JP2015086340A - White light-emitting phosphor and white light-emitting device - Google Patents

White light-emitting phosphor and white light-emitting device Download PDF

Info

Publication number
JP2015086340A
JP2015086340A JP2013228268A JP2013228268A JP2015086340A JP 2015086340 A JP2015086340 A JP 2015086340A JP 2013228268 A JP2013228268 A JP 2013228268A JP 2013228268 A JP2013228268 A JP 2013228268A JP 2015086340 A JP2015086340 A JP 2015086340A
Authority
JP
Japan
Prior art keywords
compound
range
silicon
mol
white light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013228268A
Other languages
Japanese (ja)
Other versions
JP6241812B2 (en
Inventor
福田 晃一
Koichi Fukuda
晃一 福田
仁 天谷
Hitoshi Amaya
仁 天谷
憲治 有馬
Kenji Arima
憲治 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2013228268A priority Critical patent/JP6241812B2/en
Publication of JP2015086340A publication Critical patent/JP2015086340A/en
Application granted granted Critical
Publication of JP6241812B2 publication Critical patent/JP6241812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

PROBLEM TO BE SOLVED: To provide a novel white light-emitting phosphor.SOLUTION: There is provided the white light-emitting phosphor obtained by firing a raw material mixture containing a strontium compound, a magnesium compound, an europium compound and a silicon compound, containing strontium, magnesium, europium and silicon as a constitutional element and having an X-ray diffraction peak A having diffraction angle 2θ in a range of 32.6 to 33.0°, an X-ray diffraction peak B having diffraction angle 2θ in a range of 31.1 to 31.3° and an X-ray diffraction peak C having diffraction angle 2θ in a range of 42.9 to 43.0°, in an X-ray diffraction pattern measured with incidence angle θ by using CuKα ray.

Description

本発明は、白色発光蛍光体に関する。本発明はまた、上記の白色発光蛍光体を用いた白色発光装置に関する。   The present invention relates to a white light-emitting phosphor. The present invention also relates to a white light emitting device using the above white light emitting phosphor.

電気エネルギーを付与することによって光を発光する発光性半導体素子と、発光性半導体素子から発光した光で励起させることによって可視光を発光する蛍光体とを備えたLEDランプは、長寿命でかつ消費電力量が少ない発光装置として注目されている。特に、白色光を発光するLEDランプは、白色LEDランプとも呼ばれ、照明用ランプとして実用化されている。   An LED lamp having a light-emitting semiconductor element that emits light by applying electric energy and a phosphor that emits visible light when excited by light emitted from the light-emitting semiconductor element has a long life and consumes light. It attracts attention as a light-emitting device with low power consumption. In particular, an LED lamp that emits white light is also called a white LED lamp, and has been put into practical use as an illumination lamp.

白色LEDランプとしては、発光性半導体素子として電気エネルギーを付与することによって青色光を発光する青色光発光性半導体素子を用い、蛍光体として青色光で励起させることによって黄色光を発光する黄色発光蛍光体を用いた構成のランプが知られている。このランプでは、青色光発光性半導体素子から発光した青色光と、黄色発光蛍光体から発光した黄色光との混色によって白色光が得られる。   As a white LED lamp, a blue light emitting semiconductor element that emits blue light by applying electric energy as a light emitting semiconductor element, and yellow light emitting fluorescence that emits yellow light by being excited with blue light as a phosphor. A lamp having a structure using a body is known. In this lamp, white light can be obtained by mixing the blue light emitted from the blue light emitting semiconductor element and the yellow light emitted from the yellow light emitting phosphor.

また、別の構成の白色LEDランプとしては、発光性半導体素子として電気エネルギーを付与することによって波長が350〜430nmの範囲にある光(紫外光乃至紫色光)を発光する半導体素子を用い、蛍光体として紫外光乃至紫色光で励起させることによって白色光を発光する白色発光蛍光体を用いた構成のランプが知られている。このランプでは、発光性半導体素子から発光した紫外光乃至紫色光で白色発光蛍光体を励起させることによって白色光が得られる。白色発光蛍光体としては、青色発光蛍光体、緑色発光蛍光体及び赤色発光蛍光体の三種の蛍光体を混合した蛍光体混合物が知られている。この蛍光体混合物では、各蛍光体から発光した青色光、緑色光及び赤色光の混色によって白色光が得られる。   Further, as a white LED lamp having another configuration, a semiconductor element that emits light (ultraviolet light or violet light) having a wavelength in the range of 350 to 430 nm by applying electric energy as a light-emitting semiconductor element is used. A lamp having a configuration using a white light-emitting phosphor that emits white light by being excited with ultraviolet light or violet light as a body is known. In this lamp, white light is obtained by exciting the white light emitting phosphor with ultraviolet light or violet light emitted from the light emitting semiconductor element. As a white light-emitting phosphor, a phosphor mixture in which three kinds of phosphors of a blue light-emitting phosphor, a green light-emitting phosphor and a red light-emitting phosphor are mixed is known. In this phosphor mixture, white light is obtained by mixing blue light, green light and red light emitted from each phosphor.

また、単一の材料からなる白色発光蛍光体も知られている。特許文献1には、単一材料からなる白色発光蛍光体として、SrabMgcZndSief:Eu2+の式(但し、e=1の時、0<(c+d)/(a+c+d)≦0.2、1.8≦a+c+d≦2.2、0≦b/(b+f)≦0.07、3.0≦b+f≦4.4)で示される白色発光蛍光体が記載されている。この文献の実施例1−1〜1−16には、SrCO3、MgO、SiO2そしてEuF3を含有する原料混合物を焼成して得た白色発光蛍光体が記載されている。そして、この実施例で得られている白色発光蛍光体は、Sr3MgSi28の相とSr2SiO4の相とからなる蛍光体であるとされている。 A white light-emitting phosphor made of a single material is also known. In Patent Document 1, as a white light-emitting phosphor made of a single material, Sr a S b Mg c Zn d Si e O f : Eu 2+ formula (however, when e = 1, 0 <(c + d) / White light emitting phosphors represented by (a + c + d) ≦ 0.2, 1.8 ≦ a + c + d ≦ 2.2, 0 ≦ b / (b + f) ≦ 0.07, 3.0 ≦ b + f ≦ 4.4) are described. ing. Examples 1-1 to 1-16 in this document describe white light-emitting phosphors obtained by firing a raw material mixture containing SrCO 3 , MgO, SiO 2 and EuF 3 . The white light-emitting phosphor obtained in this example is said to be a phosphor composed of a Sr 3 MgSi 2 O 8 phase and a Sr 2 SiO 4 phase.

特開2007−332352号公報JP 2007-332352 A

本発明の目的は、新規な白色発光蛍光体を提供することにある。   An object of the present invention is to provide a novel white light-emitting phosphor.

本発明者は、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含む原料混合物の焼成物であって、CuKα線を用いて入射角θで測定されるX線回折パターンにおいて、回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCを有する焼成物は、400nmの波長の光で励起させると白色光を効率良く発光することを見出して、本発明を完成させた。   The present inventor is a fired product of a raw material mixture containing a strontium compound, a magnesium compound, a europium compound and a silicon compound, and has an X-ray diffraction pattern measured at an incident angle θ using CuKα rays of 32 at a diffraction angle 2θ. X-ray diffraction peak A in the range of 3 to 33.0 degrees, X-ray diffraction peak B in the range of 31.1 to 31.3 degrees at the diffraction angle 2θ, and 42.9 to 43.43 at the diffraction angle 2θ. It was found that the fired product having the X-ray diffraction peak C in the range of 0 degree emits white light efficiently when excited with light having a wavelength of 400 nm, thereby completing the present invention.

