JP2015090332A - Life prediction structure - Google Patents

Life prediction structure Download PDF

Info

Publication number
JP2015090332A
JP2015090332A JP2013230788A JP2013230788A JP2015090332A JP 2015090332 A JP2015090332 A JP 2015090332A JP 2013230788 A JP2013230788 A JP 2013230788A JP 2013230788 A JP2013230788 A JP 2013230788A JP 2015090332 A JP2015090332 A JP 2015090332A
Authority
JP
Japan
Prior art keywords
circuit board
substrate
life
life prediction
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013230788A
Other languages
Japanese (ja)
Other versions
JP6247903B2 (en
Inventor
哲也 中塚
Tetsuya Nakatsuka
哲也 中塚
リナジャヤ ディグナ
Linajaya Digna
リナジャヤ ディグナ
秦 昌平
Shohei Hata
昌平 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013230788A priority Critical patent/JP6247903B2/en
Publication of JP2015090332A publication Critical patent/JP2015090332A/en
Application granted granted Critical
Publication of JP6247903B2 publication Critical patent/JP6247903B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of accurately predicting a life of a solder by mounting a mechanism on a board for predicting that a solder connected portion of a mounted component connected to a circuit board comes to the end of a creep rupture life by an electrical scheme for breaking of a wire before the component connected portion.SOLUTION: Provided is a life prediction structure including a non-horizontal circuit board in a housing, metal singulated pieces 2 being soldered to two lands 11 connected to a breaking-of-wire detection circuit 12 formed on the circuit board with a small gap between the pieces 2.

Description

本発明は、寿命予測構造に関する。   The present invention relates to a life prediction structure.

電子部品と回路基板の接続には、例えば220℃付近ではんだ接続することが出来るSn−37Pb(単位:質量%)や、鉛を用いない鉛フリーはんだ合金Sn−3Ag−0.5Cu(単位:質量%)が使用されている。   For the connection between the electronic component and the circuit board, for example, Sn-37Pb (unit: mass%) that can be soldered at around 220 ° C., or lead-free solder alloy Sn-3Ag-0.5Cu (unit: lead) that does not use lead. Mass%) is used.

現在鉛フリーはんだを用いた挿入・表面実装両方において材料コストの低い低銀はんだが注目され、現行のSn−3Ag−0.5Cu等と併せ、様々なはんだで電子部品が実装される状況となっている。   At present, low silver solder with low material cost is attracting attention in both insertion and surface mounting using lead-free solder, and together with the current Sn-3Ag-0.5Cu, etc., electronic components are mounted with various solders. ing.

その結果、同一部品でも様々な条件(基板仕様・環境)で使用される寿命予測が困難という状況がある。   As a result, there is a situation where it is difficult to predict the life of the same component used under various conditions (board specifications / environment).

これに対し特許文献1では、基板の温度を計測することにより寿命を予測する方法が開示されている。   On the other hand, Patent Document 1 discloses a method for predicting the lifetime by measuring the temperature of the substrate.

特開2011−253971JP2011-253971

特許文献1に開示の技術では温度測定のための特別の回路が必要でありコストアップとなるという課題がある。また温度により寿命をあくまで推定する方式であるため、その正確さにぶれが生じることが不可避である。   The technique disclosed in Patent Document 1 has a problem that a special circuit for measuring the temperature is required and the cost is increased. In addition, since it is a method of estimating the lifetime based on the temperature, it is inevitable that the accuracy will fluctuate.

基板上に設けられた2つの接続部間をつなぐ導電部材を有し、該導電部材が該接続部の少なくとも一方から離脱することにより寿命を判断することを特徴とする寿命予測構造。   A life prediction structure comprising a conductive member that connects two connecting portions provided on a substrate, and the life is determined by detaching the conductive member from at least one of the connecting portions.

本発明により、実仕様状態に即した確実な寿命予測が可能となる。   According to the present invention, it is possible to perform reliable life prediction according to the actual specification state.

本発明のさらなる手段、効果は以下明細書から明らかになるであろう。   Further means and effects of the present invention will be apparent from the following description.

第1の実施例に関わる説明図である。It is explanatory drawing in connection with a 1st Example. 第2の実施例に関わる説明図である。It is explanatory drawing in connection with a 2nd Example. 第3の実施例に関わる説明図である。It is explanatory drawing in connection with a 3rd Example.

