WO2023119459A1 - Rotor for motor, and motor using said rotor - Google Patents

Rotor for motor, and motor using said rotor Download PDF

Info

Publication number
WO2023119459A1
WO2023119459A1 PCT/JP2021/047464 JP2021047464W WO2023119459A1 WO 2023119459 A1 WO2023119459 A1 WO 2023119459A1 JP 2021047464 W JP2021047464 W JP 2021047464W WO 2023119459 A1 WO2023119459 A1 WO 2023119459A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotor core
diameter side
holding member
circumferential direction
Prior art date
Application number
PCT/JP2021/047464
Other languages
French (fr)
Japanese (ja)
Inventor
広紀 小林
和規 高垣
達也 小山
宇宙 満田
尚哉 寺家
盛幸 枦山
甲彰 山根
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022534851A priority Critical patent/JP7120503B1/en
Priority to PCT/JP2021/047464 priority patent/WO2023119459A1/en
Publication of WO2023119459A1 publication Critical patent/WO2023119459A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/279Magnets embedded in the magnetic core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to a motor rotor and a motor using this rotor.
  • a permanent magnet motor is a rotating electrical machine in which permanent magnets are arranged in the rotor, and is characterized by high efficiency because no current flows through the rotor.
  • An IPM (Interior Permanent Magnet) motor in which a permanent magnet is arranged in a rotor core, is a motor system that can achieve high torque because it can utilize the attractive force of the rotor core in addition to the attractive force of the permanent magnet.
  • a rotor with magnets embedded in the rotor core cannot withstand the tensile stress in the circumferential direction of the rotor core generated by centrifugal force when it is rotated at high speed, and breaks. .
  • a method of increasing the strength of the material of the rotor core has been considered, but this reduces the magnetism and impairs the torque of the motor.
  • the rotor core is divided in the circumferential direction into individual pieces, and a structure that uses members other than the rotor core to withstand the centrifugal force is being considered.
  • the prior art discloses a rotor that withstands centrifugal force by dividing the rotor core in the circumferential direction and fitting it into a support member. (For example, see Patent Document 1)
  • the rotor Since the rotor has a frame radially extending from the center where it contacts the shaft, the weight of the frame is large and generates a large centrifugal force, which prevents high-speed rotation.
  • the frame since the frame extends radially from the central portion, it can be applied to an inner rotor in which the stator is arranged outside the rotor core, but cannot be applied to an outer rotor in which the stator is arranged inside the rotor core.
  • the present disclosure has been made to solve the problems described above, and enables high-speed rotation by firmly holding the divided rotor core using a lightweight strength member, and can also be applied to the outer rotor.
  • the aim is to obtain a rotor for an IPM motor.
  • a rotor according to the present disclosure includes a rotor core in which divided rotor cores in which permanent magnets are embedded and which are divided in the circumferential direction are arranged circumferentially; , and individual wedges embedded between the split rotor cores.
  • the rotor of the present disclosure it is possible to rotate at high speed without using a frame by embedding individual wedges between the divided rotor cores. Further, since there is no need to arrange parts on the inner diameter side of the rotor core, there is an effect that it can also be applied to an outer rotor.
  • FIG. 1 is a perspective view of a rotor according to Embodiment 1;
  • FIG. FIG. 2 is a cross-sectional view corresponding to the cross-section A of FIG. 1 according to the first embodiment;
  • 8 is a perspective view of a rotor according to a second embodiment;
  • FIG. FIG. 4 is a cross-sectional view corresponding to the cross-section B of FIG. 3 according to the second embodiment;
  • FIG. 11 is a cross-sectional view of a motor according to a third embodiment;
  • FIG. 11 is a cross-sectional view of a motor according to a fourth embodiment;
  • FIG. 1 is a perspective view of a rotor according to Embodiment 1.
  • FIG. FIG. 2 is a sectional view corresponding to section A in FIG. 1 according to the first embodiment. It should be noted that illustration of the shaft and the stator is omitted in the present embodiment.
  • the rotor 1 shown in FIGS. 1 and 2 has a rotor core 3 in which divided rotor cores 3a in which permanent magnets 2 are embedded and which are divided in the circumferential direction are arranged in a circumferential shape, and a rotor core 3 having a cylindrical shape. and individual wedges 5 embedded between the divided rotor cores 3a.
  • FIG. 1 The arrows illustrated in FIG. 1 define axial, circumferential and radial directions, respectively. Illustration is omitted in subsequent drawings.
  • a cross section A shown in FIG. 1 shows a cross section when the rotor 1 is cut in the radial direction.
  • the rotor 1 has a torque transmission member 7 arranged on the end face in the axial direction, and has a structure for transmitting the rotational force of the rotor 1 to the shaft.
  • a lightweight one may be selected as long as it has the strength and rigidity to withstand the desired torque.
  • a disk made of aluminum alloy is used.
  • the torque transmission member 7 is connected with the holding member 4 .
  • the connection method can be any one of fastening, adhesion and fitting. If both the holding member 4 and the torque transmission member 7 are made of metal material, they may be connected by welding.
  • a hole 6 for connecting with the shaft is arranged in the center of the rotor 1, and has a structure for transmitting rotation.
  • the holding member 4 is exposed on the outer diameter side surface of the rotor 1 .
  • the structure for transmitting rotation to the shaft is not particularly limited, but for example, a method of transmitting rotation by providing key grooves in the shaft and the torque transmission member 7 and inserting a key into both of them is used. As a result, a large torque can be transmitted, and by press-fitting the shaft into the hole, further frictional force can be obtained and transmitted, thereby suppressing damage to the shaft due to stress concentration.
  • the permanent magnets 2 are embedded in the rotor core 3 and generate magnetic flux to the stator. As shown in FIG. 2, the permanent magnets 2 have a flat plate shape and are evenly embedded in each divided rotor core 3a of the rotor core 3 divided in the circumferential direction. Two permanent magnets 2 embedded in the split rotor core 3a are arranged at an angle to each other.
  • the permanent magnet 2 has a flat plate shape, the processing of the permanent magnet 2 is facilitated and the productivity can be improved. Magnetic design is also possible by adjusting the embedding angle of the permanent magnets 2 embedded in the split rotor core 3a.
  • the shape, number, and arrangement of the permanent magnets 2 shown in FIG. 2 are merely examples, and the shape, number, and arrangement of the permanent magnets 2 are not particularly limited, and may be designed electromagnetically.
  • the rotor 1 uses samarium-cobalt magnets with strong magnetic force and excellent heat resistance.
  • a samarium-cobalt magnet By using a samarium-cobalt magnet, the magnetic force can be maintained even in a high-temperature environment, and application to aircraft is also possible.
  • Any of ferrite magnets, neodymium magnets, samarium-cobalt magnets, and alnico magnets may be used as the material of the permanent magnets 2, and these magnets may be combined. Alternatively, these powders may be mixed with plastic to form a composite.
  • the rotor core 3 has a circular shape and is evenly divided in the circumferential direction. That is, as shown in FIG. 2, the rotor core 3 has a plurality of divided rotor cores 3a arranged in a circumferential direction. Two flat plate-shaped permanent magnets 2 are arranged on the split rotor core 3a at an angle to each other. The outer peripheral surface of the rotor core 3 is in contact with the holding member 4, and individual wedges 5 are embedded between the divided rotor cores 3a.
  • the rotor core 3 is divided in the circumferential direction, the tensile stress in the circumferential direction during rotation is smaller than that of a rotor core that is not divided in the circumferential direction, and the rotor core is less likely to break. Also, leakage of magnetic flux can be suppressed, and large torque can be obtained.
  • the rotor 1 of the present embodiment uses silicon steel sheets laminated in the axial direction, and is characterized by excellent magnetic properties.
  • the laminated silicon steel sheets have a specific gravity of 7.7 when the silicon steel sheets are single, and a specific gravity of 7.6 when laminated via an inorganic insulating layer.
  • the holding member 4 has a cylindrical shape and is provided so as to continuously contact the outer peripheral surface of the rotor core 3 in the circumferential direction. That is, the structure is such that the centrifugal force generated in the permanent magnet 2, the rotor core 3 and the wedge 5 is supported by the tensile strength of the holding member 4 in the circumferential direction. This structure can improve the rotational speed limit of the rotor 1 by increasing the tensile strength of the holding member 4 in the circumferential direction.
  • the material of the holding member 4 is fiber reinforced plastic composed of fibers and resin.
  • the fiber length is 1 mm or more.
  • so-called chopped fibers having a fiber length of 1 mm or more and 30 mm or less are used.
  • the failure of fiber-reinforced plastics is governed by the strength of the fibers, independent of the resin. Therefore, so-called continuous fibers in which fibers are connected for a long time are desirable because they can maximize the strength of the fiber-reinforced plastic.
  • the fiber material used has high tensile strength and is non-magnetic.
  • examples are glass fibres, carbon fibres, SiC fibres, aramid fibres, and boron fibres.
  • carbon fibers that can achieve higher tensile strength as the fibers, and among carbon fibers, carbon fibers that have particularly high tensile strength are desirable.
  • the tensile strength as a fiber reinforced plastic can be realized between 1870 MPa and 3850 MPa.
  • the tensile strength of the silicon steel sheet can be increased from 310 MPa to 560 MPa, high-speed rotation becomes possible.
  • Pitch-based carbon fibers with a tensile strength of up to 3400 MPa have been put to practical use in industrial applications.
  • PAN-based carbon fibers of up to 7000 MPa have been put to practical use in industrial applications. If these materials are used, there is no particular problem in mass production of the fibers, so the productivity is excellent.
  • a fiber-reinforced plastic having high tensile strength in the circumferential direction of the cylindrical shape can be realized.
  • the fiber-reinforced plastic By orienting some fibers in a direction other than the circumferential direction to weaken the anisotropy of the fiber-reinforced plastic, it may be designed to withstand external forces other than centrifugal force. In this case, if more than half of the fibers are oriented in the circumferential direction, a circumferential tensile strength of at least 935 MPa to 1925 MPa can be achieved, which is higher than that of a silicon steel plate, so high-speed rotation is possible.
  • PAN-based carbon fibers of 7000 MPa are used and all of them are oriented in the circumferential direction, so that a circumferential tensile strength of 3850 MPa can be realized and the highest speed rotation is possible.
  • the material is selected so that the specified performance is imparted.
  • Resins are selected from the group of epoxy resins, vinyl esters, unsaturated polyesters, furans, polyurethanes, polyimides, polyamides, polyetheretherketones, polyethersulfones, polypropylenes, polyesters, polycarbonates, acrylonitrile styrenes, acrylonitrile butadiene styrenes and modified polyphenylene ethers be done.
  • the resin used is an epoxy resin.
  • additives or fillers may be mixed with the resin so as to impart desired performance to the holding member 4 .
  • flame retardancy can be improved by mixing any one of aluminum hydroxide, magnesium hydroxide, antimony trioxide, antimony pentoxide and antimony tetroxide.
  • the holding member 4 is formed into a cylindrical shape by a filament winding method.
  • the orientation direction of the fibers does not necessarily match the designated direction, and includes manufacturing errors within the limits of the manufacturing method. Even if one intends to orient all the fibers in the circumferential direction, there is a manufacturing error of the order of ⁇ 5°.
  • fibers are reciprocated in the axial direction while being wound around a mandrel using a filament winding method, they are not oriented strictly in the circumferential direction, but form an angle of about ⁇ 5°.
  • the direction of fiber orientation is within a range of ⁇ 7° from the circumferential direction of the cylinder.
  • the wedges 5 are respectively embedded between the split rotor cores 3a.
  • Press fitting is used as a method of embedding the wedge 5 between the split rotor cores 3a.
  • the method of embedding the wedge 5 is not limited to press fitting.
  • the rotor core 3 can obtain the adhesion force with the holding member 4.
  • the wedges 5 have a smaller thickness, which is the length in the radial direction, than the rotor core 3, so that the cross-sectional area occupied by the wedges 5 can be reduced.
  • the wedge 5 may be made of any material as long as it is non-magnetic from the viewpoint of suppressing magnetic flux leakage.
  • it may be metal, plastic, or fiber-reinforced plastic.
  • the material characteristics of the material are the elastic modulus with which it can be embedded between the split rotor cores 3a, and the wedge 5's separation from the split rotor cores 3a within the range of elastic deformation when the holding member 4 is deformed by centrifugal force and its circumference is extended. It is necessary to have a magnitude of elastic strain that does not
  • the rotor 1 is preferably made of thermoplastic, and specifically, PEEK resin is used.
  • PEEK resin has a specific gravity of 1.2 to 1.4 and is lighter than the silicon steel plate that is the material of the rotor core 3. Therefore, even if the wedge 5 is arranged on the outer diameter side, the centrifugal force can be reduced and high-speed rotation is achieved. can.
  • PEEK resin has a low elastic modulus of 4.0 to 4.4 GPa and a large breaking strain of 3.5 to 4.5%, so it is softer than silicon steel plates and fiber reinforced plastics. Therefore, when the wedge 5 is embedded between the split rotor cores 3a, the wedge 5 is elastically deformed, so that the pressing force can be reduced.
  • PEEK resin has a high glass transition temperature of 140 to 150 degrees, it is excellent in heat resistance and does not easily break down even if the temperature of the rotor rises due to motor loss.
  • the positions at which the individual wedges 5 are arranged may be positions where the divided rotor cores 3a and the wedges 5 are in close contact between the divided rotor cores 3a. Also, between the split rotor cores 3a, it is preferable to embed the wedge 5 at a position where the distance from the outer diameter side is shorter than the distance from the inner diameter side, and the position where the wedge 5 is in contact with the holding member 4 is most preferable. As a result, the centrifugal force is smaller than when the rotor core, which has a large specific gravity, is arranged on the outer diameter side, and high-speed rotation is possible.
  • the rotor 1 according to this embodiment When the rotor 1 according to this embodiment is used as an outer rotor, a large amount of torque can be obtained because a large amount of rotor core material can be arranged on the inner diameter side near the stator 8 .
  • the wedge 5 since the wedge 5 is in contact with the holding member 4, a gap is formed between the divided rotor cores 3a, so that stress concentration in the holding member 4 and breakage of the holding member 4 can be avoided.
  • the width in the circumferential direction of the wedges 5 embedded between the split rotor cores 3a has a maximum value on the inner diameter side of the wedges 5 relative to the outermost diameter side.
  • the shape shown in FIG. 2 is preferable.
  • the wedge 5 is preferably embedded between the split rotor cores 3a so that the width in the circumferential direction is maximized on the inner diameter side rather than on the outermost diameter side. This can prevent the split rotor core 3a from falling off toward the inner diameter side.
  • the wedge 5 shown in FIG. 2 has a trapezoidal shape in which the upper base located on the outer diameter side of the split rotor core 3a is shorter than the lower base located on the inner diameter side, but this is an example.
  • the shape of the wedge 5 is not limited as long as it has a maximum width on the inner diameter side rather than on the outermost diameter side in the circumferential direction.
  • the wedge 5 has a cross-sectional shape in which the side located on the outermost diameter side of the wedge 5 has the same curvature as the inner diameter shape of the holding member 4. , is arranged so as to face and contact the holding member 4 .
  • the split rotor core 3a since the maximum width of the wedge 5 in the circumferential direction is on the inner diameter side rather than on the outermost diameter side, the split rotor core 3a is in close contact with the holding member 4 without falling off on the inner diameter side.
  • the outermost side of the wedge 5 is in close contact with the holding member 4, stress concentration does not occur on the inner diameter side of the holding member 4, enabling high-speed rotation.
  • the tensile strength of the fiber is determined according to the method of JIS R 7606-2000.
  • the tensile strength of fiber-reinforced plastic is obtained by the anisotropic test method described in JIS K7164:2005.
  • the volumetric fiber content of fiber reinforced plastics is determined by any one of the combustion method, nitric acid decomposition method, and sulfuric acid decomposition method described in JIS K 7075-1991 "7. Measurement of carbon fiber mass" that does not damage the fibers. It is sufficient that the fibers are extracted according to the principle of the method.
  • the tensile strength of the silicon steel sheet was measured using a No. 13A test piece described in JIS Z 2241:2011.
  • the specific gravity is the relative density calculated by measuring the density by the water substitution method described in JIS K 7112:1999 and using water as a reference material.
  • the glass transition temperature is determined by differential scanning calorimetry according to JIS K7121:2012.
  • the rotor 1 can rotate at high speed without using a frame by embedding individual wedges 5 between the divided rotor cores 3a. It also has the rotor structure of an IPM motor in which the permanent magnets 2 are embedded in the rotor core 3 . Compared to an induction motor that requires current to flow through the rotor 1, this structure consumes less power because no current flows through the rotor 1, and is efficient and generates less heat due to less copper loss. In addition, since the permanent magnets 2 are embedded in the rotor core 3, the attractive force of the rotor core 3 can be utilized in addition to the attractive force of the permanent magnets 2, resulting in high torque.
  • the rotor 1 since the rotor 1 has spaces on both the inner diameter side and the outer diameter side, if the stator 8 is arranged on the outer diameter side of the rotor 1, it can be used as an inner rotor.
  • An outer rotor can be formed by arranging the stator 8 on the inner diameter side of the rotor. Furthermore, if the stators 8 are arranged on both the outer diameter side and the inner diameter side of the rotor 1, a double gap rotor can be obtained and a large torque can be obtained.
  • the rotor 1 includes the rotor core 3 divided in the circumferential direction and the individual wedges 5 embedded between the divided rotor cores 3a.
  • Embodiment 2 a rotor in which the outer peripheral surface of the rotor core is not entirely covered with the holding member 4 and is partially exposed will be described. Also, the rotor constitutes two holding members. The rest of the configuration is the same as that of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 3 is a perspective view of the rotor according to this embodiment.
  • FIG. 4 is a cross-sectional view corresponding to the cross-section B of FIG. 3 according to this embodiment.
  • the outer peripheral surface of the rotor core 31 is not entirely covered with the holding member 41, and is partially exposed.
  • the portion of the rotor core 31 where the outer peripheral surface is not in contact with the holding member 41 has a larger radius than the portion in contact with the holding member 41 because the holding member 41 is not covered. That is, the portion that is not in contact with the holding member 41 forms a projection with the same radius as the portion that is in contact with the holding member 41 .
  • Two holding members 41 are provided so as to cover the outer peripheral surface of the rotor core 31, and part of the rotor core 31 is exposed. Moreover, the holding member 41 is held in close contact with at least one of the rotor core 31 and the wedge 5 .
  • the present invention is not limited to this, and at least a portion of the outer peripheral surface of the rotor core 31 may be exposed. Also, although an example in which two holding members 41 are provided has been shown, the number is not limited and may be three or more.
  • FIG. 4 is a sectional view corresponding to section B in FIG. Specifically, it is a sectional view showing an example of a radial section at a position where the rotor core 31 is exposed. Since the outer peripheral surface of the rotor core 31 is not covered with the holding member 41 as shown in FIG. 4, the outer peripheral surface of the rotor core 31 is positioned at the outermost periphery in the rotor according to the present embodiment.
  • the rotor 11 according to the present embodiment is an inner rotor or a double gap rotor, the distance from the stator 8 arranged on the outer diameter side of the rotor 11 is shortened, and large torque can be obtained.
  • the holding member 41 is arranged so as to cover the outer peripheral surface of the rotor core 31, assembly is possible even if the rotor core 31 has projections.
  • Embodiment 3 shows an example in which the rotor according to the above embodiments is applied to an inner rotor.
  • FIG. 5 is a sectional view of the motor according to this embodiment.
  • the cross-sectional structure of the rotor 1 is the same as that of the rotor 1 according to the first embodiment.
  • the permanent magnet motor according to the present embodiment has a so-called inner rotor structure in which the stator 8 is arranged on the outer diameter side of the rotor 1 with a gap therebetween.
  • a stator 8 fixed to the outer diameter side of the rotor 1 produces a magnetic field fluctuation, thereby rotating the rotor 1 about the axial direction.
  • the permanent magnet type motor according to the present embodiment uses the rotor 1 according to the first embodiment, so it can be made lighter, has less centrifugal force, and can rotate at high speed. In addition, strong magnetism can be obtained, and large torque can be obtained. Furthermore, by embedding the wedges 5 between the split rotor cores 3a, the rotor cores 3 can be prevented from falling off toward the inner diameter side.
  • Embodiment 4 shows an example in which the rotor according to the above embodiments is applied to an outer rotor.
  • FIG. 6 is a sectional view of the motor according to this embodiment.
  • the cross-sectional structure of the rotor 1 is the same as that of the rotor 1 according to the first embodiment.
  • the permanent magnet motor according to the present embodiment has a so-called outer rotor structure in which the stator 8 is arranged on the inner diameter side of the rotor 1 with a gap therebetween.
  • a stator 8 fixed on the inner diameter side produces a magnetic field fluctuation, so that the rotor 1 rotates about the axial direction.
  • the permanent magnet motor according to the present embodiment uses the rotor 1 according to the first embodiment, there is no need to arrange parts on the inner diameter side of the rotor core 3, and the stator 8 is installed in that space. It does not interfere with placement. Therefore, the weight can be reduced, the centrifugal force is small, and high-speed rotation is possible. In addition, strong magnetism can be obtained, and large torque can be obtained. Furthermore, by embedding the wedges 5 between the split rotor cores 3a, the rotor cores 3 can be prevented from falling off toward the inner diameter side.
  • the rotor of an IPM motor was taken as an example, but the present invention is not limited to the IPM motor, and may be applied to the rotor of an SPM (Surface Permanent Magnet) motor.
  • SPM Surface Permanent Magnet
  • similar effects can be obtained by replacing the divided rotor cores in the above-described embodiment with permanent magnets. It may also be applied to the rotor of a generator. Also in this case, the same effect can be obtained by using the same configuration as the above-described embodiment.
  • the configuration shown in the above embodiment shows an example of the contents of the present invention, and it is possible to combine it with another known technology, and within the scope of the present invention, one of the configurations It is also possible to omit or change the part.

