JP2015087198A5 - - Google Patents

Download PDF

Info

Publication number
JP2015087198A5
JP2015087198A5 JP2013224891A JP2013224891A JP2015087198A5 JP 2015087198 A5 JP2015087198 A5 JP 2015087198A5 JP 2013224891 A JP2013224891 A JP 2013224891A JP 2013224891 A JP2013224891 A JP 2013224891A JP 2015087198 A5 JP2015087198 A5 JP 2015087198A5
Authority
JP
Japan
Prior art keywords
light
distribution
test
measurement
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013224891A
Other languages
Japanese (ja)
Other versions
JP2015087198A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013224891A priority Critical patent/JP2015087198A/en
Priority claimed from JP2013224891A external-priority patent/JP2015087198A/en
Publication of JP2015087198A publication Critical patent/JP2015087198A/en
Publication of JP2015087198A5 publication Critical patent/JP2015087198A5/ja
Pending legal-status Critical Current

Links

Description

本発明の計測装置は、光源と、光線分布センサと、光を被検物の被検面に照射して得られた反射光を、計測光として前記光線分布センサに投影するように構成された投影光学系と、基準光を発生させる基準光発生部と、前記計測光と前記基準光との少なくとも一方の光線角度を、前記投影光学系に入射される前に変更可能な光線分布可変素子と、前記光線分布センサで検出される前記計測光の光線分布と前記基準光の光線分布とを一致させるように、前記光線分布可変素子を制御して前記計測光と前記基準光との少なくとも一方の光線角度を変更し、前記光線分布可変素子の制御量に基づいて前記被検面の形状を演算する演算部と、を備えることを特徴とする。 Measurement apparatus of the present invention, a light source, a light ray distribution sensor, a reflected light obtained by irradiating the test surface of the test object light, configured to project the light distribution sensor as the measurement light a projection optical system that is, a reference light generator for generating a reference light, at least one of the ray angle of the measuring light and the reference light, changeable light rays distribution before being incident on the projection optical system The light distribution variable element is controlled to match the light distribution of the measurement light and the light distribution of the reference light detected by the light distribution sensor with the variable element, and the measurement light and the reference light are controlled. A calculation unit that changes at least one of the light beam angles and calculates the shape of the test surface based on a control amount of the light distribution variable element.

また、本発明は、光源と、光線分布センサと、光を被検物の被検面に照射して得られた反射光を、計測光として前記光線分布センサに投影するように構成された投影光学系と、基準光を発生させる基準光発生部と、前記計測光と前記基準光との少なくとも一方の光線角度を、前記投影光学系に入射される前に変更可能な光線分布可変素子と、演算部と、を備える計測装置の計測方法において、前記演算部は、前記光線分布センサで検出される前記計測光の光線分布と前記基準光の光線分布とを一致させるように、前記光線分布可変素子を制御して前記計測光と前記基準光との少なくとも一方の光線角度を変更する光線分布変更工程と、前記光線分布可変素子の制御量に基づいて前記被検面の形状を演算する形状演算工程と、を実行することを特徴とする。 Further, the present invention includes a light source, a light ray distribution sensor, a reflected light obtained by irradiating the test surface of the test object light, configured to project the light distribution sensor as the measurement light and a projection optical system, a reference light generator for generating a reference light, at least one of the ray angle of the measuring light and the reference light, changeable light rays distribution variable before being incident on the projection optical system In the measurement method of the measuring device including an element and a calculation unit, the calculation unit matches the light distribution of the measurement light detected by the light distribution sensor with the light distribution of the reference light. and the light distribution changing step of changing at least one of the ray angle of the beam distribution variable element and the measuring light by controlling the reference light, the shape of the test surface based on the control amount before Symbol light distribution variable element and shape calculation step of calculating, that the execution And butterflies.

本発明によれば、計測光の光線分布と基準光の光線分布とを検出して、これらの光線分布が一致するように計測光と基準光の少なくとも一方の光線角度を変更するようにしている。従って、基準計測時と被検面計測時とにおいて投影光学系での光線分布が異なることを抑制できるので、光線分布の違いにより発生し得る投影光学系の収差の違いを抑え、計測誤差を抑制できるようになる。 According to the present invention, by detecting the light distribution of the measuring light beam distribution and reference light, and at least one of the ray angle of the measuring light and the reference light, as these rays distribution matches to modify Yes. Therefore, it is possible to suppress the difference in the light distribution in the projection optical system between the reference measurement and the measurement of the surface to be measured. become able to.

