JP2015084343A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2015084343A
JP2015084343A JP2015019166A JP2015019166A JP2015084343A JP 2015084343 A JP2015084343 A JP 2015084343A JP 2015019166 A JP2015019166 A JP 2015019166A JP 2015019166 A JP2015019166 A JP 2015019166A JP 2015084343 A JP2015084343 A JP 2015084343A
Authority
JP
Japan
Prior art keywords
positive electrode
electrolyte battery
flame retardant
retardant material
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015019166A
Other languages
Japanese (ja)
Inventor
辻川 知伸
Tomonobu Tsujikawa
知伸 辻川
荒川 正泰
Masayasu Arakawa
正泰 荒川
洋生 西山
Hiroo Nishiyama
洋生 西山
愛知 且英
Katsuhide Aichi
且英 愛知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd, NTT Facilities Inc filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2015019166A priority Critical patent/JP2015084343A/en
Publication of JP2015084343A publication Critical patent/JP2015084343A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery arranged so that little influence is exerted on a discharge characteristic even in the case of forming a flame-retardant layer on a surface of an electrode or the like.SOLUTION: A nonaqueous electrolyte battery 1 comprises: a positive electrode plate 3; a negative electrode plate 5; a separator 7; and a porous layer having an ion permeability, which is formed on a surface of the positive electrode plate 3 by use of a flame-retardant material. The porous layer is formed by applying, to the surface of the positive electrode plate 3, a hot melt produced by melting the flame-retardant material consisting of a thermoplastic resin.

Description

本発明は、非水電解液を備えた非水電解液電池に関するものである。   The present invention relates to a non-aqueous electrolyte battery provided with a non-aqueous electrolyte.

リチウムイオン二次電池等の非水電解液を用いた非水電解液電池は、高電圧でエネルギー密度が高く、小型化・軽量化が図れることから、パソコンや携帯電話等の情報端末等の電源を中心に広く一般に普及している。非水電解液電池で用いる非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒にLiPF6等の支持塩を溶解させた溶液が用いられている。しかしながら、非プロトン性有機溶媒は可燃性であるため、電池からの漏液時または異常発熱時に発火する等、安全性の面で課題がある。 Non-aqueous electrolyte batteries using non-aqueous electrolytes such as lithium ion secondary batteries have high voltage, high energy density, and can be reduced in size and weight, so power supplies for information terminals such as personal computers and mobile phones It is widely spread around the world. As a non-aqueous electrolyte used in a non-aqueous electrolyte battery, a solution in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound is generally used. However, since aprotic organic solvents are flammable, there are problems in terms of safety, such as ignition when liquid leaks from a battery or abnormal heat is generated.

また最近では、非水電解液電池を電力貯蔵用電源や電気自動車用電源等の大型機器の電源用途に拡大する検討が進められている。そのため電池の大型化に向けた非水電解液電池の安全性を高めることが重要な問題になっている。非水電解液電池の安全性を高める技術としては、例えば、特開2000−173619号公報(特許文献1)に、負極表面を難燃性材料であるホスファゼンモノマーで被覆して電池の発火・破裂を抑制する技術が開示されている。   Recently, studies are being made to expand non-aqueous electrolyte batteries to power supply applications for large equipment such as power storage power supplies and electric vehicle power supplies. Therefore, it is an important problem to increase the safety of the nonaqueous electrolyte battery for increasing the size of the battery. As a technique for improving the safety of a non-aqueous electrolyte battery, for example, in Japanese Patent Laid-Open No. 2000-173619 (Patent Document 1), the negative electrode surface is coated with a phosphazene monomer that is a flame-retardant material, and the ignition and burst of the battery A technique for suppressing the above is disclosed.

特開2000−173619号公報(段落[0042]、表1)JP 2000-173619 A (paragraph [0042], Table 1)

上述のように、難燃性材料で電極表面を被覆すると、非水電解液電池の内部温度の上昇による電池の発火や内部圧力の上昇による電池の膨張は抑制できる。しかしながら電極表面に形成された難燃層の存在により、電極と電解液との間のイオン伝導性が阻害され、放電特性等の電池本来の性能が低下するという問題があった。   As described above, when the electrode surface is coated with a flame retardant material, battery ignition due to an increase in the internal temperature of the non-aqueous electrolyte battery and expansion of the battery due to an increase in internal pressure can be suppressed. However, the presence of the flame retardant layer formed on the electrode surface hinders ion conductivity between the electrode and the electrolytic solution, resulting in a problem in that the original performance of the battery such as discharge characteristics is deteriorated.

本発明の目的は、電極等の表面に難燃層を形成しても、放電特性等の電池性能に影響を与えることが少ない非水電解液電池を提供することにある。   An object of the present invention is to provide a nonaqueous electrolyte battery that hardly affects battery performance such as discharge characteristics even when a flame retardant layer is formed on the surface of an electrode or the like.

本発明の他の目的は、放電特性を維持しながら、内部短絡などによる急激な放電が生じた場合でも、電池の発火や破裂を抑制することができる非水電解液電池を提供することにある。   Another object of the present invention is to provide a non-aqueous electrolyte battery capable of suppressing ignition and rupture of a battery even when a sudden discharge due to an internal short circuit occurs while maintaining discharge characteristics. .

本発明は、電池用電解液として非水電解液を備えた非水電解液電池を改良の対象とする。本発明の非水電解液電池では、正極板、負極板及びセパレータの少なくとも1つの表面に、難燃性材料を用いた多孔質層を形成する。正極板、負極板及びセパレータの少なくとも1つの表面とは、例えば、正極板のセパレータと対向する表面、負極板のセパレータと対向する表面またはセパレータの表面等を意味する。多孔質層は、難燃性材料を溶融したホットメルトを正極等の表面に塗布して形成する。本願明細書において、難燃性材料は、常温では固体だが加熱すると可塑化または流動化し、非水電解液の発火を阻止する性質を有する非水電解液に不溶の熱可塑性樹脂である。ホットメルトは、このような熱可塑性樹脂からなる難燃性材料を溶融したものである。ホットメルトを正極板等の表面に塗布する際には、ホットメルトをノズルから正極板等の表面に向かって噴射する。その結果、ホットメルトを正極板等の表面に塗布して形成した難燃化材料の塗布層は、いわゆる不織布のように厚み方向に連通する複数の細孔を有する多孔質層となり、優れたイオン透過性を示す。イオン透過性は、多孔質層の細孔内をイオンが通過できることを意味する。言い方を変えると、本願明細書において、多孔質層とは、内部に厚み方向に連通する多数の細孔が形成された不織布状の塗布層と表現することができる。   This invention makes the object of improvement the non-aqueous electrolyte battery provided with the non-aqueous electrolyte as the battery electrolyte. In the nonaqueous electrolyte battery of the present invention, a porous layer using a flame retardant material is formed on at least one surface of a positive electrode plate, a negative electrode plate, and a separator. The at least one surface of the positive electrode plate, the negative electrode plate, and the separator means, for example, a surface facing the separator of the positive electrode plate, a surface facing the separator of the negative electrode plate, or a surface of the separator. The porous layer is formed by applying a hot melt obtained by melting a flame retardant material to the surface of a positive electrode or the like. In the specification of the present application, the flame retardant material is a thermoplastic resin that is solid at normal temperature but plasticizes or fluidizes when heated and has a property of preventing ignition of the non-aqueous electrolyte solution and insoluble in the non-aqueous electrolyte solution. Hot melt is obtained by melting a flame-retardant material made of such a thermoplastic resin. When applying the hot melt to the surface of the positive electrode plate or the like, the hot melt is sprayed from the nozzle toward the surface of the positive electrode plate or the like. As a result, the coating layer of the flame retardant material formed by applying hot melt to the surface of the positive electrode plate or the like becomes a porous layer having a plurality of pores communicating in the thickness direction like a so-called nonwoven fabric, and has excellent ions Shows permeability. Ion permeability means that ions can pass through the pores of the porous layer. In other words, in the present specification, the porous layer can be expressed as a non-woven coating layer in which a large number of pores communicating with each other in the thickness direction are formed.

