JP2015089656A - Composite plate and method for producing the same - Google Patents

Composite plate and method for producing the same Download PDF

Info

Publication number
JP2015089656A
JP2015089656A JP2013230681A JP2013230681A JP2015089656A JP 2015089656 A JP2015089656 A JP 2015089656A JP 2013230681 A JP2013230681 A JP 2013230681A JP 2013230681 A JP2013230681 A JP 2013230681A JP 2015089656 A JP2015089656 A JP 2015089656A
Authority
JP
Japan
Prior art keywords
composite plate
zirconia
sintered body
fiber reinforced
plate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013230681A
Other languages
Japanese (ja)
Other versions
JP6237130B2 (en
Inventor
勲 山下
Isao Yamashita
勲 山下
紘平 今井
Kohei Imai
紘平 今井
山内 正一
Shoichi Yamauchi
正一 山内
津久間 孝次
Koji Tsukuma
孝次 津久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013230681A priority Critical patent/JP6237130B2/en
Publication of JP2015089656A publication Critical patent/JP2015089656A/en
Application granted granted Critical
Publication of JP6237130B2 publication Critical patent/JP6237130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite plate between a zirconia and a fiber-reinforced plastics which can be suitably used for a housing, a watch member or the like of a portable electronic device which is excellent in designability, light in weight and excellent in impact resistance and scratch resistance.SOLUTION: There is a composite plate having a thickness of 2 mm or less in which a zirconia sintered compact and a fiber-reinforced plastics are laminated and closely fixed each other, where the maximum value of the difference between the surface unevenness of the zirconia sintered compact is 50 μm per cm.

Description

本発明は、意匠性が高く、耐擦傷性、耐衝撃性を有する、ジルコニアと繊維強化プラスチックスとの複合プレートおよびその製造方法に関する。   The present invention relates to a composite plate of zirconia and fiber reinforced plastics having high design properties, scratch resistance and impact resistance, and a method for producing the same.

近年、スマートフォン等に代表される携帯用電子機器において耐擦傷性、耐衝撃性の優れた部材への需要が高まっている。特に携帯用電子機器の外装部材は、厚み2mm以下の薄板形状で且つ、落下等の衝突にも耐えなくてはならないため、とりわけ耐衝撃性の高い材質が要求されている。   In recent years, there is an increasing demand for members having excellent scratch resistance and impact resistance in portable electronic devices such as smartphones. In particular, an exterior member of a portable electronic device has a thin plate shape with a thickness of 2 mm or less and must withstand a collision such as dropping, so that a material having particularly high impact resistance is required.

外装用部材として使用されている材質は、金属、樹脂、ガラスなどがあるが、耐擦傷性、高い意匠性のためガラス素材が広く用いられている。現在使用されているガラス素材は、イオン交換によって強化された強化ガラスである。この強化ガラスにおいては、イオン交換によってガラス表面に数十μm程度の強化層を生成し、表面に圧縮応力を発生させ傷の進展を防いでいる。しかしながら強化ガラスの強化機構は、強化層に由来するため、次に示すような課題があり更なる改善が求められている。
(1)強化層を超える傷が入ると直ちに破壊してしまうおそれがある。
(2)ガラス自体のビッカース硬度は600程度であり、金属、コンクリート等との接触により容易に傷が付き、使用に伴う加傷により強度が著しく低下することがある。
(3)強化ガラスにおいては、強化処理後に加工することが出来ない。
(4)化学強化処理したものであっても、端面の加工傷の存在により端面強度が低下することがある。
(5)強化ガラスの破壊により細かな鋭利な破片を生ずる。
(6)切断・加工後に強化処理をするため、表面凹凸が発生し、反射させた像がゆがむ等意匠性が低下する。
The materials used for the exterior member include metals, resins, and glass, but glass materials are widely used because of scratch resistance and high design. The glass material currently used is tempered glass tempered by ion exchange. In this tempered glass, a tempered layer of about several tens of μm is generated on the glass surface by ion exchange, and compressive stress is generated on the surface to prevent the progress of scratches. However, since the strengthening mechanism of tempered glass is derived from the tempered layer, there are the following problems and further improvements are required.
(1) If there is a scratch exceeding the reinforcing layer, there is a risk of immediate destruction.
(2) The glass itself has a Vickers hardness of about 600, and is easily scratched by contact with metal, concrete, etc., and the strength may be significantly reduced by scratches associated with use.
(3) In tempered glass, it cannot be processed after tempering.
(4) Even if chemically strengthened, the end face strength may be reduced due to the presence of processing flaws on the end face.
(5) Fine sharp fragments are generated by the breakage of tempered glass.
(6) Since the reinforcing treatment is performed after cutting and processing, surface irregularities are generated, and the design properties such as the reflected image are distorted are deteriorated.

一方、セラミックスは耐熱性、耐摩耗性、耐食性に優れていることから、産業部材用途に広く使用されている。とりわけジルコニアセラミックスは高強度、高靭性かつ高硬度で耐擦傷性を有しており、更に着色による意匠性の向上が容易であることから、時計部材などへの使用が進んでいる。   On the other hand, ceramics are widely used in industrial member applications because of their excellent heat resistance, wear resistance, and corrosion resistance. In particular, zirconia ceramics have high strength, high toughness, high hardness, and scratch resistance, and further, it is easy to improve the design by coloring, and therefore, the use of zirconia ceramics is increasing.

また、携帯用電子機器等の外装部材へのセラミックスの使用も検討されているが、特に携帯用電子機器の外装部材の場合、耐衝撃性を向上するために部材を厚くすると、部材が重くなり実用的ではなかった。また、部材を軽量化のために薄くすると、落下、衝突等の衝撃に対する部材の耐性が十分でなく、容易に割れてしまい使用することが出来なかった。   In addition, the use of ceramics for exterior members such as portable electronic devices is also being studied. However, especially in the case of exterior members for portable electronic devices, if the members are made thicker to improve impact resistance, the members become heavier. It was not practical. Further, if the member is made thin for weight reduction, the member is not sufficiently resistant to impacts such as dropping and collision, and is easily cracked and cannot be used.

セラミックス部材の耐衝撃性の向上については、セラミックス板を繊維強化プラスチックスと接合し砲弾や弾丸などの飛翔体の貫通を防ぐといった、いわゆる合わせガラスと類似した方法が提案されている(例えば、特許文献1、特許文献2等参照)。特許文献1には、厚さ8mmのアルミナ、炭化ケイ素を繊維強化プラスチックスに接合したものが報告されている。   For improving the impact resistance of ceramic members, a method similar to so-called laminated glass has been proposed in which a ceramic plate is joined to fiber-reinforced plastics to prevent the penetration of projectiles such as shells and bullets (for example, patents). Reference 1 and Patent Reference 2). Patent Document 1 reports that 8 mm thick alumina and silicon carbide are bonded to fiber reinforced plastics.

携帯用電子機器などの外装部材には、製品自重程度(100g程度)の衝撃物の自由落下に対する耐われ性が必要である。従来の方法では、厚いセラミックスを使用せざるを得ないため、部材重量が増加してしまい携帯用外装部材としては使用することは出来なかった。軽量化のためには、薄板で耐われ性を向上させることが必須であるが、これまでに厚さ2mm以下のジルコニア板において落下、衝突等の衝撃に対する耐われ性を向上させた耐衝撃部材およびその製造方法は存在しなかった。   An exterior member such as a portable electronic device is required to have resistance to free fall of an impact object of about the product's own weight (about 100 g). In the conventional method, thick ceramics must be used, so that the weight of the member increases and cannot be used as a portable exterior member. In order to reduce the weight, it is essential to improve the crack resistance with a thin plate, but hitherto, an impact resistant member that has improved the crack resistance against impacts such as dropping and collision in a zirconia plate with a thickness of 2 mm or less. And there was no manufacturing method.