以下、実施例を用いて本発明の内容を詳細に説明する。   Hereinafter, the contents of the present invention will be described in detail using examples.

図1は回路基板1上に断線検出ランド(接続部)11を2つ有し、その2つを金属子片2が導電接続している構造である。この導電接続はハンダによって行われている。2つの断線検出ランドは、該断線検出ランド間の導電、絶縁状態を判別する断線検知回路12に接続されている。   FIG. 1 shows a structure in which two disconnection detection lands (connection portions) 11 are provided on a circuit board 1 and the two are electrically connected to a metal piece 2. This conductive connection is made by solder. The two disconnection detection lands are connected to a disconnection detection circuit 12 that discriminates the conduction and insulation states between the disconnection detection lands.

回路基板1を筺体に対し例えば垂直のように角度を持って設置した場合、金属子片2にはそれ自身の自重により落下力が働く。はんだによる接続構造が寿命を迎えた場合、断線検出ランドの少なくとも1方と金属子片の接続が停止する。特に、両方の接続が寿命を迎えた際には金属子片自体が脱落し、断線検出回路は絶縁状態を検知することになる。これにより、はんだの寿命を実使用状態で正確に測定することが可能となる。   When the circuit board 1 is installed at an angle, for example, perpendicular to the housing, a drop force acts on the metal piece 2 due to its own weight. When the connection structure using solder reaches the end of its life, the connection between at least one of the disconnection detection lands and the metal piece is stopped. In particular, when both connections reach the end of their lives, the metal piece itself falls off and the disconnection detection circuit detects the insulation state. This makes it possible to accurately measure the life of the solder in the actual usage state.

言い換えると、基板が垂直や斜めに固定される場合や、あるいは、使用環境によって一時的に回路基板が垂直に立ってしまうか斜めに傾いてしまう場合のある回路基板に対して、この基板に接続されている実装部品のはんだ接続部のクリープ破断寿命が来ることを、部品接続部よりも先に断線して電気的手法により予測する機構を、高実装密度化の妨げにもならず、現行実装プロセスを用いたはんだ付けと同時に、回路基板に実装することが可能となる。   In other words, if the board is fixed vertically or diagonally, or if the circuit board may temporarily stand vertically or tilt diagonally depending on the usage environment, connect to this board. The mechanism that predicts the creep rupture life of soldered joints of mounted parts by using electrical methods prior to the connection of parts will not interfere with the increase in mounting density, At the same time as the soldering using the process, it can be mounted on the circuit board.

この方法の一つとしては、回路基板に接続されている実装部品のはんだ接続部のクリープ破断寿命が来ることを、部品接続部よりも先に断線して電気的手法により予測する機構を基板に実装する方法である。   As one of the methods, a mechanism that predicts the creep rupture life of the solder connection portion of the mounted component connected to the circuit board by an electrical method by disconnecting the component connection portion before the component connection portion is provided on the substrate. How to implement.

その際に望ましくは、はんだによる実装部品接続部に加わる最大応力よりも大きな応力が恒常的に加わり、実装部品接続部よりも先にクリープ破断することで電気的断線を作り出すことができることが望ましい。
このとき、高実装密度化の妨げにならないよう、大きな実装面積を要しない、また厳しい作りこみ寸法精度を必要とせず、簡易な設計・製法で安定して部材を作りこめることや、通常の実装プロセス(リフロー・フロー)の中で同時に作りこめ、生産工程を増加させないことなどが同時に達成されることが望ましく、本実施例の構造はこれら要求を同時に満たすことが可能である。
In that case, it is desirable that a stress larger than the maximum stress applied to the mounting component connecting portion by solder is constantly applied, and an electrical disconnection can be created by creep rupture before the mounting component connecting portion.
At this time, a large mounting area is not required so that high mounting density is not hindered, and strict precision of dimensional accuracy is not required. It is desirable to simultaneously create a process (reflow / flow) and not increase the number of production steps, and the structure of this embodiment can satisfy these requirements simultaneously.

また換言すると、寿命予測機構としての金属子片は位置エネルギーを持つことになるため、このエネルギーを断線の駆動力に使用することができるものである。   In other words, since the metal piece as a lifetime prediction mechanism has potential energy, this energy can be used as a driving force for disconnection.

そこで、図1に示すように、回路基板1上に狭少間隙をもって形成した2個以上の断線検出ランド11に銅などのはんだ付け可能な細長い金属個片2の端部を他の部品と同時にリフロー接続し、金属個片2がなるべく水平方向に配置されるようにして、回路基板1を筐体に垂直や斜めに固定する。   Therefore, as shown in FIG. 1, two or more disconnection detection lands 11 formed with a narrow gap on the circuit board 1 are connected to the end portions of the elongated metal pieces 2 such as copper that can be soldered simultaneously with other components. The circuit board 1 is fixed vertically or obliquely to the housing by reflow connection so that the metal pieces 2 are arranged in the horizontal direction as much as possible.

上記方法により形成した2個以上の断線検出ランド接続部には、てこの原理による応力倍化で、大きな一定負荷を容易に作り出せ、破断を事前検出する機構として利用できる。   The two or more disconnection detection land connection portions formed by the above method can be used as a mechanism for easily detecting a breakage by easily creating a large constant load by stress multiplication based on the lever principle.

具体的には、この予測機構は銅などのはんだが濡れやすい金属片で作製し、回路基板へ他の表面実装部品と同時に実装して使用する。   Specifically, this prediction mechanism is made of a metal piece that is easily wetted by solder such as copper, and is mounted on a circuit board at the same time as other surface-mounted components.

また、金属個片2の回路基板1への実装面において、はんだが濡れが必要ないところには、ソルダレジストを塗布すれば、塗布した以外のところだけに安定してはんだ接続が行われるため、回路基板1との接続面積のばらつきを少なくでき、接続寿命予測の精度を向上させることが可能である。   In addition, on the mounting surface of the metal piece 2 on the circuit board 1, where solder does not need to be wetted, if solder resist is applied, solder connection is stably performed only in places other than the applied, It is possible to reduce the variation in the connection area with the circuit board 1 and to improve the accuracy of connection life prediction.

さらに、回路基板1との接続をとる電極の位置は、各々、金属個片2の実装面内で互いの距離を離すことにより、前述のてこの原理による応力倍化の効果が小さくなってしまうため、できるだけ互いに近づけて形成したり、金属個片2をできるだけ細長い形状とし、その長手方向をできるだけ水平に配置すると、少ない体積の金属の使用で機構が実現できるため、この機構が回路基板を占有するスペースを少なくすることが可能となる。   Furthermore, the positions of the electrodes to be connected to the circuit board 1 are separated from each other within the mounting surface of the metal piece 2, thereby reducing the effect of stress multiplication by the above-described lever principle. Therefore, if the metal pieces 2 are formed as close as possible to each other, or the metal pieces 2 are made as long and narrow as possible, and the longitudinal direction thereof is arranged as horizontally as possible, the mechanism can be realized by using a small volume of metal. It is possible to reduce the space to be used.

回路基板1側の電極形状としては上記予測機構のものと同じ形状の電極を形成する必要がある。また、この回路基板側の電極は断線検知回路12と表面配線で結合させ、接続に使用しているはんだ材料のクリープ変形による金属片の落下時に起きる断線を電気的に検出するようにする必要がある。   It is necessary to form an electrode having the same shape as that of the prediction mechanism as the electrode shape on the circuit board 1 side. In addition, it is necessary to connect the electrode on the circuit board side to the disconnection detection circuit 12 by surface wiring so as to electrically detect disconnection that occurs when the metal piece falls due to creep deformation of the solder material used for connection. is there.

一実施例としては、回路基板は縦置きであり、大型QFPや表面実装型のトランスやコイルが実装されている。さらに、重力により断線するタイプの予測機構がはんだ接続されている。この予測機構は直方体の銅でできており、回路基板への実装面の寸法は縦37mm、横6mmで、厚さ3mmである。また、回路基板への実装面には、電極となる縦1mm、横0.5mmの長方形領域2個を残して、はんだが濡れないようソルダレジストが塗布されている。   As an example, the circuit board is vertically placed, and a large QFP, a surface mount type transformer, and a coil are mounted. Further, a prediction mechanism of a type that is broken by gravity is soldered. This prediction mechanism is made of rectangular parallelepiped copper, and the dimensions of the mounting surface on the circuit board are 37 mm long, 6 mm wide, and 3 mm thick. In addition, a solder resist is applied on the mounting surface on the circuit board so that the solder does not get wet, leaving two rectangular areas of 1 mm in length and 0.5 mm in width to be electrodes.

さらに、上記2個の電極は、各々、実装面(縦37mm、横6mm)の対角位置付近に形成されている。   Further, each of the two electrodes is formed in the vicinity of a diagonal position on the mounting surface (length: 37 mm, width: 6 mm).

回路基板側の電極も予測機構のものと同じ形状の電極が形成されており、断線検知回路と接続されている。   The electrode on the circuit board side is also formed with the same shape as that of the prediction mechanism, and is connected to the disconnection detection circuit.

この回路基板を100℃の高温恒温槽の中に入れて、断線検知回路をONにした状態クリープ寿命加速試験を実施した。   This circuit board was placed in a high-temperature thermostatic chamber at 100 ° C., and a creep life acceleration test was performed with the disconnection detection circuit turned on.

結果、表面実装型コイルがクリープ断線する時間の80%で直方体の銅の接続部が断線し、予測機構として成立することがわかった。   As a result, it was found that the connection part of the rectangular parallelepiped copper was broken in 80% of the time for the surface-mounted coil to be creep-broken, and the prediction mechanism was established.

本実施例は、位置エネルギー以外のエネルギーを使用して予測機構を形成する例である。   The present embodiment is an example in which a prediction mechanism is formed using energy other than potential energy.

図2に示すように、回路基板1上に狭少間隙をもって形成した2個以上の断線検出ランド11に、板ばねのような弾性体3を接続し、ばね力によるポテンシャルエネルギーを利用した予測機構を作りこむことができる。   As shown in FIG. 2, a prediction mechanism using an elastic body 3 such as a leaf spring connected to two or more disconnection detection lands 11 formed with a narrow gap on a circuit board 1 and using potential energy generated by the spring force. Can be built.

具体的には、ばね力によるポテンシャルエネルギーを蓄積する機構としては、弾力性のあるステンレス板を2つ折りにし、弾性範囲内の変形でU字形状をしたものを提案する。
ただし、2つ折りにした各々の先端には回路基板への接続用に長方形電極が形成されている必要がある。
Specifically, as a mechanism for accumulating potential energy due to the spring force, a mechanism is proposed in which an elastic stainless steel plate is folded in half and U-shaped by deformation within an elastic range.
However, it is necessary that a rectangular electrode is formed at each of the folded ends for connection to the circuit board.

この場合も同様に、回路基板1側の電極形状としては上記予測機構のものと同じ形状の電極を形成する必要がある。また、この回路基板1側の電極は断線検知回路12と表面配線で結合させ、接続に使用しているはんだ材料のクリープ変形による金属片の落下時に起きる断線を電気的に検出するようにする必要がある。   Similarly in this case, it is necessary to form an electrode having the same shape as that of the prediction mechanism as the electrode shape on the circuit board 1 side. In addition, the electrode on the circuit board 1 side must be coupled to the disconnection detection circuit 12 by surface wiring so that the disconnection that occurs when the metal piece falls due to creep deformation of the solder material used for connection must be detected. There is.

本実施例の構成の一例は以下の通りである。   An example of the configuration of this embodiment is as follows.

回路基板は縦置きであり、大型QFPや表面実装型のトランスやコイルが実装されている。さらに、ばね力により断線するタイプの予測機構がはんだ接続されている。   The circuit board is vertically placed, and a large QFP, a surface mount type transformer, and a coil are mounted thereon. Furthermore, a prediction mechanism of a type that is disconnected by a spring force is soldered.

この予測機構は0.2mm厚のステンレス板を2つ折りにしたU字形状をしており、その寸法は長さ30mm、幅(2つ折りにした先端が向かい合う距離)2mmで、高さ3mmで、U字部の曲率半径は1mmである。ただし、2つ折りにした各々の先端には縦1mm、横0.5mmの長方形電極が形成されており、これらが回路基板への実装部となる。   This prediction mechanism has a U-shape in which a 0.2 mm-thick stainless steel plate is folded in half, and its dimensions are 30 mm in length, 2 mm in width (distance where the folded-up tip faces each other), and 3 mm in height. The curvature radius of the U-shaped part is 1 mm. However, a rectangular electrode having a length of 1 mm and a width of 0.5 mm is formed at each of the folded ends, and these become mounting portions on the circuit board.

回路基板側の電極も予測機構のものと同じ形状の電極が形成されており、断線検知回路と接続されている。   The electrode on the circuit board side is also formed with the same shape as that of the prediction mechanism, and is connected to the disconnection detection circuit.

この回路基板を100℃の高温恒温槽の中に入れて、断線検知回路をONにした状態でクリープ寿命加速試験を実施した。   This circuit board was placed in a high-temperature thermostatic chamber at 100 ° C., and a creep life acceleration test was performed with the disconnection detection circuit turned on.

結果、表面実装型コイルがクリープ断線する時間の80%で直方体の銅の接続部が断線し、予測機構として成立することがわかった。   As a result, it was found that the connection part of the rectangular parallelepiped copper was broken in 80% of the time for the surface-mounted coil to be creep-broken, and the prediction mechanism was established.

ばねへのポテンシャルエネルギー蓄積の方法として、製品生産時に回路基板に加わる外力を利用する方法がある。   As a method of accumulating potential energy in the spring, there is a method of using an external force applied to a circuit board during product production.

その一つの例として、回路基板の製品筐体への取り付けの際の回路基板を押し込む力の利用である。   One example is the use of a force for pushing the circuit board when the circuit board is attached to the product housing.

この場合の予測機構は図3に示すように、弾力性を持つ金属板を2つ折りにしたV字形状であると良く、2つ折りにした片側の先端から近い位置に2個以上の電極が形成した板ばねを弾性体3とし、これらの電極を回路基板への実装部とする。   As shown in FIG. 3, the prediction mechanism in this case is preferably a V-shape obtained by folding a metal plate having elasticity into two, and two or more electrodes are formed at a position close to the tip of one side folded in two. The plate spring is used as the elastic body 3, and these electrodes are used as mounting parts on the circuit board.

また、回路基板1側の電極も予測機構のものと同じ形状の電極が形成し、断線検知回路12と接続させる。   Further, an electrode having the same shape as that of the prediction mechanism is formed on the circuit board 1 side, and is connected to the disconnection detection circuit 12.

2つ折りにしたもう一つの先端は回路基板から外にでており、基板を製品筐体50にスライドさせて挿入する際、先端は基板に押し戻される構造になっている。   The other tip that is folded in two is out of the circuit board, and when the board is slid into the product housing 50 and inserted, the tip is pushed back to the board.

この押し戻される力により、金属板にばね力のポテンシャルエネルギーを蓄積させることが可能となる。   With this force that is pushed back, the potential energy of the spring force can be accumulated in the metal plate.

本実施例での構成を以下に示す。   The configuration in this example is shown below.

回路基板は縦置きであり、大型QFPや表面実装型のトランスやコイルが実装されている。さらに、ばね力により断線するタイプの予測機構がはんだ接続されている。   The circuit board is vertically placed, and a large QFP, a surface mount type transformer, and a coil are mounted thereon. Furthermore, a prediction mechanism of a type that is disconnected by a spring force is soldered.

この予測機構は0.2mm厚のステンレス板を2つ折りにしたV字形状をしており、その寸法はV字形状1辺の長さが50mm、幅(2つ折りにした先端が向かい合う距離)2mmで、高さ3mmで、折り曲げ部の曲率半径は1mmである。ただし、2つ折りにした片側の先端から2mm、4mmの位置に縦1mm、横0.5mmの長方形電極が形成されており、これらが回路基板への実装部となる。   This prediction mechanism has a V-shape formed by folding a 0.2 mm-thick stainless steel plate in half, and the dimensions are 50 mm for the length of one side of the V-shape and 2 mm for the width (distance where the tip of the half-fold faces each other) Thus, the height is 3 mm and the radius of curvature of the bent portion is 1 mm. However, a rectangular electrode having a length of 1 mm and a width of 0.5 mm is formed at a position of 2 mm and 4 mm from the tip of one side which is folded in half, and these become mounting portions on the circuit board.

回路基板側の電極も予測機構のものと同じ形状の電極が形成されており、断線検知回路と接続されている。   The electrode on the circuit board side is also formed with the same shape as that of the prediction mechanism, and is connected to the disconnection detection circuit.

2つ折りにしたもう一つの先端は回路基板から2mm外にでており、基板を筐体にスライドさせて挿入する際、先端は回路基板に押し戻される構造になっている。   Another tip that is folded in two is 2 mm outside the circuit board, and when the board is slid into the housing and inserted, the tip is pushed back to the circuit board.

この基板を100℃の高温恒温槽の中に入れて、断線検知回路をONにした状態でクリープ寿命加速試験を実施した。   This substrate was placed in a high-temperature thermostatic chamber at 100 ° C., and a creep life acceleration test was performed with the disconnection detection circuit turned on.

結果、表面実装型コイルがクリープ断線する時間の80%で直方体の銅の接続部が断線し、予測機構として成立することがわかった。   As a result, it was found that the connection part of the rectangular parallelepiped copper was broken in 80% of the time for the surface-mounted coil to be creep-broken, and the prediction mechanism was established.

上述した実施例はその思想を組み合わせて用いても良い。   The embodiments described above may be used in combination with the idea.

また基板上に形成した2個以上のランドの基板面内重心が金属個片のはんだ付け面内の重心と異なるようにしてもよい。   The center of gravity of the two or more lands formed on the substrate may be different from the center of gravity of the metal piece on the soldering surface.

以上詳述のように、本発明の寿命予測機構を適用すれば種々の電気回路ではんだの寿命の予測が可能となる。   As described above in detail, by applying the life prediction mechanism of the present invention, it is possible to predict the life of solder in various electric circuits.

1・・・回路基板
11・・・断線検出ランド
12・・・断線検知回路
2・・・金属個片
3・・・弾性体
50・・・製品筐体
DESCRIPTION OF SYMBOLS 1 ... Circuit board 11 ... Disconnection detection land 12 ... Disconnection detection circuit 2 ... Metal piece 3 ... Elastic body 50 ... Product housing

Claims (6)

筺体内で非水平の回路基板を有し、該基板上に狭少間隙をもって形成した、断線検出回路に接続された2つのランドに金属子片がはんだ付けされていることを特徴とした寿命予測構造   Life prediction, characterized in that a metal piece is soldered to two lands connected to a disconnection detection circuit, which has a non-horizontal circuit board in the housing and is formed with a narrow gap on the board. Construction 基板上に形成した2個以上のランドの基板面内重心が金属個片のはんだ付け面内の重心と異なるようにしたことを特徴とする請求項1記載の寿命予測構造   2. The life prediction structure according to claim 1, wherein the center of gravity of the two or more lands formed on the substrate is different from the center of gravity of the metal piece in the soldering surface. 前記重心と異ならしめるため、前記金属個片を細長い形状にし、かつけ略水平に基板に取り付けることを特徴とする請求項2記載の寿命予測構造   3. The life prediction structure according to claim 2, wherein the metal pieces are elongated and attached to the substrate substantially horizontally so as to be different from the center of gravity. 基板上に形成した2個以上のランド間に、ばね力によるポテンシャルエネルギーを蓄積している導電性の弾性体をはんだ付けすることを特徴とする請求項1記載の寿命予測構造。   2. The life prediction structure according to claim 1, wherein a conductive elastic body storing potential energy due to a spring force is soldered between two or more lands formed on the substrate. 前記導電性の弾性が字あるいはV字形状の板ばねであることを特徴とする請求項4記載の寿命予測構造   5. The life prediction structure according to claim 4, wherein the conductive elasticity is a letter or V-shaped leaf spring. 前記導電性の弾性体をU字あるいはV字形状の板ばねとし、基板と接続される電極をその片方の端部に設け、もう片方の端部は基板から外に出ているか、あるいは基板外からの外力を受けることが可能な位置に配置されることにより、製品への基板取り付け時の動作により板ばねがポテンシャルエネルギーを蓄積できることを特徴とする請求項4記載の寿命予測構造。   The conductive elastic body is a U-shaped or V-shaped leaf spring, and an electrode connected to the substrate is provided at one end thereof, and the other end protrudes from the substrate, or the outside of the substrate. 5. The life predicting structure according to claim 4, wherein the leaf spring can accumulate potential energy by an operation at the time of mounting the substrate to the product by being arranged at a position where the external force from can be received.
JP2013230788A 2013-11-07 2013-11-07 Life prediction structure Active JP6247903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230788A JP6247903B2 (en) 2013-11-07 2013-11-07 Life prediction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230788A JP6247903B2 (en) 2013-11-07 2013-11-07 Life prediction structure

Publications (2)

Publication Number Publication Date
JP2015090332A true JP2015090332A (en) 2015-05-11
JP6247903B2 JP6247903B2 (en) 2017-12-13

Family

ID=53193915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230788A Active JP6247903B2 (en) 2013-11-07 2013-11-07 Life prediction structure

Country Status (1)

Country Link
JP (1) JP6247903B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040278A (en) * 2016-09-06 2018-03-15 株式会社デンソー Fuel pump control device
WO2018116611A1 (en) * 2016-12-20 2018-06-28 三菱電機株式会社 Failure prediction element and circuit substrate using same
CN109670241A (en) * 2018-12-19 2019-04-23 中国石油大学(华东) A kind of long service life-span prediction method of the organic glass bearing structure based on creep buckling fail-ure criterion criterion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128431A (en) * 1989-04-10 1991-05-31 Hitachi Ltd Method for evaluating life of soldering connection of electronic component
JP2003270060A (en) * 2002-03-14 2003-09-25 Nec Corp Stress strain analyzing system, stress strain analyzing method therefor, and program therefor
JP2012063279A (en) * 2010-09-16 2012-03-29 Toshiba Corp Solder joint part life prediction method, solder joint part life prediction device, and electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128431A (en) * 1989-04-10 1991-05-31 Hitachi Ltd Method for evaluating life of soldering connection of electronic component
JP2003270060A (en) * 2002-03-14 2003-09-25 Nec Corp Stress strain analyzing system, stress strain analyzing method therefor, and program therefor
JP2012063279A (en) * 2010-09-16 2012-03-29 Toshiba Corp Solder joint part life prediction method, solder joint part life prediction device, and electronic apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040278A (en) * 2016-09-06 2018-03-15 株式会社デンソー Fuel pump control device
WO2018116611A1 (en) * 2016-12-20 2018-06-28 三菱電機株式会社 Failure prediction element and circuit substrate using same
JPWO2018116611A1 (en) * 2016-12-20 2019-04-04 三菱電機株式会社 Failure prediction element and circuit board using the same
CN110089203A (en) * 2016-12-20 2019-08-02 三菱电机株式会社 Failure predication element and the circuit substrate for using the failure predication element
US10837997B2 (en) 2016-12-20 2020-11-17 Mitsubishi Electric Corporation Failure prediction device and circuit board using the same
CN110089203B (en) * 2016-12-20 2022-03-29 三菱电机株式会社 Failure prediction element and circuit board using the same
CN109670241A (en) * 2018-12-19 2019-04-23 中国石油大学(华东) A kind of long service life-span prediction method of the organic glass bearing structure based on creep buckling fail-ure criterion criterion

Also Published As

Publication number Publication date
JP6247903B2 (en) 2017-12-13

Similar Documents

Publication Publication Date Title
EP2433335B1 (en) Connector
CN212622762U (en) Passive current sensor and assembly for the same
JP6247903B2 (en) Life prediction structure
CN101489360B (en) Circuit substrate support structure of electronic apparatus
CN202395178U (en) Electrical connection structure for circuit board
CN108432055A (en) Electric connector
JP2010186663A (en) Low-height type surface mounting fast-on tab terminal
US10347451B2 (en) Printed circuit board assembly
JP2014229506A (en) Terminal and electronic control unit
CN109427516B (en) Electrical fuse element
JP2009130311A (en) Method of packaging piezoelectric transformer, and piezoelectric transformer
JP2013258013A (en) Fuse
JP5355149B2 (en) Electronic device and method of detecting connection failure of electronic component using electronic device
WO2013094678A1 (en) Electronic device, power source control system, and service life measurement unit
TWI599111B (en) Connector mounted and electronic device using the same
JP6351383B2 (en) Noise filter
JP6350867B2 (en) Electronic parts mounting structure of busbar circuit body
JP2011108551A (en) Battery with terminal
KR200459384Y1 (en) Thermistor
CN113783005A (en) Mounting base and printed circuit board
JP2013153622A (en) Bus bar
CN112601411A (en) Circuit board structure and electronic equipment
CN110726446A (en) Meter controller, maintenance method thereof and meter
JP2011171461A (en) Resistor mounting method
JP2018195533A (en) Board assembly and method of manufacturing board assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6247903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150