Abstract

The present invention provides a rotor that can rotate at a high-speed without a frame body, as a result of individual wedges being embedded between split rotor cores. Since it is not necessary to arrange components on the inner diameter side of the rotor core, the present invention can also be applied to an outer rotor. A rotor (1) comprises: a rotor core (3) in which split rotor cores (3a) are disposed circumferentially, the split rotor cores having permanent magnets (2) embedded therein and being divided in the circumferential direction; a holding member (4) having a cylindrical shape, the inner diameter surface thereof being in contact with the outer circumferential surface of the rotor core (3); and individual wedges (5) embedded between the split rotor cores (3a).

Description

モータのロータおよびこのロータを用いたモータMotor rotor and motor using this rotor
 本開示は、モータのロータおよびこのロータを用いたモータに関する。 The present disclosure relates to a motor rotor and a motor using this rotor.
 永久磁石式モータはロータに永久磁石を配置した回転電機であり、ロータに電流を流さないため効率が良いという特徴を有する。ロータコアの中に永久磁石を配置したIPM(Interior Permanent Magnet)モータは、永久磁石の吸引力に加えロータコアの吸引力を利用できるため、高トルクが実現できるモータ方式である。 A permanent magnet motor is a rotating electrical machine in which permanent magnets are arranged in the rotor, and is characterized by high efficiency because no current flows through the rotor. An IPM (Interior Permanent Magnet) motor, in which a permanent magnet is arranged in a rotor core, is a motor system that can achieve high torque because it can utilize the attractive force of the rotor core in addition to the attractive force of the permanent magnet.
 一方でロータコアに磁石を埋め込んだロータは、高速回転させると遠心力によって発生するロータコア周方向の引張応力に耐えきれず破壊し、ロータコアと永久磁石が飛散してしまうため、高速回転することができない。ロータコアの材質を高強度にする方法が考えられているが、磁性が低くなるためモータのトルクが損なわれる。 On the other hand, a rotor with magnets embedded in the rotor core cannot withstand the tensile stress in the circumferential direction of the rotor core generated by centrifugal force when it is rotated at high speed, and breaks. . A method of increasing the strength of the material of the rotor core has been considered, but this reduces the magnetism and impairs the torque of the motor.
 そのためロータコアを周方向に分割して個片化し、ロータコア以外の部材を用いて遠心力に耐える構造が考えられている。従来技術にはロータコアを周方向に分割し、支持部材に嵌め込むことにより、遠心力に耐えるロータが開示されている。(例えば、特許文献1参照) Therefore, the rotor core is divided in the circumferential direction into individual pieces, and a structure that uses members other than the rotor core to withstand the centrifugal force is being considered. The prior art discloses a rotor that withstands centrifugal force by dividing the rotor core in the circumferential direction and fitting it into a support member. (For example, see Patent Document 1)
特開2014-183691号公報JP 2014-183691 A
 上記ロータはシャフトと接する中心部から枠体が放射状に延びているため、枠体の重量が大きく大きな遠心力を生むため、高速回転ができない。また、枠体が中心部から放射状に延びているため、ステータがロータコアの外側に配置されるインナーロータには適用できるが、ステータがロータコアの内側に配置されるアウターロータには適用できない。 Since the rotor has a frame radially extending from the center where it contacts the shaft, the weight of the frame is large and generates a large centrifugal force, which prevents high-speed rotation. In addition, since the frame extends radially from the central portion, it can be applied to an inner rotor in which the stator is arranged outside the rotor core, but cannot be applied to an outer rotor in which the stator is arranged inside the rotor core.
 本開示は上述のような課題を解決するためになされたものであり、分割されたロータコアを軽量な強度部材を用いて強固に保持することにより高速回転を可能にし、かつアウターロータにも適用できるIPMモータのロータを得ることを目的としている。 The present disclosure has been made to solve the problems described above, and enables high-speed rotation by firmly holding the divided rotor core using a lightweight strength member, and can also be applied to the outer rotor. The aim is to obtain a rotor for an IPM motor.
 本開示にかかるロータは、永久磁石が埋め込まれ周方向に分割された分割ロータコアが円周状に配置されたロータコアと、円筒形状を有し、内径側表面がロータコアの外周面と接する保持部材と、分割ロータコア間に埋め込まれた個片のくさびとを備えたものである。 A rotor according to the present disclosure includes a rotor core in which divided rotor cores in which permanent magnets are embedded and which are divided in the circumferential direction are arranged circumferentially; , and individual wedges embedded between the split rotor cores.
 本開示のロータによれば、分割ロータコア間に個片のくさびを埋め込むことにより枠体を用いずに高速回転できる。また、ロータコアの内径側に部品を配置する必要がないため、アウターロータにも適用できるという効果を有する。 According to the rotor of the present disclosure, it is possible to rotate at high speed without using a frame by embedding individual wedges between the divided rotor cores. Further, since there is no need to arrange parts on the inner diameter side of the rotor core, there is an effect that it can also be applied to an outer rotor.
実施の形態1にかかるロータの斜視図である。1 is a perspective view of a rotor according to Embodiment 1; FIG. 実施の形態1にかかる図1の断面Aに対応する断面図である。FIG. 2 is a cross-sectional view corresponding to the cross-section A of FIG. 1 according to the first embodiment; 実施の形態2にかかるロータの斜視図である。8 is a perspective view of a rotor according to a second embodiment; FIG. 実施の形態2にかかる図3の断面Bに対応する断面図である。FIG. 4 is a cross-sectional view corresponding to the cross-section B of FIG. 3 according to the second embodiment; 実施の形態3にかかるモータの断面図である。FIG. 11 is a cross-sectional view of a motor according to a third embodiment; 実施の形態4にかかるモータの断面図である。FIG. 11 is a cross-sectional view of a motor according to a fourth embodiment;
 以下に、実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は例示である。また、各実施の形態は、適宜組み合わせて実行することができる。 The embodiments will be described in detail below based on the drawings. In addition, the embodiment described below is an example. Also, each embodiment can be executed in combination as appropriate.
 実施の形態1.
 図1は実施の形態1にかかるロータの斜視図である。図2は実施の形態1にかかる図1の断面Aに対応する断面図である。なお、本実施の形態においてシャフトおよびステータの図示は省略する。
Embodiment 1.
FIG. 1 is a perspective view of a rotor according to Embodiment 1. FIG. FIG. 2 is a sectional view corresponding to section A in FIG. 1 according to the first embodiment. It should be noted that illustration of the shaft and the stator is omitted in the present embodiment.
 図1および図2に示すロータ1は、永久磁石2が埋め込まれ周方向に分割された分割ロータコア3aが円周状に配置されたロータコア3と、円筒形状を有し、内径側表面がロータコア3の外周面と接する保持部材4と、分割ロータコア3a間に埋め込まれた個片のくさび5とを備えている。 The rotor 1 shown in FIGS. 1 and 2 has a rotor core 3 in which divided rotor cores 3a in which permanent magnets 2 are embedded and which are divided in the circumferential direction are arranged in a circumferential shape, and a rotor core 3 having a cylindrical shape. and individual wedges 5 embedded between the divided rotor cores 3a.
 図1に図示された矢印はそれぞれ軸方向、周方向および半径方向を定義している。以降の図面において図示は省略する。また図1に示す断面Aは、ロータ1を半径方向に切断した際の断面を示している。 The arrows illustrated in FIG. 1 define axial, circumferential and radial directions, respectively. Illustration is omitted in subsequent drawings. A cross section A shown in FIG. 1 shows a cross section when the rotor 1 is cut in the radial direction.
 ロータ1は軸方向の端面にトルク伝達部材7が配置され、ロータ1の回転力をシャフトに伝達する構造になっている。トルク伝達部材7の形状および材質は所望のトルクに耐える強度および剛性を有する範囲において、軽量なものを選択すればよい。ここではアルミニウム合金製の円盤を用いている。 The rotor 1 has a torque transmission member 7 arranged on the end face in the axial direction, and has a structure for transmitting the rotational force of the rotor 1 to the shaft. As for the shape and material of the torque transmission member 7, a lightweight one may be selected as long as it has the strength and rigidity to withstand the desired torque. Here, a disk made of aluminum alloy is used.
 トルク伝達部材7は保持部材4と連結されている。連結方法は、締結、接着および嵌合のいずれかによれば可能である。保持部材4およびトルク伝達部材7がともに金属材料であれば、溶接により連結しても良い。 The torque transmission member 7 is connected with the holding member 4 . The connection method can be any one of fastening, adhesion and fitting. If both the holding member 4 and the torque transmission member 7 are made of metal material, they may be connected by welding.
 ロータ1の中心にはシャフトと連結するための穴6が配置され、回転を伝える構造となっている。ロータ1の外径側表面は、保持部材4が露出している。 A hole 6 for connecting with the shaft is arranged in the center of the rotor 1, and has a structure for transmitting rotation. The holding member 4 is exposed on the outer diameter side surface of the rotor 1 .
 シャフトに回転を伝える構造は特に限定されないが、例えばシャフトおよびトルク伝達部材7にキー溝を設け、両者にキーを挿入することにより回転を伝達する方法等が用いられる。それにより大きなトルクを伝達でき、またシャフトを穴に圧入することによってさらに摩擦力を得て伝達することにより、応力集中によるシャフトの破壊を抑制できる。 The structure for transmitting rotation to the shaft is not particularly limited, but for example, a method of transmitting rotation by providing key grooves in the shaft and the torque transmission member 7 and inserting a key into both of them is used. As a result, a large torque can be transmitted, and by press-fitting the shaft into the hole, further frictional force can be obtained and transmitted, thereby suppressing damage to the shaft due to stress concentration.
 永久磁石2は、ロータコア3に埋め込まれ、ステータに対して磁束を発生させる。図2に示すように永久磁石2は平板形状を有し、周方向に分割されたロータコア3の分割ロータコア3aそれぞれに均等に埋め込まれている。分割ロータコア3a内に埋め込まれた永久磁石2は、互いに角度を持たせて2つ配置されている。 The permanent magnets 2 are embedded in the rotor core 3 and generate magnetic flux to the stator. As shown in FIG. 2, the permanent magnets 2 have a flat plate shape and are evenly embedded in each divided rotor core 3a of the rotor core 3 divided in the circumferential direction. Two permanent magnets 2 embedded in the split rotor core 3a are arranged at an angle to each other.
 永久磁石2が平板形状を有していることにより、永久磁石2の加工を容易にし、生産性を向上できるという効果を得る。また、分割ロータコア3aに埋め込まれた永久磁石2の埋め込む角度を調整することにより磁気設計も可能となる。なお、図2に図示した永久磁石2の形状、個数および配置方法は一例であり、永久磁石2の形状、個数および配置方法は特に限定されるものではなく、電磁気的に設計すればよい。 Because the permanent magnet 2 has a flat plate shape, the processing of the permanent magnet 2 is facilitated and the productivity can be improved. Magnetic design is also possible by adjusting the embedding angle of the permanent magnets 2 embedded in the split rotor core 3a. The shape, number, and arrangement of the permanent magnets 2 shown in FIG. 2 are merely examples, and the shape, number, and arrangement of the permanent magnets 2 are not particularly limited, and may be designed electromagnetically.
 本実施の形態にかかるロータ1は、磁力が強く耐熱性に優れるサマリウムコバルト磁石を用いている。サマリウムコバルト磁石を用いることにより、高温環境においても磁力を維持することができ、航空機への適用も可能である。なお永久磁石2の材質は、フェライト磁石、ネオジム磁石、サマリウムコバルト磁石およびアルニコ磁石のいずれを用いても良く、これらを複合化しても良い。また、これらの粉体をプラスチックに混ぜて複合化しても良い。 The rotor 1 according to the present embodiment uses samarium-cobalt magnets with strong magnetic force and excellent heat resistance. By using a samarium-cobalt magnet, the magnetic force can be maintained even in a high-temperature environment, and application to aircraft is also possible. Any of ferrite magnets, neodymium magnets, samarium-cobalt magnets, and alnico magnets may be used as the material of the permanent magnets 2, and these magnets may be combined. Alternatively, these powders may be mixed with plastic to form a composite.
 ロータコア3は、円形状を有し周方向が均等に分割されている。すなわち図2に示すようにロータコア3は、周方向に分割された複数の分割ロータコア3aが円周状に配置されている。分割ロータコア3aには、平板形状を有した永久磁石2が互いに角度を持たせて2つ配置されている。また、ロータコア3の外周面は保持部材4と接し、分割ロータコア3a間には個片のくさび5が埋め込まれている。 The rotor core 3 has a circular shape and is evenly divided in the circumferential direction. That is, as shown in FIG. 2, the rotor core 3 has a plurality of divided rotor cores 3a arranged in a circumferential direction. Two flat plate-shaped permanent magnets 2 are arranged on the split rotor core 3a at an angle to each other. The outer peripheral surface of the rotor core 3 is in contact with the holding member 4, and individual wedges 5 are embedded between the divided rotor cores 3a.
 ロータコア3が周方向に分割されていることにより、周方向が分割されていないロータコアに比べて回転時の周方向の引張応力が小さく破壊しにくいという効果を得る。また磁束の漏れを抑制でき、大きなトルクを得ることができる。 Because the rotor core 3 is divided in the circumferential direction, the tensile stress in the circumferential direction during rotation is smaller than that of a rotor core that is not divided in the circumferential direction, and the rotor core is less likely to break. Also, leakage of magnetic flux can be suppressed, and large torque can be obtained.
 ロータコア3の材質は鉄を含む合金が良いが、本実施の形態のロータ1は軸方向に積層された珪素鋼板を用いており、磁気特性が優れるという特徴をもつ。ここで、積層された珪素鋼板は、珪素鋼板単体においては比重7.7であり、無機質の絶縁層を介して積層された状態においては比重7.6である。 Although an alloy containing iron is preferable for the material of the rotor core 3, the rotor 1 of the present embodiment uses silicon steel sheets laminated in the axial direction, and is characterized by excellent magnetic properties. Here, the laminated silicon steel sheets have a specific gravity of 7.7 when the silicon steel sheets are single, and a specific gravity of 7.6 when laminated via an inorganic insulating layer.
 保持部材4は円筒形状を有し、ロータコア3の外周面において周方向に連続して接するように設けられている。すなわち、永久磁石2、ロータコア3およびくさび5に発生する遠心力を、保持部材4の周方向の引張強度により支持する構造になっている。この構造は、保持部材4の周方向の引張強度を上げることによって、ロータ1における回転速度の限界値を向上することができる。 The holding member 4 has a cylindrical shape and is provided so as to continuously contact the outer peripheral surface of the rotor core 3 in the circumferential direction. That is, the structure is such that the centrifugal force generated in the permanent magnet 2, the rotor core 3 and the wedge 5 is supported by the tensile strength of the holding member 4 in the circumferential direction. This structure can improve the rotational speed limit of the rotor 1 by increasing the tensile strength of the holding member 4 in the circumferential direction.
 保持部材4の材質は、繊維および樹脂により構成された繊維強化プラスチックである。繊維強化プラスチックに用いる繊維の形態に関しては、繊維長が1mm以上であることが望ましい。例えば繊維長が1mm以上30mm以下である、いわゆるチョップド繊維が用いられる。一方で繊維強化プラスチックの破壊は、樹脂に依存せず、繊維の強度によって支配される。そのため、繊維が長く繋がっているいわゆる連続繊維は、繊維強化プラスチックの強度を最も高くすることができるため望ましい。 The material of the holding member 4 is fiber reinforced plastic composed of fibers and resin. Regarding the form of fibers used in fiber-reinforced plastics, it is desirable that the fiber length is 1 mm or more. For example, so-called chopped fibers having a fiber length of 1 mm or more and 30 mm or less are used. On the other hand, the failure of fiber-reinforced plastics is governed by the strength of the fibers, independent of the resin. Therefore, so-called continuous fibers in which fibers are connected for a long time are desirable because they can maximize the strength of the fiber-reinforced plastic.
 繊維の材質は、引張強度が大きく非磁性のものが用いられる。一例としては、ガラス繊維、炭素繊維、SiC繊維、アラミド繊維およびボロン繊維である。この中でもより高い引張強度を実現できる炭素繊維を繊維として用いることが望ましく、炭素繊維の中でも、特に引張強度が高い炭素繊維が望ましい。 The fiber material used has high tensile strength and is non-magnetic. Examples are glass fibres, carbon fibres, SiC fibres, aramid fibres, and boron fibres. Among these, it is desirable to use carbon fibers that can achieve higher tensile strength as the fibers, and among carbon fibers, carbon fibers that have particularly high tensile strength are desirable.
 例えば、繊維としての引張強度が3400MPaから7000MPaの連続繊維を用いて、体積繊維含有率55%として構成することにより、繊維強化プラスチックとしての引張強度は1870MPaから3850MPaの間の引張強度を実現できる。これにより、珪素鋼板の引張強度310MPaから560MPaよりも高強度にできるため、高速回転が可能となる。 For example, by using continuous fibers with a tensile strength of 3400 MPa to 7000 MPa as a fiber and configuring the volume fiber content rate as 55%, the tensile strength as a fiber reinforced plastic can be realized between 1870 MPa and 3850 MPa. As a result, since the tensile strength of the silicon steel sheet can be increased from 310 MPa to 560 MPa, high-speed rotation becomes possible.
 ピッチ系炭素繊維では、引張強度3400MPaまでの繊維が産業用途において実用化されている。PAN系炭素繊維では7000MPaまでの繊維が産業用途において実用化されている。これらを用いれば繊維を大量に製造することに特段の課題は無いため、生産性に優れる。また、保持部材4の周方向に繊維を配向させることにより、円筒形状の周方向において高い引張強度を有する繊維強化プラスチックを実現することができる。 Pitch-based carbon fibers with a tensile strength of up to 3400 MPa have been put to practical use in industrial applications. PAN-based carbon fibers of up to 7000 MPa have been put to practical use in industrial applications. If these materials are used, there is no particular problem in mass production of the fibers, so the productivity is excellent. In addition, by orienting the fibers in the circumferential direction of the holding member 4, a fiber-reinforced plastic having high tensile strength in the circumferential direction of the cylindrical shape can be realized.
 一部の繊維を周方向以外の方向に配向して繊維強化プラスチックの異方性を弱めることにより、遠心力以外の外力に耐えるよう設計しても良い。その場合、半分以上の繊維を周方向に配向させておけば、周方向引張強度は少なくとも935MPaから1925MPaが実現でき、珪素鋼板よりも高強度なため、高速回転が可能である。ここでは7000MPaのPAN系炭素繊維を用いて、すべて周方向に配向していることにより、周方向引張強度3850MPaが実現でき、最も高速回転が可能である。 By orienting some fibers in a direction other than the circumferential direction to weaken the anisotropy of the fiber-reinforced plastic, it may be designed to withstand external forces other than centrifugal force. In this case, if more than half of the fibers are oriented in the circumferential direction, a circumferential tensile strength of at least 935 MPa to 1925 MPa can be achieved, which is higher than that of a silicon steel plate, so high-speed rotation is possible. Here, PAN-based carbon fibers of 7000 MPa are used and all of them are oriented in the circumferential direction, so that a circumferential tensile strength of 3850 MPa can be realized and the highest speed rotation is possible.
 繊維強化プラスチックの樹脂については、所定の性能が付与されるように材質が選択される。樹脂は、エポキシ樹脂、ビニルエステル、不飽和ポリエステル、フラン、ポリウレタン、ポリイミド、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリプロピレン、ポリエステル、ポリカーボネイト、アクリロニトリルスチレン、アクリロニトリルブタジエンスチレンおよび変性ポリフェニレンエーテルの群から選択される。 For the fiber-reinforced plastic resin, the material is selected so that the specified performance is imparted. Resins are selected from the group of epoxy resins, vinyl esters, unsaturated polyesters, furans, polyurethanes, polyimides, polyamides, polyetheretherketones, polyethersulfones, polypropylenes, polyesters, polycarbonates, acrylonitrile styrenes, acrylonitrile butadiene styrenes and modified polyphenylene ethers be done.
 保持部材4に求められる強度および耐熱性の観点から、用いる樹脂はエポキシ樹脂であることが望ましい。また、所望の性能が保持部材4に付与されるように、樹脂に添加剤またはフィラーが混ぜられてもよい。例えば、水酸化アルミニウム、水酸化マグネシウム、三酸化アンチモン、五酸化アンチモンおよび四酸化アンチモンのいずれかを混ぜることにより難燃性が向上できる。 From the viewpoint of the strength and heat resistance required for the holding member 4, it is desirable that the resin used is an epoxy resin. Moreover, additives or fillers may be mixed with the resin so as to impart desired performance to the holding member 4 . For example, flame retardancy can be improved by mixing any one of aluminum hydroxide, magnesium hydroxide, antimony trioxide, antimony pentoxide and antimony tetroxide.
 保持部材4はフィラメントワインディング法によって円筒形状に成形されている。本実施の形態において繊維の配向方向は、必ずしも指定の方向に一致するものではなく、製造方法の制約の範囲において製造誤差を含んでいる。すべての繊維を周方向に配向するように意図しても、±5°程度の製造誤差を有する。フィラメントワインディング法を用いて繊維をマンドレルに巻付けながら軸方向に往復させると、厳密に周方向に配向されることはなく、±5°程度の角度をなす。±7°を超えて周方向と角度を成すと、周方向引張を負荷したときの繊維強化プラスチックの破壊様相は、繊維破断からせん断破壊に移行し、強度低下が顕著になる。従って繊維の配向方向は、円筒の周方向から±7°の範囲をいう。 The holding member 4 is formed into a cylindrical shape by a filament winding method. In the present embodiment, the orientation direction of the fibers does not necessarily match the designated direction, and includes manufacturing errors within the limits of the manufacturing method. Even if one intends to orient all the fibers in the circumferential direction, there is a manufacturing error of the order of ±5°. When fibers are reciprocated in the axial direction while being wound around a mandrel using a filament winding method, they are not oriented strictly in the circumferential direction, but form an angle of about ±5°. When the angle exceeds ±7° with respect to the circumferential direction, the mode of fracture of the fiber-reinforced plastic when tension is applied in the circumferential direction shifts from fiber fracture to shear fracture, resulting in a marked reduction in strength. Therefore, the direction of fiber orientation is within a range of ±7° from the circumferential direction of the cylinder.