本発明者らは、薄いジルコニアと繊維強化プラスチックを複合化することで、軽量かつ高い耐衝撃性を有する複合プレートを開発した。更にバルクのジルコニア(1mm以上の厚みを有するジルコニア質焼結体のみであり複合プレートではない)と同等の高い意匠性を維持するためには、複合プレートのジルコニア表面形状における長周期の平坦性が重要との知見を見出し本発明を完成するに至った。   The present inventors have developed a composite plate having a light weight and high impact resistance by combining thin zirconia and fiber reinforced plastic. Furthermore, in order to maintain a high design property equivalent to that of bulk zirconia (only a zirconia sintered body having a thickness of 1 mm or more and not a composite plate), long-period flatness in the zirconia surface shape of the composite plate is required. The inventor found out that the present invention is important and has completed the present invention.

特開2008−162164号公報JP 2008-162164 A 特開2009−264692号公報JP 2009-264692 A

携帯用電子機器の部材としてジルコニアセラミックスを使用する場合、その耐衝撃性を向上するために部材を厚くする必要があり、未だ改良の余地があった。本発明は、意匠性に優れ、かつ耐衝撃性、特に衝撃による耐われ性を向上させたジルコニア質焼結体と繊維強化プラスチックスとの複合プレートおよびその製造方法に関する。   When zirconia ceramics is used as a member of a portable electronic device, it is necessary to increase the thickness of the member in order to improve its impact resistance, and there is still room for improvement. The present invention relates to a composite plate of a zirconia sintered body and fiber reinforced plastics, which are excellent in design and have improved impact resistance, particularly resistance to impact by impact, and a method for producing the same.

上記の課題を鑑み、本発明者らは、ジルコニア薄板の鋼球落下における破壊現象を詳細に検討した。その結果、鋼球の落下衝撃によりセラミックス板がたわみ、曲げモーメントが発生し、インパクト面の裏側の面のインパクト点近傍より引っ張り破壊が生じていることを見出した。また材料の弾性率が小さいものほど、衝撃により大きく変形し、長い時間をかけて衝撃を吸収することで、インパクト面の裏面にかかる最大引っ張り応力の絶対値が減少することを見出した。   In view of the above-mentioned problems, the present inventors have studied in detail the fracture phenomenon in dropping a steel ball of a zirconia thin plate. As a result, it was found that the ceramic plate was bent and a bending moment was generated by the drop impact of the steel ball, and tensile fracture occurred near the impact point on the back side of the impact surface. It was also found that the smaller the elastic modulus of the material, the greater the deformation due to the impact, and the longer the time taken to absorb the impact, the smaller the absolute value of the maximum tensile stress applied to the back surface of the impact surface.

本発明者らは、上記の知見を基に鋭意検討することで、ジルコニア薄板(弾性率200GPa)の裏面に繊維強化プラスチックスを配置し、両者を密着固定し、ジルコニア質焼結体の表面凹凸を制御することで、衝撃変形能をジルコニア薄板に付与し、最大引っ張り応力の低減を図ると共に、引っ張り応力が発生する裏面を繊維強化プラスチックスとし、専ら圧縮応力が発生するインパクト面をジルコニア薄板とする構造を実現し、ジルコニア薄板の耐衝撃性を向上させることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies based on the above knowledge, and placed fiber reinforced plastics on the back surface of a zirconia thin plate (elastic modulus: 200 GPa), closely fixed them, and surface irregularities of the zirconia sintered body. By controlling the load, impact deformation capability is imparted to the zirconia thin plate to reduce the maximum tensile stress, and the back surface where the tensile stress is generated is made of fiber reinforced plastics, and the impact surface where the compressive stress is generated exclusively is the zirconia thin plate. The present invention has been completed by realizing the structure to improve the impact resistance of the thin zirconia sheet.

すなわち、本発明は、ジルコニア質焼結体、繊維強化プラスチックスが積層し、互いに密着固定されてなる厚み2mm以下の複合プレートであって、1cmあたりのジルコニア表面の凹凸の差の最大値が50μm以下の平坦性を有する複合プレート及びその製造方法に関する。 That is, the present invention is a composite plate having a thickness of 2 mm or less in which a zirconia sintered body and fiber reinforced plastics are laminated and fixed in close contact with each other, and the maximum value of the unevenness of the zirconia surface per cm 2 is the maximum value. The present invention relates to a composite plate having a flatness of 50 μm or less and a manufacturing method thereof.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の複合プレートは、ジルコニア質焼結体、繊維強化プラスチックスが積層し、互いに密着固定されてなる厚み2mm以下である複合プレートである。軽量のためには好ましくは1.5mm以下である。更に好ましくは1.0mm以下である。   The composite plate of the present invention is a composite plate having a thickness of 2 mm or less, in which a zirconia sintered body and fiber reinforced plastics are laminated and fixed in close contact with each other. For light weight, it is preferably 1.5 mm or less. More preferably, it is 1.0 mm or less.

本発明の複合プレートにおける、ジルコニア質焼結体の厚みと繊維強化プラスチックスの厚みの比率(ジルコニア質焼結体厚み/繊維強化プラスチックス厚み)は、軽量かつ耐擦傷性に優れる耐衝撃性複合プレートが得られることから、好ましくは0.01〜1である。ジルコニア質焼結体の厚みが増加して複合プレートの見かけ密度が増加することを抑制し、耐衝撃強度の低下を抑制できる点、及びジルコニア質焼結体の厚みが薄くなることによる耐擦傷性の低下を抑制できる点で、さらに好ましくは0.1〜0.75、特に好ましくは0.1〜0.5である。   In the composite plate of the present invention, the ratio of the thickness of the zirconia sintered body to the thickness of the fiber reinforced plastics (zirconia sintered body thickness / fiber reinforced plastics thickness) is lightweight and impact resistant composite having excellent scratch resistance. Since a plate is obtained, it is preferably 0.01-1. Suppressing the increase in the apparent density of the composite plate due to the increase in the thickness of the zirconia sintered body, and the reduction in impact strength, and the scratch resistance due to the reduced thickness of the zirconia sintered body More preferably, it is 0.1-0.75 at the point which can suppress the fall of 0.1, More preferably, it is 0.1-0.5.

本発明の複合プレートの見かけ密度(ρ(複合プレート))は、ジルコニア質焼結体の真密度(ρ(ジルコニア))と繊維強化プラスチックスの真密度(ρ(繊維強化プラスチックス))から式(1)で与えられる。   The apparent density (ρ (composite plate)) of the composite plate of the present invention is calculated from the true density of the zirconia sintered body (ρ (zirconia)) and the true density of the fiber reinforced plastics (ρ (fiber reinforced plastics)). It is given by (1).

ρ(複合プレート)=ρ(ジルコニア)×ジルコニア体積分率+ρ(繊維強化プラスチックス)×繊維強化プラスチックス体積分率
=ρ(ジルコニア)×ジルコニア厚み分率+ρ(繊維強化プラスチックス)×繊維強化プラスチックス厚み分率 (1)
繊維強化プラスチックスの密度は、プラスチックスの種類および繊維の添加量によって異なるが、一般的な密度としては0.9〜2.45g/cmの密度が例示できる。
ρ (composite plate) = ρ (zirconia) × zirconia volume fraction + ρ (fiber reinforced plastics) × fiber reinforced plastic volume fraction
= Ρ (zirconia) x zirconia thickness fraction + ρ (fiber reinforced plastics) x fiber reinforced plastics thickness fraction (1)
The density of the fiber reinforced plastics varies depending on the type of plastics and the amount of fibers added, but a typical density is 0.9 to 2.45 g / cm 3 .

本発明の複合プレートの見かけの密度は、外装部材として使用するのに十分な軽量感を得ることができるから、好ましくは4.3g/cm以下であり、特に好ましくは3.5g/cm以下である。またガラスを用いないことから安全性に関しても優れている。 The apparent density of the composite plate of the present invention is preferably 4.3 g / cm 3 or less, particularly preferably 3.5 g / cm 3 , because it can provide a feeling of light weight enough to be used as an exterior member. It is as follows. Moreover, since glass is not used, it is excellent also about safety.

複合プレートのジルコニア表面の1cmあたりの凹凸の差の最大値は、50μm以下であり、好ましくは30μm以下、更に好ましくは20μm以下である。このように表面凹凸を低減することにより、ジルコニアが平滑となり、反射させた像が歪みなくジルコニアに鏡面反射するようになり、バルクと同程度の意匠性を維持することができる。 The maximum value of the unevenness per cm 2 on the zirconia surface of the composite plate is 50 μm or less, preferably 30 μm or less, more preferably 20 μm or less. By reducing the surface unevenness in this way, the zirconia becomes smooth, and the reflected image is specularly reflected on the zirconia without distortion, so that the design property comparable to that of the bulk can be maintained.

本発明の複合プレートにおいて、ジルコニア質焼結体と繊維強化プラスチックスは、密着固定されている。両者の密着固定の方法としては、接着剤による固定方法や、プラスチックスを熱、溶剤等に溶かしてジルコニア質焼結体と密着させて固定する方法等を例示することができる。接着剤を用いる場合は、接着層の厚みは、200μm以下が好ましい。接着層の厚みは、好ましくは100μm以下、更に好ましくは50μm以下である。このように密着固定することで、ジルコニア質焼結体と繊維強化プラスチックスとが一体となって変形して衝撃吸収するために耐衝撃性の向上を図ることができる。   In the composite plate of the present invention, the zirconia sintered body and the fiber reinforced plastics are closely fixed. Examples of the method for tightly fixing both of them include a fixing method using an adhesive, and a method of fixing plastics by dissolving them in heat, a solvent or the like and bringing them into close contact with a zirconia sintered body. When an adhesive is used, the thickness of the adhesive layer is preferably 200 μm or less. The thickness of the adhesive layer is preferably 100 μm or less, more preferably 50 μm or less. By tightly fixing in this manner, the zirconia sintered body and the fiber reinforced plastics are integrally deformed to absorb the impact, thereby improving the impact resistance.

本発明の複合プレートにおけるジルコニア質焼結体としては、高強度、耐摩耗性、高靭性を併せ持つイットリア安定化ジルコニアが好ましく、イットリア含有量をジルコニアに対して2〜10mol%とすることにより、高強度、耐摩耗性、高靭性のイットリア安定化ジルコニアとすることができる。より好ましいイットリア含有量は2〜4mol%である。ジルコニア質焼結体は、イットリア以外の安定化剤のものも使用できる。他の安定化剤としては、カルシア、マグネシア、セリア等が例示できる。   As the zirconia sintered body in the composite plate of the present invention, yttria-stabilized zirconia having both high strength, wear resistance, and high toughness is preferable, and by setting the yttria content to 2 to 10 mol% with respect to zirconia, Yttria-stabilized zirconia having high strength, wear resistance and high toughness can be obtained. A more preferable yttria content is 2 to 4 mol%. As the zirconia sintered body, a stabilizer other than yttria can be used. Examples of other stabilizers include calcia, magnesia, and ceria.

本発明の複合プレートにおけるジルコニア質焼結体には、意匠性を向上できることから、白色顔料、遷移金属酸化物、着色顔料からなる群より選ばれる少なくとも1種以上を含有するジルコニアであってもよい。   The zirconia sintered body in the composite plate of the present invention may be zirconia containing at least one selected from the group consisting of a white pigment, a transition metal oxide, and a color pigment because designability can be improved. .

白色顔料としては、例えばアルミナ、シリカ、ムライト、酸化亜鉛、スピネル等の酸化物が挙げられ、遷移金属化合物としては、例えば酸化鉄、酸化コバルト、酸化ニッケル、酸化マンガン、酸化クロム、酸化バナジウム、酸化銅等が挙げられ、着色顔料としては、例えば、Fe、Co、Ni、Mn等の遷移金属が含まれるスピネル系複合酸化物やエルビウム、ネオジム、プラセオジム等の希土類酸化物が使用できる。また遷移金属を添加したジルコン等が挙げられ、これらの中でも特にアルミナ、シリカ、ムライト、スピネル、スピネル系複合酸化物、希土類酸化物、遷移金属を添加したジルコンが好ましい。   Examples of white pigments include oxides such as alumina, silica, mullite, zinc oxide, and spinel. Examples of transition metal compounds include iron oxide, cobalt oxide, nickel oxide, manganese oxide, chromium oxide, vanadium oxide, and oxide. Examples of the color pigment include spinel complex oxides containing transition metals such as Fe, Co, Ni, and Mn, and rare earth oxides such as erbium, neodymium, and praseodymium. Further, zircon to which transition metal is added can be mentioned, and among these, alumina, silica, mullite, spinel, spinel composite oxide, rare earth oxide, and zircon to which transition metal is added are preferable.

本発明の複合プレートにおけるジルコニア質焼結体は、その相対密度が97%以上であることが好ましく、より耐擦傷性を向上させるため、また、残留気孔に基づく焼結体表面の凹凸に起因する鏡面仕上げ時の意匠性低下を抑制するためには、98%以上がより好ましく、99%以上が更に好ましい。   The relative density of the zirconia sintered body in the composite plate of the present invention is preferably 97% or more, and in order to further improve the scratch resistance, it is also caused by irregularities on the surface of the sintered body based on residual pores. In order to suppress a decrease in design properties during mirror finishing, 98% or more is more preferable, and 99% or more is even more preferable.

本発明の複合プレートにおけるジルコニア質焼結体は、十分な耐擦傷性を示すために、そのビッカース硬度が1000以上であることが好ましく、1100以上が更に好ましく、1200以上がより好ましく、1400以上が極めて好ましい。   The zirconia sintered body in the composite plate of the present invention has a Vickers hardness of preferably 1000 or more, more preferably 1100 or more, more preferably 1200 or more, in order to exhibit sufficient scratch resistance. Highly preferred.

本発明の複合プレートに用いる繊維強化プラスチックスとしては、ガラス繊維強化プラスチックス、炭素繊維強化プラスチックス、芳香族ポリアミド繊維強化プラスチックス、セルロース繊維強化プラスチックス等を例示することができる。工業的な利用が容易な炭素繊維強化プラスチックス又はガラス繊維強化プラスチックスが好ましい。また電波透過性が必要な部材に対しては、ガラス繊維強化プラスチックスが好ましい。   Examples of the fiber reinforced plastics used in the composite plate of the present invention include glass fiber reinforced plastics, carbon fiber reinforced plastics, aromatic polyamide fiber reinforced plastics, and cellulose fiber reinforced plastics. Carbon fiber reinforced plastics or glass fiber reinforced plastics that are easy to use industrially are preferred. Further, glass fiber reinforced plastics are preferable for members that require radio wave transmission.

繊維強化プラスチックとしては、例えば、不飽和ポリエステルの熱硬化性樹脂、エポキシ樹脂、ポリアミド樹脂、フェノール樹脂、アクリル樹脂、シリコーン、ポリサルフォン、ポリエーテルサルフォン、PET等を例示することができる。   Examples of fiber reinforced plastics include unsaturated polyester thermosetting resins, epoxy resins, polyamide resins, phenolic resins, acrylic resins, silicones, polysulfone, polyethersulfone, and PET.

一方、プラスチックスを強化する繊維に関しては、例えば、ガラス繊維、カーボン繊維、セルロース繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維などが挙げられる。これらの繊維を細かく切断し樹脂に均一にまぶしたり、繊維に方向性を持たせたままプラスチックに浸潤させる方法などが挙げられる。   On the other hand, examples of fibers that reinforce plastics include glass fibers, carbon fibers, cellulose fibers, aramid fibers, boron fibers, and polyethylene fibers. Examples of the method include finely cutting these fibers and uniformly coating the resin, or infiltrating the plastic with the fibers having directionality.

本発明の複合プレートにおける耐衝撃性(耐われ性)は、複合プレートを、アルミ合金の上に厚さ0.1mmの両面テープで接着し、130gの鋼球を任意の高さから、自由落下させるという衝撃試験において、ジルコニア質焼結体に割れが発生する高さ(破壊高さ)が10cm以上、好ましくは15cm以上、更に好ましくは20cm以上という高い耐衝撃性値を示すものである。10cm以上の破壊高さとすることで、携帯用電子機器の筐体として使用した場合、落下や衝突などに対する耐衝撃性を付与することができる。   The impact resistance (crack resistance) of the composite plate of the present invention is as follows. The composite plate is bonded onto an aluminum alloy with a double-sided tape having a thickness of 0.1 mm, and a 130 g steel ball can be freely dropped from any height. In the impact test, the height at which cracks occur in the zirconia sintered body (fracture height) is 10 cm or more, preferably 15 cm or more, and more preferably 20 cm or more. By using a breaking height of 10 cm or more, when used as a casing of a portable electronic device, impact resistance against dropping or collision can be imparted.

次に、本発明の複合プレートの製造方法について詳述する。   Next, the manufacturing method of the composite plate of this invention is explained in full detail.

本発明の複合プレートは、例えば、ジルコニア質焼結体からなる薄板と繊維強化プラスチックスとを接着剤を用いて300℃以下の温度で接合することで製造できる。接合に用いる接着剤としては、例えば、エポキシ系熱硬化型接着剤、室温で硬化するアクリル系接着剤、シアノアクリレート接着剤、紫外線硬化レジン等の接着剤等を例示することができる。ジルコニア質焼結体と繊維強化プラスチックスとの接合強度が高く、耐熱性、耐衝撃性も高いと言う点で、エポキシ系熱硬化型接着剤を使用することが好ましい。また、接着剤中に無機粒子などのフィラーを添加し、接着層の剛性を向上させることも可能である。より高い接着力を実現するため接着面に対して紫外線/オゾン処理やプラズマ処理をして清浄にすることが好ましい。またジルコニアの接着面は加熱により清浄とすることもできる。   The composite plate of the present invention can be produced, for example, by joining a thin plate made of a zirconia sintered body and fiber reinforced plastics at a temperature of 300 ° C. or lower using an adhesive. Examples of the adhesive used for bonding include an epoxy thermosetting adhesive, an acrylic adhesive that cures at room temperature, a cyanoacrylate adhesive, and an adhesive such as an ultraviolet curable resin. It is preferable to use an epoxy-based thermosetting adhesive in that the bonding strength between the zirconia sintered body and the fiber-reinforced plastics is high, and the heat resistance and impact resistance are also high. It is also possible to add a filler such as inorganic particles to the adhesive to improve the rigidity of the adhesive layer. In order to realize a higher adhesive force, it is preferable to clean the bonded surface by ultraviolet / ozone treatment or plasma treatment. Also, the bonded surface of zirconia can be cleaned by heating.

更に熱や溶媒により繊維強化プラスチックスを溶かしジルコニア薄板に溶着させることもできる。また型にジルコニア薄板を配置し、流動性を付与した繊維強化プラスチックスを型に流し込み溶着させ接合体を得ることも可能である。その他として繊維を含浸したプリプレグをジルコニアに密着し、その後、紫外線や熱などにより硬化させポリマー化させ複合体を得ることも可能である。   Further, the fiber reinforced plastics can be melted with heat or a solvent and welded to the zirconia sheet. It is also possible to place a zirconia thin plate in the mold and pour the fiber-reinforced plastics imparted with fluidity into the mold for welding to obtain a joined body. In addition, a prepreg impregnated with fibers can be adhered to zirconia, and then cured by ultraviolet rays or heat to be polymerized to obtain a composite.

本発明の複合プレートに係るジルコニア質焼結体の薄板の作製方法は、一般的なセラミックスの成型方法を用いて作製することができる。例えば、プレス法、押し出し法、泥漿鋳込み法、射出成形法、シート成型法が例示できるが、この中でもドクターブレードによるシート成型法が好ましい。具体的には、ジルコニア粉末と有機バインダーを混合したスラリーをドクターブレードにより厚さ1mm以下のグリーンシートに成膜し、1300〜1500℃で焼結し、ジルコニア質焼結体を得て、それを繊維強化プラスチックスに接合した後、ジルコニア質焼結体表面を研削・研磨し複合プレートを製造することができる。焼結は、通常の大気焼結の他、真空焼結、ホットプレス、熱間等方圧加圧法(HIP)なども使用することができる。   The thin plate of the zirconia sintered body according to the composite plate of the present invention can be manufactured using a general ceramic molding method. For example, a press method, an extrusion method, a slurry casting method, an injection molding method, and a sheet molding method can be exemplified, and among these, a sheet molding method using a doctor blade is preferable. Specifically, a slurry in which zirconia powder and an organic binder are mixed is formed on a green sheet having a thickness of 1 mm or less with a doctor blade, and sintered at 1300 to 1500 ° C. to obtain a zirconia sintered body. After bonding to fiber reinforced plastics, the composite plate can be manufactured by grinding and polishing the surface of the zirconia sintered body. For the sintering, vacuum sintering, hot pressing, hot isostatic pressing (HIP) and the like can be used in addition to normal atmospheric sintering.

本発明の複合プレートに用いるジルコニア質焼結体は、表面側が鏡面研磨されたものが好ましい。鏡面を呈する表面粗さとしては、Ra(算術平均高さ)=0.1μm以下が好ましい。算術平均高さは、粗さ曲線から、その平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から測定曲線までの偏差の絶対値を合計し平均した値である。また繊維強化プラスチックに接合するジルコニア質焼結体の表面凹凸の差の最大値は1cmあたり50μm以下である。繊維強化プラスチックスに接着してジルコニアを研削・研磨すると加工による残留応力によって容易にソリ・ゆがみが発生するため、接着前に最終形状まで加工を行い、平坦にしたものを繊維強化プラスチックスに接着することが好ましい。なお繊維強化プラスチックに接着した状態で、ジルコニア側を機械加工する場合は、できるだけ残留応力の残らない条件で研削・研磨することが好ましい。 The zirconia sintered body used for the composite plate of the present invention is preferably one whose surface side is mirror-polished. As surface roughness which exhibits a mirror surface, Ra (arithmetic mean height) = 0.1 micrometer or less is preferable. The arithmetic average height is a value obtained by extracting a reference length from the roughness curve in the direction of the average line, and summing and averaging the absolute values of deviations from the average line of the extracted portion to the measurement curve. Moreover, the maximum value of the surface unevenness difference of the zirconia sintered body joined to the fiber reinforced plastic is 50 μm or less per 1 cm 2 . Grinding and polishing zirconia by bonding to fiber reinforced plastics will easily cause warping and distortion due to residual stress due to processing, so the final shape is processed before bonding and the flattened material is bonded to fiber reinforced plastics It is preferable to do. In addition, when machining the zirconia side in a state of being bonded to the fiber reinforced plastic, it is preferable to perform grinding and polishing under conditions that do not leave residual stress as much as possible.

本発明の複合プレートは、薄板状であり且つ耐衝撃性や耐擦傷性も高いことから、スマートフォン、タブレット型端末、ノートPC、小型音楽プレーヤー等の携帯用電子機器の筐体部材として使用することができる。またタッチパッドなどの入力装置部材としても使用することができる。またガラス繊維強化プラスチックスを用いたものは、高い電波透過性を有するためにアンテナの保護部材等の部材にも使用できる。更に着色ジルコニアを使用することで、意匠性の向上が容易なことから時計部材としても使用することができる。   Since the composite plate of the present invention is thin and has high impact resistance and scratch resistance, it can be used as a housing member for portable electronic devices such as smartphones, tablet terminals, notebook PCs, and small music players. Can do. It can also be used as an input device member such as a touch pad. Moreover, since the thing using glass fiber reinforced plastics has high radio wave permeability, it can be used also for members, such as a protection member of an antenna. Furthermore, by using colored zirconia, it is possible to use it as a watch member because it is easy to improve the design.

実施例1のジルコニア複合プレートの3次元表面形状。The three-dimensional surface shape of the zirconia composite plate of Example 1. 実施例1に用いたジルコニア質焼結体の3次元表面形状。The three-dimensional surface shape of the zirconia sintered body used in Example 1. 実施例2のジルコニア複合プレートの3次元表面形状。The three-dimensional surface shape of the zirconia composite plate of Example 2. 参考例1の複合プレートの表面プロファイル。The surface profile of the composite plate of Reference Example 1. 参考例2のジルコニア質焼結体の表面形状。The surface shape of the zirconia sintered body of Reference Example 2.

以下、実施例及び比較例により本発明を具体的に説明する。
(相対密度)
5枚のジルコニア質焼結体を集めてアルキメデス法を用いて試料の密度を測定した。得られた密度を真密度に対する相対密度として求めた。ジルコニア粉末(東ソー製、商品名「3YSE」)を用いた焼結体の真密度は6.09g/cmとした。3YSEは、3mol%のイットリアを含むジルコニアに対して助剤としてアルミナを0.25wt%添加した系である。
(表面形状測定)
複合プレートの表面凹凸の3次元形状測定は、ZygoNewView7100を用いて評価した。テストピース中央を中心として、1cm当たりにおける表面凹凸を測定した。起伏の激しい比較例1については、光学顕微鏡を用いて焦点距離を計測することにより表面形状を測定した。
(衝撃強度測定)
複合プレートの衝撃強度評価は鋼球落下試験を用いて行った。鋼球落下試験は、「ウオッチ用ガラスの寸法、試験方法」規格のISO14368−3に類似した方法を適用した。すなわち、厚さ5mmの平坦なアルミ合金上(50mm×52mm)に厚さ0.1mmの両面テープ(3M製、商品番号「4511−100」)で、複合プレートを固定し、当該複合プレートの中心位置に130gの鋼球を任意の高さから自由落下させ、複合プレートが破壊する高さを測定した。なおインパクト面については表面粗さRa=0.02μm以下に鏡面研磨したものを用いた。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(Relative density)
Five zirconia sintered bodies were collected and the density of the sample was measured using the Archimedes method. The obtained density was determined as a relative density with respect to the true density. The true density of the sintered body using zirconia powder (product name “3YSE” manufactured by Tosoh Corporation) was set to 6.09 g / cm 3 . 3YSE is a system in which 0.25 wt% of alumina is added as an auxiliary to zirconia containing 3 mol% of yttria.
(Surface shape measurement)
The three-dimensional shape measurement of the surface unevenness of the composite plate was evaluated using ZygoNewView7100. The surface unevenness per cm 2 was measured around the center of the test piece. For Comparative Example 1 with undulating undulations, the surface shape was measured by measuring the focal length using an optical microscope.
(Impact strength measurement)
The impact strength of the composite plate was evaluated using a steel ball drop test. For the steel ball drop test, a method similar to ISO14368-3 of the “Watch Glass Dimensions, Test Method” standard was applied. That is, a composite plate is fixed on a flat aluminum alloy (50 mm × 52 mm) having a thickness of 5 mm with a double-sided tape having a thickness of 0.1 mm (made by 3M, product number “4511-100”), and the center of the composite plate is fixed. A 130 g steel ball was dropped freely from an arbitrary height to the position, and the height at which the composite plate was broken was measured. The impact surface was mirror-polished to a surface roughness Ra = 0.02 μm or less.

実施例1
TZ−3YS−E(東ソー製)粉末を700g、分散剤として市販のポリカルボン酸エステル型高分子分散剤14g、消泡剤として市販のポリエチレングリコールモノ−パラ−イソ−オクチルフェニルエーテル3.5g、溶剤として酢酸エチル245g及び酢酸n−ブチル245g、結合剤としてブチラール樹脂(重合度約1000)粉末49g、及び可塑剤として、工業用のフタル酸ジオクチル42gを添加してボールミルにて48時間混合した。ドクターブレード装置およびブレードを使用しキャリヤーフィルムとしてポリエチレンテレフタレート(PET)を使用し、キャリヤーフィルム上にグリーンシートを成膜した。
Example 1
700 g of TZ-3YS-E (manufactured by Tosoh) powder, 14 g of a commercially available polycarboxylic acid ester type polymer dispersant as a dispersant, 3.5 g of commercially available polyethylene glycol mono-para-iso-octylphenyl ether as an antifoaming agent, 245 g of ethyl acetate and 245 g of n-butyl acetate as a solvent, 49 g of butyral resin (polymerization degree: about 1000) powder as a binder, and 42 g of industrial dioctyl phthalate as a plasticizer were added and mixed in a ball mill for 48 hours. Using a doctor blade apparatus and a blade, polyethylene terephthalate (PET) was used as a carrier film, and a green sheet was formed on the carrier film.

得られたグリーンシートを、多孔質アルミナセッター上に重しのアルミナセッターを載せて焼結した。焼結は、室温から450℃までは、昇温速度を5℃/hとして、450℃で10時間保持し脱脂を行い、450℃から1000℃までは、昇温速度を50℃/hとし、1000℃で5時間保持し、その後1450℃で2時間保持して焼結した。得られたジルコニア質焼結体の密度は、6.085g/cmで相対密度は99.9%以上であった。 The obtained green sheet was sintered by placing a weighted alumina setter on a porous alumina setter. Sintering is performed at room temperature to 450 ° C. at a heating rate of 5 ° C./h, held at 450 ° C. for 10 hours for degreasing, and from 450 ° C. to 1000 ° C., the heating rate is 50 ° C./h, It was held at 1000 ° C. for 5 hours and then held at 1450 ° C. for 2 hours for sintering. The density of the obtained zirconia sintered body was 6.085 g / cm 3 and the relative density was 99.9% or more.

得られたジルコニア質焼結体(厚み約0.5mm)を32mm×25mmに切り出し、平面研削、鏡面研磨機を用いて厚さ0.321mmに加工した。機械加工による残留応力を除くために、上下面均等な条件で加工した。平面研削は、#140砥石を用いて行った。研削速度が速いと、残留応力の発生が顕著となりソリが生じるため、研削速度は低速で行った。上下面について同様な条件で研削した後、鏡面研磨を行った。   The obtained zirconia sintered body (thickness: about 0.5 mm) was cut into a size of 32 mm × 25 mm, and processed to a thickness of 0.321 mm using surface grinding and a mirror polishing machine. In order to remove the residual stress due to machining, the upper and lower surfaces were processed under equal conditions. Surface grinding was performed using a # 140 grindstone. When the grinding speed was high, the generation of residual stress was prominent and warping occurred, so the grinding speed was low. After grinding the upper and lower surfaces under the same conditions, mirror polishing was performed.

鏡面研磨は、テグラフォース(丸本ストルラス株式会社)を用いて、9μm、6μm、1μmダイヤモンド砥粒を用いて上下面を同じ研磨条件で研磨した。9μm、6μm砥粒の研磨条件は、時間10分、圧力3.5N/cmとし、1μmについては、時間10分、圧力2.8N/cmとした。得られた焼結体の厚みは、0.250mmであり、表面凹凸の最大値は、1cmあたり1.381μmの平坦なジルコニア質焼結体であった。 In the mirror polishing, the upper and lower surfaces were polished under the same polishing conditions using 9 μm, 6 μm, and 1 μm diamond abrasive grains using Tegra Force (Marumoto Strulus Co., Ltd.). The polishing conditions for the 9 μm and 6 μm abrasive grains were 10 minutes at a pressure of 3.5 N / cm 2, and 1 μm was 10 minutes at a pressure of 2.8 N / cm 2 . The thickness of the obtained sintered body was 0.250 mm, and the maximum value of the surface unevenness was a flat zirconia sintered body of 1.381 μm per cm 2 .

得られたジルコニアジルコニア質焼結体の薄板とエポキシ樹脂ベースのガラス繊維強化プラスチックス(日東シンコー製、エポキシ/ガラスクロス積層成型品SL−EC)の各表面をアセトンにより洗浄し、次いで、エポキシ系熱硬化性樹脂(ナガセケムテックス製、商品番号「XN1245SR」)を接着面に均一に塗布し、複合プレートの上下面に均等に荷重が懸かる状態とし、120℃、30分の条件で接着した。得られた複合プレートを32mm×25mmとなるよう切断加工した。加工による接着剤の剥がれ、ジルコニアのチッピングなど見られず高い加工性であった。見かけ密度の計算には、強化プラチック密度として2.0g/cmを用いた。 Each surface of the obtained zirconia-zirconia-based sintered sheet and epoxy resin-based glass fiber reinforced plastics (manufactured by Nitto Shinko, epoxy / glass cloth laminate molded product SL-EC) was washed with acetone, and then epoxy-based A thermosetting resin (manufactured by Nagase ChemteX, product number “XN1245SR”) was evenly applied to the bonding surface, and the load was evenly applied to the upper and lower surfaces of the composite plate, and bonding was performed at 120 ° C. for 30 minutes. The obtained composite plate was cut to a size of 32 mm × 25 mm. The adhesive was not peeled off due to processing, and zirconia chipping was not observed. For the calculation of the apparent density, 2.0 g / cm 3 was used as the reinforced plastic density.

作製した複合プレートの厚みは、0.900mmであり各層の厚みは、焼結体0.321mm、接着層49μm、繊維強化プラスチックス0.530mmであった。ジルコニア質焼結体の厚み/繊維強化プラスチックスの厚みは0.61であった。複合プレートの見かけ密度は、3.35g/cm、ビッカース硬度は1240であった。得られた複合プレートの、表面凹凸の最大値は、1cmあたり14.651μmであり、反射像の歪みが少ない意匠性の高い平坦な複合プレートが得られた。 The prepared composite plate had a thickness of 0.900 mm, and each layer had a sintered body of 0.321 mm, an adhesive layer of 49 μm, and fiber reinforced plastics of 0.530 mm. The thickness of the zirconia sintered body / the thickness of the fiber reinforced plastic was 0.61. The apparent density of the composite plate was 3.35 g / cm 3 and the Vickers hardness was 1240. The maximum value of the surface unevenness of the obtained composite plate was 14.651 μm per 1 cm 2 , and a flat composite plate having high design properties with little distortion of the reflected image was obtained.

5cm刻みで鋼球落下試験を行った結果、40cmとなり高い耐衝撃性を示すことが分かった。更に試験済みテストピースの健全な部分を狙い鋼球落下高さ50cmからそれぞれ一回落下させる鋼球落下試験を行った。割れはなく耐衝撃性は5cm刻みで評価したものより高くなった。繰り返しの衝撃試験に起因する接着層の界面剥がれなかったために高い値を示したと考えられる。   As a result of performing a steel ball drop test in increments of 5 cm, it was found to be 40 cm and exhibit high impact resistance. Further, a steel ball drop test was performed in which a healthy portion of the tested test piece was aimed at and dropped once from a steel ball drop height of 50 cm. There was no crack and the impact resistance was higher than that evaluated in 5 cm increments. It is considered that a high value was exhibited because the interface of the adhesive layer was not peeled off due to repeated impact tests.

実施例2
黒色ジルコニア粉末(東ソー製、商品名「TZ−Black」)を金型プレスによって圧力50MPaで成形した。成形体を更に圧力200MPaの冷間静水圧プレス(CIP)で成形した。得られた成形体を、大気中、昇温速度100℃/h、焼結温度1400℃、1時間保持し焼結した。得られたジルコニア質焼結体を両面研削、両面研磨し1mm程度の厚みとし、ジルコニア板を得た。得られたジルコニア質焼結体の密度は、5.993g/cm、相対密度99.0%であった。ここで黒色の真密度を、6.053g/cmとした。
Example 2
Black zirconia powder (manufactured by Tosoh Corporation, trade name “TZ-Black”) was molded by a mold press at a pressure of 50 MPa. The molded body was further molded by a cold isostatic press (CIP) with a pressure of 200 MPa. The obtained molded body was sintered in the air at a temperature rising rate of 100 ° C./h and a sintering temperature of 1400 ° C. for 1 hour. The obtained zirconia sintered body was subjected to double-side grinding and double-side polishing to a thickness of about 1 mm to obtain a zirconia plate. The density of the obtained zirconia sintered body was 5.993 g / cm 3 and the relative density was 99.0%. Here, the true density of black was set to 6.053 g / cm 3 .

得られたジルコニア質焼結体の薄板とガラス繊維強化プラスチック(日東シンコー製、エポキシ/ガラスクロス積層成型品SL−EC)の各表面をアセトンにより洗浄し、次いで、エポキシ系熱硬化性樹脂(ナガセケムテックス製、商品番号「XN1245SR」)を接着面に均一に塗布し、複合プレートの上下面に均等に荷重が懸かる状態とし、120℃、30分の条件で接着した。得られた複合プレートにおける各層の厚みを表1に示した。得られた複合プレートを32mm×25mmとなるよう切断加工した。切断した複合プレートのジルコニア側を研削・研磨することで最終的に0.8mm程度の複合プレートとした。研削・研磨は残留応力ができるだけ発生しない条件を選んで行った。加工による接着剤の剥がれ、ジルコニアのチッピングなど見られず高い加工性であった。見かけ密度の計算には、強化プラチック密度として2.0g/cmを用いた。 Each surface of the obtained thin plate of zirconia sintered body and glass fiber reinforced plastic (manufactured by Nitto Shinko, epoxy / glass cloth laminated molded product SL-EC) was washed with acetone, and then an epoxy thermosetting resin (Nagase) A product number “XN1245SR” manufactured by Chemtex Co., Ltd.) was evenly applied to the bonding surface, and the load was evenly applied to the upper and lower surfaces of the composite plate, and bonding was performed at 120 ° C. for 30 minutes. Table 1 shows the thickness of each layer in the obtained composite plate. The obtained composite plate was cut to a size of 32 mm × 25 mm. By grinding and polishing the zirconia side of the cut composite plate, a composite plate of about 0.8 mm was finally obtained. Grinding and polishing were carried out under conditions that produce as little residual stress as possible. The adhesive was not peeled off due to processing, and zirconia chipping was not observed. For the calculation of the apparent density, 2.0 g / cm 3 was used as the reinforced plastic density.

作製した複合プレートの厚みは、0.817mmであり各層の厚みは、ジルコニア質焼結体0.270mm、接着層37μm、繊維強化プラスチックス0.510mmであった。ジルコニア質焼結体の厚み/繊維強化プラスチックスの厚みは0.53であった。複合プレートの見かけ密度は、3.23g/cm、ビッカース硬度は1240であった。得られた複合プレートの、表面凹凸の差の最大値は、1cmあたり11.107μmであり、平坦な複合プレートであり、反射像の歪みが少ない、意匠性の高いものが得られた。 The thickness of the produced composite plate was 0.817 mm, and the thickness of each layer was 0.270 mm of a zirconia sintered body, an adhesive layer of 37 μm, and fiber-reinforced plastics of 0.510 mm. The thickness of the zirconia sintered body / the thickness of the fiber reinforced plastic was 0.53. The apparent density of the composite plate was 3.23 g / cm 3 and the Vickers hardness was 1240. The maximum value of the difference in surface irregularities of the obtained composite plate was 11.107 μm per 1 cm 2 , which was a flat composite plate, and a high design property with little distortion of the reflected image was obtained.

5cm刻みで鋼球落下試験を行った結果、40cmとなり高い耐衝撃性を示すことが分かった。更に試験済みテストピースの健全な部分を狙い鋼球落下高さ50cmからそれぞれ一回落下させる鋼球落下試験を行った。割れはなく耐衝撃性は5cm刻みで評価したものより高くなった。繰り返しの衝撃試験に起因する接着層の界面剥がれなかったために高い値を示したと考えられる。   As a result of performing a steel ball drop test in increments of 5 cm, it was found to be 40 cm and exhibit high impact resistance. Further, a steel ball drop test was performed in which a healthy portion of the tested test piece was aimed at and dropped once from a steel ball drop height of 50 cm. There was no crack and the impact resistance was higher than that evaluated in 5 cm increments. It is considered that a high value was exhibited because the interface of the adhesive layer was not peeled off due to repeated impact tests.

参考例1
実施例2と同様な方法を用いて、研削・研磨条件として、加工材に残留応力がのこるようにして、表面凹凸が著しいジルコニア複合プレートを作製した。作製したジルコニア複合プレートは、ジルコニアに反射した像が歪む意匠性の低いものであった。複合プレートについて光学顕微鏡にて表面形状測定した結果、1cmあたりの表面凹凸の差の最大値は72μm程度であった。図4に最も凹凸差の顕著な表面プロファイルを2次元データとして示す。
Reference example 1
Using a method similar to that of Example 2, a zirconia composite plate with remarkably surface irregularities was produced so that residual stress was applied to the workpiece as grinding and polishing conditions. The produced zirconia composite plate had a low design property in which an image reflected by zirconia was distorted. As a result of measuring the surface shape of the composite plate with an optical microscope, the maximum value of the surface unevenness per 1 cm 2 was about 72 μm. FIG. 4 shows the surface profile with the most unevenness as the two-dimensional data.

参考例2
実施例2と同様な手順で作製したバルクのジルコニア質焼結体(厚さ1mm)の表面凹凸像を示す。1cm当たりの表面凹凸の最大値の差は、7.023μmであり、焼結体表面の反射像は歪みなく高い意匠性を示すものであった。
Reference example 2
The surface uneven | corrugated image of the bulk zirconia sintered compact (thickness 1mm) produced in the procedure similar to Example 2 is shown. The difference between the maximum surface irregularities per 1 cm 2 was 7.023 μm, and the reflection image on the surface of the sintered body showed high design without distortion.

本発明のジルコニア質焼結体と繊維強化プラスチックスとの複合プレートは、意匠性が高く軽量でかつ耐衝撃性、耐擦傷性を有するため携帯用電子機器、時計部材等の小型・薄型部材に好適に使用することができる。   The composite plate of the zirconia sintered body and fiber reinforced plastics of the present invention is highly designed and lightweight, and has impact resistance and scratch resistance. Therefore, it is suitable for small and thin members such as portable electronic devices and watch members. It can be preferably used.

Claims (13)

ジルコニア質焼結体、繊維強化プラスチックスが積層し、互いに密着固定されてなる厚み2mm以下の複合プレートであって、ジルコニア質焼結体の表面凹凸の差の最大値が、1cmあたり50μm以下である複合プレート。 A composite plate having a thickness of 2 mm or less in which a zirconia sintered body and fiber reinforced plastics are laminated and fixed in close contact with each other, and the maximum difference in surface irregularities of the zirconia sintered body is 50 μm or less per 1 cm 2 Is a composite plate. ジルコニア質焼結体と繊維強化プラスチックスとの厚み比率(ジルコニア質焼結体厚み/繊維強化プラスチックス厚み)が0.01〜1である請求項1記載の複合プレート。 2. The composite plate according to claim 1, wherein the thickness ratio of the zirconia sintered body to the fiber reinforced plastics (zirconia sintered body thickness / fiber reinforced plastics thickness) is 0.01 to 1. 3. 見かけ密度が4.3g/cm以下である請求項1又は2に記載の複合プレート。 The composite plate according to claim 1, wherein an apparent density is 4.3 g / cm 3 or less. ジルコニア質焼結体が、ジルコニアに対して2〜10mol%のイットリアを含有するジルコニアである請求項1〜3のいずれかに記載の複合プレート。 The composite plate according to any one of claims 1 to 3, wherein the zirconia sintered body is zirconia containing 2 to 10 mol% of yttria with respect to zirconia. ジルコニア質焼結体が、白色顔料、遷移金属酸化物、着色顔料からなる群より選ばれる少なくとも1種を含有するジルコニアである請求項1〜4のいずれかに記載の複合プレート。 The composite plate according to any one of claims 1 to 4, wherein the zirconia sintered body is zirconia containing at least one selected from the group consisting of a white pigment, a transition metal oxide, and a color pigment. ジルコニア質焼結体の相対密度が97%以上である請求項1〜5のいずれかに記載の複合プレート。 The composite plate according to any one of claims 1 to 5, wherein the relative density of the zirconia sintered body is 97% or more. ジルコニア質焼結体のビッカース硬度が1000以上である請求項1〜6のいずれかに記載の複合プレート。 The composite plate according to any one of claims 1 to 6, wherein the zirconia sintered body has a Vickers hardness of 1000 or more. 繊維強化プラスチックスが、ガラス繊維強化プラスチックス又は炭素繊維強化プラスチックスである請求項1〜7のいずれかに記載の複合プレート。 The composite plate according to any one of claims 1 to 7, wherein the fiber reinforced plastic is glass fiber reinforced plastic or carbon fiber reinforced plastic. 130gの鋼球を自由落下させる試験において、破壊高さが10cm以上である高耐衝撃性を示すことを特徴とする請求項1〜8のいずれかに記載の複合プレート。 The composite plate according to any one of claims 1 to 8, which exhibits high impact resistance having a fracture height of 10 cm or more in a test in which a 130 g steel ball is freely dropped. ジルコニア質焼結体と繊維強化プラスチックスを、エポキシ系熱硬化型接着剤を用いて300℃以下の温度で接合することを特徴とする、請求項1〜9のいずれかに記載の複合プレートの製造方法。 The composite plate according to any one of claims 1 to 9, wherein the zirconia sintered body and the fiber reinforced plastics are bonded at a temperature of 300 ° C or lower using an epoxy thermosetting adhesive. Production method. ジルコニア質焼結体が、ジルコニア粉末と有機バインダーを混合したスラリーを厚さ1mm以下のグリーンシートに成膜し、次いで1300〜1500℃で焼結したものである請求項10記載の複合プレートの製造方法。 11. The composite plate according to claim 10, wherein the zirconia sintered body is obtained by forming a slurry obtained by mixing zirconia powder and an organic binder on a green sheet having a thickness of 1 mm or less and then sintering at 1300 to 1500 ° C. Method. 請求項1〜9のいずれかに記載の複合プレートを用いた携帯用電子機器の筐体。 A housing of a portable electronic device using the composite plate according to claim 1. 請求項1〜9のいずれかに記載の複合プレートを用いた時計部材。 A timepiece member using the composite plate according to claim 1.
JP2013230681A 2013-11-06 2013-11-06 Composite plate and manufacturing method thereof Active JP6237130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013230681A JP6237130B2 (en) 2013-11-06 2013-11-06 Composite plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013230681A JP6237130B2 (en) 2013-11-06 2013-11-06 Composite plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015089656A true JP2015089656A (en) 2015-05-11
JP6237130B2 JP6237130B2 (en) 2017-11-29

