JP2015086811A - Gas pressure accumulation system of vehicle and gas pressure accumulation method of vehicle - Google Patents

Gas pressure accumulation system of vehicle and gas pressure accumulation method of vehicle Download PDF

Info

Publication number
JP2015086811A
JP2015086811A JP2013227088A JP2013227088A JP2015086811A JP 2015086811 A JP2015086811 A JP 2015086811A JP 2013227088 A JP2013227088 A JP 2013227088A JP 2013227088 A JP2013227088 A JP 2013227088A JP 2015086811 A JP2015086811 A JP 2015086811A
Authority
JP
Japan
Prior art keywords
vehicle
gas
axle
pressure accumulation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013227088A
Other languages
Japanese (ja)
Other versions
JP6201645B2 (en
Inventor
恵夫 関山
Yoshio Sekiyama
恵夫 関山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2013227088A priority Critical patent/JP6201645B2/en
Publication of JP2015086811A publication Critical patent/JP2015086811A/en
Application granted granted Critical
Publication of JP6201645B2 publication Critical patent/JP6201645B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas pressure accumulation system and a gas pressure accumulation method of a vehicle capable of minimizing degradation of fuel consumption by reducing drive work by accumulating a pressure while spending a comparatively long time in a normal running state, in particular, in a running state almost at a constant speed of the vehicle, and achieving maximum braking energy recoverable by a compressor by accumulating a pressure with the maximum drive work when the braking energy of the vehicle can be utilized, in the gas pressure accumulation system and the gas pressure accumulation method in which air, an exhaust gas or their mixture is accumulated in a pressure accumulation container.SOLUTION: A filling device for filling a pressure accumulation container with a gas, is constituted to be connectable with an axle for running a vehicle or a rotary drive shaft for transmitting torque for running to the axle. The filling device is driven by rotary torque of the axle or the rotary drive shaft in a vehicle running state, and the filling device is driven by braking torque of the axle or the rotary drive shaft in a vehicle braking state.

Description

本発明は、蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧システム及び車両のガス蓄圧方法に関する。   The present invention relates to a vehicle gas pressure accumulation system and a vehicle gas pressure accumulation method for accumulating air, exhaust gas, or a gas mixture thereof in a pressure accumulation container.

内燃機関に搭載されるタ−ボ式過給機はエンジンの排気ガスのエネルギ−を利用してタ−ビンを作動させ、タ−ビンの軸に直結したコンプレッサ−翼を駆動することで吸気を圧縮してエンジンの負荷に応じた過給気をシリンダ内に供給している。   A turbocharger mounted on an internal combustion engine operates the turbine using the energy of the exhaust gas from the engine, and drives the compressor blades directly connected to the shaft of the turbine to take in the intake air. The compressed air is supplied to the cylinder according to the engine load.

しかしながら、このターボ式過給機においては、内燃機関の負荷が急激に増加する過渡運転状態では、過給圧が要求された圧力まで上がるのが遅れるターボラグが生じるために、必要な過給量が不足する。この対策としてシリンダ内の空気量の割合を増加するためにEGR量を減少するので、目標のEGR量を確保する事ができず、このEGR量の制限によりNOxが増加する。また、空気量の不足による燃焼悪化で煤が発生するので1サイクル当たりの燃料噴射量が抑えられるというスモークリミットの問題があり、この供給する燃料噴射量の抑制により発進や追い越し時に必要な加速性能が得られない。   However, in this turbocharger, in a transient operation state in which the load of the internal combustion engine suddenly increases, a turbo lag is generated that delays the increase of the boost pressure to the required pressure. Run short. As a countermeasure, the EGR amount is decreased to increase the ratio of the air amount in the cylinder. Therefore, the target EGR amount cannot be ensured, and NOx increases due to the limitation of the EGR amount. In addition, there is a smoke limit problem that fuel injection amount per cycle can be suppressed because soot is generated due to deterioration of combustion due to insufficient air amount, and acceleration performance required at start and overtaking by suppressing the fuel injection amount supplied Cannot be obtained.

これらのターボラグの問題を回避するために、内燃機関のクランク軸の動力でコンプレッサを駆動する機械式過給機が用いられる場合もあるが、エンジン回転速度が決まると、1サイクル当たりの要求燃料噴射量にかかわらず一定量の空気が過給されることになるため、燃料噴射量が少ない時にはコンプレッサ−が無駄な駆動仕事をすることになる。また、機械式過給機に容積型過給装置が使用されるために駆動仕事が大きい。そのため、一般に、この機械式過給システムでは燃費が悪化する。   In order to avoid these turbo lag problems, a mechanical supercharger that drives the compressor with the power of the crankshaft of the internal combustion engine may be used, but when the engine speed is determined, the required fuel injection per cycle Regardless of the amount, a certain amount of air is supercharged, so that when the fuel injection amount is small, the compressor performs useless driving work. Moreover, since a positive displacement supercharger is used for a mechanical supercharger, the driving work is large. Therefore, in general, the fuel efficiency is deteriorated in this mechanical supercharging system.

そこで、ターボ式過給機におけるターボラグによる空気量とEGRガス量の不足によるNOx増加と加速性能の低下や、機械式過給機による燃費悪化の対策として、車両の発進時や加速時等の内燃機関の過渡運転状態に、蓄圧容器内に加圧された空気と排気ガスの混合気を内燃機関の吸気通路内に放出する蓄圧式の過給補助システムが採用される場合がある。このシステムでは、過給圧を上げることができると共に吸入空気量とEGR量の両方を確保できるので、空気量の増加により燃料噴射量も増やす事ができて加速性能を向上することができ、また、NOxや煤の排出も抑える事ができる。   Therefore, as a countermeasure against NOx increase and acceleration performance decrease due to shortage of air amount and EGR gas amount due to turbo lag in turbo type turbocharger and fuel consumption deterioration due to mechanical supercharger, internal combustion at the time of start or acceleration of vehicle etc. An accumulator-type supercharging assist system that releases a mixture of air and exhaust gas pressurized in an accumulator vessel into an intake passage of an internal combustion engine may be employed in a transient operation state of the engine. In this system, the boost pressure can be raised and both the intake air amount and the EGR amount can be secured, so that the fuel injection amount can be increased by increasing the air amount, and the acceleration performance can be improved. , NOx and soot emissions can be reduced.

この蓄圧式の過給補助システムとしては、例えば、蓄ガス容器に溜め込んだガスを過給補助に用いる内燃機関において、吸気マニフォ−ルド内の圧力やコンプレッサ−出口の圧力等を検出して、蓄圧されたガスを過給に用いる過給補助の制御をスモークリミットにかかる直前に開始することで、過給補助に用いる蓄ガス容器内のガスの消費量を少なくする内燃機関の過給補助方法及び内燃機関が提案されている(例えば、特許文献1参照)。   As this accumulator-type supercharging assist system, for example, in an internal combustion engine using gas stored in a gas accumulator for supercharging assist, the pressure in the intake manifold, the pressure at the compressor outlet, etc. are detected, A supercharging assistance method for an internal combustion engine that reduces the consumption of gas in a storage gas container used for supercharging assistance by starting control of supercharging assistance using superposed gas for supercharging immediately before the smoke limit is applied, and An internal combustion engine has been proposed (see, for example, Patent Document 1).