本発明のように、正極板等の表面に難燃性材料を溶融したホットメルトを塗布して形成した多孔質層からなる難燃層を形成すると、正極板等の表面にイオン透過性を有し且つ電解液の発火を抑制する性質(本願明細書ではこの性質を難燃性と表現する)を示す難燃層を形成することができる。このように形成された多孔質層はイオン透過性により正常な電池動作の際には、電池性能に影響を与えることがない。しかし内部短絡などにより急激な放電が生じて電池内の温度が上昇すると難燃性材料が溶融し、非水電解液の発火を抑制する機能を発揮し、電池の内部温度・内部圧力の上昇を抑制することができる。そのため、本発明によれば、電池性能を低下させることなく、電池の発火、引火または電池の膨張、破裂等の危険性を小さくすることができ、安全性の高い非水電解液電池を得ることができる。   As in the present invention, when a flame retardant layer comprising a porous layer formed by applying a hot melt obtained by melting a flame retardant material is formed on the surface of a positive electrode plate or the like, the surface of the positive electrode plate or the like has ion permeability. In addition, it is possible to form a flame retardant layer exhibiting the property of suppressing the ignition of the electrolyte (this property is expressed as flame retardant in the present specification). The porous layer formed in this way does not affect battery performance during normal battery operation due to ion permeability. However, when a sudden discharge occurs due to an internal short circuit and the temperature inside the battery rises, the flame retardant material melts and demonstrates the function of suppressing the ignition of the non-aqueous electrolyte, increasing the internal temperature and internal pressure of the battery. Can be suppressed. Therefore, according to the present invention, it is possible to reduce the risk of battery ignition, ignition or battery expansion, rupture, etc. without degrading battery performance, and to obtain a highly safe non-aqueous electrolyte battery. Can do.

ホットメルトは、接着性を示し且つ温度の低下により硬化するため、正極板等の表面に塗布された難燃性材料からなるホットメルトは、正極板等の表面に付着した状態でそのまま保持される。したがって電池の組立の際に、多孔質層の落下等が問題になることはない。また本発明で用いる多孔質層はイオン透過性を有するため、多孔質層を形成した正極板等の表面と電解液との間のイオン伝導性が低下するのを抑制することができる。そのため、本発明によれば、高電圧性能、高放電容量、大電流放電性能等の非水電解液電池に要求される放電特性を低下させることなく、安全性の高い非水電解液電池を提供することができる。   Since the hot melt exhibits adhesiveness and cures when the temperature decreases, the hot melt made of a flame retardant material applied to the surface of the positive electrode plate or the like is held as it is attached to the surface of the positive electrode plate or the like. . Therefore, when the battery is assembled, dropping of the porous layer does not cause a problem. Moreover, since the porous layer used by this invention has ion permeability, it can suppress that the ionic conductivity between the surfaces, such as the positive electrode plate in which the porous layer was formed, and electrolyte solution falls. Therefore, according to the present invention, a highly safe non-aqueous electrolyte battery is provided without deteriorating the discharge characteristics required for the non-aqueous electrolyte battery such as high voltage performance, high discharge capacity, and large current discharge performance. can do.

非水電解液電池では、高放電容量、大電流放電性能などの放電特性を維持する観点から、多孔質層の多孔度は30〜70%とするのが好ましい。多孔度(P)は、多孔質層の体積V1に占めるに細孔の体積V2を百分率で表したもの(P=V2/V1×100)として定義することができる。また多孔度(P)は、難燃性材料の比重(真比重)をd1とし、多孔質層の比重(見かけ比重)をd2とした場合に、P=〔1−d2/d1〕×100の式から演算したものを用いることもできる。   In the non-aqueous electrolyte battery, the porosity of the porous layer is preferably 30 to 70% from the viewpoint of maintaining discharge characteristics such as high discharge capacity and large current discharge performance. The porosity (P) can be defined as a percentage (P = V2 / V1 × 100) representing the volume V2 of the pores in the volume V1 of the porous layer. The porosity (P) is P = [1-d2 / d1] × 100, where d1 is the specific gravity (true specific gravity) of the flame retardant material and d2 is the specific gravity (apparent specific gravity) of the porous layer. What was computed from the formula can also be used.

本発明では、上述のようにホットメルトを塗布することにより、多孔度が30〜70%の多孔質層を正極板等の表面に形成することができる。なお、多孔度が30%未満では、イオン透過性またはイオン伝導性が低下するため放電特性が低下する。一方、多孔度が70%を超えると、多孔質層と正極板等の表面との間の接合面積が低下するために、多孔質層の接合強度が低下し、多孔質層が脱落しやすくなる。さらに多孔度が80%超では、正極板等の表面から多孔質層が簡単に脱落するため、難燃性材料の機能を発揮させることができなくなって、非水電解液電池の安全性を確保することができない。   In the present invention, a porous layer having a porosity of 30 to 70% can be formed on the surface of a positive electrode plate or the like by applying hot melt as described above. In addition, when the porosity is less than 30%, the ion permeability or ion conductivity is lowered, so that the discharge characteristics are lowered. On the other hand, when the porosity exceeds 70%, the bonding area between the porous layer and the surface of the positive electrode plate or the like decreases, so that the bonding strength of the porous layer decreases and the porous layer easily falls off. . Furthermore, if the porosity exceeds 80%, the porous layer can easily fall off from the surface of the positive electrode plate, etc., making it impossible to exert the function of the flame retardant material and ensuring the safety of the nonaqueous electrolyte battery. Can not do it.

難燃性材料を溶融してホットメルトを塗布する方法は、任意である。しかしながら、上述のような多孔度を有する多孔質層を形成するには、ホットメルトを正極板等の表面に塗布する方法として非接触塗工法を用いるのが好ましい。非接触塗工法は、ホットメルトを塗布する公知の方法であり、塗布装置のノズルを塗布対象物に接触させることなくホットメルトを塗布対象物の表面に噴射して塗布する方法である。本発明では、常温で固体の難燃性材料を90℃以上の温度で加熱溶融したホットメルトを、市販のホットメルト塗布装置(コントロールコートガン)を用いて、所定の塗工速度で、正極板等の表面上に噴射した線条状態のホットメルトが、厚み方向に不規則に重なるようにノズル及び正極板等の少なくとも一方を揺動させて塗布する。このようにすると簡単な方法で正極板等の表面に必要なイオン透過性を示す多孔度を有する不織布状の多孔質層を形成することができる。なお不織布状とは、ランダムな繊維状の三次元網目構造を有し、機械的強度に方向性がない状態を意味する。   The method of applying the hot melt by melting the flame retardant material is arbitrary. However, in order to form a porous layer having the above-described porosity, it is preferable to use a non-contact coating method as a method of applying hot melt to the surface of a positive electrode plate or the like. The non-contact coating method is a known method for applying hot melt, and is a method in which hot melt is sprayed and applied to the surface of the application object without bringing the nozzle of the application device into contact with the application object. In the present invention, a hot melt obtained by heating and melting a flame-retardant material that is solid at room temperature at a temperature of 90 ° C. or higher is applied to a positive electrode plate at a predetermined coating speed using a commercially available hot melt coating apparatus (control coat gun). The linear hot melt sprayed on the surface of the film is applied by swinging at least one of the nozzle and the positive electrode plate so that they overlap irregularly in the thickness direction. If it does in this way, the nonwoven fabric-like porous layer which has the porosity which shows the required ion permeability on the surface of a positive electrode plate etc. by a simple method can be formed. The non-woven fabric means a state having a random fibrous three-dimensional network structure and no directionality in mechanical strength.

難燃性材料をホットメルトの状態にして正極板等の表面に塗布する観点から、融点が90℃以上の難燃性材料を用いるのが好ましい。融点が90℃以上の難燃性材料は、常温では固体であるが、90℃以上では可塑化または流動化する。電解液の発火温度は90℃よりも高いものが多いため、このような難燃性材料を用いれば、電池内の温度が電解液の発火温度に近付いたときに難燃性材料が軟化し、それまでは軟化しないため、電池性能に影響を与えずに、安全性を高めることができる。なお正極板等の表面に形成する多孔質層の多孔度を確保する観点から、溶融時の粘度が1000〜3500mPa・sの難燃性材料を用いるのが好ましい。溶融時の粘度が1000mPa・s未満では、ホットメルトの粘性が低すぎて、イオン透過性を有する多孔質層を形成することができない。そのため、電極のイオン伝導性が阻害され、高率放電特性が低下する。また溶融時の粘度が3500mPa・sを超えると、ホットメルトの粘性が高すぎて、ノズルからホットメルトが不連続な状態で吐出されるようになるため、不織布状の層を形成することが難しい。そのため高率放電特性が低下する。   From the viewpoint of applying the flame retardant material in a hot melt state to the surface of the positive electrode plate or the like, it is preferable to use a flame retardant material having a melting point of 90 ° C. or higher. A flame-retardant material having a melting point of 90 ° C. or higher is solid at room temperature, but is plasticized or fluidized at 90 ° C. or higher. Since the ignition temperature of the electrolyte is often higher than 90 ° C., using such a flame retardant material, the flame retardant material softens when the temperature in the battery approaches the ignition temperature of the electrolyte, Until then, since it does not soften, safety can be improved without affecting the battery performance. From the viewpoint of ensuring the porosity of the porous layer formed on the surface of the positive electrode plate or the like, it is preferable to use a flame-retardant material having a viscosity at the time of melting of 1000 to 3500 mPa · s. If the viscosity at the time of melting is less than 1000 mPa · s, the viscosity of the hot melt is too low to form a porous layer having ion permeability. Therefore, the ionic conductivity of the electrode is hindered and the high rate discharge characteristics are deteriorated. If the viscosity at the time of melting exceeds 3500 mPa · s, the viscosity of the hot melt is too high and the hot melt is discharged from the nozzle in a discontinuous state, so it is difficult to form a non-woven fabric layer. . As a result, the high rate discharge characteristics are degraded.

見方を変えると、正極板の正極活物質に対して難燃性材料の含有量が、3.5〜7.5重量%の範囲となるように多孔質層を構成するのが好ましい。難燃性材料の含有量を正極活物質100重量%に対する難燃性材料の重量%で示したのは、電池の異常発熱時に正極で発生する酸素ラジカルを難燃性材料が捕獲(トラップ)することにより難燃性の効果が得られることを考慮して、酸素ラジカル発生の元になる正極活物質を基準に難燃性材料の使用量を定めたものである。なお、正極板の正極活物質に対して難燃性材料の含有量が3.5重量%未満の範囲では、それなりの効果はあるものの、難燃性材料の量が少ないため、難燃性材料を電池内に配置する効果を十分に発揮することができない可能性がある。また、正極活物質に対して難燃性材料の含有量が7.5重量%を超える範囲では、多孔質層の体積が増加することによってイオン伝導性が阻害されるため、電池特性が低下する。電池特性が低下しても、安全性を高める目的であれば、難燃性材料の含有量を7.5重量%を超える範囲としてもよい。しかし非水電解液電池の安全性を十分に確保して、しかも電池性能を維持するためには、正極活物質に対する難燃性材料の含有量は5.0〜7.5重量%の範囲とするのが好ましい。   In other words, the porous layer is preferably configured so that the content of the flame retardant material is in the range of 3.5 to 7.5% by weight with respect to the positive electrode active material of the positive electrode plate. The content of the flame retardant material is expressed by the weight percent of the flame retardant material with respect to 100% by weight of the positive electrode active material because the flame retardant material captures (traps) oxygen radicals generated at the positive electrode during abnormal heat generation of the battery. In consideration of the fact that a flame retardant effect can be obtained, the amount of the flame retardant material used is determined based on the positive electrode active material from which oxygen radicals are generated. In addition, in the range where the content of the flame retardant material is less than 3.5% by weight with respect to the positive electrode active material of the positive electrode plate, although there is a certain effect, the amount of the flame retardant material is small, so the flame retardant material There is a possibility that the effect of disposing the battery in the battery cannot be fully exhibited. In addition, in the range where the content of the flame retardant material exceeds 7.5% by weight with respect to the positive electrode active material, since the ion conductivity is inhibited by increasing the volume of the porous layer, the battery characteristics are deteriorated. . Even if the battery characteristics deteriorate, the content of the flame retardant material may be in a range exceeding 7.5% by weight for the purpose of improving safety. However, in order to sufficiently secure the safety of the nonaqueous electrolyte battery and maintain the battery performance, the content of the flame retardant material with respect to the positive electrode active material is in the range of 5.0 to 7.5% by weight. It is preferable to do this.

難燃性材料としては、例えば、常温では固体であるが、加熱すると溶融してホットメルトになるホスファゼン化合物を用いることができる。このようなホスファゼン化合物をホットメルトとして塗布することにより、バインダ等の他の成分が無くても、正極板等の表面に難燃層としての多孔質層をしっかりと付着させた状態で形成することができる。ホスファゼン化合物は、その構造から非水電解液内の酸素(例えば、電池の異常発熱時に正極で発生する酸素ラジカル)を捕獲(トラップ)する性質がある。この性質を利用して、ホスファゼン化合物を正極板の表面に形成することにより、電池の熱暴走反応を効率良く抑制することができる。   As the flame retardant material, for example, a phosphazene compound that is solid at room temperature but melts and becomes hot melt when heated can be used. By applying such a phosphazene compound as a hot melt, a porous layer as a flame retardant layer is firmly attached to the surface of a positive electrode plate or the like without any other components such as a binder. Can do. The phosphazene compound has a property of capturing (trapping) oxygen in the non-aqueous electrolyte (for example, oxygen radicals generated at the positive electrode when the battery is abnormally heated) due to its structure. By utilizing this property and forming the phosphazene compound on the surface of the positive electrode plate, the thermal runaway reaction of the battery can be efficiently suppressed.

このようなホスファゼン化合物としては、特に、一般式(I)で表される環状ホスファゼン化合物を用いることができる。   As such a phosphazene compound, in particular, a cyclic phosphazene compound represented by the general formula (I) can be used.

上記式中、R1〜R6は炭素数1〜10の有機基であり、R1〜R6はすべて同じ炭素数であってもそれぞれ異なる炭素数であってもよい。R1〜R6の有機基として利用可能なものとしては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基などのアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などのアルコキシ基;メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基などのアルコキシアルキル基;ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、1−ペンテニル基、3−ブテニル基、3−ペンテニル基、2−フルオロエテニル基、2,2−ジフルオロエテニル基、1,2,2−トリフルオロエテニル基、4,4−ジフルオロ−3−ブテニル基、3,3−ジフルオロ−2−プロペニル基、5,5−ジフルオロ−4−ペンテニル基等のアルケニル基;フェニル基などのアリール基;フェノキシ基等のアリールオキシ基;等が挙げられる。これらの中でも、メチル基、エチル基、1,2,2−トリフルオロエテニル基が好ましい。 In the above formula, R1 to R6 are organic groups having 1 to 10 carbon atoms, and R1 to R6 may all have the same carbon number or different carbon numbers. Examples of usable organic groups for R1 to R6 include methyl groups, ethyl groups, propyl groups, butyl groups, pentyl groups, hexyl groups, heptyl groups, octyl groups, nonyl groups, decyl groups and other alkyl groups; methoxy groups , Alkoxy groups such as ethoxy group, propoxy group, butoxy group, pentoxy group, hexyloxy group, heptyloxy group, octyloxy group; methoxymethyl group, ethoxymethyl group, propoxymethyl group, butoxymethyl group, methoxyethyl group, ethoxy Alkoxy group such as ethyl group, propoxyethyl group, methoxypropyl group, ethoxypropyl group, propoxypropyl group; vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 1-pentenyl group, 3-butenyl Group, 3-pentenyl group, 2-fluoroethenyl group, , 2-difluoroethenyl group, 1,2,2-trifluoroethenyl group, 4,4-difluoro-3-butenyl group, 3,3-difluoro-2-propenyl group, 5,5-difluoro-4-pentenyl Alkenyl groups such as groups; aryl groups such as phenyl groups; aryloxy groups such as phenoxy groups; and the like. Among these, a methyl group, an ethyl group, and a 1,2,2-trifluoroethenyl group are preferable.

なお、R1〜R3中の水素原子は、フッ素原子で置換されていてもよい。R1〜R3中の水素原子をフッ素原子で置換すると、化学的安定性を高め易くなる。   In addition, the hydrogen atom in R1-R3 may be substituted with a fluorine atom. When the hydrogen atoms in R1 to R3 are replaced with fluorine atoms, chemical stability is easily improved.

(A)は本発明の非水電解液電池として用いるリチウムイオン二次電池の内部を透視した状態で示した概略図であり、(B)は(A)のIB−IB線断面図である。(A) is the schematic shown in the state which looked through the inside of the lithium ion secondary battery used as a nonaqueous electrolyte battery of this invention, (B) is the IB-IB sectional view taken on the line of (A). 本発明の非水電解液電池において、正極板の表面に形成された多孔質層の表面を光学顕微鏡で150倍に拡大して撮影した写真である。In the non-aqueous electrolyte battery of this invention, it is the photograph which expanded and image | photographed the surface of the porous layer formed in the surface of a positive electrode plate 150 times with the optical microscope. 難燃性材料(ホスファゼン化合物)を溶融したホットメルトを正極板の表面に塗布して形成した多孔質層の多孔度と高率放電容量との関係を示す図である。It is a figure which shows the relationship between the porosity of the porous layer formed by apply | coating the hot melt which melted the flame-retardant material (phosphazene compound) on the surface of the positive electrode plate, and high-rate discharge capacity. 本発明で用いる難燃性材料(ホスファゼン化合物)の溶融時の粘度と高率放電容量との関係を示す図である。It is a figure which shows the relationship between the viscosity at the time of the fusion | melting of the flame-retardant material (phosphazene compound) used by this invention, and a high rate discharge capacity.

以下、本発明の実施の形態について詳細に説明する。図1(A)は、本発明の非水電解液電池の実施の形態であるリチウムイオン二次電池の内部を透視状態で示した概略図であり、図1(B)は、図1(A)のIB−IBの断面図である。このリチウムイオン二次電池1は、正極リード端子3aを備える正極板3と、負極リード端子5aを備える負極板5と、正極板3と負極板5との間に配置されたセパレータ7とを備える。正極板3、負極板5およびセパレータ7は、積層されて積層体9を構成する。このリチウムイオン二次電池1は、この積層体9が正極リード端子3aおよび負極リード端子5aが外部に接続可能な状態でケース11内に配置された構造になっている。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 (A) is a schematic diagram showing the inside of a lithium ion secondary battery as an embodiment of the nonaqueous electrolyte battery of the present invention in a transparent state, and FIG. IB is a cross-sectional view of IB-IB. The lithium ion secondary battery 1 includes a positive electrode plate 3 provided with a positive electrode lead terminal 3a, a negative electrode plate 5 provided with a negative electrode lead terminal 5a, and a separator 7 disposed between the positive electrode plate 3 and the negative electrode plate 5. . The positive electrode plate 3, the negative electrode plate 5, and the separator 7 are stacked to form a stacked body 9. The lithium ion secondary battery 1 has a structure in which the laminate 9 is disposed in the case 11 in a state where the positive electrode lead terminal 3a and the negative electrode lead terminal 5a can be connected to the outside.

リチウムイオン二次電池1は、以下のように作製した。まず、非水電解液を調製する。非水電解液は、エチレンカーボネート50体積%とジメチルカーボネート50体積%とからなる混合溶媒に、LiPF6を1mol/Lになるように溶解させた溶液として調製した。 The lithium ion secondary battery 1 was produced as follows. First, a nonaqueous electrolytic solution is prepared. The non-aqueous electrolyte was prepared as a solution in which LiPF 6 was dissolved at 1 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate.

次に、正極板を作製する。正極板の正極活物質には、リチウムコバルト複合酸化物(LiCoO2)を用いる。まず、このリチウムコバルト酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比90:5:5で混合し、これをN−メチルピロリドンの溶媒に分散させてスラリーを調製した。このスラリーを、正極集電体としてのアルミニウム箔に塗布して乾燥した後、プレス加工を施して、正極シートを作製した。 Next, a positive electrode plate is produced. Lithium cobalt composite oxide (LiCoO 2 ) is used as the positive electrode active material of the positive electrode plate. First, this lithium cobalt oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90: 5: 5, and this is dispersed in a solvent of N-methylpyrrolidone. A slurry was prepared. The slurry was applied to an aluminum foil as a positive electrode current collector and dried, followed by press working to produce a positive electrode sheet.

さらに、正極シートの表面に、難燃性材料を溶融したホットメルトを塗布した。難燃性材料には、上記一般式(I)において、全Rのうち2つがフェノキシ基、2つがフェニル基、2つがジメチルアミノ基である環状ホスファゼン化合物(以下ホスファゼン化合物Aという。)を用いた。この環状ホスファゼン化合物は、常温では固体であるが、加熱すると溶融してホットメルトになる。このようなホスファゼン化合物をホットメルトとして塗布することにより、バインダ等の他の成分が無くても、正極板等の表面に難燃層としての多孔質層を確実に付着させた状態で形成することができる。   Furthermore, a hot melt obtained by melting a flame retardant material was applied to the surface of the positive electrode sheet. As the flame retardant material, a cyclic phosphazene compound (hereinafter referred to as phosphazene compound A) in which two of all Rs are phenoxy groups, two are phenyl groups, and two are dimethylamino groups in the general formula (I) is used. . This cyclic phosphazene compound is solid at room temperature, but when heated, it melts into a hot melt. By applying such a phosphazene compound as a hot melt, a porous layer as a flame retardant layer can be reliably adhered to the surface of a positive electrode plate or the like without any other components such as a binder. Can do.

難燃性材料の塗布は、非接触塗工法により行った。具体的には、塗布装置としてノードソン社製のコントロールガンCC200(商標)を用い、160℃で溶融したホスファゼン化合物Aのホットメルトを、45m/minの塗工速度で、正極シートの表面上にノズルを揺動させながら噴射し、噴射した線条状態のホットメルトが、厚み方向に不規則に重なる不織布状態になるように、正極シートの表面に塗布層を形成した。図2は、正極シートの表面に形成された塗布層の表面を光学顕微鏡で150倍に拡大して撮影した写真である。この顕微鏡写真が示すように、正極シートの表面に形成された塗布層は、不織布状の多孔質層となっている。このような塗布層が形成された正極シートを10cm×20cmに切り取り、アルミニウム箔の集電タブを溶接して正極板を作製した。   The flame-retardant material was applied by a non-contact coating method. Specifically, using a control gun CC200 (trademark) manufactured by Nordson as a coating device, a hot melt of phosphazene compound A melted at 160 ° C. is applied onto the surface of the positive electrode sheet at a coating speed of 45 m / min. The coating layer was formed on the surface of the positive electrode sheet so that the sprayed hot melt in the striated state was in a non-woven fabric state that irregularly overlapped in the thickness direction. FIG. 2 is a photograph taken by enlarging the surface of the coating layer formed on the surface of the positive electrode sheet 150 times with an optical microscope. As this micrograph shows, the coating layer formed on the surface of the positive electrode sheet is a non-woven porous layer. The positive electrode sheet on which such a coating layer was formed was cut into 10 cm × 20 cm, and a current collector tab of aluminum foil was welded to produce a positive electrode plate.

次に負極板を作製する。負極活物質としては、人造黒鉛を用いる。この人造黒鉛と、結着剤であるポリフッ化ビニリデンとを質量比90:10で混合し、これをN−メチルピロリドンの溶媒に分散させてスラリーを調製した。このスラリーを、銅箔の負極集電体に塗布して乾燥した後、プレス加工を施して、負極シートを作製した。この負極シートを10cm×20cmに切り取り、切り取ったシートにニッケル箔の集電タブを溶接して負極板を作製した。   Next, a negative electrode plate is produced. Artificial graphite is used as the negative electrode active material. This artificial graphite and polyvinylidene fluoride as a binder were mixed at a mass ratio of 90:10, and this was dispersed in a solvent of N-methylpyrrolidone to prepare a slurry. The slurry was applied to a copper foil negative electrode current collector and dried, followed by pressing to prepare a negative electrode sheet. The negative electrode sheet was cut to 10 cm × 20 cm, and a nickel foil current collecting tab was welded to the cut sheet to prepare a negative electrode plate.

このように作製した正極板と負極板との間に、ポリエチレンからなるセパレータシートを挟んで、正極板、負極板およびセパレータシートを積層して電池容量が8Ahになるように積層群を作製した。熱融着フィルム(アルミラミネートフィルム)からなる一端が開口した外装材(ケース11)の中に、この積層群を挿入し、さらに調製した非水電解液を外装材中に注入した。その後、外装材中を真空にして、すばやく外装材の開口部をヒートシールすることにより、平板状ラミネート電池の構造をなす非水電解液電池(リチウムイオン二次電池1を作製した。   A positive electrode plate, a negative electrode plate, and a separator sheet made of polyethylene were sandwiched between the positive electrode plate and the negative electrode plate thus prepared, and the positive electrode plate, the negative electrode plate, and the separator sheet were stacked to prepare a laminated group so that the battery capacity was 8 Ah. The laminated group was inserted into an exterior material (case 11) made of a heat-sealing film (aluminum laminate film) and opened at one end, and the prepared non-aqueous electrolyte was poured into the exterior material. Thereafter, the exterior material was evacuated, and the opening of the exterior material was quickly heat-sealed to produce a non-aqueous electrolyte battery (lithium ion secondary battery 1) having a flat laminated battery structure.

このように作製した非水電解液電池の難燃性を、下記(1)に示す方法で評価した。具体的には、難燃性材料(ホスファゼン化合物A)の塗布量を変化させた実験例1〜7の難燃性を評価した。なお、難燃性材料(ホスファゼン化合物A)の塗布量は、正極活物質に対する重量%で示されている。難燃性の評価結果は表1に示すとおりである。   The flame retardancy of the thus produced nonaqueous electrolyte battery was evaluated by the method shown in (1) below. Specifically, the flame retardancy of Experimental Examples 1 to 7 in which the coating amount of the flame retardant material (phosphazene compound A) was changed was evaluated. In addition, the application quantity of a flame-retardant material (phosphazene compound A) is shown by weight% with respect to a positive electrode active material. The evaluation results of flame retardancy are as shown in Table 1.

(1)釘刺し安全性試験
作製したラミネート電池について、釘刺しによる安全性試験を行った。釘刺し試験の方法は、まず、25℃の環境下で、4.2〜3.0Vの電圧範囲で、0.1mA/cm2の電流密度による充放電サイクルを2回繰り返し、さらに4.2Vまで電池の充電を行った。その後、同じ25℃の温度条件下で、軸部の直径が3mmのステンレス鋼製の釘を、速度0.5cm/sで電池の側面の中心に垂直に突き刺して、電池の発火・発煙の有無および電池の破裂・膨張の有無を確認した。
(1) Nail penetration safety test The manufactured laminate battery was subjected to a safety test by nail penetration. In the nail penetration test method, a charge / discharge cycle with a current density of 0.1 mA / cm 2 was repeated twice in a voltage range of 4.2 to 3.0 V in an environment of 25 ° C., and then 4.2 V. Until the battery was charged. After that, under the same temperature condition of 25 ° C., a stainless steel nail with a shaft diameter of 3 mm was pierced perpendicularly to the center of the side of the battery at a speed of 0.5 cm / s, and the battery was ignited or smoked. In addition, it was confirmed whether the battery was ruptured or expanded.

表1に示すように、難燃性材料(ホスファゼン化合物A)を塗布しない例(実験例1)および1.0重量%塗布した例(実験例2)では電池の発煙が確認され、難燃性材料(ホスファゼン化合物A)を塗布しない例(実験例1)、1.0重量%塗布した例(実験例2)および2.5重量%塗布した例(実験例3)では電池の膨張が確認された。これらの結果から、難燃性材料(ホスファゼン化合物A)を3.5〜10.0重量%含む非水電解液電池(実験例4〜7)が、内部短絡時の熱暴走による、発火・発煙を抑えるとともに、電池の破裂・膨張を抑えることができ、非水電解液電池の安全性が高まることが分かった。すなわち、難燃性材料(ホスファゼン化合物A)の塗布量が3.5重量%未満では、電池の熱暴走を抑える効果が不十分であり、難燃性材料の塗布量(重量)は、少なくとも正極活物質の重量に対して3.5重量%以上であることが好ましいことが分かった。 As shown in Table 1, in the example in which the flame retardant material (phosphazene compound A) was not applied (Experimental Example 1) and in the example in which 1.0% by weight was applied (Experimental Example 2), the smoke of the battery was confirmed, and the flame retardancy was confirmed. In the case where the material (phosphazene compound A) was not applied (Experimental Example 1), the example where 1.0% by weight was applied (Experimental Example 2) and the example where 2.5% by weight was applied (Experimental Example 3), the expansion of the battery was confirmed. It was. From these results, non-aqueous electrolyte batteries (Experimental Examples 4 to 7) containing 3.5 to 10.0% by weight of a flame retardant material (phosphazene compound A) were ignited and smoked due to thermal runaway during an internal short circuit. It was found that the battery can be prevented from bursting and expanding, and the safety of the non-aqueous electrolyte battery is increased. That is, when the application amount of the flame retardant material (phosphazene compound A) is less than 3.5% by weight, the effect of suppressing the thermal runaway of the battery is insufficient, and the application amount (weight) of the flame retardant material is at least the positive electrode. It turned out that it is preferable that it is 3.5 weight% or more with respect to the weight of an active material.

また、作製したラミネート電池について、多孔質層の状態と放電特性との関係を調べた。放電特性は、下記(2)に示す方法により確認した。具体的には、難燃性材料(ホスファゼン化合物A)の塗布量を正極活物質の重量に対して3.5重量%として形成した多孔質層について、多孔度を変化させた場合(実験例8〜18)の高率放電容量を確認した。なお多孔度は、難燃性材料の比重(真比重)をd1とし、多孔質層の比重(見かけ比重)をd2とした場合に、P=〔1−d2/d1〕×100の式から演算した。結果は表2及び図3に示すとおりである。   In addition, the relationship between the state of the porous layer and the discharge characteristics was examined for the manufactured laminated battery. The discharge characteristics were confirmed by the method shown in (2) below. Specifically, when the porosity of the porous layer formed with the flame retardant material (phosphazene compound A) applied as 3.5% by weight with respect to the weight of the positive electrode active material was changed (Experimental Example 8) The high rate discharge capacity of -18) was confirmed. The porosity is calculated from the equation P = [1-d2 / d1] × 100, where d1 is the specific gravity (true specific gravity) of the flame retardant material and d2 is the specific gravity (apparent specific gravity) of the porous layer. did. The results are as shown in Table 2 and FIG.

(2)高率放電試験
作製した非水電解液電池(ラミネート電池)について、高率放電試験を行った。25℃にて、上記(1)の釘刺し安全性試験と同じ条件(初期充放電工程と同様の条件)で充電した後、電流24A、終止電圧3.0Vの定電流放電を行った。得られた放電容量を高率放電容量とした。
(2) High-rate discharge test A high-rate discharge test was performed on the produced nonaqueous electrolyte battery (laminated battery). After charging at 25 ° C. under the same conditions as the nail penetration safety test of (1) above (same conditions as in the initial charge / discharge process), a constant current discharge with a current of 24 A and a final voltage of 3.0 V was performed. The obtained discharge capacity was defined as a high rate discharge capacity.

表2及び図3に示すように、難燃性材料(ホスファゼン化合物A)を塗布しない例(実験例8)の高率放電容量を100%とすると、多孔度が10%〜25%(実験例9〜11)では、高率放電容量が95%未満となった。これは、イオン透過性またはイオン伝導性が低下して、放電特性が低下したことを示している。これに対して多孔度が30%〜70%(実験例12〜16)では、高率放電容量が95%超となった。なお、多孔度が80%(実験例17)では、多孔質層が脱落し易く、多孔度が90%(実験例18)では、正極板の表面から多孔質層が簡単に脱落することが確認された。これらの傾向は、多孔質層と正極板等の表面との間の接合面積が低下して、多孔質層の接合強度が低下したことによるものと考えられる。これらの結果から、正極板の表面に形成する多孔質層の多孔度は、30〜70%の範囲が好ましいことが分かった。すなわち、正極板の表面に多孔質層の多孔度が30〜70%になるように難燃性材料(ホスファゼン化合物A)を塗布することにより、ホスファゼン化合物が未塗布のものと比べて高率放電容量の低下が少なく、電池性能への影響が少ないことが分かった。 As shown in Table 2 and FIG. 3, when the high rate discharge capacity of an example (experimental example 8) in which the flame retardant material (phosphazene compound A) is not applied is 100%, the porosity is 10% to 25% (experimental example) In 9 to 11), the high rate discharge capacity was less than 95%. This indicates that the ion permeability or the ion conductivity is lowered and the discharge characteristics are lowered. On the other hand, when the porosity was 30% to 70% (Experimental Examples 12 to 16), the high rate discharge capacity was over 95%. In addition, when the porosity is 80% (Experimental Example 17), it is confirmed that the porous layer easily falls off, and when the porosity is 90% (Experimental Example 18), the porous layer easily falls off from the surface of the positive electrode plate. It was done. These tendencies are thought to be due to a decrease in the bonding area between the porous layer and the surface of the positive electrode plate or the like, resulting in a decrease in the bonding strength of the porous layer. From these results, it was found that the porosity of the porous layer formed on the surface of the positive electrode plate is preferably in the range of 30 to 70%. That is, by applying a flame retardant material (phosphazene compound A) so that the porosity of the porous layer is 30 to 70% on the surface of the positive electrode plate, the discharge rate is higher than that of the uncoated phosphazene compound. It was found that there was little decrease in capacity and little effect on battery performance.

さらに、作製したラミネート電池について、難燃性材料(ホスファゼン化合物A)の塗布量と放電特性との関係を調べた。放電特性は、上述の多孔度と放電特性との関係を調べた場合と同様に上記(2)に示す方法により確認した。具体的には、多孔質層の多孔度が50%となるように難燃性材料(ホスファゼン化合物A)の塗布量(正極活物質の重量に対する重量%)を変化させた実験例19〜25の高率放電容量を確認した。結果は表3に示すとおりである。   Furthermore, the relationship between the coating amount of the flame retardant material (phosphazene compound A) and the discharge characteristics was examined for the manufactured laminated battery. The discharge characteristics were confirmed by the method shown in (2) as in the case of examining the relationship between the porosity and the discharge characteristics. Specifically, in Examples 19 to 25 in which the coating amount of the flame retardant material (phosphazene compound A) (% by weight with respect to the weight of the positive electrode active material) was changed so that the porosity of the porous layer was 50%. A high rate discharge capacity was confirmed. The results are as shown in Table 3.

表3に示すように、難燃性材料(ホスファゼン化合物A)を塗布しない例(実験例19)の高率放電容量を100%とすると、難燃性材料(ホスファゼン化合物A)の塗布量が3.5重量%〜7.5重量%(実験例20〜22)では、高率放電容量が95%超となった。これに対して塗布量が10%〜15%(実験例23〜25)では、高率放電容量が95%未満となった。これらの結果から、正極板の表面に塗布する難燃性材料(ホスファゼン化合物A)の塗布量は、3.5〜7.5%の範囲が好ましいことが分かった。すなわち、難燃性材料(ホスファゼン化合物A)を3.5〜7.5重量%塗布することで、難燃性材料(ホスファゼン化合物A)を塗布しないものに比べて高率放電容量の低下が少なく、電池性能への影響が少なくなることが分かった。なお、難燃性材料の含有量が3.5重量%未満の範囲では、難燃性材料の量が少ないため、上述のように難燃性材料を電池内に配置する効果を十分に発揮することができない。難燃性材料(ホスファゼン化合物A)の塗布量が7.5重量%を超えると電池特性が低下するのは、多孔度が50%のままで難燃化剤層の厚み(多孔質層の体積)が増加したことによりリチウムイオンの移動(イオン伝導性)が阻害されたことによるものと考えられる。 As shown in Table 3, when the high rate discharge capacity of the example (Experimental Example 19) in which the flame retardant material (phosphazene compound A) is not applied is 100%, the coating amount of the flame retardant material (phosphazene compound A) is 3 In the case of 5 wt% to 7.5 wt% (Experimental Examples 20 to 22), the high rate discharge capacity exceeded 95%. On the other hand, when the coating amount was 10% to 15% (Experimental Examples 23 to 25), the high rate discharge capacity was less than 95%. From these results, it was found that the application amount of the flame retardant material (phosphazene compound A) applied to the surface of the positive electrode plate is preferably in the range of 3.5 to 7.5%. That is, by applying 3.5 to 7.5% by weight of the flame retardant material (phosphazene compound A), the reduction in the high-rate discharge capacity is less than that without applying the flame retardant material (phosphazene compound A). It was found that the influence on the battery performance is reduced. When the content of the flame retardant material is less than 3.5% by weight, the amount of the flame retardant material is small, so that the effect of arranging the flame retardant material in the battery as described above is sufficiently exerted. I can't. When the coating amount of the flame retardant material (phosphazene compound A) exceeds 7.5% by weight, the battery characteristics deteriorate because the thickness of the flame retardant layer (the volume of the porous layer remains unchanged) with the porosity remaining at 50%. ) Increased, the lithium ion movement (ion conductivity) was impeded.

また、作製したラミネート電池について、難燃性材料(ホスファゼン化合物A)の塗布時の粘度と放電特性との関係を調べた。放電特性は、上述の多孔度と放電特性との関係を調べた場合と同様に上記(2)に示す方法により確認した。具体的には、難燃性材料(ホスファゼン化合物A)の塗布量を正極活物質の重量に対して3.5重量%として、難燃性材料(ホスファゼン化合物A)の溶融時の粘度を変化させた実験例26〜39の高率放電容量を確認した。結果は表4および図4に示すとおりである。   Moreover, the relationship between the viscosity at the time of application | coating of a flame retardant material (phosphazene compound A) and the discharge characteristic was investigated about the produced laminated battery. The discharge characteristics were confirmed by the method shown in (2) as in the case of examining the relationship between the porosity and the discharge characteristics. Specifically, the coating amount of the flame retardant material (phosphazene compound A) is set to 3.5% by weight with respect to the weight of the positive electrode active material, and the viscosity at the time of melting of the flame retardant material (phosphazene compound A) is changed. The high rate discharge capacity of the experimental examples 26 to 39 was confirmed. The results are as shown in Table 4 and FIG.

表4および図4に示すように、難燃性材料(ホスファゼン化合物A)を塗布しない例(実験例26)の高率放電容量を100%とすると、難燃性材料(ホスファゼン化合物A)の溶融時の粘度が1000mPa・s未満(実験例27〜29)および4000〜6000mPa・s(実験例36〜38)では、高率放電容量がいずれも95%に満たなかった。また、溶融時の粘度が7000mPa・s(実験例39)では、難燃性材料(ホスファゼン化合物A)の塗布自体が困難となり、正極板の表面に多孔質層を形成することができなかった。これに対して難燃性材料(ホスファゼン化合物A)の溶融時の粘度が1000〜3500mPa・s(実験例30〜35)では、高率放電容量が95%を超えた。これらの結果から、難燃性材料(ホスファゼン化合物A)の溶融時の粘度は、1000〜3500mPa・sの範囲が好ましいことが分かった。なお、難燃性材料(ホスファゼン化合物A)の溶融時の粘度が1000mPa・s未満で高率放電特性が低下したのは、ホットメルトの粘性が低すぎて、イオン透過性を有する多孔質層を形成することができないため、電極のイオン伝導性が阻害されたことによるものと考えられる。また、溶融時の粘度が3500mPa・sを超えると高率放電特性が低下するのは、ホットメルトの粘性が高すぎて、ノズルからホットメルトが不連続な状態で吐出されるようになるため、不織布状の層を形成することが困難となり、多孔質層の多孔度を確保することができないことによるものと考えられる。 As shown in Table 4 and FIG. 4, when the high rate discharge capacity of the example (Experimental Example 26) in which the flame retardant material (phosphazene compound A) is not applied is 100%, the flame retardant material (phosphazene compound A) melts. When the hourly viscosity was less than 1000 mPa · s (Experimental Examples 27 to 29) and 4000 to 6000 mPa · s (Experimental Examples 36 to 38), the high rate discharge capacity was less than 95%. Moreover, when the viscosity at the time of melting was 7000 mPa · s (Experimental Example 39), it was difficult to apply the flame retardant material (phosphazene compound A), and a porous layer could not be formed on the surface of the positive electrode plate. On the other hand, when the viscosity of the flame-retardant material (phosphazene compound A) was 1000 to 3500 mPa · s (Experimental Examples 30 to 35), the high rate discharge capacity exceeded 95%. From these results, it was found that the viscosity of the flame-retardant material (phosphazene compound A) when melted is preferably in the range of 1000 to 3500 mPa · s. Note that the high rate discharge characteristics decreased when the flame-retardant material (phosphazene compound A) had a viscosity of less than 1000 mPa · s because the viscosity of the hot melt was too low and the porous layer having ion permeability was used. Since it cannot be formed, it is considered that the ionic conductivity of the electrode was inhibited. In addition, when the viscosity at the time of melting exceeds 3500 mPa · s, the high rate discharge characteristic is lowered because the viscosity of the hot melt is too high and the hot melt is discharged from the nozzle in a discontinuous state. It is considered that it is difficult to form a nonwoven fabric layer, and the porosity of the porous layer cannot be ensured.

以上、本発明の実施の形態および実施例について具体的に説明したが、本発明は、これらの実施の形態および実施例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。   Although the embodiments and examples of the present invention have been specifically described above, the present invention is not limited to these embodiments and examples, and modifications based on the technical idea of the present invention are possible. Of course.

本発明によれば、正極板等の表面に難燃性材料を溶融したホットメルトを塗布して形成した多孔質層からなる難燃層を形成したので、正極板等の表面にイオン透過性を有し且つ難燃性を示す難燃層を形成することができる。そのため、内部短絡などにより急激な放電が生じて電池内の温度が上昇すると難燃性材料が溶融し、非水電解液の発火を抑制する機能を発揮し、電池の内部温度・内部圧力の上昇を抑制することができる。その結果、本発明によれば、電池性能を低下させることなく、電池の発火、引火または電池の膨張、破裂等の危険性を小さくすることができ、安全性の高い非水電解液電池を得ることができる。   According to the present invention, a flame retardant layer composed of a porous layer formed by applying a hot melt obtained by melting a flame retardant material is formed on the surface of a positive electrode plate or the like. It is possible to form a flame retardant layer having flame retardancy. For this reason, when a rapid discharge occurs due to an internal short circuit and the temperature inside the battery rises, the flame retardant material melts and functions to suppress ignition of the nonaqueous electrolyte, increasing the internal temperature and internal pressure of the battery Can be suppressed. As a result, according to the present invention, it is possible to reduce the risk of battery ignition, ignition, battery expansion, rupture, etc. without degrading battery performance, and to obtain a highly safe non-aqueous electrolyte battery. be able to.

1 リチウムイオン二次電池
3 正極板
5 負極板
7 セパレータ
9 積層体
11 ケース
DESCRIPTION OF SYMBOLS 1 Lithium ion secondary battery 3 Positive electrode plate 5 Negative electrode plate 7 Separator 9 Laminate 11 Case

Claims (10)

正極板、負極板及びセパレータを備え、
前記正極板の表面に、難燃性材料を溶融したホットメルトを塗布して形成したイオン透過性を有する多孔質層が形成されていることを特徴とする非水電解液電池。
A positive plate, a negative plate and a separator;
A non-aqueous electrolyte battery characterized in that a porous layer having ion permeability formed by applying a hot melt obtained by melting a flame retardant material is formed on the surface of the positive electrode plate.
前記多孔質層は、多孔度が30〜70%であることを特徴とする請求項1に記載の非水電解液電池。   The non-aqueous electrolyte battery according to claim 1, wherein the porous layer has a porosity of 30 to 70%. 前記難燃性材料は、融点が90℃以上で、溶融時の粘度が1000〜3500mPa・sである請求項1に記載の非水電解液電池。   The non-aqueous electrolyte battery according to claim 1, wherein the flame retardant material has a melting point of 90 ° C. or higher and a melt viscosity of 1000 to 3500 mPa · s. 前記多孔質層は、前記正極板の正極活物質に対して前記難燃性材料が3.5〜7.5重量%含有されてなる請求項1、2または3に記載の非水電解液電池。   4. The nonaqueous electrolyte battery according to claim 1, wherein the porous layer contains 3.5 to 7.5 wt% of the flame retardant material with respect to the positive electrode active material of the positive electrode plate. . 前記難燃性材料が、常温では固体であるが加熱すると溶融してホットメルトになるホスファゼン化合物である請求項1、2、3または4に記載の非水電解液電池。   5. The non-aqueous electrolyte battery according to claim 1, wherein the flame retardant material is a phosphazene compound that is solid at room temperature but melts to become hot melt when heated. ホスファゼン化合物が環状ホスファゼン化合物である請求項5に記載の非水電解液電池。   The non-aqueous electrolyte battery according to claim 5, wherein the phosphazene compound is a cyclic phosphazene compound. 前記環状ホスファゼン化合物が、一般式(I)で表されるホスファゼン化合物である請求項6に記載の非水電解液電池。
(上記式中のR1〜R6は、同一又は異なる炭素数1〜10のアルキル基、アルコキシ基、アルコキシアルキル基、アルケニル基、アリール基またはアリールオキシ基である。R1〜R3中の水素原子は、フッ素原子で置換されていてもよい。)
The non-aqueous electrolyte battery according to claim 6, wherein the cyclic phosphazene compound is a phosphazene compound represented by the general formula (I).
(R1 to R6 in the above formula are the same or different alkyl groups having 1 to 10 carbon atoms, alkoxy groups, alkoxyalkyl groups, alkenyl groups, aryl groups or aryloxy groups. The hydrogen atoms in R1 to R3 are (It may be substituted with a fluorine atom.)
前記正極板の前記セパレータと対向する前記表面に、前記多孔質層が形成されている請求項1に記載の非水電解液電池。   The nonaqueous electrolyte battery according to claim 1, wherein the porous layer is formed on the surface of the positive electrode plate facing the separator. 前記表面にノズルを接触させることなく前記ホットメルトを噴射して塗布する非接触塗工法により前記多孔質層が形成されている請求項1に記載の非水電解液電池。   The non-aqueous electrolyte battery according to claim 1, wherein the porous layer is formed by a non-contact coating method in which the hot melt is sprayed and applied without bringing a nozzle into contact with the surface. 前記非接触塗工法は、前記ノズルから前記ホットメルトを線条状態で噴射して前記表面に不織布状の塗布層を形成するものである請求項9に記載の非水電解液電池。   The non-aqueous electrolyte battery according to claim 9, wherein the non-contact coating method is a method in which the hot melt is sprayed from the nozzle in a linear state to form a non-woven coating layer on the surface.
JP2015019166A 2015-02-03 2015-02-03 Nonaqueous electrolyte battery Pending JP2015084343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019166A JP2015084343A (en) 2015-02-03 2015-02-03 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019166A JP2015084343A (en) 2015-02-03 2015-02-03 Nonaqueous electrolyte battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010199037A Division JP5740118B2 (en) 2010-09-06 2010-09-06 Non-aqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2015084343A true JP2015084343A (en) 2015-04-30

Family

ID=53047830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019166A Pending JP2015084343A (en) 2015-02-03 2015-02-03 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2015084343A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019046733A (en) * 2017-09-06 2019-03-22 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2020514954A (en) * 2017-09-01 2020-05-21 エルジー・ケム・リミテッド Method for producing positive electrode active material, positive electrode active material using the same, and lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101180A1 (en) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101180A1 (en) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ Nonaqueous electrolyte cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514954A (en) * 2017-09-01 2020-05-21 エルジー・ケム・リミテッド Method for producing positive electrode active material, positive electrode active material using the same, and lithium secondary battery
JP7062150B2 (en) 2017-09-01 2022-05-06 エルジー エナジー ソリューション リミテッド Manufacturing method of positive electrode active material and positive electrode active material and lithium secondary battery using this
US11444275B2 (en) 2017-09-01 2022-09-13 Lg Energy Solution, Ltd. Method for manufacturing positive active material, and positive active material and lithium secondary battery using same
JP2019046733A (en) * 2017-09-06 2019-03-22 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP5740118B2 (en) Non-aqueous electrolyte battery
JP2012059405A5 (en)
JP6519670B2 (en) Method of manufacturing electrode / separator laminate and lithium ion secondary battery
CN105830251B (en) Diaphragm for non-water system secondary battery and non-aqueous secondary battery
US10374204B2 (en) Non-aqueous-secondary-battery separator and non-aqueous secondary battery
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
US10199623B2 (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5656521B2 (en) Non-aqueous electrolyte battery
WO2022141448A1 (en) Electrochemical device, electronic device and electrochemical device manufacturing method
KR20150002629A (en) Separator for secondary cell
JP2012195314A (en) Nonaqueous electrolyte secondary battery
KR20200108466A (en) Anode including microcapsules and lithium-ion secondary battery having the same
JP2010027218A (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2012059404A5 (en)
JP7000856B2 (en) Lithium ion secondary battery
JP2005056800A (en) Separator for electronic parts and electronic parts
JP2008210686A (en) Non-aqueous electrolyte secondary battery and its manufacturing method
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
JP2015084343A (en) Nonaqueous electrolyte battery
JP2016012478A (en) Separator and lithium ion secondary battery
JP5896374B2 (en) Non-aqueous electrolyte battery
JP2015041570A (en) Porous film composition for lithium ion secondary batteries, porous film for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing porous film for lithium ion secondary batteries
JP2013054969A5 (en)
JP6325043B2 (en) Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20150219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20160405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206