従って、本発明は、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含む原料混合物を焼成して得られた白色発光蛍光体であって、構成元素としてストロンチウム、マグネシウム、ユウロピウムそしてケイ素を含み、CuKα線を用いて入射角θで測定されるX線回折パターンにおいて、回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCを有する白色発光蛍光体にある。   Accordingly, the present invention provides a white light-emitting phosphor obtained by firing a raw material mixture containing a strontium compound, a magnesium compound, a europium compound and a silicon compound, comprising strontium, magnesium, europium and silicon as constituent elements, and CuKα X-ray diffraction pattern measured at an incident angle θ using a line, an X-ray diffraction peak A in the range of 32.6 to 33.0 degrees at a diffraction angle 2θ, and 31.1 to 31.3 at a diffraction angle 2θ. The white light-emitting phosphor has an X-ray diffraction peak B in the range of degrees and an X-ray diffraction peak C in the range of 42.9 to 43.0 degrees at a diffraction angle 2θ.

本発明の白色発光蛍光体の好ましい態様は、次の通りである。
(1)原料混合物が、ストロンチウム化合物をケイ素化合物中のケイ素を1モルとしたときのストロンチウム量として1.45〜2.00モルの範囲の量にて、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.20〜2.00モルの範囲の量にて、そしてユウロピウム化合物をケイ素化合物中のケイ素を1モルとしたときのユウロピウム量として0.01〜0.20モルの範囲の量にて含む。
(2)原料混合物が、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.40〜2.00モルの範囲の量にて含む。
(3)X線回折ピークAの強度が、X線回折ピークBの強度を1としたときに0.05〜20の範囲にある。
(4)X線回折ピークCの強度が、X線回折ピークBの強度を1としたときに0.20以上である。
(5)400nmの波長の光で励起させることによって、国際照明委員会で定められた色度図におけるxが0.15〜0.45の範囲にあって、yが0.15〜0.50の範囲にある白色光を発光する。
Preferred embodiments of the white light emitting phosphor of the present invention are as follows.
(1) The raw material mixture is an amount of strontium when the silicon in the silicon compound is 1 mol of silicon and the magnesium compound is 1 in the range of 1.45 to 2.00 mol. The amount of magnesium in the range of 0.20 to 2.00 mol as the amount of magnesium, and 0.01 to 0.20 mol as the amount of europium when the silicon in the silicon compound is 1 mol of silicon in the silicon compound Including the amount in the range.
(2) The raw material mixture contains the magnesium compound in an amount in the range of 0.40 to 2.00 mol as the amount of magnesium when the silicon in the silicon compound is 1 mol.
(3) The intensity of the X-ray diffraction peak A is in the range of 0.05 to 20 when the intensity of the X-ray diffraction peak B is 1.
(4) The intensity of the X-ray diffraction peak C is 0.20 or more when the intensity of the X-ray diffraction peak B is 1.
(5) By exciting with light having a wavelength of 400 nm, x in the chromaticity diagram determined by the International Commission on Illumination is in the range of 0.15 to 0.45, and y is 0.15 to 0.50. It emits white light in the range of.

本発明はまた、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含み、ストロンチウム化合物をケイ素化合物中のケイ素を1モルとしたときのストロンチウム量として1.45〜2.00モルの範囲の量にて、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.20〜2.00モルの範囲の量にて、そしてユウロピウム化合物をケイ素化合物中のケイ素を1モルとしたときのユウロピウム量として0.01〜0.20モルの範囲の量にて含有し、但し、ハロゲン化合物をケイ素化合物中のケイ素を1モルとしたときのハロゲン量として0.01モル以上含むことがない原料混合物を、還元性雰囲気中にて900〜1500℃の範囲で0.5〜100時間焼成することによって得られたものである白色発光蛍光体にもある。   The present invention also includes a strontium compound, a magnesium compound, a europium compound, and a silicon compound, and the strontium compound has an amount in the range of 1.45 to 2.00 mol as the amount of strontium when silicon in the silicon compound is 1 mol. When the magnesium compound is 1 mol of silicon in the silicon compound, the amount of magnesium is in the range of 0.20 to 2.00 mol, and the europium compound is 1 mol of silicon in the silicon compound. The amount of europium contained in the range of 0.01 to 0.20 mol, provided that the halogen compound does not contain 0.01 mol or more as the halogen amount when silicon in the silicon compound is 1 mol. Firing the raw material mixture in a reducing atmosphere at 900 to 1500 ° C. for 0.5 to 100 hours There is also a white light emitting phosphor is obtained by Rukoto.

本発明はさらに、電気エネルギーを付与することによって波長が350〜430nmの範囲にある光を発光する発光性半導体素子と、該発光性半導体素子の周囲に配置された、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含む原料混合物を焼成して得られた白色発光蛍光体であって、構成元素としてストロンチウム、マグネシウム、ユウロピウムそしてケイ素を含み、CuKα線を用いて入射角θで測定されるX線回折パターンにおいて、回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCを有する白色発光蛍光体を含む白色発光装置にもある。   The present invention further provides a light-emitting semiconductor element that emits light having a wavelength in the range of 350 to 430 nm by applying electric energy, and a strontium compound, a magnesium compound, and europium disposed around the light-emitting semiconductor element. A white light-emitting phosphor obtained by firing a raw material mixture containing a compound and a silicon compound, which contains strontium, magnesium, europium and silicon as constituent elements, and is measured at an incident angle θ using CuKα rays In the diffraction pattern, an X-ray diffraction peak A in the range of 32.6 to 33.0 degrees at a diffraction angle 2θ, an X-ray diffraction peak B in the range of 31.1 to 31.3 degrees at a diffraction angle 2θ, and There is also a white light-emitting device including a white light-emitting phosphor having an X-ray diffraction peak C in the range of 42.9 to 43.0 degrees at an angle 2θ. The

本発明の白色発光蛍光体は、波長が350〜430nmの範囲にある光で励起させたときの白色光の発光効率が高い。このため、本発明の白色発光装置は、発光性半導体素子として電気エネルギーを付与することによって波長が350〜430nmの範囲にある光を発光する素子を用いた白色LEDランプのような白色発光装置の白色光の光源として有利に用いることができる。   The white light emitting phosphor of the present invention has high emission efficiency of white light when excited with light having a wavelength in the range of 350 to 430 nm. For this reason, the white light emitting device of the present invention is a white light emitting device such as a white LED lamp using an element that emits light having a wavelength in the range of 350 to 430 nm by applying electric energy as a light emitting semiconductor element. It can be advantageously used as a light source for white light.

本発明に従う白色発光装置の一例の断面図である。It is sectional drawing of an example of the white light-emitting device according to this invention. 実施例1にて製造した蛍光体のX線回折パターンである。2 is an X-ray diffraction pattern of a phosphor manufactured in Example 1. FIG.

本発明の白色発光蛍光体は、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物及びケイ素化合物を含む原料混合物を焼成することによって得られた焼成物であって、構成元素としてストロンチウム、マグネシウム、ユウロピウムそしてケイ素を含む。この白色発光蛍光体のストロンチウムの含有量は、ケイ素1モルに対する量として一般に1.45〜2.00モルの範囲、好ましくは1.55〜1.90モルの範囲である。マグネシウムの含有量は、ケイ素1モルに対する量として一般に0.20〜2.00モルの範囲、好ましくは0.40〜1.60モルの範囲である。また、ストロンチウムの含有量は、マグネシウム1モルに対する量として一般に0.5〜4.0モルの範囲、好ましくは0.8〜3.5モルの範囲にある。ユウロピウムの含有量は、ケイ素1モルに対する量として一般に0.01〜0.20モルの範囲、好ましくは0.02〜0.10モルの範囲にある。白色発光蛍光体に含まれるストロンチウム、マグネシウム、ユウロピウムそしてケイ素の量は、一般に原料混合物に含まれる量と同じである。   The white light-emitting phosphor of the present invention is a fired product obtained by firing a raw material mixture containing a strontium compound, a magnesium compound, a europium compound and a silicon compound, and contains strontium, magnesium, europium and silicon as constituent elements. . The content of strontium in this white light emitting phosphor is generally in the range of 1.45 to 2.00 mol, preferably in the range of 1.55 to 1.90 mol, based on 1 mol of silicon. The content of magnesium is generally in the range of 0.20 to 2.00 mol, preferably in the range of 0.40 to 1.60 mol, based on 1 mol of silicon. The content of strontium is generally in the range of 0.5 to 4.0 moles, preferably in the range of 0.8 to 3.5 moles, based on 1 mole of magnesium. The content of europium is generally in the range of 0.01 to 0.20 mol, preferably in the range of 0.02 to 0.10 mol, as an amount relative to 1 mol of silicon. The amount of strontium, magnesium, europium and silicon contained in the white light emitting phosphor is generally the same as that contained in the raw material mixture.

本発明の白色発光蛍光体は、ストロンチウム、マグネシウム、ユウロピウム及びケイ素以外の元素を含んでいてもよい。この元素の例としては、カルシウム及びバリウムなどのアルカリ土類金属元素、ユウロピウム以外の希土類金属元素を挙げることができる。これらの元素の含有量は、ケイ素1モルに対する量として、一般に0.5モル未満、好ましくは0.3モル未満、特に好ましくは0.1モル未満である。   The white light-emitting phosphor of the present invention may contain elements other than strontium, magnesium, europium and silicon. Examples of this element include alkaline earth metal elements such as calcium and barium, and rare earth metal elements other than europium. The content of these elements is generally less than 0.5 mol, preferably less than 0.3 mol, particularly preferably less than 0.1 mol, relative to 1 mol of silicon.

本発明の白色発光蛍光体は、CuKα線(CuKα1線とCuKα2線とを含む)を用いて入射角θで測定されるX線回折パターンにおいて、回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCを有する。X線回折ピークAは、組成式がSr3MgSi28で表される化合物に起因するX線回折ピークであると考えられる。X線回折ピークBは、組成式がSr2SiO4で表される化合物に起因するX線回折ピークであると考えられる。X線回折ピークCは、酸化マグネシウムに起因するX線回折ピークであると考えられる。 The white light-emitting phosphor of the present invention has an X-ray diffraction pattern measured at an incident angle θ using CuKα rays (including CuKα1 rays and CuKα2 rays) of 32.6 to 33.0 degrees at a diffraction angle 2θ. X-ray diffraction peak A in the range, X-ray diffraction peak B in the range of 31.1-31.3 degrees at the diffraction angle 2θ, and X-rays in the range of 42.9-43.0 degrees at the diffraction angle 2θ It has a diffraction peak C. The X-ray diffraction peak A is considered to be an X-ray diffraction peak caused by a compound whose composition formula is represented by Sr 3 MgSi 2 O 8 . The X-ray diffraction peak B is considered to be an X-ray diffraction peak caused by a compound whose composition formula is represented by Sr 2 SiO 4 . X-ray diffraction peak C is considered to be an X-ray diffraction peak due to magnesium oxide.

X線回折ピークAの強度は、X線回折ピークBの強度を1としたときに、一般に0.05〜20の範囲、好ましくは0.07〜15の範囲、より好ましくは0.10〜10の範囲、特に好ましくは0.20〜5.0の範囲にある。X線回折ピークCの強度は、X線回折ピークBの強度を1としたときに、一般に0.20以上、好ましくは0.30以上、特に好ましくは0.50以上であり、上限は一般に5.0、好ましくは4.0である。   The intensity of the X-ray diffraction peak A is generally in the range of 0.05 to 20, preferably 0.07 to 15, more preferably 0.10 to 10, when the intensity of the X-ray diffraction peak B is 1. And particularly preferably in the range of 0.20 to 5.0. The intensity of the X-ray diffraction peak C is generally 0.20 or more, preferably 0.30 or more, particularly preferably 0.50 or more when the intensity of the X-ray diffraction peak B is 1, and the upper limit is generally 5 0.0, preferably 4.0.

本発明の白色発光蛍光体を400nmの波長の光で励起させることによって得られる白色光は、色度図におけるxが、0.15〜0.45の範囲にあることが好ましく、0.23〜0.43の範囲にあることがより好ましく、0.28〜0.38の範囲にあることが特に好ましい。また、色度図におけるyは0.15〜0.50の範囲にあることが好ましく、0.23〜0.43の範囲にあることがより好ましく、0.28〜0.38の範囲にあることが特に好ましい。なお、本発明において、色度図は国際照明委員会(CIE)により定められた色度図を意味する。また、本発明の白色発光蛍光体から発光した白色光は、波長が430〜480nmの範囲と波長が520〜580nmの範囲のそれぞれに発光ピークを有することが好ましい。波長が430〜480nmの範囲にある発光ピークと波長が520〜580nmの範囲にある発光ピークの強度比(前者/後者)は、0.10〜10の範囲にあることが好ましく、0.20〜5.0の範囲にあることが特に好ましい。本発明の白色発光蛍光体は、外部量子効率が一般に30%以上、好ましくは35%以上、特に好ましくは40%以上である。外部量子効率は、蛍光体に光を照射し、その光で蛍光体を励起させて光を発光させたときに、蛍光体に照射した光の量子数に対する、蛍光体から発光した光の量子数の割合を意味する。この外部量子効率が大きい白色発光蛍光体は白色光の発光効率が高い。   In the white light obtained by exciting the white light-emitting phosphor of the present invention with light having a wavelength of 400 nm, x in the chromaticity diagram is preferably in the range of 0.15 to 0.45, 0.23 to A range of 0.43 is more preferable, and a range of 0.28 to 0.38 is particularly preferable. Further, y in the chromaticity diagram is preferably in the range of 0.15 to 0.50, more preferably in the range of 0.23 to 0.43, and in the range of 0.28 to 0.38. It is particularly preferred. In the present invention, the chromaticity diagram means a chromaticity diagram determined by the International Commission on Illumination (CIE). Moreover, it is preferable that the white light emitted from the white light-emitting phosphor of the present invention has an emission peak in each of a wavelength range of 430 to 480 nm and a wavelength range of 520 to 580 nm. The intensity ratio (the former / the latter) of the emission peak in the wavelength range of 430 to 480 nm and the emission peak in the wavelength range of 520 to 580 nm is preferably in the range of 0.10 to 10, A range of 5.0 is particularly preferable. The white light-emitting phosphor of the present invention generally has an external quantum efficiency of 30% or more, preferably 35% or more, particularly preferably 40% or more. The external quantum efficiency is the quantum number of the light emitted from the phosphor relative to the quantum number of the light emitted to the phosphor when the phosphor is irradiated with light and the phosphor is excited by that light to emit light. Means the percentage of The white light emitting phosphor having a large external quantum efficiency has a high white light emission efficiency.

本発明の白色発光蛍光体は、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含む原料混合物を焼成することによって製造することができる。原料混合物は、ストロンチウム化合物をケイ素化合物中のケイ素を1モルとしたときのストロンチウム量として1.45〜2.00モルの範囲の量にて、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.20〜2.00モルの範囲の量にて、そしてユウロピウム化合物をケイ素化合物中のケイ素を1モルとしたときのユウロピウム量として0.01〜0.20モルの範囲の量にて含むことが好ましい。但し、原料混合物は、ハロゲン化合物のようなフラックス(融剤)として作用する化合物の含有量は少ない方が好ましい。特に、原料混合物のハロゲン化合物の含有量は、ケイ素化合物中のケイ素を1モルとしたときのハロゲン量として0.01モル以上含むことがないように抑えることが好ましい。原料混合物がフラックスとして作用する化合物を多く含むと、原料混合物の焼成時にマグネシウム化合物がストロンチウム化合物あるいはケイ素化合物と反応し易くなるため、酸化マグネシウムに起因するX線回折ピークCを有する白色発光蛍光体が生成しにくくなる。   The white light-emitting phosphor of the present invention can be produced by firing a raw material mixture containing a strontium compound, a magnesium compound, a europium compound and a silicon compound. In the raw material mixture, the amount of strontium in the range of 1.45 to 2.00 mol when the strontium compound is 1 mol of silicon in the silicon compound, and the magnesium compound is 1 mol of silicon in the silicon compound. The amount of magnesium in the range of 0.20 to 2.00 mol, and the amount of europium in the range of 0.01 to 0.20 mol as the amount of europium when silicon in the silicon compound is 1 mol. It is preferable to include by quantity. However, the raw material mixture preferably has a small content of a compound that acts as a flux (flux) such as a halogen compound. In particular, the content of the halogen compound in the raw material mixture is preferably suppressed so as not to contain 0.01 mol or more as the halogen amount when silicon in the silicon compound is 1 mol. When the raw material mixture contains a large amount of a compound that acts as a flux, the magnesium compound is likely to react with the strontium compound or silicon compound when the raw material mixture is baked, so that a white light-emitting phosphor having an X-ray diffraction peak C due to magnesium oxide It becomes difficult to generate.

ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物及びケイ素化合物は、酸化物であってもよいし、水酸化物、炭酸塩(塩基性炭酸塩を含む)、硝酸塩、シュウ酸塩などの加熱により酸化物を生成する化合物であってもよい。各化合物はそれぞれ一種を単独で使用してもよいし、二種以上を併用してもよい。各化合物は、純度が99質量%以上であることが好ましい。   Strontium compounds, magnesium compounds, europium compounds and silicon compounds may be oxides, or oxides are generated by heating hydroxides, carbonates (including basic carbonates), nitrates, oxalates, etc. It may be a compound. Each compound may be used individually by 1 type, and may use 2 or more types together. Each compound preferably has a purity of 99% by mass or more.

原料混合物の混合方法には、乾式混合法及び湿式混合法のいずれの方法も採用することができる。湿式混合法では、回転ボールミル、振動ボールミル、遊星ミル、ペイントシェーカー、ロッキングミル、ロッキングミキサー、ビーズミル、撹拌機などを用いることができる。溶媒には、水、あるいはエチルアルコール、イソプロピルアルコールなどの低級アルコールを用いることができる。   Either a dry mixing method or a wet mixing method can be adopted as a method for mixing the raw material mixture. In the wet mixing method, a rotating ball mill, a vibrating ball mill, a planetary mill, a paint shaker, a rocking mill, a rocking mixer, a bead mill, a stirrer, or the like can be used. As the solvent, water or lower alcohols such as ethyl alcohol and isopropyl alcohol can be used.

原料混合物の焼成は一般に還元性雰囲気中で行う。還元性雰囲気は、0.5〜5.0体積%の水素と99.5〜95.0体積%の不活性気体との混合ガス雰囲気であることが好ましい。不活性気体の例としては、アルゴン及び窒素を挙げることができる。焼成温度は、一般に900〜1500℃の範囲である。焼成時間は、一般に0.5〜100時間の範囲、好ましくは0.5〜10時間の範囲である。   The firing of the raw material mixture is generally performed in a reducing atmosphere. The reducing atmosphere is preferably a mixed gas atmosphere of 0.5 to 5.0% by volume of hydrogen and 99.5 to 95.0% by volume of inert gas. Examples of inert gases include argon and nitrogen. The firing temperature is generally in the range of 900-1500 ° C. The firing time is generally in the range of 0.5 to 100 hours, preferably in the range of 0.5 to 10 hours.

本発明の白色発光蛍光体は、電気エネルギーを付与することによって波長が350〜430nmの範囲にある光を発光する発光性半導体素子を用いた白色LEDランプなどの白色発光装置の白色光の光源として使用することができる。本発明の白色発光蛍光体は、他の蛍光体と組み合わせて使用してもよい。他の蛍光体の例としては、紫外光乃至紫色光で励起させることによって黄色光を発光する黄色発光蛍光体あるいは紫外光で励起させることによって赤色光を発光する赤色発光蛍光体を挙げることができる。   The white light emitting phosphor of the present invention is used as a white light source of a white light emitting device such as a white LED lamp using a light emitting semiconductor element that emits light having a wavelength in the range of 350 to 430 nm by applying electric energy. Can be used. The white light-emitting phosphor of the present invention may be used in combination with other phosphors. Examples of other phosphors include a yellow light-emitting phosphor that emits yellow light when excited with ultraviolet light or violet light, or a red light-emitting phosphor that emits red light when excited with ultraviolet light. .

次に、本発明の白色発光蛍光体を白色光の光源として用いた白色発光装置を、図1を参照しながら説明する。
図1は、本発明に従う白色発光装置の一例の断面図である。図1において、白色発光装置(白色LEDランプ)は、基板1と、基板1の上に接着剤2により固定された発光性半導体素子3、基板1の上に形成された一対の電極4a、4b、発光性半導体素子3と電極4a、4bとを電気的に接続するリード線5a、5b、発光性半導体素子3を被覆する樹脂層6、樹脂層6の上に設けられた白色発光蛍光体7が分散されている封止材8、そして樹脂層6と封止材8の周囲を覆う光反射材9、そして電極4a、4bと外部電源(図示せず)とを電気的に接続する導電線10a、10bからなる。この白色発光装置において、導電線10a、10bを介して電極4a、4bに電圧を印加して、発光性半導体素子3に電気エネルギーを付与することによって、発光性半導体素子3から波長が350〜430nmの範囲にある光(紫外光乃至紫色光)が発光する。そして、その紫外光乃至紫色光で封止材8中の白色発光蛍光体7を励起させることによって白色光が得られる。
Next, a white light emitting device using the white light emitting phosphor of the present invention as a light source of white light will be described with reference to FIG.
FIG. 1 is a cross-sectional view of an example of a white light emitting device according to the present invention. In FIG. 1, a white light emitting device (white LED lamp) includes a substrate 1, a light emitting semiconductor element 3 fixed on the substrate 1 with an adhesive 2, and a pair of electrodes 4a and 4b formed on the substrate 1. The lead wires 5a and 5b that electrically connect the light-emitting semiconductor element 3 and the electrodes 4a and 4b, the resin layer 6 that covers the light-emitting semiconductor element 3, and the white light-emitting phosphor 7 provided on the resin layer 6 , The light reflecting material 9 covering the periphery of the resin layer 6 and the sealing material 8, and the conductive wires for electrically connecting the electrodes 4a and 4b and an external power source (not shown). 10a and 10b. In this white light emitting device, a voltage is applied to the light emitting semiconductor element 3 by applying a voltage to the electrodes 4a and 4b through the conductive wires 10a and 10b, so that the wavelength from the light emitting semiconductor element 3 is 350 to 430 nm. Light (ultraviolet light or violet light) in the range is emitted. Then, white light is obtained by exciting the white light emitting phosphor 7 in the sealing material 8 with the ultraviolet light or purple light.

基板1の例としては、ガラス基板、アルミナや窒素アルミニウムなどのセラミックから形成された基板、及び金属酸化物やガラスなどの無機物粒子を分散させた樹脂材料から形成された基板を挙げることができる。発光性半導体素子3は、AlGaN系半導体素子のような電気エネルギーを付与することによって波長が350〜430nmの範囲にある光を発光する半導体素子であることが好ましい。樹脂層6の材料の例としては、エポキシ樹脂及びシリコーン樹脂などの透明樹脂を挙げることができる。樹脂層6は省略してもよい。封止材8の材料としてはエポキシ樹脂及びシリコーン樹脂などの透明樹脂を挙げることができる。光反射材9の形成材料の例としては、Al、Ni、Fe、Cr、Ti、Cu、Rh、Ag、Au、Ptなどの金属、アルミナ、ジルコニア、チタニア、マグネシア、酸化亜鉛、炭酸カルシウムなどの白色金属化合物、及び白色顔料を分散させた樹脂材料を挙げることができる。   Examples of the substrate 1 include a glass substrate, a substrate formed from ceramics such as alumina and nitrogen aluminum, and a substrate formed from a resin material in which inorganic particles such as metal oxide and glass are dispersed. The light-emitting semiconductor element 3 is preferably a semiconductor element that emits light having a wavelength in the range of 350 to 430 nm by applying electric energy, such as an AlGaN-based semiconductor element. Examples of the material of the resin layer 6 include transparent resins such as epoxy resins and silicone resins. The resin layer 6 may be omitted. Examples of the material of the sealing material 8 include transparent resins such as an epoxy resin and a silicone resin. Examples of the material for forming the light reflecting material 9 include metals such as Al, Ni, Fe, Cr, Ti, Cu, Rh, Ag, Au, and Pt, alumina, zirconia, titania, magnesia, zinc oxide, calcium carbonate, and the like. Examples thereof include a resin material in which a white metal compound and a white pigment are dispersed.

白色発光装置は、例えば、次のようにして製造することができる。基板1に所定のパターンで電極4a、4bと導電線10a、10bを形成する。次に、基板1の上に接着剤2により発光性半導体素子3を固定した後、ワイヤボンディングなどの方法により、発光性半導体素子3と電極4a、4bとを電気的に接続するリード線5a、5bを形成する。次に、発光性半導体素子3の周囲に光反射材9を固定した後、発光性半導体素子3の上に硬化性透明樹脂を流し込み、その硬化性透明樹脂を硬化させて樹脂層6を形成する。そして、樹脂層6の上に、硬化性透明樹脂に白色発光蛍光体7を分散させた硬化性透明樹脂組成物を流し込み、次いでその硬化性透明樹脂組成物を硬化させて白色発光蛍光体7が分散されている封止材8を形成する。   The white light emitting device can be manufactured, for example, as follows. Electrodes 4a and 4b and conductive lines 10a and 10b are formed on the substrate 1 in a predetermined pattern. Next, after fixing the luminescent semiconductor element 3 on the substrate 1 with the adhesive 2, the lead wire 5a for electrically connecting the luminescent semiconductor element 3 and the electrodes 4a, 4b by a method such as wire bonding, 5b is formed. Next, after fixing the light reflecting material 9 around the light emitting semiconductor element 3, a curable transparent resin is poured onto the light emitting semiconductor element 3, and the curable transparent resin is cured to form the resin layer 6. . Then, a curable transparent resin composition in which the white light-emitting phosphor 7 is dispersed in the curable transparent resin is poured onto the resin layer 6, and then the curable transparent resin composition is cured to obtain the white light-emitting phosphor 7. The dispersed sealing material 8 is formed.

[実施例1]
炭酸ストロンチウム粉末、酸化マグネシウム粉末、酸化ユウロピウム粉末そして二酸化ケイ素粉末を、モル比で1.67:1.27:0.03:1(=SrCO3:MgO:Eu23:SiO2)の割合となるように秤量した。秤量した各原料粉末をエチルアルコールと共にロッキングミルに入れて、1時間混合して原料粉末のスラリーを得た。原料粉末のスラリーの溶媒(エチルアルコール)を、エバポレータを用いて除去し、得られた固形物を真空乾燥機を用いて15時間乾燥して原料混合物を得た。得られた原料混合物から、篩(目開き:250μm)を用いて分級した。篩を通過した原料混合物を、アルゴンガス98体積%と水素ガス2体積%とを含む還元性ガス中にて1450℃の温度で6時間焼成して、蛍光体を製造した。得られた蛍光体は、乳鉢に入れて解砕した。各原料粉末の割合を下記の表1に示す。
[Example 1]
A ratio of strontium carbonate powder, magnesium oxide powder, europium oxide powder and silicon dioxide powder in a molar ratio of 1.67: 1.27: 0.03: 1 (= SrCO 3 : MgO: Eu 2 O 3 : SiO 2 ) Weighed so that Each raw material powder weighed was placed in a rocking mill with ethyl alcohol and mixed for 1 hour to obtain a raw material powder slurry. The solvent (ethyl alcohol) of the raw material powder slurry was removed using an evaporator, and the obtained solid was dried using a vacuum dryer for 15 hours to obtain a raw material mixture. The obtained raw material mixture was classified using a sieve (aperture: 250 μm). The raw material mixture that passed through the sieve was baked in a reducing gas containing 98% by volume of argon gas and 2% by volume of hydrogen gas at a temperature of 1450 ° C. for 6 hours to produce a phosphor. The obtained phosphor was put in a mortar and crushed. The ratio of each raw material powder is shown in Table 1 below.

[実施例2〜11]
炭酸ストロンチウム粉末、酸化マグネシウム粉末、酸化ユウロピウム粉末そして二酸化ケイ素粉末の割合を、下記の表1に示す割合としたこと以外は、実施例1と同様にして蛍光体を製造した。
[Examples 2 to 11]
A phosphor was manufactured in the same manner as in Example 1 except that the ratios of strontium carbonate powder, magnesium oxide powder, europium oxide powder and silicon dioxide powder were changed to the ratios shown in Table 1 below.

表1
────────────────────────────────────────
SrCO3 MgO Eu23 SiO2
────────────────────────────────────────
実施例1 1.67 1.27 0.03 1
実施例2 1.67 1.00 0.03 1
実施例3 1.67 0.50 0.03 1
実施例4 1.77 1.17 0.03 1
実施例5 1.57 1.37 0.03 1
実施例6 1.47 1.47 0.03 1
実施例7 1.47 1.27 0.03 1
実施例8 1.47 1.07 0.03 1
実施例9 1.47 0.50 0.03 1
実施例10 1.47 0.45 0.03 1
実施例11 1.67 0.33 0.03 1
────────────────────────────────────────
Table 1
────────────────────────────────────────
SrCO 3 MgO Eu 2 O 3 SiO 2
────────────────────────────────────────
Example 1 1.67 1.27 0.03 1
Example 2 1.67 1.00 0.03 1
Example 3 1.67 0.50 0.03 1
Example 4 1.77 1.17 0.03 1
Example 5 1.57 1.37 0.03 1
Example 6 1.47 1.47 0.03 1
Example 7 1.47 1.27 0.03 1
Example 8 1.47 1.07 0.03 1
Example 9 1.47 0.50 0.03 1
Example 10 1.47 0.45 0.03 1
Example 11 1.67 0.33 0.03 1
────────────────────────────────────────

[評価]
(1)X線回折パターンの測定
実施例1〜11にて製造した蛍光体のX線回折パターンを、X線回折装置(D8 ADVANCE、ブルカー・エイエックス(株)製)を用いて下記の測定条件にて測定した。図2に、実施例1にて製造した蛍光体のX線回折パターンを示す。なお、X線回折パターンは、CuKα1線に起因する回折ピークとCuKα2線に起因する回折ピークとを含む。図2のX線回折パターンから回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCが確認された。実施例2〜11で製造した蛍光体のX線回折パターンからも同様にX線回折ピークA、X線回折ピークB、そしてX線回折ピークCが確認された。各実施例の蛍光体のX線回折パターンからX線回折ピークA、X線回折ピークBそしてX線回折ピークCの強度を計測し、X線回折ピークBの強度を1としたときのX線回折ピークAの強度(A/B)及びX線回折ピークBの強度を1としたときのX線回折ピークCの強度(C/B)を算出した。その結果を表2に示す。
[Evaluation]
(1) Measurement of X-ray diffraction pattern X-ray diffraction patterns of the phosphors produced in Examples 1 to 11 were measured as follows using an X-ray diffractometer (D8 ADVANCE, manufactured by Bruker Ax Co., Ltd.). Measured under conditions. FIG. 2 shows an X-ray diffraction pattern of the phosphor manufactured in Example 1. The X-ray diffraction pattern includes a diffraction peak due to the CuKα1 line and a diffraction peak due to the CuKα2 line. From the X-ray diffraction pattern of FIG. 2, an X-ray diffraction peak A in the range of 32.6 to 33.0 degrees at a diffraction angle 2θ, and an X-ray diffraction peak in the range of 31.1 to 31.3 degrees at a diffraction angle 2θ. B and an X-ray diffraction peak C in the range of 42.9 to 43.0 degrees at a diffraction angle 2θ were confirmed. Similarly, X-ray diffraction peak A, X-ray diffraction peak B, and X-ray diffraction peak C were confirmed from the X-ray diffraction patterns of the phosphors produced in Examples 2-11. The X-ray diffraction peak A, X-ray diffraction peak B, and X-ray diffraction peak C intensities were measured from the X-ray diffraction patterns of the phosphors of the respective examples. The intensity (C / B) of the X-ray diffraction peak C was calculated when the intensity of the diffraction peak A (A / B) and the intensity of the X-ray diffraction peak B was 1. The results are shown in Table 2.

[X線回折パターンの測定条件]
測定:連続測定
X線:CuKα線(CuKα1線とCuKα2線とを含む)
管電圧:40kV
管電流:40mA
発散スリット幅:0.3deg
散乱スリット幅:0.3deg
受光スリット幅:5.56mm
スキャンモード:4deg/分
スキャンステップ:0.005deg
[Measurement conditions of X-ray diffraction pattern]
Measurement: Continuous measurement X-ray: CuKα line (including CuKα1 line and CuKα2 line)
Tube voltage: 40 kV
Tube current: 40 mA
Divergence slit width: 0.3 deg
Scattering slit width: 0.3 deg
Light receiving slit width: 5.56 mm
Scan mode: 4 deg / min Scan step: 0.005 deg

表2
─────────────────────────
A/B C/B
─────────────────────────
実施例1 2.0 0.63
実施例2 1.7 0.44
実施例3 1.8 0.22
実施例4 0.9 0.42
実施例5 3.9 0.92
実施例6 15.2 2.68
実施例7 12.7 1.93
実施例8 10.8 1.35
実施例9 13.4 0.45
実施例10 10.2 0.33
実施例11 1.7 0.12
─────────────────────────
Table 2
─────────────────────────
A / B C / B
─────────────────────────
Example 1 2.0 0.63
Example 2 1.7 0.44
Example 3 1.8 0.22
Example 4 0.9 0.42
Example 5 3.9 0.92
Example 6 15.2 2.68
Example 7 12.7 1.93
Example 8 10.8 1.35
Example 9 13.4 0.45
Example 10 10.2 0.33
Example 11 1.7 0.12
─────────────────────────

(2)発光スペクトルの測定
実施例1〜11にて製造した蛍光体に波長400nmの紫外光を照射して蛍光体を励起させたところ、各実施例の全ての蛍光体から白色光が発生していることが確認できた。この白色光の発光スペクトルを測定したところ、各実施例の全ての蛍光体の発光スペクトルから、波長が430〜480nmの範囲と波長が520〜580nmの範囲のそれぞれに発光ピークが確認できた。発光スペクトルから波長が430〜480nmの範囲にある発光ピークと波長が520〜580nmの範囲にある発光ピークの強度を計測し、その比(前者/後者)を算出した。また、得られた発光スペクトルから、国際照明委員会で定められた色度図におけるxとyの値を常法により求めた。これらの結果を表3に示す。
(2) Measurement of emission spectrum When the phosphors manufactured in Examples 1 to 11 were irradiated with ultraviolet light having a wavelength of 400 nm to excite the phosphors, white light was generated from all the phosphors in each example. It was confirmed that When the emission spectrum of this white light was measured, emission peaks could be confirmed in each of the wavelength range of 430 to 480 nm and the wavelength range of 520 to 580 nm from the emission spectra of all the phosphors in each example. From the emission spectrum, the intensity of the emission peak in the range of 430 to 480 nm and the emission peak in the range of 520 to 580 nm were measured, and the ratio (the former / the latter) was calculated. In addition, from the obtained emission spectrum, the values of x and y in the chromaticity diagram determined by the International Commission on Illumination were obtained by a conventional method. These results are shown in Table 3.

(3)外部量子効率の測定
1)標準白板を積分球の内側底部に取り付けた。標準白板表面に、該表面に対して垂直にピーク波長400nmの紫外光を照射した。積分球壁で散乱された光のスペクトルを測定し、波長380〜410nmの光のピーク面積(L)を測定した。
2)実施例1〜11にて製造した蛍光体をそれぞれ試料ホルダーに充填し、試料ホルダーを積分球の内側底部に取り付けた。試料ホルダーの白色発光蛍光体の表面に、該表面に対して垂直にピーク波長400nmの紫外光を照射した。積分球壁で散乱された光のスペクトルを測定し、波長410〜700nmの光のピーク面積(E)を測定した。そして、下記の式から蛍光体の外部量子効率を算出した。その結果を表3に示す。
白色発光蛍光体の外部量子効率(%)=100×E/L
(3) Measurement of external quantum efficiency 1) A standard white plate was attached to the inner bottom of the integrating sphere. The surface of the standard white plate was irradiated with ultraviolet light having a peak wavelength of 400 nm perpendicular to the surface. The spectrum of light scattered by the integrating sphere wall was measured, and the peak area (L) of light having a wavelength of 380 to 410 nm was measured.
2) Each of the phosphors manufactured in Examples 1 to 11 was filled in the sample holder, and the sample holder was attached to the inner bottom of the integrating sphere. The surface of the white light-emitting phosphor of the sample holder was irradiated with ultraviolet light having a peak wavelength of 400 nm perpendicular to the surface. The spectrum of light scattered by the integrating sphere wall was measured, and the peak area (E) of light having a wavelength of 410 to 700 nm was measured. And the external quantum efficiency of fluorescent substance was computed from the following formula. The results are shown in Table 3.
External quantum efficiency (%) of white light emitting phosphor = 100 × E / L

表3
────────────────────────────────────────
色相*) 強度比**) 色度図のx 色度図のy 外部量子効率(%)
────────────────────────────────────────
実施例1 白色 1.18 0.356 0.349 46.2
実施例2 白色 1.33 0.345 0.337 36.3
実施例3 白色 1.34 0.342 0.340 35.7
実施例4 白色 0.51 0.408 0.422 44.3
実施例5 白色 2.04 0.304 0.282 51.8
実施例6 白色 4.75 0.233 0.190 65.0
実施例7 白色 6.74 0.223 0.177 57.3
実施例8 白色 5.21 0.237 0.198 60.4
実施例9 白色 6.10 0.226 0.188 59.5
実施例10 白色 9.75 0.200 0.152 43.5
実施例11 白色 1.66 0.324 0.320 32.9
────────────────────────────────────────
*)蛍光体に波長400nmの紫外光を照射して蛍光体を励起させたときに、蛍光体から発生した光の色相である。
**)波長が430〜480nmの範囲にある発光ピークと波長が520〜580nmの範囲にある発光ピークの強度の比(前者/後者)である。
Table 3
────────────────────────────────────────
Hue *) Intensity ratio **) Chromaticity diagram x Chromaticity diagram y External quantum efficiency (%)
────────────────────────────────────────
Example 1 White 1.18 0.356 0.349 46.2
Example 2 White 1.33 0.345 0.337 36.3
Example 3 White 1.34 0.342 0.340 35.7
Example 4 White 0.51 0.408 0.422 44.3
Example 5 White 2.04 0.304 0.282 51.8
Example 6 White 4.75 0.233 0.190 65.0
Example 7 White 6.74 0.223 0.177 57.3
Example 8 White 5.21 0.237 0.198 60.4
Example 9 white 6.10 0.226 0.188 59.5
Example 10 White 9.75 0.200 0.152 43.5
Example 11 White 1.66 0.324 0.320 32.9
────────────────────────────────────────
*) The hue of light generated from the phosphor when the phosphor is excited by irradiating the phosphor with ultraviolet light having a wavelength of 400 nm.
**) Ratio of the intensity of the emission peak having a wavelength in the range of 430 to 480 nm and the emission peak having a wavelength in the range of 520 to 580 nm (the former / the latter).

表2と表3に示す結果から、本発明に従う白色発光蛍光体は、波長400nmの紫外光によって励起させたときの外部量子効率が高い値を示すことが分かる。   From the results shown in Tables 2 and 3, it can be seen that the white light-emitting phosphor according to the present invention has a high external quantum efficiency when excited by ultraviolet light having a wavelength of 400 nm.

1 基板
2 接着剤
3 発光性半導体素子
4a、4b 電極
5a、5b リード線
6 樹脂層
7 白色発光蛍光体
8 封止材
9 光反射材
10a、10b 導電線
DESCRIPTION OF SYMBOLS 1 Substrate 2 Adhesive 3 Light-emitting semiconductor element 4a, 4b Electrode 5a, 5b Lead wire 6 Resin layer 7 White light-emitting phosphor 8 Sealing material 9 Light reflecting material 10a, 10b Conductive wire

Claims (8)

ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含む原料混合物を焼成して得られた白色発光蛍光体であって、構成元素としてストロンチウム、マグネシウム、ユウロピウムそしてケイ素を含み、CuKα線を用いて入射角θで測定されるX線回折パターンにおいて、回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCを有する白色発光蛍光体。   A white light-emitting phosphor obtained by firing a raw material mixture containing a strontium compound, a magnesium compound, a europium compound and a silicon compound, containing strontium, magnesium, europium and silicon as constituent elements, and incident angle using CuKα rays In the X-ray diffraction pattern measured at θ, the X-ray diffraction peak A in the range of 32.6 to 33.0 degrees at the diffraction angle 2θ, and the X in the range of 31.1 to 31.3 degrees at the diffraction angle 2θ A white light-emitting phosphor having a line diffraction peak B and an X-ray diffraction peak C in the range of 42.9 to 43.0 degrees at a diffraction angle 2θ. 原料混合物が、ストロンチウム化合物をケイ素化合物中のケイ素を1モルとしたときのストロンチウム量として1.45〜2.00モルの範囲の量にて、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.20〜2.00モルの範囲の量にて、そしてユウロピウム化合物をケイ素化合物中のケイ素を1モルとしたときのユウロピウム量として0.01〜0.20モルの範囲の量にて含む請求項1に記載の白色発光蛍光体。   The raw material mixture was an amount in the range of 1.45 to 2.00 mol of strontium when the strontium compound was 1 mol of silicon in the silicon compound, and the magnesium compound was 1 mol of silicon in the silicon compound. The amount of magnesium in the range of 0.20 to 2.00 mol, and the amount of europium in the range of 0.01 to 0.20 mol as the amount of europium when silicon in the silicon compound is 1 mol. The white light-emitting phosphor according to claim 1, which is contained in an amount. 原料混合物が、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.40〜2.00モルの範囲の量にて含む請求項2に記載の白色発光蛍光体。   3. The white light-emitting phosphor according to claim 2, wherein the raw material mixture contains a magnesium compound in an amount in the range of 0.40 to 2.00 mol as the amount of magnesium when silicon in the silicon compound is 1 mol. X線回折ピークAの強度が、X線回折ピークBの強度を1としたときに0.05〜20の範囲にある請求項1に記載の白色発光蛍光体。   The white light-emitting phosphor according to claim 1, wherein the intensity of the X-ray diffraction peak A is in the range of 0.05 to 20 when the intensity of the X-ray diffraction peak B is 1. X線回折ピークCの強度が、X線回折ピークBの強度を1としたときに0.20以上である請求項1に記載の白色発光蛍光体。   The white light-emitting phosphor according to claim 1, wherein the intensity of the X-ray diffraction peak C is 0.20 or more when the intensity of the X-ray diffraction peak B is 1. 400nmの波長の光で励起させることによって、色度図におけるxが0.15〜0.45の範囲にあって、yが0.15〜0.50の範囲にある白色光を発光する請求項1に記載の白色発光蛍光体。   A white light having x in a range of 0.15 to 0.45 and y in a range of 0.15 to 0.50 is emitted by excitation with light having a wavelength of 400 nm. 2. The white light-emitting phosphor according to 1. ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含み、ストロンチウム化合物をケイ素化合物中のケイ素を1モルとしたときのストロンチウム量として1.45〜2.00モルの範囲の量にて、マグネシウム化合物をケイ素化合物中のケイ素を1モルとしたときのマグネシウム量として0.20〜2.00モルの範囲の量にて、そしてユウロピウム化合物をケイ素化合物中のケイ素を1モルとしたときのユウロピウム量として0.01〜0.20モルの範囲の量にて含有し、但し、ハロゲン化合物をケイ素化合物中のケイ素を1モルとしたときのハロゲン量として0.01モル以上含むことがない原料混合物を、還元性雰囲気中にて900〜1500℃の範囲で0.5〜100時間焼成することによって得られたものである白色発光蛍光体。   A strontium compound, a magnesium compound, a europium compound, and a silicon compound, and the magnesium compound in an amount in the range of 1.45 to 2.00 mol as the amount of strontium when the silicon in the silicon compound is 1 mol. The amount of magnesium in the range of 0.20 to 2.00 mol when silicon in the silicon compound is 1 mol, and 0 as the amount of europium when the europium compound is 1 mol of silicon in the silicon compound. A raw material mixture which is contained in an amount in the range of .01 to 0.20 mol, but does not contain 0.01 mol or more as a halogen amount when silicon in the silicon compound is 1 mol, is reduced. By firing at 900 to 1500 ° C. in a neutral atmosphere for 0.5 to 100 hours. White-emitting phosphor are those obtained. 電気エネルギーを付与することによって波長が350〜430nmの範囲にある光を発光する発光性半導体素子と、該発光性半導体素子の周囲に配置された、ストロンチウム化合物、マグネシウム化合物、ユウロピウム化合物そしてケイ素化合物を含む原料混合物を焼成して得られた白色発光蛍光体であって、構成元素としてストロンチウム、マグネシウム、ユウロピウムそしてケイ素を含み、CuKα線を用いて入射角θで測定されるX線回折パターンにおいて、回折角2θで32.6〜33.0度の範囲にあるX線回折ピークA、回折角2θで31.1〜31.3度の範囲にあるX線回折ピークB、そして回折角2θで42.9〜43.0度の範囲にあるX線回折ピークCを有する白色発光蛍光体を含む白色発光装置。   A luminescent semiconductor element that emits light having a wavelength in the range of 350 to 430 nm by applying electric energy, and a strontium compound, a magnesium compound, a europium compound, and a silicon compound disposed around the luminescent semiconductor element. A white light-emitting phosphor obtained by firing a raw material mixture containing strontium, magnesium, europium and silicon as constituent elements, and an X-ray diffraction pattern measured at an incident angle θ using CuKα rays. An X-ray diffraction peak A in the range of 32.6 to 33.0 degrees at the folding angle 2θ, an X-ray diffraction peak B in the range of 31.1 to 31.3 degrees at the diffraction angle 2θ, and 42. A white light-emitting device including a white light-emitting phosphor having an X-ray diffraction peak C in the range of 9 to 43.0 degrees.
JP2013228268A 2013-11-01 2013-11-01 White light emitting phosphor and white light emitting device Expired - Fee Related JP6241812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013228268A JP6241812B2 (en) 2013-11-01 2013-11-01 White light emitting phosphor and white light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013228268A JP6241812B2 (en) 2013-11-01 2013-11-01 White light emitting phosphor and white light emitting device

Publications (2)

Publication Number Publication Date
JP2015086340A true JP2015086340A (en) 2015-05-07
JP6241812B2 JP6241812B2 (en) 2017-12-06

Family

ID=53049503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013228268A Expired - Fee Related JP6241812B2 (en) 2013-11-01 2013-11-01 White light emitting phosphor and white light emitting device

Country Status (1)

Country Link
JP (1) JP6241812B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332352A (en) * 2006-05-19 2007-12-27 Mitsui Mining & Smelting Co Ltd White fluorescent material and white light emitting element or device
JP2008031422A (en) * 2006-06-29 2008-02-14 National Institute Of Advanced Industrial & Technology Phosphor
JP2009280793A (en) * 2008-04-24 2009-12-03 Kyocera Corp Fluorescent substance, wavelength converter, light emitter and lighting installation
JP2012158692A (en) * 2011-02-01 2012-08-23 Ube Material Industries Ltd Laminate having phosphor layer, light emitting device, and blue-light emitting phosphor
JP2012241078A (en) * 2011-05-18 2012-12-10 Ube Material Industries Ltd Method for producing blue light emitting phosphor
JP2013136697A (en) * 2011-12-28 2013-07-11 Ube Material Industries Ltd Green light-emitting silicate phosphor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332352A (en) * 2006-05-19 2007-12-27 Mitsui Mining & Smelting Co Ltd White fluorescent material and white light emitting element or device
JP2008031422A (en) * 2006-06-29 2008-02-14 National Institute Of Advanced Industrial & Technology Phosphor
JP2009280793A (en) * 2008-04-24 2009-12-03 Kyocera Corp Fluorescent substance, wavelength converter, light emitter and lighting installation
JP2012158692A (en) * 2011-02-01 2012-08-23 Ube Material Industries Ltd Laminate having phosphor layer, light emitting device, and blue-light emitting phosphor
JP2012241078A (en) * 2011-05-18 2012-12-10 Ube Material Industries Ltd Method for producing blue light emitting phosphor
JP2013136697A (en) * 2011-12-28 2013-07-11 Ube Material Industries Ltd Green light-emitting silicate phosphor

Also Published As

Publication number Publication date
JP6241812B2 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5503871B2 (en) Charge compensated nitride phosphors for use in lighting applications
JP4836229B2 (en) Phosphor and light emitting device
JP5770192B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
WO2012070565A1 (en) Silicate phosphor exhibiting high light emission characteristics and moisture resistance, and light emitting device
JP2009535441A (en) Illumination system comprising a radiation source and a luminescent material
US20190067530A1 (en) Blue light-emitting phosphor and light emitting device using same
JP2011066227A (en) White led light source, backlight unit, liquid crystal panel, and liquid crystal tv
JP4619509B2 (en) Light emitting device
JP5770365B2 (en) Deep red light emitting magnesium fluorogermanate phosphor and method for producing the same
JP4951888B2 (en) Phosphor and light emitting device using the same
JP5689407B2 (en) Silicate green light emitting phosphor
JP4309242B2 (en) Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode
JP6176664B2 (en) Phosphor, method for producing the same, light emitting device, image display device, pigment, and ultraviolet absorber
JP4433793B2 (en) Phosphor and light emitting device using the same
JP4661419B2 (en) Phosphor and light emitting device using the same
JP6241812B2 (en) White light emitting phosphor and white light emitting device
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP2009096986A (en) New phosphor and fabrication of the same
JP4433847B2 (en) Phosphor, light emitting device using the same, image display device, and illumination device
JP2009238886A (en) Wavelength converter and light-emitting device, and lighting device
JP2016155893A (en) Aluminate fluophor and light emitting device
JPWO2013176195A1 (en) Phosphor mixture with optimized light emission intensity and color rendering in the visible region
JP2004269834A (en) Red color light-emitting fluorescent material and light-emitting element by using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6241812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171029

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees