023-04-24 三菱重工業株式会社 Magnetic pole piece device for magnetic gear, magnetic gear, and method for manufacturing magnetic pole piece device for magnetic gear
WO2021219572A1 (en) * 2020-04-27 2021-11-04 Siemens Aktiengesellschaft Electric rotating machine, electric motor, or liquid pump with air gap sleeve

Also Published As

Publication number Publication date
JP6592230B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6592230B2 (en) Magnet floating and scattering prevention member and rotor
JP6281922B2 (en) Directional stiffening method for flexible magnet
JP7399500B2 (en) Axial flux rotor with magnets and a body of composite material layers with fibers of different orientations, method for manufacturing the rotor, and electromagnetic motor or generator comprising the rotor
JP6180526B2 (en) Flywheel energy storage device
JP2015144550A (en) Rotor of electric motor with magnet holding structure and electric motor including the rotor
US10312758B2 (en) Holding member, rotor of a rotating electrical machine comprising the same, and a rotating electrical machine comprising the rotor
US10734873B2 (en) Motor
US11804742B2 (en) Rotor for an electromagnetic motor or generator with tapered branches
JP2011098524A (en) Method of manufacturing case and the case
CA2935939C (en) Wind turbine having a fibre winding
JPH0679958B2 (en) Yarn winding device
JP3319563B2 (en) Spiral fabric and prepreg and rotating body using the same
JP6639761B1 (en) Rotor and motor
EP3093485A1 (en) A wind turbine blade
JP2001254285A (en) Bowed guide plate for strander
WO2021131807A1 (en) Magnetic pole-piece device and magnetic gear device
JP6490413B2 (en) Fiber reinforced composite shaft
JP5873342B2 (en) Main roll for wire saw used for solar cell manufacturing
JP4353599B2 (en) Rotating body
US8556586B2 (en) Turbine blade
CN206498270U (en) Motor rotor construction
GB2420379A (en) Vacuum pump having a motor combined with an impeller
WO2023119459A1 (en) Rotor for motor, and motor using said rotor
CN217682735U (en) Embedded bolt sleeve and wind driven generator
EP4380008A1 (en) Rotor and dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180521

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R150 Certificate of patent or registration of utility model

Ref document number: 6592230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250