この蓄圧式の過給補助システムでは、蓄圧容器内に高圧の混合気を蓄圧するために大きな駆動仕事が必要であるが、高速で蓄圧するほど駆動仕事は大きくなり、燃費悪化の原因となる。   In this pressure accumulating supercharging assist system, a large amount of driving work is required to accumulate a high-pressure air-fuel mixture in the pressure accumulating vessel, but the driving work increases as the pressure is accumulated at a higher speed, which causes a deterioration in fuel consumption.

一方、近年、世界的に見ても内燃機関は小排気量、高出力化のダウインサイジングの傾向にあるが、小排気量化により車両の制動力が不足するという問題がある。そのため、補助ブレーキシステムが搭載される場合が多い。   On the other hand, in recent years, even in the world, internal combustion engines tend to be down-sized with small displacement and high output, but there is a problem that the braking force of the vehicle is insufficient due to the small displacement. For this reason, an auxiliary brake system is often installed.

また、燃費向上のために制動エネルギーの回収の研究も進められている。例えば、EGR代用装置ではあるが、蓄圧のための駆動仕事を大気中に熱として捨てられる制動エネルギーによって得る制動エネルギー回収方式で、車両の制動状態に、内燃機関の回転が低いほど内燃機関の回転を排気圧縮機に伝達する変速機の変速比を高く設定する等することで、制動状態の車両速度に応じてCVT(連続可変トランスミッション)等の無段階変速装置を用い、制動エネルギー回収の手段として、蓄圧式の過給補助システムにおける蓄圧仕事を得る車両の制動エネルギー回収装置が提案されている(例えば、特許文献2参照)。   In addition, research on recovery of braking energy is also underway to improve fuel economy. For example, although it is an EGR substitute device, it is a braking energy recovery method in which driving work for pressure accumulation is obtained by braking energy that is discarded as heat in the atmosphere. As a means for recovering braking energy, a continuously variable transmission such as a CVT (continuous variable transmission) is used in accordance with the vehicle speed in a braking state by setting the transmission gear ratio to be transmitted to the exhaust compressor. There has been proposed a braking energy recovery device for a vehicle that obtains pressure-accumulation work in a pressure-accumulation supercharging assist system (for example, see Patent Document 2).

この車両の制動エネルギー回収装置では、減速時に車速が遅くなり、車両の車輪を回転する推進軸の回転速度が低下すると、無段階変速機の変速比を制御して、蓄圧用のコンプレッサの回転数を上げ、車速が落ちても大きな制動エネルギーを発生させて、このエネルギーをコンプレッサの駆動仕事に使用している。これにより、減速時の車速に応じてコンプレッサの回転速度を制御して大きな制動エネルギーの回収を行っている。また、通常運転時には必要最小限の駆動仕事になるようにコンプレッサの回転速度を制御することで制動力の不足と燃費の向上を図っている。   In this vehicle braking energy recovery device, when the vehicle speed decreases during deceleration and the rotation speed of the propulsion shaft that rotates the wheels of the vehicle decreases, the speed ratio of the continuously variable transmission is controlled, and the rotation speed of the compressor for pressure accumulation Even if the vehicle speed drops, a large amount of braking energy is generated, and this energy is used to drive the compressor. As a result, large braking energy is recovered by controlling the rotational speed of the compressor according to the vehicle speed during deceleration. In addition, by controlling the rotation speed of the compressor so that the minimum required driving work is achieved during normal operation, the braking force is insufficient and the fuel consumption is improved.

しかしながら、より大きな制動力を得ようとするとコンプレッサをオーバーランさせて使用する以外に方法がないという問題がある。一方、本発明者は、このコンプレッサの回転速度の制御だけで制動エネルギーを回収する方式に新たな機構と制御方式を加えることでより大きな制動エネルギーを回収できるとの知見を得た。   However, in order to obtain a larger braking force, there is a problem that there is no method other than overrunning the compressor. On the other hand, the present inventor has obtained knowledge that a larger braking energy can be recovered by adding a new mechanism and a control method to the method of recovering the braking energy only by controlling the rotation speed of the compressor.

特開2012−251489号公報JP 2012-251489 A 特開2012−20711号公報JP 2012-20711 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧システム及び車両のガス蓄圧方法において、車両の通常の走行状態、特に一定速度に近い走行状態では、比較的時間をかけて蓄圧することで、ガス充填装置の駆動仕事を減少して、燃費悪化を最小限にし、車両の制動エネルギーを利用できるときは、最大の駆動仕事で蓄圧することで、ガス充填装置が回収できる最大の制動エネルギーを得ることができる車両のガス蓄圧システム及び車両のガス蓄圧方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide a vehicle gas pressure accumulation system and a vehicle gas pressure accumulation method for accumulating air, exhaust gas, or a gas mixture thereof in a pressure accumulation container. In normal driving conditions of the vehicle, especially when driving at a constant speed, accumulating pressure over a relatively short period of time reduces the driving work of the gas filling device, minimizes fuel consumption deterioration, and reduces vehicle braking energy. When it can be used, the object is to provide a vehicle gas pressure accumulation system and a vehicle gas pressure accumulation method capable of obtaining the maximum braking energy that can be recovered by the gas filling device by accumulating pressure with the maximum driving work.

上記の目的を達成するための本発明の車両のガス蓄圧システムは、車両に搭載した蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧システムにおいて、前記蓄圧容器へガスを充填するガス充填装置を備えると共に、該ガス充填装置を制御し、かつ、車両走行状態であるか、車両制動状態であるかを判定する車両状態判定手段を有する制御装置を備え、前記ガス充填装置が、車両を走行させる車軸又は該車軸に走行用のトルクを伝達する回転駆動軸に接続可能で、かつ、車両走行状態には、前記ガス充填装置が前記車軸又は前記回転駆動軸の回転トルクにより駆動され、車両制動状態には、前記ガス充填装置が前記車軸又は前記回転駆動軸の制動トルクにより駆動されるように構成される。   In order to achieve the above object, a vehicle gas pressure accumulation system according to the present invention is a vehicle gas pressure accumulation system for accumulating air, exhaust gas, or a gas mixture thereof in a pressure accumulation vessel mounted on a vehicle. A gas filling device for filling the gas, and a control device for controlling the gas filling device and having a vehicle state determining means for judging whether the vehicle is in a running state or a vehicle braking state. The filling device can be connected to an axle for running the vehicle or a rotary drive shaft that transmits a running torque to the axle, and in the vehicle running state, the gas filling device rotates the axle or the rotary drive shaft. Driven by torque, the gas filling device is configured to be driven by braking torque of the axle or the rotary drive shaft in a vehicle braking state.

また、上記の車両のガス蓄圧システムにおいて、前記ガス充填装置を容積型圧縮装置で構成すると共に、前記制御装置が、車両走行状態には、前記容積型圧縮装置のピストンの上死点から下死点までの移動の間で吸引弁を開弁すると共に排出弁を閉弁してシリンダ内にガスを吸引し、前記ピストンの下死点から上死点までの移動の間で吸引弁を閉弁すると共に排出弁を開弁してガスを排出する制御を行い、車両制動状態には、前記排出弁の開弁期間を上死点より早い時点から下死点より早く、かつ、排出したガスが逆流する前の時点までとし、前記吸引弁の開弁時期を前記排出弁の閉弁後の時点から、下死点より遅い時点までとする制御を行うように構成される。   In the gas accumulation system for a vehicle described above, the gas filling device may be a positive displacement compressor, and the control device may be dead from the top dead center of the piston of the positive displacement compressor when the vehicle is running. The suction valve is opened during the movement to the point and the discharge valve is closed to suck the gas into the cylinder, and the suction valve is closed during the movement from the bottom dead center to the top dead center of the piston. At the same time, the exhaust valve is opened to control the exhaust of the gas. In the vehicle braking state, the exhaust valve is opened from a time earlier than the top dead center to a time earlier than the bottom dead center. Control is performed until the time before the backflow, and the opening timing of the suction valve is from the time after the exhaust valve is closed to the time later than the bottom dead center.