Family

ID=53193409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013230681A Active JP6237130B2 (en) 2013-11-06 2013-11-06 Composite plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6237130B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089863A (en) * 2013-11-06 2015-05-11 東ソー株式会社 Composite plate and method for producing the same
US20170017272A1 (en) * 2015-07-15 2017-01-19 Dell Products L.P. Carbon fiber/ceramic chassis
JP2017167135A (en) * 2016-03-14 2017-09-21 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing timepiece display or hand-fitting component
JP2017167134A (en) * 2016-03-14 2017-09-21 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing timepiece display or hand-fitting component

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176359A (en) * 1987-01-16 1988-07-20 東京窯業株式会社 Manufacture of zirconia green sheet
JPH06172026A (en) * 1992-09-21 1994-06-21 Matsushita Electric Works Ltd Sintered compact of zirconia-based complex ceramic and its production
JPH0872200A (en) * 1994-09-06 1996-03-19 Sumitomo Bakelite Co Ltd Composite molding
JPH11278928A (en) * 1998-03-31 1999-10-12 Tosoh Corp Composite-based ceramic material
JP2001240953A (en) * 2000-03-02 2001-09-04 Tocalo Co Ltd Plastic base composite material excellent in surface characteristic such as wear resistance, and its manufacturing method
JP2003268568A (en) * 2002-01-09 2003-09-25 Citizen Watch Co Ltd Ornament with white film, and its manufacturing method
US20060268528A1 (en) * 2004-07-02 2006-11-30 Apple Computer, Inc. Handheld computing device
JP2008162164A (en) * 2006-12-28 2008-07-17 Kyocera Chemical Corp Compound bulletproof plate
JP2009248398A (en) * 2008-04-03 2009-10-29 Nippon Steel Materials Co Ltd Structure containing ceramic and carbon fiber reinforced plastic

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176359A (en) * 1987-01-16 1988-07-20 東京窯業株式会社 Manufacture of zirconia green sheet
JPH06172026A (en) * 1992-09-21 1994-06-21 Matsushita Electric Works Ltd Sintered compact of zirconia-based complex ceramic and its production
JPH0872200A (en) * 1994-09-06 1996-03-19 Sumitomo Bakelite Co Ltd Composite molding
JPH11278928A (en) * 1998-03-31 1999-10-12 Tosoh Corp Composite-based ceramic material
JP2001240953A (en) * 2000-03-02 2001-09-04 Tocalo Co Ltd Plastic base composite material excellent in surface characteristic such as wear resistance, and its manufacturing method
JP2003268568A (en) * 2002-01-09 2003-09-25 Citizen Watch Co Ltd Ornament with white film, and its manufacturing method
US20060268528A1 (en) * 2004-07-02 2006-11-30 Apple Computer, Inc. Handheld computing device
JP2008162164A (en) * 2006-12-28 2008-07-17 Kyocera Chemical Corp Compound bulletproof plate
JP2009248398A (en) * 2008-04-03 2009-10-29 Nippon Steel Materials Co Ltd Structure containing ceramic and carbon fiber reinforced plastic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015089863A (en) * 2013-11-06 2015-05-11 東ソー株式会社 Composite plate and method for producing the same
US20170017272A1 (en) * 2015-07-15 2017-01-19 Dell Products L.P. Carbon fiber/ceramic chassis
US10296049B2 (en) * 2015-07-15 2019-05-21 Dell Products L.P. Carbon fiber/ceramic chassis
JP2017167135A (en) * 2016-03-14 2017-09-21 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing timepiece display or hand-fitting component
JP2017167134A (en) * 2016-03-14 2017-09-21 ニヴァロックス−ファー ソシエテ アノニム Method for manufacturing timepiece display or hand-fitting component
CN107193201A (en) * 2016-03-14 2017-09-22 尼瓦洛克斯-法尔股份有限公司 Economical clock and watch display element
CN107193201B (en) * 2016-03-14 2020-09-15 尼瓦洛克斯-法尔股份有限公司 Economical timepiece display element

Also Published As

Publication number Publication date
JP6237130B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6064567B2 (en) Composite plate and manufacturing method thereof
JP6237130B2 (en) Composite plate and manufacturing method thereof
KR20150011818A (en) Chemically strengthened glass plate, cover glass, chemically strengthened glass with touch sensor, and display device
JP6020564B2 (en) Composite plate and manufacturing method thereof
CN107304105A (en) Flat glass product and its production method that edge strength is improved
WO2009142238A1 (en) Sintered compact, process for production thereof, and optical element
WO2015076268A1 (en) Chemically strengthened glass plate
CN108437574A (en) Shock resistance case material, preparation method, the preparation method of digital product shell and digital product shell
JP6682442B2 (en) Base material / ceramic laminate
CN115666932A (en) Laminated member
JP6252113B2 (en) Composite plate and manufacturing method thereof
RU2735350C2 (en) Transparent ceramic material as a component of unbreakable optical glasses
CN212160261U (en) Magnesium aluminate spinel transparent ceramic and polyurethane filling lens
KR101454446B1 (en) Method of cutting and chamfering strengthened glass
JP5895719B2 (en) Translucent ceramic joined body and manufacturing method
CN117185807A (en) Yttria-stabilized zirconia ceramic material, preparation method thereof and electronic equipment
TWI653210B (en) Manufacturing method of multi-crystal transparent ceramic substrate
CN113348074A (en) Thin multilayer laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R151 Written notification of patent or utility model registration

Ref document number: 6237130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151