 くさび5は、分割ロータコア3a間にそれぞれ埋め込まれている。くさび5を分割ロータコア3a間に埋め込む方法は圧入が用いられる。なお、くさび5を埋め込む方法は圧入に限らない。 The wedges 5 are respectively embedded between the split rotor cores 3a. Press fitting is used as a method of embedding the wedge 5 between the split rotor cores 3a. The method of embedding the wedge 5 is not limited to press fitting.
 このように個片のくさび5を分割ロータコア3a間に埋め込むことにより、ロータコア3は保持部材4との密着力を得ることができる。また個片のくさび5を用いることにより、くさび5はロータコア3に比べて半径方向の長さである厚さが小さいため、くさび5が占める断面積を小さくできる。 By embedding the individual wedges 5 between the divided rotor cores 3a in this manner, the rotor core 3 can obtain the adhesion force with the holding member 4. In addition, by using the individual wedges 5, the wedges 5 have a smaller thickness, which is the length in the radial direction, than the rotor core 3, so that the cross-sectional area occupied by the wedges 5 can be reduced.
 以上より、個片のくさび5を分割ロータコア3a間に埋め込むことにより、枠体を用いるロータと比べて軽量化を可能とし、高速回転時にも遠心力を小さくできるという効果を得る。また、くさび5が占める断面積が小さいため、ロータコア3の断面積を大きくでき、強い磁気が得られる。また、ロータコア3の内径側には部品を配置する必要がなく、空間を有しているため、ロータコア3の内径側にステータを配置することによりアウターロータおよびダブルギャップロータにも適用できる。 As described above, by embedding the individual wedges 5 between the divided rotor cores 3a, it is possible to reduce the weight of the rotor compared to a rotor using a frame body, and obtain the effect of reducing the centrifugal force even during high-speed rotation. Moreover, since the cross-sectional area occupied by the wedge 5 is small, the cross-sectional area of the rotor core 3 can be increased, and strong magnetism can be obtained. In addition, since there is no need to arrange parts on the inner diameter side of the rotor core 3 and there is a space, by arranging the stator on the inner diameter side of the rotor core 3, it can be applied to an outer rotor and a double gap rotor.
 くさび5の材質は、磁束漏れを抑制する観点から非磁性であれば材質は問わず、例えば金属、プラスチックおよび繊維強化プラスチックであっても良い。材質の材料特性は、分割ロータコア3a間に埋め込み可能な弾性率と、遠心力を受けて保持部材4が変形し周長が伸びた時に、くさび5が弾性変形の範囲内において分割ロータコア3aと離間しないだけの弾性ひずみの大きさとが必要である。 The wedge 5 may be made of any material as long as it is non-magnetic from the viewpoint of suppressing magnetic flux leakage. For example, it may be metal, plastic, or fiber-reinforced plastic. The material characteristics of the material are the elastic modulus with which it can be embedded between the split rotor cores 3a, and the wedge 5's separation from the split rotor cores 3a within the range of elastic deformation when the holding member 4 is deformed by centrifugal force and its circumference is extended. It is necessary to have a magnitude of elastic strain that does not
 そのため、ロータ1においては熱可塑性プラスチックが望ましく、具体的にはPEEK樹脂を用いている。PEEK樹脂は、比重1.2~1.4とロータコア3の材質である珪素鋼板に比べて軽量であるため、くさび5を外径側に配置しても遠心力が小さくでき、高速回転を実現できる。PEEK樹脂の弾性率は4.0~4.4GPaと低く、破断ひずみが3.5~4.5%と大きいため、珪素鋼板と繊維強化プラスチックに比べて軟らかい。そのため分割ロータコア3a間に埋め込む際に、くさび5が弾性変形することにより圧入力を小さくできる。 Therefore, the rotor 1 is preferably made of thermoplastic, and specifically, PEEK resin is used. PEEK resin has a specific gravity of 1.2 to 1.4 and is lighter than the silicon steel plate that is the material of the rotor core 3. Therefore, even if the wedge 5 is arranged on the outer diameter side, the centrifugal force can be reduced and high-speed rotation is achieved. can. PEEK resin has a low elastic modulus of 4.0 to 4.4 GPa and a large breaking strain of 3.5 to 4.5%, so it is softer than silicon steel plates and fiber reinforced plastics. Therefore, when the wedge 5 is embedded between the split rotor cores 3a, the wedge 5 is elastically deformed, so that the pressing force can be reduced.
 また遠心力により繊維強化プラスチックが変形した場合においても、分割ロータコア3aとくさび5とが離間しにくい。PEEK樹脂はガラス転移温度が140~150度と高いため耐熱性に優れ、モータの損失によりロータが温度上昇しても故障しにくい。 Also, even if the fiber-reinforced plastic is deformed by centrifugal force, the split rotor core 3a and the wedge 5 are less likely to separate. Since PEEK resin has a high glass transition temperature of 140 to 150 degrees, it is excellent in heat resistance and does not easily break down even if the temperature of the rotor rises due to motor loss.
 個片のくさび5を配置する位置は、分割ロータコア3a間において分割ロータコア3aとくさび5とが密接する位置であればよい。また、分割ロータコア3a間において、内径側からの距離よりも外径側からの距離が短い位置にくさび5を埋め込むのが好ましく、くさび5が保持部材4に接している位置が最も好ましい。これにより、比重の大きなロータコアが外径側に配置されるよりも遠心力が小さく、高速回転が可能である。 The positions at which the individual wedges 5 are arranged may be positions where the divided rotor cores 3a and the wedges 5 are in close contact between the divided rotor cores 3a. Also, between the split rotor cores 3a, it is preferable to embed the wedge 5 at a position where the distance from the outer diameter side is shorter than the distance from the inner diameter side, and the position where the wedge 5 is in contact with the holding member 4 is most preferable. As a result, the centrifugal force is smaller than when the rotor core, which has a large specific gravity, is arranged on the outer diameter side, and high-speed rotation is possible.
 本実施の形態にかかるロータ1をアウターロータとして用いた場合、ステータ8に近い内径側にロータコア材を多く配置できるため、大きなトルクが得られる。またくさび5が保持部材4に接していることにより、分割ロータコア3a間に隙間ができ、保持部材4に応力集中が生じて破壊することを回避できる。 When the rotor 1 according to this embodiment is used as an outer rotor, a large amount of torque can be obtained because a large amount of rotor core material can be arranged on the inner diameter side near the stator 8 . In addition, since the wedge 5 is in contact with the holding member 4, a gap is formed between the divided rotor cores 3a, so that stress concentration in the holding member 4 and breakage of the holding member 4 can be avoided.
 分割ロータコア3a間に埋め込まれたくさび5の周方向における幅は、くさび5の最外径側よりも内径側に最大値を有している。例えば、図2に示す形状とするのが好ましい。図2に示す形状の場合くさび5は最外径側よりも内径側が周方向における幅の最大となるように分割ロータコア3a間に埋め込むのがよい。これにより分割ロータコア3aが内径側に脱落するのを防止できる。 The width in the circumferential direction of the wedges 5 embedded between the split rotor cores 3a has a maximum value on the inner diameter side of the wedges 5 relative to the outermost diameter side. For example, the shape shown in FIG. 2 is preferable. In the case of the shape shown in FIG. 2, the wedge 5 is preferably embedded between the split rotor cores 3a so that the width in the circumferential direction is maximized on the inner diameter side rather than on the outermost diameter side. This can prevent the split rotor core 3a from falling off toward the inner diameter side.
 図2に示すくさび5は、分割ロータコア3aの外径側に位置する上底が内径側に位置する下底よりも短い台形形状を有しているが、一例である。くさび5は、周方向において最外径側よりも内径側に幅の最大値をもつ形状であれば形状は限定しない。 The wedge 5 shown in FIG. 2 has a trapezoidal shape in which the upper base located on the outer diameter side of the split rotor core 3a is shorter than the lower base located on the inner diameter side, but this is an example. The shape of the wedge 5 is not limited as long as it has a maximum width on the inner diameter side rather than on the outermost diameter side in the circumferential direction.
 例えばくさび5は、くさび5の最外径側に位置する辺が保持部材4の内径形状と同じ曲率を持たせた断面形状を有していて、曲率を持たせたくさび5の最外径側に位置する辺が保持部材4と対向して接するように配置されている。この場合、くさび5の周方向における幅の最大値を最外径側よりも内径側に有しているため、分割ロータコア3aが内径側に脱落することなく保持部材4と密着している。また、くさび5の最外径側に位置する辺が保持部材4と密着しているため、保持部材4の内径側に応力集中が生じることがなく高速回転が可能である。 For example, the wedge 5 has a cross-sectional shape in which the side located on the outermost diameter side of the wedge 5 has the same curvature as the inner diameter shape of the holding member 4. , is arranged so as to face and contact the holding member 4 . In this case, since the maximum width of the wedge 5 in the circumferential direction is on the inner diameter side rather than on the outermost diameter side, the split rotor core 3a is in close contact with the holding member 4 without falling off on the inner diameter side. In addition, since the outermost side of the wedge 5 is in close contact with the holding member 4, stress concentration does not occur on the inner diameter side of the holding member 4, enabling high-speed rotation.
 本実施の形態において、繊維の引張強度は、JIS R 7606-2000の方法に準拠して求めたものである。繊維強化プラスチックの引張強度はJIS K7164:2005に記載の異方性の試験方法によって求めたものである。繊維強化プラスチックの体積繊維含有率は、JIS K 7075―1991の「7.炭素繊維の質量の測定」に記載のある燃焼法、硝酸分解法および硫酸分解法のうち、繊維を損傷しないいずれかの方法の原理により繊維が抽出されればよい。 In the present embodiment, the tensile strength of the fiber is determined according to the method of JIS R 7606-2000. The tensile strength of fiber-reinforced plastic is obtained by the anisotropic test method described in JIS K7164:2005. The volumetric fiber content of fiber reinforced plastics is determined by any one of the combustion method, nitric acid decomposition method, and sulfuric acid decomposition method described in JIS K 7075-1991 "7. Measurement of carbon fiber mass" that does not damage the fibers. It is sufficient that the fibers are extracted according to the principle of the method.
 珪素鋼板の引張強度はJIS Z 2241:2011に記載の13A号試験片を用いて測定したものである。比重は、JIS K 7112:1999に記載の水中置換法によって密度を測定し、水を基準物質として算出した相対密度のことである。ガラス転移温度はJIS K7121:2012の示差走査熱量測定によって求めたものである。 The tensile strength of the silicon steel sheet was measured using a No. 13A test piece described in JIS Z 2241:2011. The specific gravity is the relative density calculated by measuring the density by the water substitution method described in JIS K 7112:1999 and using water as a reference material. The glass transition temperature is determined by differential scanning calorimetry according to JIS K7121:2012.
 以上より本実施の形態にかかるロータ1は、分割ロータコア3a間に個片のくさび5を埋め込むことにより枠体を用いずに高速回転できる。また永久磁石2がロータコア3に埋め込まれたIPMモータのロータ構造を有している。この構造によりロータ1に電流を流す必要のある誘導モータに比べて、ロータ1に電流を流さないため消費電力が少なく、銅損も少ないため効率が良く、発熱も少ない。また、永久磁石2がロータコア3の中に埋め込まれているため、永久磁石2の吸引力に加えロータコア3の吸引力を利用でき、高トルクが得られる。 As described above, the rotor 1 according to the present embodiment can rotate at high speed without using a frame by embedding individual wedges 5 between the divided rotor cores 3a. It also has the rotor structure of an IPM motor in which the permanent magnets 2 are embedded in the rotor core 3 . Compared to an induction motor that requires current to flow through the rotor 1, this structure consumes less power because no current flows through the rotor 1, and is efficient and generates less heat due to less copper loss. In addition, since the permanent magnets 2 are embedded in the rotor core 3, the attractive force of the rotor core 3 can be utilized in addition to the attractive force of the permanent magnets 2, resulting in high torque.
 上記効果に加えて、ロータ1は内径側と外径側の両方に空間を有しているため、ロータ1の外径側にステータ8を配置すれば、インナーロータとすることができ、ロータ1の内径側にステータ8を配置すればアウターロータとすることができる。さらに、ロータ1の外径側と内径側の両方にステータ8を配置すれば、ダブルギャップロータとすることができ、大きなトルクを得ることができる。 In addition to the above effects, since the rotor 1 has spaces on both the inner diameter side and the outer diameter side, if the stator 8 is arranged on the outer diameter side of the rotor 1, it can be used as an inner rotor. An outer rotor can be formed by arranging the stator 8 on the inner diameter side of the rotor. Furthermore, if the stators 8 are arranged on both the outer diameter side and the inner diameter side of the rotor 1, a double gap rotor can be obtained and a large torque can be obtained.
 実施の形態2.
 実施の形態1では、周方向が分割されたロータコア3と分割ロータコア3a間それぞれに埋め込まれた個片のくさび5とを備えたロータ1を示した。実施の形態2では、ロータコアの外周面は保持部材4にすべて覆われておらず、一部が露出したロータを説明する。また、ロータは保持部材を2つ構成する。それ以外の構成は実施の形態1と同様であり、実施の形態1と同じ構成には同じ番号を付し、説明は省略する。
Embodiment 2.
In the first embodiment, the rotor 1 includes the rotor core 3 divided in the circumferential direction and the individual wedges 5 embedded between the divided rotor cores 3a. In Embodiment 2, a rotor in which the outer peripheral surface of the rotor core is not entirely covered with the holding member 4 and is partially exposed will be described. Also, the rotor constitutes two holding members. The rest of the configuration is the same as that of the first embodiment, and the same configurations as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 本実施の形態は図3および図4を用いて説明をする。図3は本実施の形態にかかるロータの斜視図である。図4は本実施の形態にかかる図3の断面Bに対応する断面図である。 This embodiment will be described using FIGS. 3 and 4. FIG. FIG. 3 is a perspective view of the rotor according to this embodiment. FIG. 4 is a cross-sectional view corresponding to the cross-section B of FIG. 3 according to this embodiment.
 図3に示すようにロータコア31の外周面は、すべて保持部材41に覆われておらず、一部が露出している。ロータコア31は外周面が保持部材41と接していない部分は、保持部材41と接している部分に比べて保持部材41が覆われていない分、半径が大きい形状を有している。すなわち、保持部材41と接していない部分は保持部材41が接している部分と同一の半径となるように突起をなしている。 As shown in FIG. 3, the outer peripheral surface of the rotor core 31 is not entirely covered with the holding member 41, and is partially exposed. The portion of the rotor core 31 where the outer peripheral surface is not in contact with the holding member 41 has a larger radius than the portion in contact with the holding member 41 because the holding member 41 is not covered. That is, the portion that is not in contact with the holding member 41 forms a projection with the same radius as the portion that is in contact with the holding member 41 .
 保持部材41は、ロータコア31の外周面を覆うように2つ設けられており、ロータコア31の一部が露出している。また、保持部材41はロータコア31およびくさび5の少なくとも一方に密着して保持している。 Two holding members 41 are provided so as to cover the outer peripheral surface of the rotor core 31, and part of the rotor core 31 is exposed. Moreover, the holding member 41 is held in close contact with at least one of the rotor core 31 and the wedge 5 .
 なお図3に示すロータ11は、ロータコア31およびくさび5が露出した例を図示しているが、これに限らずロータコア31の外周面の少なくとも一部が露出していればよい。また、保持部材41が2つ設けられている例を示したが、数に制限はなく3つ以上としてもよい。 Although the rotor 11 shown in FIG. 3 illustrates an example in which the rotor core 31 and the wedge 5 are exposed, the present invention is not limited to this, and at least a portion of the outer peripheral surface of the rotor core 31 may be exposed. Also, although an example in which two holding members 41 are provided has been shown, the number is not limited and may be three or more.
 図4は図3の断面Bに対応する断面図である。具体的には、ロータコア31が露出している位置における半径方向の断面の一例を示す断面図である。図4に示すようにロータコア31の外周面は保持部材41に覆われていないため、本実施の形態にかかるロータにおいて最外周にロータコア31の外周面が位置している。 FIG. 4 is a sectional view corresponding to section B in FIG. Specifically, it is a sectional view showing an example of a radial section at a position where the rotor core 31 is exposed. Since the outer peripheral surface of the rotor core 31 is not covered with the holding member 41 as shown in FIG. 4, the outer peripheral surface of the rotor core 31 is positioned at the outermost periphery in the rotor according to the present embodiment.
 これにより本実施の形態にかかるロータ11をインナーロータもしくはダブルギャップロータとした場合に、ロータ11の外径側に配置されるステータ8との距離が近くなり、大きなトルクを得ることができる。また、保持部材41はロータコア31において、外周面を覆うように配置されているため、ロータコア31が突起を有していても組立が可能である。 Therefore, when the rotor 11 according to the present embodiment is an inner rotor or a double gap rotor, the distance from the stator 8 arranged on the outer diameter side of the rotor 11 is shortened, and large torque can be obtained. In addition, since the holding member 41 is arranged so as to cover the outer peripheral surface of the rotor core 31, assembly is possible even if the rotor core 31 has projections.
 実施の形態3.
 本実施の形態はここまでの実施の形態にかかるロータをインナーロータに応用した例を示す。図5は本実施の形態にかかるモータの断面図である。
Embodiment 3.
This embodiment shows an example in which the rotor according to the above embodiments is applied to an inner rotor. FIG. 5 is a sectional view of the motor according to this embodiment.
 ロータ1の断面構造は、実施の形態1にかかるロータ1と同様である。図5に示すように本実施の形態にかかる永久磁石式モータは、ステータ8がロータ1と空隙を介して外径側に配置されているいわゆるインナーロータの構造になっている。ロータ1の外径側に固定されているステータ8が磁場変動を生むことにより、軸方向を中心にロータ1が回転する構造になっている。 The cross-sectional structure of the rotor 1 is the same as that of the rotor 1 according to the first embodiment. As shown in FIG. 5, the permanent magnet motor according to the present embodiment has a so-called inner rotor structure in which the stator 8 is arranged on the outer diameter side of the rotor 1 with a gap therebetween. A stator 8 fixed to the outer diameter side of the rotor 1 produces a magnetic field fluctuation, thereby rotating the rotor 1 about the axial direction.
 以上より本実施の形態にかかる永久磁石式モータは、実施の形態1にかかるロータ1を応用しているため、軽量化を可能とし遠心力が小さく高速回転が可能である。また、強い磁性が得られ、大きなトルクが得られる。さらに、分割ロータコア3a間それぞれにくさび5を埋め込むことにより、ロータコア3が内径側に脱落するのを防止できる。 As described above, the permanent magnet type motor according to the present embodiment uses the rotor 1 according to the first embodiment, so it can be made lighter, has less centrifugal force, and can rotate at high speed. In addition, strong magnetism can be obtained, and large torque can be obtained. Furthermore, by embedding the wedges 5 between the split rotor cores 3a, the rotor cores 3 can be prevented from falling off toward the inner diameter side.
 実施の形態4.
 本実施の形態はここまでの実施の形態にかかるロータをアウターロータに応用した例を示す。図6は本実施の形態にかかるモータの断面図である。
Embodiment 4.
This embodiment shows an example in which the rotor according to the above embodiments is applied to an outer rotor. FIG. 6 is a sectional view of the motor according to this embodiment.
 ロータ1の断面構造は、実施の形態1にかかるロータ1と同様である。図6に示すように本実施の形態にかかる永久磁石式モータは、ステータ8がロータ1と空隙を介して内径側に配置されているいわゆるアウターロータの構造になっている。内径側に固定されているステータ8が磁場変動を生むことにより、軸方向を中心にロータ1が回転する構造になっている。 The cross-sectional structure of the rotor 1 is the same as that of the rotor 1 according to the first embodiment. As shown in FIG. 6, the permanent magnet motor according to the present embodiment has a so-called outer rotor structure in which the stator 8 is arranged on the inner diameter side of the rotor 1 with a gap therebetween. A stator 8 fixed on the inner diameter side produces a magnetic field fluctuation, so that the rotor 1 rotates about the axial direction.
 以上より本実施の形態にかかる永久磁石式モータは、実施の形態1にかかるロータ1を応用しているため、ロータコア3の内径側には部品を配置する必要がなく、その空間にステータ8を配置しても干渉することがない。そのため、軽量化を可能とし遠心力が小さく高速回転が可能である。また、強い磁性が得られ、大きなトルクが得られる。さらに、分割ロータコア3a間それぞれにくさび5を埋め込むことにより、ロータコア3が内径側に脱落するのを防止できる。 As described above, since the permanent magnet motor according to the present embodiment uses the rotor 1 according to the first embodiment, there is no need to arrange parts on the inner diameter side of the rotor core 3, and the stator 8 is installed in that space. It does not interfere with placement. Therefore, the weight can be reduced, the centrifugal force is small, and high-speed rotation is possible. In addition, strong magnetism can be obtained, and large torque can be obtained. Furthermore, by embedding the wedges 5 between the split rotor cores 3a, the rotor cores 3 can be prevented from falling off toward the inner diameter side.
 なお、上記した実施の形態では、IPMモータのロータを例に挙げたが、IPMモータに限定されるものではなく、SPM(Surface Permanent Magnet)モータのロータに対して適用されても良い。この場合には、上記した実施の形態における分割されたロータコアを永久磁石に置き換えることにより、同様の効果を得ることができる。また、発電機のロータに対して適用されてもよい。この場合にも、上記した実施の形態と同様の構成用いて同様の効果を得ることができる。 In the above-described embodiment, the rotor of an IPM motor was taken as an example, but the present invention is not limited to the IPM motor, and may be applied to the rotor of an SPM (Surface Permanent Magnet) motor. In this case, similar effects can be obtained by replacing the divided rotor cores in the above-described embodiment with permanent magnets. It may also be applied to the rotor of a generator. Also in this case, the same effect can be obtained by using the same configuration as the above-described embodiment.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲において、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment shows an example of the contents of the present invention, and it is possible to combine it with another known technology, and within the scope of the present invention, one of the configurations It is also possible to omit or change the part.
 1、11 ロータ、2 永久磁石、3、31 ロータコア、3a、31a 分割ロータコア、4、41 保持部材、5 くさび、6 穴、7トルク伝達部材、8 ステータ 1, 11 rotor, 2 permanent magnet, 3, 31 rotor core, 3a, 31a split rotor core, 4, 41 holding member, 5 wedge, 6 hole, 7 torque transmission member, 8 stator

Claims (8)

  1.  永久磁石が埋め込まれ周方向に分割された分割ロータコアが円周状に配置されたロータコアと、
     円筒形状を有し、内径側表面が前記ロータコアの外周面と接する保持部材と、
     前記分割ロータコア間に埋め込まれた個片のくさびと、
     を備えるロータ。
    a rotor core in which divided rotor cores in which permanent magnets are embedded and which are divided in the circumferential direction are arranged in a circumferential shape;
    a holding member having a cylindrical shape and having an inner diameter side surface in contact with the outer peripheral surface of the rotor core;
    individual wedges embedded between the split rotor cores;
    A rotor with a
  2.  前記ロータコアの前記外周面の少なくとも一部が露出していることを特徴とする請求項1に記載のロータ。 The rotor according to claim 1, wherein at least part of the outer peripheral surface of the rotor core is exposed.
  3.  前記くさびは、少なくとも一つが前記保持部材と接するように配置されていることを特徴とする請求項1または2に記載のロータ。 The rotor according to claim 1 or 2, wherein at least one of said wedges is arranged so as to be in contact with said holding member.
  4.  前記分割ロータコア間に埋め込まれた前記くさびの前記周方向における幅は、前記くさびの最外径側よりも内径側に最大値を有することを特徴とする請求項1から3のいずれか一項に記載のロータ。 4. The apparatus according to any one of claims 1 to 3, wherein a width of said wedge embedded between said split rotor cores in said circumferential direction has a maximum value on an inner diameter side of said wedge relative to an outermost diameter side of said wedge. Rotor as described.
  5.  前記保持部材が繊維強化プラスチックであることを特徴とする請求項1から4のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 4, wherein the holding member is made of fiber-reinforced plastic.
  6.  前記繊維強化プラスチックは、構成する繊維の半分以上が前記保持部材の周方向に配向されていることを特徴とする請求項5に記載のロータ。 The rotor according to claim 5, wherein more than half of the constituent fibers of the fiber-reinforced plastic are oriented in the circumferential direction of the holding member.
  7.  永久磁石式モータであって、ステータの内径側に請求項1から6のいずれか一項に記載のロータが配置されていることを特徴とするモータ。 A permanent magnet motor, characterized in that the rotor according to any one of claims 1 to 6 is arranged on the inner diameter side of a stator.
  8.  永久磁石式モータであって、ステータの外径側に請求項1から6のいずれか一項に記載のロータが配置されていることを特徴とするモータ。 A permanent magnet motor, characterized in that the rotor according to any one of claims 1 to 6 is arranged on the outer diameter side of a stator.
PCT/JP2021/047464 2021-12-22 2021-12-22 Rotor for motor, and motor using said rotor WO2023119459A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022534851A JP7120503B1 (en) 2021-12-22 2021-12-22 Motor rotor and motor using this rotor
PCT/JP2021/047464 WO2023119459A1 (en) 2021-12-22 2021-12-22 Rotor for motor, and motor using said rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/047464 WO2023119459A1 (en) 2021-12-22 2021-12-22 Rotor for motor, and motor using said rotor

Publications (1)

Publication Number Publication Date
WO2023119459A1 true WO2023119459A1 (en) 2023-06-29

Family

ID=82850976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047464 WO2023119459A1 (en) 2021-12-22 2021-12-22 Rotor for motor, and motor using said rotor

Country Status (2)

Country Link
JP (1) JP7120503B1 (en)
WO (1) WO2023119459A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259574A (en) * 2010-06-08 2011-12-22 Meidensha Corp Permanent magnet type synchronous motor with guard ring, and manufacturing method thereof
JP2014183691A (en) * 2013-03-21 2014-09-29 Jtekt Corp Magnet embedded type rotor and manufacturing method therefor
JP2021118671A (en) * 2020-01-21 2021-08-10 本田技研工業株式会社 Rotor, manufacturing method of the same, and rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259574A (en) * 2010-06-08 2011-12-22 Meidensha Corp Permanent magnet type synchronous motor with guard ring, and manufacturing method thereof
JP2014183691A (en) * 2013-03-21 2014-09-29 Jtekt Corp Magnet embedded type rotor and manufacturing method therefor
JP2021118671A (en) * 2020-01-21 2021-08-10 本田技研工業株式会社 Rotor, manufacturing method of the same, and rotary electric machine

Also Published As

Publication number Publication date
JP7120503B1 (en) 2022-08-17
JPWO2023119459A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US10651698B2 (en) Rotor of rotary electric machine, rotary electric machine, and rotor member of rotary electric machine
WO2014034344A1 (en) Rotating electric machine
US7098569B2 (en) Rotor assembly for a permanent magnet power electric machine
US20060022541A1 (en) Rotor hub and assembly for a permanent magnet power electric machine
US9088190B2 (en) Electrical machines and electrical machine rotors
US20120025654A1 (en) Rotor of a permanent magnet synchronous machine
US10634188B2 (en) Rotors for rotating machines with hollow fiber-reinforced composite shaft
WO2007016345A1 (en) Rotor hub and assembly for a permanent magnet power electric machine
CN111525763A (en) Axial flux motor with insulated rotor
WO2023119459A1 (en) Rotor for motor, and motor using said rotor
US11233430B2 (en) Rotor of synchronous motor with reinforcement member for pressing magnet
WO2021149603A1 (en) Magnetic pole-piece device and magnetic gear
JP6639761B1 (en) Rotor and motor
US11735966B2 (en) Surface-mounted high-speed permanent magnet synchronous rotor
US11742711B1 (en) Rotor for a high speed electrical machine
WO2023007888A1 (en) Rotor and dynamo-electric machine
JP2024517129A (en) Rotor
US20230275480A1 (en) Rotor for rotating electric machine and method of manufacturing rotor
US20240113578A1 (en) Rotary electric machine, motor, rotor, and permanent magnet motor
WO2024080143A1 (en) Core unit and rotor
WO2023281898A1 (en) Rotating electric machine
WO2023145629A1 (en) Magnetic gear device
JP2018182794A (en) Rotor, and rotary electric machine provided with the same
JP2006304421A (en) Structure of stator for axial gap type rotating-electric machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022534851

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968896

Country of ref document: EP

Kind code of ref document: A1