そして、上記の目的を達成するための本発明の車両のガス蓄圧方法は、車両に搭載した蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧方法において、前記蓄圧容器へガスを充填するガス充填装置を、車両を走行させる車軸又は該車軸に走行用のトルクを伝達する回転駆動軸に接続可能に構成すると共に、車両走行状態であるか、車両制動状態であるかを判定し、車両走行状態には、前記車軸又は前記回転駆動軸の回転トルクにより前記ガス充填装置を駆動し、車両制動状態には、前記車軸又は前記回転駆動軸の制動トルクにより前記ガス充填装置を駆動することを特徴とする方法である。   The vehicle gas pressure accumulation method of the present invention for achieving the above object is the vehicle gas pressure accumulation method for accumulating air, exhaust gas, or a gas mixture thereof in a pressure accumulation container mounted on the vehicle. The gas filling device for filling the container with gas is configured to be connectable to an axle for running the vehicle or a rotary drive shaft for transmitting running torque to the axle, and is in a vehicle running state or a vehicle braking state. In the vehicle running state, the gas filling device is driven by the rotational torque of the axle or the rotational drive shaft. In the vehicle braking state, the gas filling is performed by the braking torque of the axle or the rotational drive shaft. A method characterized by driving the apparatus.

本発明の車両のガス蓄圧システム及び車両のガス蓄圧方法によれば、蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧システム及び車両のガス蓄圧方法において、車両の通常の走行状態、特に一定速度に近い走行状態では、比較的時間をかけて蓄圧することで、ガス充填装置の駆動仕事を減少して、燃費悪化を最小限にし、車両の制動エネルギーを利用できるときは、最大の駆動仕事で蓄圧することで、ガス充填装置が回収できる最大の制動エネルギーを得ることができる。   According to the vehicle gas pressure accumulation system and the vehicle gas pressure accumulation method of the present invention, in a vehicle gas pressure accumulation system and a vehicle gas pressure accumulation method for accumulating air, exhaust gas, or a gas mixture thereof in a pressure accumulation container, In normal driving conditions, especially when driving at a constant speed, accumulating pressure over a relatively long time can reduce the driving work of the gas filling device, minimize fuel consumption deterioration, and use vehicle braking energy. Sometimes, the maximum braking energy that can be recovered by the gas filling device can be obtained by accumulating pressure with the maximum driving work.

本発明に係る実施の形態の車両のガス蓄圧システムの構成を模式的に示す図である。It is a figure showing typically composition of a gas accumulation system of vehicles of an embodiment concerning the present invention. 本発明に係る実施の形態の車両のガス蓄圧方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the gas pressure accumulation method of the vehicle of embodiment which concerns on this invention. 容積型圧縮装置における第1の制御方法の車両走行状態の吸引弁と排出弁の開弁時期を模式的に示す図である。It is a figure which shows typically the valve opening timing of the suction valve and discharge valve of the vehicle running state of the 1st control method in a positive displacement compressor. 容積型圧縮装置における第2の制御方法の車両制動状態の吸引弁と排出弁の開弁時期を模式的に示す図である。It is a figure which shows typically the valve opening timing of the suction valve and discharge valve of the vehicle braking state of the 2nd control method in a positive displacement compressor.

以下、本発明に係る実施の形態の車両のガス蓄圧システム及び車両のガス蓄圧方法について、図面を参照しながら説明する。図1に示すように、本発明に係る実施の形態の車両のガス蓄圧システム20は、エンジン(内燃機関)10を搭載した車両1に備えられる。なお、ここでは、主として、過給補助のための空気Aと排気ガスGを混合した混合気であるガスMを用いて過給補助する構成について説明するが、本発明は、これに限定されず、空気Aのみで過給補助する場合、排気ガスGのみでEGRガスの供給を行う場合にも適用できる。   DESCRIPTION OF EMBODIMENTS Hereinafter, a vehicle gas pressure accumulation system and a vehicle gas pressure accumulation method according to embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a vehicle gas pressure accumulation system 20 according to an embodiment of the present invention is provided in a vehicle 1 equipped with an engine (internal combustion engine) 10. Here, a description will be given mainly of a configuration in which supercharging assistance is performed using a gas M that is a mixture of air A and exhaust gas G for supercharging assistance. However, the present invention is not limited to this. Further, when supercharging assistance is performed only with air A, the present invention can also be applied to the case where EGR gas is supplied only with exhaust gas G.

また、図1の構成では、ターボ式過給機は特に示していないが、本発明の適用対象は、蓄圧式の過給補助システムのみを装備したエンジンを搭載した車両であっても、蓄圧式の過給補助システムとターボ式過給システムを併用して両方を装備したエンジンを搭載した車両であってもよい。さらには、内燃機関と電動発電機を備えるハイブリッドシステムを搭載した車両であってもよい。   Further, in the configuration of FIG. 1, the turbo-type supercharger is not particularly shown, but the application target of the present invention is a pressure-accumulation type even if the vehicle is equipped with an engine equipped only with a pressure-accumulation type supercharge assist system. It may be a vehicle equipped with an engine equipped with both a supercharging assist system and a turbo-type supercharging system. Furthermore, the vehicle which mounts the hybrid system provided with an internal combustion engine and a motor generator may be sufficient.

この車両1では、エンジン10の排気通路11を通過する排気ガスGの一部を排気分岐通路(例えば、EGR配管)12に導いてガスクーラ(例えば、EGRクーラ)13により冷却して、三方弁14に導いている。この三方弁14には、空気Aを取り入れる空気取入れ通路15とガス導入通路21が接続されている。この三方弁14の切り替えにより、空気Aと排気ガスGのどちらかを選択してガス導入通路21に送ることができるように構成される。   In this vehicle 1, a part of the exhaust gas G passing through the exhaust passage 11 of the engine 10 is led to an exhaust branch passage (for example, EGR pipe) 12 and cooled by a gas cooler (for example, EGR cooler) 13, and a three-way valve 14. Leading to. An air intake passage 15 for taking in air A and a gas introduction passage 21 are connected to the three-way valve 14. By switching the three-way valve 14, either the air A or the exhaust gas G can be selected and sent to the gas introduction passage 21.

このガス導入通路21に導入されたガスA又はGは、ガス充填装置である容積型コンプレッサ(容積型圧縮装置)24によって圧縮及び加圧されて、加圧ガス通路25により、蓄圧容器27に圧送される。この容積型コンプレッサ24の駆動軸は、CVT等で形成される無段階変速機22と電磁クラッチ(クラッチ)23を介して、車両1の車輪3を駆動する車軸2に接続される。また、この加圧ガス通路25には、蓄圧容器27からのガスMが容積型コンプレッサ24側に逆流しないように逆止弁26が設けられる。   The gas A or G introduced into the gas introduction passage 21 is compressed and pressurized by a positive displacement compressor (positive displacement compressor) 24 which is a gas filling device, and is pumped to the pressure accumulating vessel 27 through the pressurized gas passage 25. Is done. The drive shaft of the positive displacement compressor 24 is connected to the axle 2 that drives the wheels 3 of the vehicle 1 via a continuously variable transmission 22 formed of CVT or the like and an electromagnetic clutch (clutch) 23. The pressurized gas passage 25 is provided with a check valve 26 so that the gas M from the pressure accumulating container 27 does not flow backward to the positive displacement compressor 24 side.

この蓄圧に際しては、蓄圧容器27に設けた酸素濃度センサ31の検出値等を用いて、EGR時に適正なEGR率でEGRができるように、ガスMの酸素濃度を把握しておくことと、ガスMの酸素濃度がEGR制御に適した濃度になるように、蓄圧容器27内のガスMにおける排気ガスGの分量と空気Aの分量を予め設定した適切な割合になるように蓄圧しておく。また、容器内圧センサ32で検出される容器内圧力Pimに応じて、過給補助が可能な蓄圧下限圧力Pic以下にならないように適宜、ガスMを蓄圧する。また、必要に応じて蓄圧容器27内のガスMの温度を検出するための温度センサ33を設ける。   At the time of this pressure accumulation, the oxygen concentration of the gas M is grasped by using the detection value of the oxygen concentration sensor 31 provided in the pressure accumulation container 27 so that EGR can be performed at an appropriate EGR rate at the time of EGR, The pressure is accumulated so that the amount of the exhaust gas G and the amount of the air A in the gas M in the pressure accumulating container 27 are set to an appropriate ratio so that the oxygen concentration of M becomes a concentration suitable for EGR control. Further, according to the container internal pressure Pim detected by the container internal pressure sensor 32, the gas M is appropriately stored so as not to become equal to or lower than the pressure accumulation lower limit pressure Pic that allows supercharging assistance. Moreover, the temperature sensor 33 for detecting the temperature of the gas M in the accumulator 27 is provided as needed.

この蓄圧容器27に蓄圧したガスMは、車両の発進時や加速時等のエンジン10の過渡運転状態のときに、蓄圧容器27よりガス供給用通路28を経由してエンジン10の吸気通路16に放出して過給補助するのに用いられる。なお、ガスMを空気Aのみで構成する場合は過給補助のみとなり、ガスMを排気ガスGのみで構成する場合はEGRガスの供給のみとなり、ガスMを空気Aと排気ガスGの混合ガスで構成する場合は、過給補助とEGR補助を行うことになる。   The gas M accumulated in the pressure accumulator 27 is transferred from the pressure accumulator 27 to the intake passage 16 of the engine 10 via the gas supply passage 28 when the engine 10 is in a transient operation state such as when the vehicle is started or accelerated. Used to assist with supercharging by discharging. When the gas M is composed only of air A, only supercharging assistance is provided. When the gas M is composed only of exhaust gas G, only EGR gas is supplied, and the gas M is a mixed gas of air A and exhaust gas G. In the case of comprising, supercharging assistance and EGR assistance are performed.

そして、ガス供給用通路28には、蓄圧容器27から吸気通路16に放出するガスMの放出圧力Poを調整するために、二次側設定圧力である出口側の圧力を変更でき、しかも、ガスMの放出の有無の制御もできる圧力調整弁(レギュレータ)29を設ける。この圧力調整弁29は、混合気の通過面積を変化させることができる通過面積変更装置(ガス通過面積可変弁)で構成してもよく、この場合は、簡単な装置で圧力調整できるようになる。また、圧力調整の機能とガスMの放出の有無を制御する機能を別々にして、それぞれの機能を有する装置をガス供給用通路28に設けてもよい。   In addition, in order to adjust the discharge pressure Po of the gas M discharged from the pressure accumulator 27 to the intake passage 16, the outlet side pressure, which is the secondary side set pressure, can be changed in the gas supply passage 28. A pressure regulating valve (regulator) 29 that can control whether M is released or not is provided. The pressure adjusting valve 29 may be constituted by a passage area changing device (gas passage area variable valve) capable of changing the passage area of the air-fuel mixture. In this case, the pressure can be adjusted with a simple device. . In addition, the function of adjusting the pressure and the function of controlling whether or not the gas M is released may be separately provided, and a device having each function may be provided in the gas supply passage 28.

また、それと共に、車両のガス蓄圧システム20は、過給補助時やEGRガス供給時に、エンジン10の運転状態に応じてガスMの放出圧力Poを調整する制御と、ガスMの放出の制御を行う制御装置41を備えて構成される。この制御装置41は、通常は、エンジン10の全般の制御やエンジン10を搭載した車両の全般の制御を行う全体システム制御装置40に組み込まれて構成される。この全体システム制御装置のうちで、主として、エンジン10全般を制御する制御装置40は、一般にECU(エンジンコントロールユニット)と呼ばれている。   At the same time, the gas accumulation system 20 of the vehicle performs control for adjusting the discharge pressure Po of the gas M according to the operating state of the engine 10 and control of the discharge of the gas M at the time of supercharging assistance or EGR gas supply. A control device 41 is provided. The control device 41 is usually configured to be incorporated in an overall system control device 40 that performs overall control of the engine 10 and overall control of a vehicle on which the engine 10 is mounted. Of the overall system control device, the control device 40 that mainly controls the engine 10 in general is generally called an ECU (engine control unit).

そして、本発明においては、この制御装置41は、更に、無段階変速機22と電磁クラッチ23と容積型コンプレッサ24を制御するように構成されると共に、車両走行状態であるか、車両制動状態であるかを判定する車両状態判定手段を有して構成される。   In the present invention, the control device 41 is further configured to control the continuously variable transmission 22, the electromagnetic clutch 23, and the positive displacement compressor 24, and is in a vehicle running state or a vehicle braking state. The vehicle state determination means for determining whether or not there is provided.

この制御装置41は、ガスMを蓄圧する際には、車両走行状態においては、車両1を走行させる車軸2(又はこの車軸2に走行用のトルクを伝達する回転駆動軸(図示しない))に電磁クラッチ23を接続状態にして、車軸2の回転トルクにより容積型コンプレッサ24を駆動させて、空気A又は排気ガスGを圧縮及び加圧して、蓄圧容器27に圧送する。また、車両制動状態においては、車両1を走行させる車軸2に電磁クラッチ23を接続状態にして、車軸2の制動トルクにより、言い換えれば、制動トルクを発生させるように、容積型コンプレッサ24を駆動させて、空気A又は排気ガスGを圧縮及び加圧して、蓄圧容器27に圧送する。なお、蓄圧容器27に空気A又は排気ガスGを蓄圧しないときは、電磁クラッチ23を断絶状態にして、容積型コンプレッサ24を車軸2と切り離しておく。   When accumulating the gas M, the control device 41, in the vehicle running state, is an axle 2 that travels the vehicle 1 (or a rotary drive shaft (not shown) that transmits running torque to the axle 2). With the electromagnetic clutch 23 in the connected state, the positive displacement compressor 24 is driven by the rotational torque of the axle 2 to compress and pressurize the air A or the exhaust gas G, and pump it to the pressure accumulating container 27. In the vehicle braking state, the electromagnetic clutch 23 is connected to the axle 2 on which the vehicle 1 travels, and the positive displacement compressor 24 is driven so as to generate the braking torque by the braking torque of the axle 2, in other words, the braking torque. Then, the air A or the exhaust gas G is compressed and pressurized, and is pumped to the pressure accumulating container 27. When the air A or the exhaust gas G is not accumulated in the pressure accumulating container 27, the electromagnetic clutch 23 is disengaged and the positive displacement compressor 24 is separated from the axle 2.

より具体的には、ガス充填装置である容積型コンプレッサ24の制御において、車両走行状態では、図3に示すように、ピストン行程における上死点から下死点までの移動の間で吸引弁を開弁すると共に、排出弁を閉弁して容積型コンプレッサ24のシリンダ内に空気A又は排気ガスGをガス導入通路21側から吸引し、ピストン行程における下死点から上死点までの移動の間で吸引弁を閉弁すると共に排出弁を開弁して空気A又は排気ガスGを加圧ガス通路25側に排出する第1の制御方法での制御を行う。   More specifically, in the control of the positive displacement compressor 24 which is a gas filling device, in the vehicle running state, as shown in FIG. 3, the suction valve is moved between the top dead center and the bottom dead center in the piston stroke. While opening the valve, the exhaust valve is closed, and the air A or the exhaust gas G is sucked into the cylinder of the positive displacement compressor 24 from the gas introduction passage 21 side and moved from the bottom dead center to the top dead center in the piston stroke. In the meantime, the suction valve is closed and the discharge valve is opened, and the control by the first control method for discharging the air A or the exhaust gas G to the pressurized gas passage 25 side is performed.

この場合は、回転角0degで上死点、回転角180degで下死点、回転角360degで上死点とした場合に、回転角0deg〜180degの間で、吸引弁を開弁すると共に、排出弁を閉弁し、回転角180deg〜360degの間で、吸引弁を閉弁すると共に、排出弁を開弁する。   In this case, when the top dead center is set at a rotation angle of 0 deg, the bottom dead center is set at a rotation angle of 180 deg, and the top dead center is set at a rotation angle of 360 deg, the suction valve is opened and discharged at a rotation angle of 0 deg to 180 deg. The valve is closed, and the suction valve is closed and the discharge valve is opened between the rotation angles of 180 deg to 360 deg.

また、車両制動状態においては、図4に示すように、排出弁の開弁期間を上死点より早い時点から下死点より早く、かつ、加圧ガス通路25に排出した空気A又は排気ガスGが逆流する前の時点までとして、空気A又は排気ガスGを加圧ガス通路25側に排出し、吸引弁の開弁時期を排出弁の閉弁後の時点から、下死点より遅い時点までとして、容積型コンプレッサ24のシリンダ内に空気A又は排気ガスGをガス導入通路21側から吸引する第2の制御方法での制御を行う。   Further, in the vehicle braking state, as shown in FIG. 4, the air A or exhaust gas discharged from the pressurized gas passage 25 from the time earlier than the top dead center to the bottom dead center as the opening period of the discharge valve is reached. Until the time point before G flows backward, the air A or the exhaust gas G is discharged to the pressurized gas passage 25 side, and the opening timing of the suction valve is later than the bottom dead center from the time point after closing the discharge valve. Until now, the control is performed by the second control method in which the air A or the exhaust gas G is sucked into the cylinder of the positive displacement compressor 24 from the gas introduction passage 21 side.

この場合は、回転角0degで上死点、回転角180degで下死点、回転角360degで上死点とした場合に、回転角β1deg〜β2degの間で、排出弁を開弁すると共に吸引弁を閉弁して、シリンダ内の空気A又は排気ガスGを排出し、回転角β2deg〜β3degの間で、排出弁を閉弁すると共に吸引弁を開弁して空気A又は排気ガスGを容積型コンプレッサ24のシリンダ内に吸引する。さらに、回転角β2deg〜(360+β1)degの間で、吸引弁と排出弁の両方を閉弁して、排出した空気A又は排気ガスGが逆流するのを防止する。   In this case, when the top dead center is set at the rotation angle 0 deg, the bottom dead center is set at the rotation angle 180 deg, and the top dead center is set at the rotation angle 360 deg, the discharge valve is opened and the suction valve is set between the rotation angles β1 deg to β2 deg. Is closed, the air A or the exhaust gas G in the cylinder is discharged, the exhaust valve is closed and the suction valve is opened between the rotation angles β2deg to β3deg, and the volume of the air A or the exhaust gas G is increased. Suction into the cylinder of the mold compressor 24. Further, between the rotation angles β2deg to (360 + β1) deg, both the suction valve and the exhaust valve are closed to prevent the exhausted air A or exhaust gas G from flowing backward.

なお、この車両制動状態においては、電磁クラッチ23を接続状態にして、容積型コンプレッサ24を無段階変速機22を介して車軸2に接続した状態にすると共に、無段階変速機22の変速比Rgを、車軸2の回転数Naに対して容積型コンプレッサ24の回転数Nbが最大になる変速比Rgmに切り替える制御を行うことが好ましい。   In this vehicle braking state, the electromagnetic clutch 23 is connected, the positive displacement compressor 24 is connected to the axle 2 via the continuously variable transmission 22, and the speed ratio Rg of the continuously variable transmission 22 is set. Is preferably switched to a gear ratio Rgm that maximizes the rotational speed Nb of the positive displacement compressor 24 with respect to the rotational speed Na of the axle 2.

そして、この制御装置41の過給補助の一例について簡単に説明しておくと、過給補助時においてエンジン10の運転状態が低回転速度領域R1にあるときは、蓄圧容器27からガスMを、エンジン10の気筒(シリンダ)内の最大燃焼圧力Pmaxが許容最大燃焼圧力Pmcを超えず、かつ、燃料噴射量qに見合った最小の過給圧Pminに応じて予め設定された設定圧力Po1に放出圧力Poを設定して、この放出圧力Poで過給補助する。この設定圧力Po1は、実験などにより予め設定されるが、低回転速度領域R1で、一定の値にしたり、エンジン10の運転状態に応じて変化する値にしたり、最小の過給圧Pminに予め設定した数値を上乗せした値にしたりして設定する。これにより、エンジン10の運転状態に見合った放出圧力Poで過給補助する。この時の放出圧力Poは、蓄圧容器27の容量などにも依るが、例えば、80kPa〜120kPa程度である。   An example of supercharging assistance of the control device 41 will be briefly described. When the operating state of the engine 10 is in the low rotation speed region R1 during supercharging assistance, the gas M is The maximum combustion pressure Pmax in the cylinder (cylinder) of the engine 10 does not exceed the allowable maximum combustion pressure Pmc, and is released to a set pressure Po1 set in advance according to the minimum boost pressure Pmin commensurate with the fuel injection amount q. A pressure Po is set, and supercharging assistance is performed at the discharge pressure Po. This set pressure Po1 is set in advance by experiments or the like, but is set to a constant value in the low rotation speed region R1, a value that changes according to the operating state of the engine 10, or the minimum boost pressure Pmin. Set the value by adding it to the added value. As a result, supercharging assistance is performed at a discharge pressure Po commensurate with the operating state of the engine 10. The discharge pressure Po at this time is, for example, about 80 kPa to 120 kPa although it depends on the capacity of the pressure accumulating container 27 and the like.

また、過給補助時においてエンジン10の運転状態が中・高回転速度領域R2にあるときは、放出圧力Poを蓄圧容器27の残圧Prにして過給補助する制御を行うように構成される。この時の放出圧力Poは、蓄圧容器27からのガスMの残量によって時々刻々変化する。この時の放出圧力Poは、蓄圧容器27の容量などにも依るが、例えば、120kPa〜250kPa程度の範囲である。これにより、ガスMの放出量を過渡運転状態のエンジン10の運転状態に合わせて調整して放出して、必要かつ十分なガスMを放出する。   In addition, when the operation state of the engine 10 is in the middle / high rotational speed region R2 at the time of supercharging assistance, control is performed to assist supercharging by setting the discharge pressure Po to the residual pressure Pr of the accumulator 27. . The discharge pressure Po at this time changes from moment to moment depending on the remaining amount of the gas M from the pressure accumulating vessel 27. The discharge pressure Po at this time is, for example, in the range of about 120 kPa to 250 kPa, depending on the capacity of the pressure accumulating container 27 and the like. As a result, the amount of gas M released is adjusted and released in accordance with the operating state of the engine 10 in the transient operation state, and the necessary and sufficient gas M is released.

次に、上記の車両のガス蓄圧システム20を用いた車両のガス蓄圧方法について、図2の制御フローを参照しながら説明する。   Next, a vehicle gas pressure accumulation method using the vehicle gas pressure accumulation system 20 will be described with reference to the control flow of FIG.

この図2の制御フローは、この車両のガス蓄圧システム20を搭載した車両において、蓄圧容器27の容器内圧力Pimが低下し、蓄圧下限圧力Pic以下になってガスMの蓄圧が必要になった場合に、上級の制御フローから呼ばれてスタートし、図2の制御フローの内容を実施しては、上級の制御フローに戻り、また、蓄圧が必要になると上級の制御フローから呼ばれて、エンジン10の運転中は、蓄圧が必要になる毎に繰り返し呼ばれて実施されるものとして示してあり、この上級の制御フローの終了と共に終了する制御フローとして示している。   The control flow of FIG. 2 is that in the vehicle equipped with the gas pressure accumulation system 20 of this vehicle, the pressure Pim in the pressure accumulation container 27 decreases, and the pressure of the gas M needs to be accumulated below the pressure accumulation lower limit pressure Pic. In this case, it is called from the advanced control flow, and after executing the contents of the control flow in FIG. 2, it returns to the advanced control flow, and when pressure accumulation is required, it is called from the advanced control flow. During operation of the engine 10, it is shown that it is repeatedly called and implemented every time pressure accumulation is required, and is shown as a control flow that ends with the end of this advanced control flow.

この図2の制御フローが上級の制御フローから呼ばれてスタートすると、ステップS11で、蓄圧容器27への蓄圧が必要な状態であるか否かを判定する。この判定は、蓄圧容器27の容器内圧力Pimが蓄圧下限圧力Pic以下であるか否か等で判定する。このステップS11の判定で蓄圧が必要な状態にない場合(NO)にはリターンに行って上級の制御フローに戻り、次の蓄圧必要状態で呼ばれるのを待つ。   When the control flow of FIG. 2 is called from an advanced control flow and starts, it is determined in step S11 whether or not pressure accumulation in the pressure accumulation container 27 is necessary. This determination is made based on whether or not the in-container pressure Pim of the accumulator 27 is equal to or lower than the accumulator lower limit pressure Pic. If it is determined in step S11 that pressure accumulation is not necessary (NO), the process returns to the advanced control flow and waits for the next pressure accumulation necessary state.

ステップS11の判定で蓄圧が必要な状態である場合(YES)にはステップS12に行き、電磁クラッチ23を接続状態にして、次のステップS13に行く。このステップS13では、車両1の運転状態が、車両走行状態であるか、車両制動状態であるかを判定する。この判定は、車両走行状態であるか、車両制動状態であるかを判定する車両状態判定手段により判定する。   If it is determined in step S11 that pressure accumulation is required (YES), the process proceeds to step S12, the electromagnetic clutch 23 is set in the connected state, and the process proceeds to the next step S13. In step S13, it is determined whether the driving state of the vehicle 1 is a vehicle running state or a vehicle braking state. This determination is made by vehicle state determination means for determining whether the vehicle is in a running state or a vehicle braking state.

このステップS13の判定で、車両走行状態であると判定された場合は(YES)、ステップS14に行き、無段階変速機22の変速比Rgを、エンジン回転速度Nemやアクセル開度αによって決まる燃料噴射量qmに対応させて、変速比設定用マップMg等を用いて算出して設定又は変更し、車軸2の回転トルクを容積型コンプレッサ24の回転駆動軸に伝達して容積型コンプレッサ24を駆動する。この容積型コンプレッサ24の駆動は、図3に示すような、第1の制御方法のタイミングで吸引弁と排出弁の開閉弁制御を行う。これにより、空気A又は排気ガスGを蓄圧容器27に蓄圧する。この制御を予め設定された制御時間行った後ステップS11に戻る。   If it is determined in step S13 that the vehicle is in a running state (YES), the process goes to step S14, where the speed ratio Rg of the continuously variable transmission 22 is determined by the engine speed Nem and the accelerator opening α. Corresponding to the injection amount qm, it is calculated and set or changed using the gear ratio setting map Mg or the like, and the rotational torque of the axle 2 is transmitted to the rotational drive shaft of the positive displacement compressor 24 to drive the positive displacement compressor 24. To do. The positive displacement compressor 24 is driven by performing on-off valve control of the suction valve and the discharge valve at the timing of the first control method as shown in FIG. Thereby, the air A or the exhaust gas G is accumulated in the pressure accumulation container 27. After performing this control for a preset control time, the process returns to step S11.

また、ステップS13の判定で、車両制動状態であると判定された場合は(NO)、ステップS15に行き、無段階変速機22の変速比Rgを、車軸2の回転数Naに対して容積型コンプレッサ24の回転数Nbが最大になる変速比Rgmに切り替える。それと共に、容積型コンプレッサ24の駆動では、図4に示すような、第2の制御方法のタイミングで吸引弁と排出弁の開閉弁制御を行う。これにより、空気A又は排気ガスGを蓄圧容器27に蓄圧する。この制御を予め設定された制御時間行った後ステップS11に戻る。   If it is determined in step S13 that the vehicle is in a braking state (NO), the process goes to step S15, and the speed ratio Rg of the continuously variable transmission 22 is set to be positive with respect to the rotational speed Na of the axle 2. The gear ratio Rgm is switched to maximize the rotation speed Nb of the compressor 24. At the same time, when the positive displacement compressor 24 is driven, the on-off valve control of the suction valve and the discharge valve is performed at the timing of the second control method as shown in FIG. Thereby, the air A or the exhaust gas G is accumulated in the pressure accumulation container 27. After performing this control for a preset control time, the process returns to step S11.

その後、ステップS11〜ステップS14、又は、ステップS11〜ステップS15を繰り返し実施し、ステップS11の判定で蓄圧要求がなくなったと判定されると(NO)、ステップS16に行き、電磁クラッチ23を断絶状態にして、リターンに行き、上級の制御フローに戻る。また、制御の途中で、車両1又はエンジン10の運転が停止されたときには、割り込みが生じ、リターンに行って上級の制御フローに戻り、この上級の制御フローの終了と共に本制御フローを終了する。   Thereafter, Steps S11 to S14 or Steps S11 to S15 are repeatedly performed. If it is determined that there is no pressure accumulation request in the determination of Step S11 (NO), the process goes to Step S16 and the electromagnetic clutch 23 is disengaged. Return to return to the advanced control flow. Further, when the operation of the vehicle 1 or the engine 10 is stopped in the middle of the control, an interrupt is generated, the return is made and the control flow returns to the advanced control flow, and this control flow is ended at the end of the advanced control flow.

この図2の制御フローに基づく制御により、車両1に搭載した蓄圧容器27に空気A又は排気G又はこれらの混合気であるガスMを蓄圧する車両のガス蓄圧方法において、蓄圧容器27へガスMを充填する容積型コンプレッサ(ガス充填装置)24を、車両1を走行させる車軸2(又はこの車軸2に走行用のトルクを伝達する回転駆動軸)に接続可能に構成すると共に、車両走行状態であるか、車両制動状態であるかを判定し、車両走行状態には、車軸2の回転トルクにより容積型コンプレッサ24を駆動し、車両制動状態には、車軸2の制動トルクにより容積型コンプレッサ24を駆動することができる。   2, in the vehicle gas pressure accumulation method for accumulating air A, exhaust G, or gas M, which is a mixture thereof, in the pressure accumulation container 27 mounted on the vehicle 1, the gas M is supplied to the pressure accumulation container 27. Is configured to be connectable to an axle 2 that travels the vehicle 1 (or a rotary drive shaft that transmits traveling torque to the axle 2), and in a vehicle traveling state. It is determined whether the vehicle is in a vehicle braking state. In the vehicle running state, the positive displacement compressor 24 is driven by the rotational torque of the axle 2, and in the vehicle braking state, the positive displacement compressor 24 is driven by the braking torque of the axle 2. Can be driven.

上記の構成の本発明の車両のガス蓄圧システム20及び車両のガス蓄圧方法によれば、蓄圧容器27に空気A又は排気G又はこれらの混合気であるガスMを蓄圧する車両のガス蓄圧システム及び車両のガス蓄圧方法において、車両1の通常の走行状態、特に一定速度に近い走行状態では、比較的時間をかけて蓄圧することで、駆動仕事を減少して、燃費悪化を最小限にし、車両1の制動エネルギーを利用できるときは、最大の駆動仕事で蓄圧することで、容積型コンプレッサ24が回収できる最大の制動エネルギーを得ることができる。   According to the vehicle gas pressure accumulation system 20 and the vehicle gas pressure accumulation method of the present invention configured as described above, a vehicle gas pressure accumulation system for accumulating air A, exhaust G, or gas M, which is a mixture thereof, in the pressure accumulation container 27, and In the vehicle gas pressure accumulation method, the vehicle 1 accumulates pressure over a relatively long time in a normal traveling state, particularly in a traveling state close to a constant speed, thereby reducing driving work and minimizing deterioration in fuel consumption. When the braking energy of 1 can be used, the maximum braking energy that can be recovered by the positive displacement compressor 24 can be obtained by accumulating pressure with the maximum driving work.

1 車両
2 車軸
3 車輪
10 エンジン(内燃機関)
11 排気通路
12 排気分岐通路
13 ガスクーラ
14 三方弁
15 空気取入れ通路
16 吸気通路
20 車両のガス蓄圧システム
21 ガス導入通路
22 無段階変速機
23 電磁クラッチ
24 容積型コンプレッサ(容積型圧縮装置:ガス充填装置)
25 加圧ガス通路
26 逆止弁
27 蓄圧容器
28 ガス供給用通路
29 圧力調整弁
31 酸素濃度センサ
32 容器内圧センサ
33 温度センサ
A 空気
G 排気ガス
Na 車軸の回転数
Nb 容積型コンプレッサの回転数
Nem エンジン回転速度
M ガス
Mg 変速比設定用マップ
Pic 蓄圧下限圧力
Pim 容器内圧力
Po ガスの放出圧力
Po1 設定圧力
Pmax 最大燃焼圧力
Pmc 許容最大燃焼圧力
Pmin 最小の過給圧
Pr 蓄圧容器の残圧
q 燃料噴射量
qm アクセル開度によって決まる燃料噴射量
R1 低回転速度領域
R2 中・高回転速度領域
Rg 無段階変速機の変速比
Rgm 車軸の回転数に対して容積型コンプレッサの回転数が最大になる変速比
α アクセル開度
1 Vehicle 2 Axle 3 Wheel 10 Engine (Internal combustion engine)
DESCRIPTION OF SYMBOLS 11 Exhaust passage 12 Exhaust branch passage 13 Gas cooler 14 Three-way valve 15 Air intake passage 16 Intake passage 20 Gas storage system 21 Gas introduction passage 22 Stepless transmission 23 Electromagnetic clutch 24 Positive displacement compressor (positive displacement compressor: gas filling device) )
25 Pressurized gas passage 26 Check valve 27 Accumulation vessel 28 Gas supply passage 29 Pressure adjustment valve 31 Oxygen concentration sensor 32 Container internal pressure sensor 33 Temperature sensor A Air G Exhaust gas Na Axle rotation speed Nb Volumetric compressor rotation speed Nem Engine rotation speed M Gas Mg Gear ratio setting map Pic Accumulated pressure lower limit pressure Pim In-vessel pressure Po Gas discharge pressure Po1 Set pressure Pmax Maximum combustion pressure Pmc Maximum allowable combustion pressure Pmin Minimum boost pressure Pr Residual pressure in accumulator container q Fuel Injection amount qm Fuel injection amount R1 determined by accelerator opening R1 Low rotation speed region R2 Medium / high rotation speed region Rg Gear ratio Rgm of continuously variable transmission Gear shift that maximizes the rotational speed of the displacement compressor relative to the rotation speed of the axle Ratio α Accelerator opening

Claims (3)