ホルダ31には、被検物2及び基準光を発生させる基準光学素子(基準光発生部)3が選択的に着脱可能になっている。基準光学素子3としては、例えば球面や非球面等の形状が既知であって光源光を反射する基準面3aを有する基準レンズあるいは基準ミラー等を適用する。被検物2がホルダ31により保持され被検位置に設置されると、光源光が被検物2の被検面2aに照射され、該被検面2aから計測光がビームスプリッタ20に入射される。また、基準光学素子3がホルダ31により保持された時は、光源光が基準光学素子3の基準面3aに照射され、該基準面3aから基準光がビームスプリッタ20に入射される。即ち、本実施形態では、基準光学素子3は、基準面3aの形状に応じた所定形状の基準波面を有する基準光を発生させ、計測光と選択的に基準光を投影光学系70に入射可能になっている。  A specimen 31 and a reference optical element (reference light generator) 3 for generating reference light are selectively detachable from the holder 31. As the reference optical element 3, for example, a reference lens or a reference mirror having a reference surface 3a that has a known shape such as a spherical surface or an aspheric surface and reflects light source light is used. When the test object 2 is held by the holder 31 and placed at the test position, the light source light is irradiated onto the test surface 2a of the test object 2, and the measurement light is incident on the beam splitter 20 from the test surface 2a. The When the reference optical element 3 is held by the holder 31, the light source light is applied to the reference surface 3 a of the reference optical element 3, and the reference light is incident on the beam splitter 20 from the reference surface 3 a. In other words, in the present embodiment, the reference optical element 3 can generate reference light having a reference wavefront having a predetermined shape corresponding to the shape of the reference surface 3a, and can selectively enter the reference light into the projection optical system 70 as measurement light. It has become.

次に、本実施形態の特徴部である光線分布可変素子60について説明する。光線分布可変素子60は、屈折率が可変な透明物質を備え、屈折率の空間的な分布を制御することで、透過する光の位相の空間分布を変調する位相変調素子である。例えば、液晶層の配向状態を電気的に制御することで屈折率を制御するものが周知であるが、これに限られないのは勿論である。この光線分布可変素子60は、対物レンズ24と被検物2または基準光学素子3との間に設置され、透過する光の空間位相を変調可能になっている。即ち、光線分布可変素子60は、計測光と基準光との少なくとも一方の光線角度を、投影光学系70に入射される前に変更可能になっている。 Next, the light distribution variable element 60 that is a characteristic part of the present embodiment will be described. The light distribution variable element 60 is a phase modulation element that includes a transparent material having a variable refractive index and modulates the spatial distribution of the phase of transmitted light by controlling the spatial distribution of the refractive index. For example, it is well known that the refractive index is controlled by electrically controlling the alignment state of the liquid crystal layer. However, the present invention is not limited to this. This light distribution variable element 60 is installed between the objective lens 24 and the test object 2 or the reference optical element 3, and can modulate the spatial phase of the transmitted light. That is, light distribution variable element 60, at least one of the ray angle of the measurement light and the reference light, and is changeable before being incident on the projection optical system 70.

この光線分布可変素子60による位相変調量は、演算部50の光線分布変更部56から入力される制御信号によって制御される。光線分布可変素子60を用いることにより、光線角度を例えば部分ごとに変化させることができ、その後の光線分布を変化させることができる。 The amount of phase modulation by the light distribution variable element 60 is controlled by a control signal input from the light distribution changing unit 56 of the calculation unit 50. By using the light distribution variable element 60, the light angle can be changed, for example , for each part, and the subsequent light distribution can be changed.

光線分布変更部56は、光線分布可変素子60を制御して計測光と基準光との少なくとも一方の光線角度を変更することにより、計測光線分布と基準光線分布とを一致させるようになっている。また、形状演算部57は、光線分布可変素子60の制御量に基づき、被検面2aと基準面3aとの形状差を演算し、基準面3aの形状及び形状差に基づいて被検面2aの形状を演算するようになっている。本実施形態では、形状演算部57は、光線分布可変素子60で変調した位相の分布に基づいて演算する。 Light distribution changing unit 56, by modifying the at least one of the ray angle of the measurement light and the reference light by controlling the light distribution variable element 60, so as to match the measured light distribution and reference light distribution Yes. The shape calculating unit 57 calculates the shape difference between the test surface 2a and the reference surface 3a based on the control amount of the light distribution variable element 60, and the test surface 2a based on the shape and the shape difference of the reference surface 3a. The shape is calculated. In the present embodiment, the shape calculation unit 57 calculates based on the phase distribution modulated by the light distribution variable element 60.

そこで、本実施形態では、光線分布変更部56が、被検面2aの反射光の位相分布を光線分布可変素子60で変調し、光線分布を変化させる。これにより、被検面2aの反射光が投影光学系70を透過する際の光線分布を、基準面3aの反射光の光線分布と一致させるようにできる(ステップS6、光線分布変更工程)。光線分布が一致したか否かは、シャックハルトマンセンサ40の出力、即ちCCDカメラ42上でのスポット分布が一致したか否かによって、光線分布変更部56により判断される。 Therefore, in the present embodiment, the light distribution changing unit 56 modulates the phase distribution of the reflected light of the test surface 2a by the light distribution variable element 60 to change the light distribution. This allows to match the light distribution, light distribution of the reflected light of the reference plane 3a when the reflected light of the test surface 2a passes through the projection optical system 70 (step S6, light distribution changing step). Whether or not the light distributions match is determined by the light distribution changing unit 56 based on whether or not the output of the Shack-Hartmann sensor 40, that is, the spot distribution on the CCD camera 42 matches.

Claims (12)

源と、
線分布センサと、
を被検物の被検面に照射して得られた反射光を、計測光として前記光線分布センサに投影するように構成された投影光学系と、
基準光を発生させる基準光発生部と、
前記計測光と前記基準光との少なくとも一方の光線角度を、前記投影光学系に入射される前に変更可能な光線分布可変素子と、
前記光線分布センサで検出される前記計測光の光線分布と前記基準光の光線分布とを一致させるように、前記光線分布可変素子を制御して前記計測光と前記基準光との少なくとも一方の光線角度を変更し、前記光線分布可変素子の制御量に基づいて前記被検面の形状を演算する演算部と、を備える、
ことを特徴とする計測装置。
And a light source,
And a light-ray distribution sensor,
The reflected light obtained by irradiating the test surface of the test object light, and configured projection optical system to project the light distribution sensor as the measurement light,
A reference light generator for generating reference light;
At least one of the ray angle of the measuring light and the reference light, and changeable rays distribution variable element before being incident on the projection optical system,
The light distribution variable element is controlled to match at least one of the measurement light and the reference light so that the light distribution of the measurement light detected by the light distribution sensor matches the light distribution of the reference light. A calculation unit that changes an angle and calculates the shape of the test surface based on a control amount of the light distribution variable element,
A measuring device characterized by that.
前記基準光発生部は、所定位置に設置可能であると共に、前記所定位置に設置された際に前記光源からの光により照射される基準面を有する基準光学素子であり、
前記基準光は、前記光源からの光が前記基準面で反射された光であり、
前記被検物が被検位置に設置された場合には、前記光源からの光が前記被検面に照射され、該被検面から前記計測光が前記投影光学系に入射され、前記光線分布センサにより前記計測光の光線分布が検出され、
前記基準光学素子が前記所定位置に設置された場合には、前記光源からの光が前記基準面に照射され、該基準面から前記基準光が前記投影光学系に入射され、前記光線分布センサにより前記基準光の光線分布が検出される、
ことを特徴とする請求項1記載の計測装置。
The reference light generator is a reference optical element that can be installed at a predetermined position and has a reference surface that is irradiated with light from the light source when installed at the predetermined position;
The reference light is light obtained by reflecting light from the light source on the reference surface,
When the test object is installed at a test position, the light from the light source is irradiated onto the test surface, the measurement light is incident on the projection optical system from the test surface, and the light distribution The light distribution of the measurement light is detected by a sensor,
When the reference optical element is installed at the predetermined position, the light from the light source is irradiated onto the reference surface, the reference light is incident on the projection optical system from the reference surface, and the light distribution sensor A light distribution of the reference light is detected;
The measuring apparatus according to claim 1.
前記所定位置は、前記被検位置であり、
前記基準光学素子は、前記被検位置に前記被検物と選択的に設置可能である、
ことを特徴とする請求項2記載の計測装置。
The predetermined position is the test position,
The reference optical element can be selectively installed with the test object at the test position.
The measuring device according to claim 2.
前記基準光発生部は、所定位置に設置可能であると共に、前記所定位置に設置された際に前記光源からの光により照射される反射面を有する反射型の前記光線分布可変素子であり、
前記基準光は、前記光源からの光が前記反射面で反射された光であり、
前記被検物が被検位置に設置された場合には、前記光源からの光が前記被検面に照射され、該被検面から前記計測光が前記投影光学系に入射され、前記光線分布センサにより前記計測光の光線分布が検出され、
前記光線分布可変素子が前記所定位置に設置された場合には、前記光源からの光が前記反射面に照射され、該反射面から前記基準光が前記投影光学系に入射され、前記光線分布センサにより前記基準光の光線分布が検出される、
ことを特徴とする請求項1記載の計測装置。
The reference light generation unit is a reflection type light distribution variable element that can be installed at a predetermined position and has a reflection surface that is irradiated with light from the light source when installed at the predetermined position.
The reference light is light obtained by reflecting light from the light source on the reflection surface,
When the test object is installed at a test position, the light from the light source is irradiated onto the test surface, the measurement light is incident on the projection optical system from the test surface, and the light distribution The light distribution of the measurement light is detected by a sensor,
When the light distribution variable element is installed at the predetermined position, the light from the light source is irradiated onto the reflection surface, the reference light is incident on the projection optical system from the reflection surface, and the light distribution sensor. The light distribution of the reference light is detected by
The measuring apparatus according to claim 1.
前記所定位置は、前記光源からの光が前記被検位置を通過した位置であり、
前記被検物は、前記被検位置に対して設置及び離脱が可能である、
ことを特徴とする請求項4記載の計測装置。
The predetermined position is a position where light from the light source has passed through the test position,
The test object can be installed and removed from the test position.
The measuring apparatus according to claim 4.
前記投影光学系は、前記光源からの光を集光する集光素子を備え、
前記基準光発生部は、前記集光素子の焦点位置に設置可能であると共に、前記焦点位置に設置された際に前記光源からの光が集光して反射する集光点を有する光学素子であり、
前記基準光は、前記光源からの光が前記集光点で反射された光であり、
前記被検物が被検位置に設置された場合には、前記光源からの光が前記被検面に照射され、該被検面から前記計測光が前記投影光学系に入射され、前記光線分布センサにより前記計測光の光線分布が検出され、
前記光学素子が前記焦点位置に設置された場合には、前記光源からの光が前記集光点に照射され、該集光点から前記基準光が前記投影光学系に入射され、前記光線分布センサにより前記基準光の光線分布が検出される、
ことを特徴とする請求項1記載の計測装置。
The projection optical system includes a condensing element that condenses light from the light source,
The reference light generation unit is an optical element that can be installed at a focal position of the condensing element, and has a condensing point that collects and reflects light from the light source when installed at the focal position. Yes,
The reference light is light obtained by reflecting light from the light source at the condensing point,
When the test object is installed at a test position, the light from the light source is irradiated onto the test surface, the measurement light is incident on the projection optical system from the test surface, and the light distribution The light distribution of the measurement light is detected by a sensor,
When the optical element is installed at the focal position, the light from the light source is irradiated onto the condensing point, the reference light is incident on the projection optical system from the condensing point, and the light distribution sensor. The light distribution of the reference light is detected by
The measuring apparatus according to claim 1.
前記被検物は、前記被検位置と前記焦点位置とに変位可能であり、
前記光学素子は、前記被検物であり、
前記集光点は、前記被検面に設けられる、
ことを特徴とする請求項6記載の計測装置。
The test object is displaceable between the test position and the focus position,
The optical element is the test object,
The condensing point is provided on the test surface,
The measuring apparatus according to claim 6.
前記光線分布可変素子は、透過型である、
ことを特徴とする請求項2、3、6又は7のいずれか1項に記載の計測装置。
The light distribution variable element is a transmissive type.
The measuring apparatus according to claim 2, wherein the measuring apparatus is one of the following.
前記光線分布可変素子は、反射型である、
ことを特徴とする請求項2、3、6又は7のいずれか1項に記載の計測装置。
The light distribution variable element is a reflective type.
The measuring apparatus according to claim 2, wherein the measuring apparatus is one of the following.
前記投影光学系は、前記光源からの光を入射して、前記被検面に向けて出射すると共に、前記被検面で反射された前記計測光を入射して前記光源からの光と分離して出射する分離光学系を備える、
ことを特徴とする請求項1乃至9のいずれか1項に記載の計測装置。
The projection optical system receives light from the light source, emits the light toward the test surface, and enters the measurement light reflected by the test surface to separate it from the light from the light source. A separation optical system that emits
The measuring apparatus according to claim 1, wherein
前記光線分布センサは、シャックハルトマンセンサである、
ことを特徴とする請求項1乃至10のいずれか1項に記載の計測装置。
The light distribution sensor is a Shack-Hartmann sensor,
The measuring apparatus according to claim 1, wherein
源と、
線分布センサと、
を被検物の被検面に照射して得られた反射光を、計測光として前記光線分布センサに投影するように構成された投影光学系と、
基準光を発生させる基準光発生部と、
前記計測光と前記基準光との少なくとも一方の光線角度を、前記投影光学系に入射される前に変更可能な光線分布可変素子と、
演算部と、を備える計測装置の計測方法において、
前記演算部は、
前記光線分布センサで検出される前記計測光の光線分布と前記基準光の光線分布とを一致させるように、前記光線分布可変素子を制御して前記計測光と前記基準光との少なくとも一方の光線角度を変更する光線分布変更工程と、
記光線分布可変素子の制御量に基づいて前記被検面の形状を演算する形状演算工程と、を実行する
ことを特徴とする計測方法。
And a light source,
And a light-ray distribution sensor,
The reflected light obtained by irradiating the test surface of the test object light, and configured projection optical system to project the light distribution sensor as the measurement light,
A reference light generator for generating reference light;
At least one of the ray angle of the measuring light and the reference light, and changeable rays distribution variable element before being incident on the projection optical system,
In a measurement method of a measurement device comprising a calculation unit,
The computing unit is
The light distribution variable element is controlled to match at least one of the measurement light and the reference light so that the light distribution of the measurement light detected by the light distribution sensor matches the light distribution of the reference light. A ray distribution changing process for changing the angle;
The run shape calculation step of calculating the shape of the surface, a based on the control amount before Symbol light distribution variable element,
A measuring method characterized by this.
JP2013224891A 2013-10-30 2013-10-30 Measurement device and measurement method Pending JP2015087198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013224891A JP2015087198A (en) 2013-10-30 2013-10-30 Measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013224891A JP2015087198A (en) 2013-10-30 2013-10-30 Measurement device and measurement method

Publications (2)

Publication Number Publication Date
JP2015087198A JP2015087198A (en) 2015-05-07
JP2015087198A5 true JP2015087198A5 (en) 2016-12-01

Family

ID=53050137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013224891A Pending JP2015087198A (en) 2013-10-30 2013-10-30 Measurement device and measurement method

Country Status (1)

Country Link
JP (1) JP2015087198A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531431B2 (en) * 2004-04-02 2010-08-25 浜松ホトニクス株式会社 Wavefront compensation device, wavefront compensation method, program, and recording medium
CA2648305C (en) * 2006-04-07 2012-10-16 Amo Wavefront Sciences, Llc Geometric measurement system and method of measuring a geometric characteristic of an object
EP2184596B1 (en) * 2007-08-27 2018-11-14 Nikon Corporation Wavefront aberration measuring device and method and wavefront aberration adjusting method
JP5721420B2 (en) * 2010-12-17 2015-05-20 キヤノン株式会社 Measuring method and measuring device
JP5896792B2 (en) * 2012-03-09 2016-03-30 キヤノン株式会社 Aspherical surface measuring method, aspherical surface measuring device, and optical element processing device

Similar Documents

Publication Publication Date Title
KR101985995B1 (en) Phase modulation method and phase modulating device
JP7044272B2 (en) Lens refractive index measuring device and its measuring method
CA2648305A1 (en) Geometric measurement system and method of measuring a geometric characteristic of an object
JP2014190705A5 (en)
JP2015511405A5 (en)
JP2013115348A (en) Calculation method of variation in imaging characteristics of projection optical system, exposure device and manufacturing method of device
KR20160142235A (en) Measurement method, measurement apparatus, and manufacturing method for optical element
JP2011124345A5 (en)
JP2010121960A (en) Measuring device and method of measuring subject
JP6173188B2 (en) Apparatus for measuring optical performance of optical element to be tested, program and method for controlling the measuring apparatus
RU2491514C2 (en) Method and apparatus for determining rate of flowing liquid
CN103063413A (en) Integrated long-focus measuring device based on Talbot-moire technology
JP2015102539A5 (en) Apparatus for measuring optical performance of optical element to be tested, program and method for controlling the measuring apparatus
CN110736543B (en) Shearing amount calibration device and method for grating shearing interference wavefront sensor
JP2009180554A (en) Interferometer, measuring method, and manufacturing method of optical element
JP2015087198A5 (en)
KR101398064B1 (en) Method of measuring diffraction efficiency for hologram recording medium
JP2011053150A (en) Method and device for measuring wavefront
CN104849964B (en) A kind of focal plane measurement apparatus and its measuring method
JP2017134144A5 (en)
JP2013024720A (en) Refractive index measurement method, refractive index measurement instrument, and refractive index measurement program
JPWO2018034188A1 (en) Light measurement apparatus and optical axis adjustment method
CN112513689B (en) System for monitoring grating formation
KR20220092248A (en) Wavefront measuring device and method using the same
JP2015004600A (en) Eccentricity measurement device, eccentricity measurement method and lens manufacturing method