車両に搭載した蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧システムにおいて、
前記蓄圧容器へガスを充填するガス充填装置を備えると共に、該ガス充填装置を制御し、かつ、車両走行状態であるか、車両制動状態であるかを判定する車両状態判定手段を有する制御装置を備え、
前記ガス充填装置が、車両を走行させる車軸又は該車軸に走行用のトルクを伝達する回転駆動軸に接続可能で、かつ、車両走行状態には、前記ガス充填装置が前記車軸又は前記回転駆動軸の回転トルクにより駆動され、車両制動状態には、前記ガス充填装置が前記車軸又は前記回転駆動軸の制動トルクにより駆動されるように構成されることを特徴とする車両のガス蓄圧システム。
In a gas pressure accumulation system for a vehicle that accumulates air or exhaust gas or a gas mixture thereof in a pressure accumulation vessel mounted on the vehicle,
A control device comprising a gas filling device for filling the pressure accumulating vessel with gas, and having a vehicle state determination means for controlling the gas filling device and judging whether the vehicle is in a running state or a vehicle braking state. Prepared,
The gas filling device can be connected to an axle for running a vehicle or a rotary drive shaft for transmitting a running torque to the axle, and in the vehicle running state, the gas filling device is connected to the axle or the rotary drive shaft. The vehicle gas pressure storage system is configured so that the gas filling device is driven by the braking torque of the axle or the rotational drive shaft in a vehicle braking state.
前記ガス充填装置を容積型圧縮装置で構成すると共に、
前記制御装置が、
車両走行状態には、前記容積型圧縮装置のピストンの上死点から下死点までの移動の間で吸引弁を開弁すると共に排出弁を閉弁してシリンダ内にガスを吸引し、前記ピストンの下死点から上死点までの移動の間で吸引弁を閉弁すると共に排出弁を開弁してガスを排出する制御を行い、
車両制動状態には、前記排出弁の開弁期間を上死点より早い時点から下死点より早く、かつ、排出したガスが逆流する前の時点までとし、前記吸引弁の開弁時期を前記排出弁の閉弁後の時点から、下死点より遅い時点までとする制御を行うように構成されることを特徴とする請求項1に記載の車両のガス蓄圧システム。
The gas filling device is composed of a positive displacement compressor,
The control device is
In the vehicle running state, the suction valve is opened during the movement from the top dead center to the bottom dead center of the piston of the positive displacement compressor, and the discharge valve is closed to suck the gas into the cylinder. During the movement from the bottom dead center to the top dead center of the piston, the suction valve is closed and the discharge valve is opened to discharge the gas.
In the vehicle braking state, the opening period of the exhaust valve is from a time point earlier than the top dead center to a time point earlier than the bottom dead center and before the exhausted gas flows backward, and the opening timing of the suction valve is 2. The vehicle gas pressure accumulation system according to claim 1, wherein the control is performed from a time point after the exhaust valve is closed to a time point later than the bottom dead center.
車両に搭載した蓄圧容器に空気又は排気又はこれらの混合気であるガスを蓄圧する車両のガス蓄圧方法において、
前記蓄圧容器へガスを充填するガス充填装置を、車両を走行させる車軸又は該車軸に走行用のトルクを伝達する回転駆動軸に接続可能に構成すると共に、
車両走行状態であるか、車両制動状態であるかを判定し、
車両走行状態には、前記車軸又は前記回転駆動軸の回転トルクにより前記ガス充填装置を駆動し、車両制動状態には、前記車軸又は前記回転駆動軸の制動トルクにより前記ガス充填装置を駆動することを特徴とする車両のガス蓄圧方法。
In a vehicle gas pressure accumulation method for accumulating air, exhaust gas, or a gas mixture thereof in a pressure accumulation container mounted on a vehicle,
The gas filling device for filling the pressure accumulating vessel with gas is configured to be connectable to an axle for running the vehicle or a rotary drive shaft for transmitting running torque to the axle,
Determine whether the vehicle is running or braking,
In the vehicle running state, the gas filling device is driven by the rotational torque of the axle or the rotational drive shaft, and in the vehicle braking state, the gas filling device is driven by the braking torque of the axle or the rotational drive shaft. A method for storing gas in a vehicle.
JP2013227088A 2013-10-31 2013-10-31 Vehicle gas pressure accumulation system and vehicle gas pressure accumulation method Expired - Fee Related JP6201645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227088A JP6201645B2 (en) 2013-10-31 2013-10-31 Vehicle gas pressure accumulation system and vehicle gas pressure accumulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227088A JP6201645B2 (en) 2013-10-31 2013-10-31 Vehicle gas pressure accumulation system and vehicle gas pressure accumulation method

Publications (2)

Publication Number Publication Date
JP2015086811A true JP2015086811A (en) 2015-05-07
JP6201645B2 JP6201645B2 (en) 2017-09-27

Family

ID=53049851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227088A Expired - Fee Related JP6201645B2 (en) 2013-10-31 2013-10-31 Vehicle gas pressure accumulation system and vehicle gas pressure accumulation method

Country Status (1)

Country Link
JP (1) JP6201645B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331183B1 (en) * 2017-11-22 2018-05-30 新日本特機株式会社 Brake torque generator for electric vehicle and electric vehicle
JP6457684B1 (en) * 2017-11-22 2019-01-23 新日本特機株式会社 Brake torque generator for electric vehicle and electric vehicle
CN114856836A (en) * 2021-02-03 2022-08-05 北京汽车动力总成有限公司 Exhaust back pressure governing system and car

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106394258B (en) * 2016-10-24 2019-01-08 北京新能源汽车股份有限公司 Energy recovery method and device and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517638A (en) * 2003-02-12 2006-07-27 ディー−ジェイ エンジニアリング,インコーポレーテッド Air injection engine
JP2009209930A (en) * 2008-02-08 2009-09-17 Sanwa Seiki Co Ltd Air compressor
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517638A (en) * 2003-02-12 2006-07-27 ディー−ジェイ エンジニアリング,インコーポレーテッド Air injection engine
JP2009209930A (en) * 2008-02-08 2009-09-17 Sanwa Seiki Co Ltd Air compressor
JP2011021558A (en) * 2009-07-16 2011-02-03 Isuzu Motors Ltd Supercharge control method and supercharge control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331183B1 (en) * 2017-11-22 2018-05-30 新日本特機株式会社 Brake torque generator for electric vehicle and electric vehicle
JP6457684B1 (en) * 2017-11-22 2019-01-23 新日本特機株式会社 Brake torque generator for electric vehicle and electric vehicle
WO2019102633A1 (en) * 2017-11-22 2019-05-31 新日本特機株式会社 Braking torque generation device for electric vehicle and electric vehicle
CN114856836A (en) * 2021-02-03 2022-08-05 北京汽车动力总成有限公司 Exhaust back pressure governing system and car

Also Published As

Publication number Publication date
JP6201645B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
CN102498272B (en) Turbocharged reciprocating piston engine having a connected pressure tank for bridging turbo lag, and method for operating said engine
RU2576564C2 (en) Engine operation with turbo supercharging and engine system
JP6672785B2 (en) Engine control device
RU2633315C2 (en) Engine unit and vehicle with hybrid drive
JP5370243B2 (en) Control device for diesel engine with turbocharger
US20180274436A1 (en) Methods and systems for an engine start using an electrically drivable compressor
RU2562684C2 (en) Internal combustion engine with turbo-charger; drive system and operating method of internal combustion engine with turbo-charger (versions)
EP2667006A1 (en) Engine boosting system
WO2010067447A1 (en) Pressure accumulation system for internal combustion engine
JP6201645B2 (en) Vehicle gas pressure accumulation system and vehicle gas pressure accumulation method
JP6060492B2 (en) Internal combustion engine and control method thereof
WO2018081223A1 (en) Supercharging for improved engine braking and transient performance
EP2674599B1 (en) Method for controlling an internal combustion engine
JP2016188607A (en) Internal combustion engine and supercharging method for the same
JP6112397B2 (en) Supercharger control device for internal combustion engine
EP2634410B1 (en) Engine system
WO2019097920A1 (en) Engine control device and engine control method
JP2016125365A (en) Internal combustion engine
JP3166592B2 (en) Engine for vehicles with mechanical supercharger
JP2010001822A (en) Internal combustion engine with turbocharger
JP5834505B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP5397291B2 (en) Start control device for turbocharged engine
JP2010275955A (en) Vehicle control device
JP5830946B2 (en) Supercharging assist method for internal combustion engine and internal combustion engine
JP6561828B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees