JP2015082137A - 滞留目的推定装置および滞留目的推定方法 - Google Patents

滞留目的推定装置および滞留目的推定方法 Download PDF

Info

Publication number
JP2015082137A
JP2015082137A JP2013218400A JP2013218400A JP2015082137A JP 2015082137 A JP2015082137 A JP 2015082137A JP 2013218400 A JP2013218400 A JP 2013218400A JP 2013218400 A JP2013218400 A JP 2013218400A JP 2015082137 A JP2015082137 A JP 2015082137A
Authority
JP
Japan
Prior art keywords
stay
cluster
staying
residence
position data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013218400A
Other languages
English (en)
Other versions
JP6175346B2 (ja
Inventor
勇輝 大薮
Yuki Oyabu
勇輝 大薮
高康 山口
Takayasu Yamaguchi
高康 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2013218400A priority Critical patent/JP6175346B2/ja
Publication of JP2015082137A publication Critical patent/JP2015082137A/ja
Application granted granted Critical
Publication of JP6175346B2 publication Critical patent/JP6175346B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

【課題】各滞留位置に対応するユーザの滞留目的を簡易かつ精度よく推定する。
【解決手段】滞留目的推定装置10は、ユーザの滞留位置を示す複数の滞留位置データを学習データとして機械学習を実行することにより、滞留位置データを入力して対応する滞留クラスタを示す情報を出力する学習モデルを生成する滞留クラスタ推定部12と、複数時点における滞留位置データと学習モデルによって得られる当該滞留位置データに対応する滞留クラスタを示す情報とに基づいて、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成する移動グラフデータ作成部14と、移動グラフデータに基づいて滞留クラスタごとの滞留目的を推定する滞留目的推定部16と、を備える。
【選択図】図1

Description

本発明は、滞留位置におけるユーザの滞留目的を推定する滞留目的推定装置および滞留目的推定方法に関する。
ユーザの位置情報の時系列データに基づいてユーザの滞留位置を推定し、推定された滞留位置ごとのユーザの滞留目的を推定する装置が知られている(下記特許文献1参照)。この装置では、滞留位置ごとの滞留頻度、滞留時間、およびユーザの活動量に基づいて、当該滞留位置におけるユーザの滞留目的を推定する。具体的には、滞留位置ごとに、滞留頻度および滞留時間に基づいて滞留目的が「自宅」および「仕事」のいずれであるか判定し、滞留頻度および活動量に基づいて滞留目的が「運動系レジャー」、「ショッピング」、「映画」、および「食事」のいずれであるか判定する。
特開2011−253315号公報
しかしながら、上記装置による推定方法では、一つ一つの滞留位置ごとに滞留目的を推定するため、例えば滞留位置を示すデータが大量にある場合には、処理が煩雑となるおそれがある。また、上記方法では、滞留位置間の移動(移動方向・移動回数)については考慮されておらず、ユーザの滞留目的を精度よく推定する上で、改善の余地があった。
そこで、本発明は、滞留位置に対応するユーザの滞留目的を簡易かつ精度よく推定することができる滞留目的推定装置および滞留目的推定方法を提供することを目的とする。
本発明に係る滞留目的推定装置は、ユーザの滞留位置を示す複数の滞留位置データを学習データとして機械学習を実行することにより、滞留位置データを入力して対応する滞留クラスタを示す情報を出力する学習モデルを生成する滞留クラスタ推定手段と、複数時点における滞留位置データと学習モデルによって得られる当該滞留位置データに対応する滞留クラスタを示す情報とに基づいて、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成する移動グラフデータ作成手段と、移動グラフデータに基づいて滞留クラスタごとの滞留目的を推定する滞留目的推定手段と、を備える。
このような構成の滞留目的推定装置では、複数の滞留位置データに基づいて、滞留位置データを入力して対応する滞留クラスタを示す情報を出力する学習モデルを生成する。そして、生成された学習モデルを用いることで、複数のユーザの滞留位置をまとめた各滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成し、当該移動グラフデータに基づいて滞留クラスタごとの滞留目的を推定する。このように、複数の滞留位置データを各滞留クラスタに分類し、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータに基づいて滞留クラスタ(おおまかな滞留位置)に対応するユーザの滞留目的を簡易かつ精度よく推定することができる。
また、上記滞留目的推定装置は、滞留目的推定手段により推定された滞留クラスタごとの滞留目的を、当該滞留クラスタに含まれる滞留位置データに対応付ける結合手段を更に備えてもよい。このように、推定された滞留クラスタに対応する滞留目的を当該滞留クラスタに含まれる滞留位置データに対応付けることで、滞留位置ごとにユーザの滞留目的を把握することができる。
また、滞留クラスタ推定手段は、機械学習として混合ガウスモデルによる学習を実行してもよい。例えば、滞留位置データにより示される滞留位置の座標として、ユーザが携帯する端末(携帯電話等)が接続していた複数の基地局のセルに対応するセル代表座標の加重平均を採用する場合を考える。このような場合、ユーザが同じ場所に滞留している場合でも、滞留位置データにより示される滞留位置座標にばらつきが生じ、同一座標に収束しない可能性がある。上記滞留クラスタ推定手段を備える滞留目的推定装置によれば、滞留位置データにより示される滞留位置の座標が複数の独立した滞留地点(混合ガウス分布)から発生するという仮定の下、滞留位置データを精度よく各滞留クラスタに分類することができる。
また、滞留目的推定手段は、出発地として選択された回数と到着地として選択された回数とから算出される重要度が最大となる滞留クラスタに対応する滞留目的を自宅と推定し、滞留目的が自宅と推定された滞留クラスタの次に上記重要度が最大となる滞留クラスタに対応する滞留目的を職場と推定してもよい。ここで、職場とは、勤務先だけでなく通学先を含む概念である。人の行動起点は、特異なケースを除いて自宅を中心とすると考えられる。また、人の行動パターンの大半は自宅と職場の往復であると考えられる。すなわち、自宅が移動の出発地または到着地に選択される可能性が最も高く、職場が移動の出発地または到着地に選択される可能性が自宅の次に高いという仮説が一般に成り立つと考えられる。上記滞留目的推定装置によれば、このような仮説に基づく滞留クラスタごとの滞留目的を、移動グラフデータに基づいて簡易かつ精度よく推定することができる。
上述した滞留目的推定装置に係る発明は、滞留目的推定方法に係る発明として捉えることもでき、以下のように記述することができる。
本発明に係る滞留目的推定方法は、滞留目的推定装置により実行される滞留目的推定方法であって、ユーザの滞留位置を示す複数の滞留位置データを学習データとして機械学習を実行することにより、滞留位置データを入力して対応する滞留クラスタを示す情報を出力する学習モデルを生成する滞留クラスタ推定ステップと、複数時点における滞留位置データと学習モデルによって得られる当該滞留位置データに対応する滞留クラスタを示す情報とに基づいて、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成する移動グラフデータ作成ステップと、移動グラフデータに基づいて滞留クラスタごとの滞留目的を推定する滞留目的推定ステップと、を含む。
本発明によれば、各滞留位置に対応するユーザの滞留目的を簡易かつ精度よく推定することができる。
本発明の一実施形態に係る滞留目的推定装置の機能構成を示すブロック図である。 図1に示した滞留目的推定装置のハードウェア構成を示すブロック図である。 (a)は滞留位置データの例を示す図であり、(b)は(a)に示した滞留位置データの概念図である。 滞留クラスタ推定処理について説明するために用いる図である。 滞留クラスタ推定処理について説明するために用いる図である。 移動グラフの例を示す図である。 図6に示した移動グラフデータの実装例を示す図である。 滞留クラスタ−目的対応データの例を示す図である。 滞留位置−目的対応データの例を示す図である。 滞留目的推定装置の動作を示すフロー図である。
本発明に係る滞留目的推定装置および滞留目的推定方法の一実施形態について図面を参照して説明する。
図1に示すように、本実施形態に係る滞留目的推定装置10は、外部システム20からユーザの滞留位置を示す複数の滞留位置データを入力し、各滞留位置データに対応するユーザの滞留目的を推定するための装置である。滞留目的推定装置10は、滞留位置データ記憶部11、滞留クラスタ推定部12、学習モデル記憶部13、移動グラフデータ作成部14、移動グラフデータ記憶部15、滞留目的推定部16、滞留クラスタ−目的対応データ記憶部17、結合部18、および滞留位置−目的対応データ記憶部19を備える。
図2は、滞留目的推定装置10のハードウェア構成の一例を示す。滞留目的推定装置10は、ハードウェア構成としては、一般的な情報処理装置(サーバ、据え置き型又は携帯型のさまざまなコンピュータなど)を適用可能であり、例えば図2に示すように、CPU10Aと、RAM10Bと、ROM10Cと、入力デバイスであるキーボードやマウス等の入力装置10Dと、外部装置との通信を行う通信装置10Eと、補助記憶装置10Fと、出力デバイスであるディスプレイやプリンタ等の出力装置10Gとを備える。滞留目的推定装置10の滞留位置データ記憶部11、滞留クラスタ推定部12、学習モデル記憶部13、移動グラフデータ作成部14、移動グラフデータ記憶部15、滞留目的推定部16、滞留クラスタ−目的対応データ記憶部17、結合部18、および滞留位置−目的対応データ記憶部19の各機能は、RAM10B等に所定のプログラムを読み込ませ、CPU10Aの制御により図2の各装置を動作させることで実現される。
滞留位置データ記憶部11は、外部システム20によって取得された複数の滞留位置データを入力および記憶する手段である。外部システム20による滞留位置データの取得方法は限定されないが、例えば、外部システム20は、ユーザが携帯するユーザ端末(携帯電話等)から基地局に発信される信号(位置登録信号等)を利用して滞留位置データを取得する。外部システム20は、例えば、ある時間範囲内においてユーザ端末が接続していた複数の基地局のセルに対応するセル代表座標の加重平均を、当該ユーザ端末の滞留位置として算出することができる。
図3(a)は、外部システム20により取得され、滞留位置データ記憶部11に蓄積された4つの滞留位置データの例を示す図である。図3(b)は、図3(a)に示す4つの滞留位置データの概念図である。図3(a)に示すように、滞留位置データは、端末識別子、滞留位置座標(緯度、経度)、到着時刻、出発時刻、および滞留時間を互いに関連付けたデータである。例えば、図3(a)の一つ目の滞留位置データは、端末識別子「UE1」で特定されるユーザ端末が、「10:00」から「12:00」までの2時間、座標(x1,y1)で示される滞留位置に滞在していたことを示している。
図3(a)に示す4つの滞留位置データは、端末識別子「UE1」で特定されるユーザ端末を携帯するユーザが「10:00」から「12:00」までは座標(x1,y1)の位置に滞留し、「13:00」から「15:00」までは座標(x2,y2)の位置に滞留し、「16:00」から「18:00」までは座標(x3,y3)の位置に滞留し、「19:00」から「21:00」までは座標(x4,y4)の位置に滞留していたことを示している(図3(b)参照)。
ただし、図3(a)に示した滞留位置データのフォーマットは一例であり、滞留目的推定装置10によって滞留位置に対応する滞留目的を推定するためには、滞留位置データは、端末識別子および滞留位置を示す情報の他に、各滞留位置データ間の時間順序を示す情報(例えば到着時刻または出発時刻)を含んでいれば十分である。すなわち、滞留位置データは、到着時刻、出発時刻、および滞留時間の情報をすべて含んでいなくともよい。
なお、ユーザごとに行動パターンは異なるため、滞留クラスタ推定部12、移動グラフデータ作成部14、滞留目的推定部16、および結合部18の処理は、ユーザ端末ごとに実行される。以降の説明では、特に断らない限り、端末識別子「UE1」のユーザ端末に関する処理について説明する。また、「ユーザ端末」と言った場合には、端末識別子「UE1」のユーザ端末を意味するものとし、「ユーザ」と言った場合には、端末識別子「UE1」のユーザ端末を携帯するユーザを意味するものとする。
滞留クラスタ推定部12は、滞留位置座標(滞留位置データ)を入力して対応する滞留クラスタを示す滞留クラスタ番号情報を出力する予測関数(学習モデル)を生成する滞留クラスタ推定手段である。具体的には、滞留クラスタ推定部12は、滞留位置データ記憶部11に記憶された複数の滞留位置データを学習データとして機械学習を実行することにより、上記予測関数を生成する。滞留クラスタ推定部12は、機械学習として、例えばK−Means法やGMM(Gaussian mixture model:混合ガウスモデル)等のクラスタリング(教師なし分類)の手法を用いることができる。本実施形態では、GMMを用いた滞留クラスタ推定処理について説明する。
まず、滞留クラスタ推定部12は、ユーザ端末の複数の滞留位置に関する滞留位置座標「(x,y)(j=1,2,…,n)」を学習データとして入力する。続いて、滞留クラスタ推定部12は、学習データとして入力された各滞留位置座標は複数の独立した滞留地点(混合ガウス分布)から発生するという仮定に基づいて、学習データを最もよく表現可能な混合ガウス分布のパラメータを推定する。具体的には、滞留クラスタ推定部12は、学習データを説明するガウス分布の混合数および制約条件を混合ガウス分布のパラメータとして決定する。
まず、ガウス分布の混合数を決定する方法の一例について説明する。滞留クラスタ推定部12は、例えば以下の方法によりガウス分布の混合数を決定することができる。すなわち、滞留クラスタ推定部12は、混合数を1,2,…,nと増やしていき、各混合数で学習データにGMMを適用する。このとき、学習データへの当てはまりの良さを示す尺度であるBIC(Bayesian Information Criterion:ベイズ情報量基準)およびAIC(Akaike's Information Criterion:赤池情報量基準)等を記憶しておき、これらの尺度が最も良い値を示した混合数を適切な混合数として決定する。
次に、ガウス分布の制約条件を決定する方法の一例について説明する。ガウス分布の制約条件を決定することは、ある位置に存在するユーザ端末から得られた滞留位置座標が真の位置に対してどのようなバイアスまたはノイズを持つかについての仮説を反映させることに相当する。このような制約条件としては、例えばガウス分布の形状やガウス分布の裾の長さ等が考えられる。例えば、滞留クラスタ推定部12は、学習データとして得られた滞留位置座標が真の滞留地点を中心として全方位にばらついていると判定できた場合には、ガウス分布の形状を円に限定することができる。
続いて、滞留クラスタ推定部12は、推定したパラメータを用いて予測関数を生成する。予測関数は、ユーザ端末の任意の滞留位置座標(x,y)を入力し、その座標を発生する確率が最大となるガウス分布(滞留クラスタ)を出力する学習モデルである。
図4および図5を用いて、滞留クラスタ推定部12によるGMMを用いた滞留クラスタ推定処理の概要について説明する。図4は、滞留クラスタ推定処理の説明のため、ユーザ端末の複数の滞留位置データのうちから代表的な滞留位置データをいくつかピックアップし、各滞留位置データが示す滞留位置座標Pを、緯度経度を示す座標平面上にプロットした図である。プロットされた滞留位置座標P同士を結ぶ破線は、滞留位置間での移動があったことを示している。図4の例では、滞留位置座標Pは、大きく3つのグループ(滞留クラスタC1,C2,C3)に分類される。
次に、図5を用いて、図4に示した例において滞留クラスタ推定部12が予測関数を生成する処理について説明する。まず、滞留クラスタ推定部12は、学習データとして入力した複数の滞留位置座標Pに基づいて、混合ガウス分布のパラメータ(混合数、制約条件)を決定する。図5に示した例では、滞留クラスタ推定部12は、混合数(N)を「3」と推定し、ガウス分布の形状を「正円形状」と推定している。なお、図5においては、横軸(緯度)及び縦軸(経度)の比率が異なっているため、ガウス分布の形状は、楕円形状に図示されている。ただし、ガウス分布の形状は、「正円形状」に限定されるものではなく、「正円形状」以外の形状(例えば「楕円形状」)と推定されてもよい。そして、このように推定されたパラメータに基づいて、滞留クラスタ推定部12は、それぞれ正円形状である3つの滞留クラスタC1,C2,C3に対応するガウス分布を決定する。ここで、図5における破線、一点鎖線、および二点鎖線は、各ガウス分布の等高線を示している。滞留クラスタ推定部12は、決定した各ガウス分布に基づいて、任意の位置座標を入力とし、当該位置座標を発生する確率が最大となるガウス分布に対応する滞留クラスタを出力する予測関数を生成する。具体的には、予測関数は、滞留クラスタを識別する滞留クラスタ番号(滞留クラスタを識別する情報)を出力する。以下、滞留クラスタC1,C2,C3に対応する滞留クラスタ番号は、それぞれ「C1」,「C2」,「C3」で示されるものとする。
滞留クラスタ推定部12により生成された予測関数は、学習モデル記憶部13に記憶される。なお、上述したように、滞留クラスタ推定部12の処理はユーザ端末ごとに行われるため、学習モデル記憶部13には、ユーザ端末ごとに個別の予測関数が記憶される。すなわち、学習モデル記憶部13には、端末識別子と、当該端末識別子で特定されるユーザ端末の滞留位置座標に基づいて生成された予測関数とのペアが記憶される。
移動グラフデータ作成部14は、ユーザ端末の複数時点における滞留位置データと、当該ユーザ端末の端末識別子に対応付けられた予測関数とに基づいて、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成する移動グラフデータ作成手段である。
まず、移動グラフデータ作成部14は、滞留位置データ記憶部11に記憶されたユーザ端末の複数時点における滞留位置データを抽出し、例えば滞留位置データに含まれる到着時刻を基準として、これらの滞留位置データを時系列に並べ替える。このように並べ替えられた後のn個の滞留位置データに対応する滞留位置座標を「(x,y)(j=1,…,n)」とする。一方、移動グラフデータ作成部14は、端末識別子「UE1」に対応付けられた予測関数f(x,y)を学習モデル記憶部13から取得する。移動グラフデータ作成部14は、このようにして取得した各滞留位置座標(x,y)を、予測関数f(x,y)に入力し、対応する滞留クラスタの滞留クラスタ番号g(=f(x,y))の列Gを取得する。ここで、gは、「C1」、「C2」、および「C3」のいずれかである。これにより、例えば下記式(1)に示すような滞留クラスタ番号の列Gが得られる。
式(1):G=[C1,C2,C1,C3,C1,…]
移動グラフデータ作成部14は、このようにして得られた滞留クラスタ番号の列Gに基づいて移動グラフデータを作成する。具体的には、移動グラフデータ作成部14は、滞留クラスタ番号の列Gの互いに連続するj番目の要素および(j+1)番目の要素を先頭から順に参照する。そして、j番目の要素に対応する滞留クラスタ番号を移動元の滞留クラスタ番号とし、(j+1)番目の要素に対応する滞留クラスタ番号を移動先の滞留クラスタ番号とし、この番号ペアに対する移動回数を1加算する。移動グラフデータ作成部14は、この処理を滞留クラスタ番号の列Gの最後の要素まで繰り返すことで、移動グラフデータを作成する。
図6に示すように、移動グラフデータは、概念的には、滞留クラスタC1〜C3をノードとし、各滞留クラスタ間の移動を有向リンクとした有向グラフで表される。ここで、リンクの向きは移動方向を示し、リンクの重みは移動回数を示す。移動グラフデータの計算機上での実装形式は、特に限定されないが、移動グラフデータは、例えば図7に示すような行列形式のデータとして実装される。図7において、縦軸R1は、移動元の滞留クラスタ番号を示し、横軸R2は、移動先の滞留クラスタ番号を示す。セル領域R3の各セル内の数値は、ユーザ端末が当該セルの行に対応する滞留クラスタ番号が示す滞留クラスタから当該セルの列に対応する滞留クラスタ番号が示す滞留クラスタに移動した回数を示す。
移動グラフデータ作成部14により生成された移動グラフデータは、移動グラフデータ記憶部15に記憶される。なお、上述したように、移動グラフデータ作成部14による移動グラフデータ作成処理はユーザ端末ごとに行われるため、移動グラフデータ記憶部15には、ユーザ端末ごとの移動グラフデータが記憶される。すなわち、移動グラフデータ記憶部15には、端末識別子と、当該端末識別子で特定されるユーザ端末の移動グラフデータとのペアが記憶される。
滞留目的推定部16は、移動グラフデータに基づいて滞留クラスタごとの滞留目的を推定する滞留目的推定手段である。例えば、滞留目的推定部16は、人の移動パターンに関する仮説に基づいて滞留クラスタごとの滞留目的を推定する。人の移動パターンに関する仮説は、以下の通りである。人の行動起点は、特異なケースを除いて自宅を中心とすると考えられる。また、人の行動パターンの大半は自宅と職場の往復であると考えられる。すなわち、自宅が移動の出発地または到着地に選択される可能性が最も高く、職場が移動の出発地または到着地に選択される可能性が自宅の次に高いという仮説が一般に成り立つと考えられる。ここで、「職場」とは、勤務先だけでなく通学先を含む概念である。
滞留目的推定部16は、上述の人の移動パターンに関する仮説に基づいて、移動グラフの中で最も参照されやすいノード(滞留クラスタ)を自宅、その次に参照されやすいノードを職場と判定する。このような判定方法はいくつか考えられるが、滞留目的推定部16は、例えば、出発地として選択された回数と到着地として選択された回数から算出される重要度が最大となる滞留クラスタに対応する滞留目的を自宅と推定する。また、上記重要度が2番目に大きい滞留クラスタに対応する滞留目的を職場と推定する。ここで、重要度としては、例えば、出発地として選択された回数と到着地として選択された回数との和を用いることができる。これにより、人の移動パターンの仮説に基づく滞留クラスタごとの滞留目的を、移動グラフデータに基づいて簡易かつ精度よく推定することができる。
図6および図7に示した移動グラフおよび移動グラフデータを例として、滞留目的推定部16による滞留目的推定処理の一例について説明する。滞留目的推定部16は、図7に示した移動グラフデータに基づいて、各滞留クラスタについて、出発地として選択された回数と到着地として選択された回数との和(重要度)を算出する。滞留クラスタC1,C2,C3が出発地として選択された回数は、それぞれ10回,12回,2回である。また、滞留クラスタC1,C2,C3が到着地として選択された回数は、それぞれ10回,12回,2回である。このため、滞留クラスタC1の上記和は20回と算出され、滞留クラスタC2の上記和は24回と算出され、滞留クラスタC3の上記和は4回と算出される。
したがって、この場合には、滞留目的推定部16は、上記和が最大となる滞留クラスタC2に対応する滞留目的を「自宅」と推定する。また、上記和が2番目に大きい滞留クラスタC1に対応する滞留目的を「職場」と推定する。また、自宅および職場のいずれとも推定されない滞留クラスタを「その他」と推定する。
図8に示すように、滞留目的推定部16は、上述の滞留目的推定処理を実行した後に、端末識別子、滞留クラスタ番号、および滞留目的を互いに関連付けた滞留クラスタ−目的対応データを出力する。滞留目的推定部16により出力された滞留クラスタ−目的対応データは、滞留クラスタ−目的対応データ記憶部17に記憶される。
滞留目的推定部16は、上述した方法以外に、Google(登録商標)の検索エンジン等に利用されているページランク(PageRank)アルゴリズムを用いて、各滞留クラスタに対応する滞留目的を推定してもよい(Amy N. Langville, Carl D. MeyerA S, 2005, A Survey of EigenvectorMethods for Web Information Retrieval, SIAM Review, Volume 47 Issue 1, p.135-161参照)。ここで、ページランクアルゴリズムは、有向グラフ上のノードからの外向きリンクと、ノードへの内向きリンクと、各リンクの重みとを基準として、各ノードの重要度を順位付けする方法である。すなわち、滞留目的推定部16は、ページランクアルゴリズムを移動グラフデータに適用することによって、移動グラフ上の滞留クラスタからの外向きリンク(当該滞留クラスタから他の滞留クラスタへの移動)と、内向きリンク(他の滞留クラスタから当該滞留クラスタへの移動)と、各リンクの重み(移動回数)とを基準として、各ノードの重要度を順位付けすることができる。
具体的には、滞留目的推定部16は、上述のページランクアルゴリズムを移動グラフデータに適用し、重要度が最大となる滞留クラスタに対応する滞留目的を「自宅」と推定し、2番目に重要度が大きい滞留クラスタに対応する滞留目的を「職場」と推定し、それ以外の滞留クラスタに対応する滞留目的を「その他」と推定することができる。また、ページランクアルゴリズムに類するものとして、有向グラフにおけるリンクの接続数に応じて各ノード(滞留クラスタ)の重要度を順位付けするHITS(Hyperlink-Induced Topic Search)アルゴリズムが知られている。滞留目的推定部16は、このHITSアルゴリズムを移動グラフデータに適用し、重要度が最大となる滞留クラスタに対応する滞留目的を「自宅」と推定し、2番目に重要度が大きい滞留クラスタに対応する滞留目的を「職場」と推定し、それ以外の滞留クラスタに対応する滞留目的を「その他」と推定してもよい。
滞留目的推定部16は、上述のページランクアルゴリズムおよびHITSアルゴリズム等を移動グラフデータに適用することで、仮に出発地として選択された回数と到着地として選択された回数との和が同じ滞留クラスタが複数ある場合でも、各滞留クラスタ間のリンク関係(移動回数および移動方向)に応じて適切な順位付けを各滞留クラスタに対して実行することができる。これにより、各滞留クラスタに対応する滞留目的を精度よく推定することが期待できる。
結合部18は、滞留位置データおよび予測関数に基づいて、滞留目的推定部16により推定された滞留クラスタごとの滞留目的を、当該滞留クラスタに含まれる滞留位置データに対応付ける結合手段である。以下、結合部18による結合処理について具体的に説明する。
まず、結合部18は、同一の端末識別子「UE1」に対応付けられた滞留位置データ、予測関数、および滞留クラスタ−目的対応データを、それぞれ滞留位置データ記憶部11、学習モデル記憶部13、および滞留クラスタ−目的対応データ記憶部17から入力する。続いて、結合部18は、滞留位置データに含まれる滞留位置座標を予測関数に入力し、当該予測関数が出力する滞留クラスタ番号を取得する。続いて、結合部18は、滞留クラスタ−目的対応データを参照することで、取得した滞留クラスタ番号に対応する滞留目的を取得する。続いて、結合部18は、取得した滞留目的を滞留位置データに付与する。これにより、結合部18は、滞留位置データに対応する滞留目的を示す情報が対応付けられた滞留位置−目的対応データを出力する。図9は、このような結合処理によって図3に示した滞留位置データに滞留目的が付与された滞留位置−目的対応データを示している。
結合部18によって出力された滞留位置−目的対応データは、滞留位置−目的対応データ記憶部19に記憶される。滞留位置−目的対応データ記憶部19に蓄積された滞留位置−目的対応データは、ユーザの移動パターンの分析等、様々な調査および分析等に活用される。
次に、図10を用いて、本実施形態に係る滞留目的推定方法を含む滞留目的推定装置10の動作を説明する。なお、以下の処理は、ユーザ端末ごとに実行される。
まず、滞留クラスタ推定部12によって、滞留クラスタ推定処理が実行される(ステップS1、滞留クラスタ推定ステップ)。具体的には、滞留位置データ記憶部11に記憶されたユーザ端末の複数の滞留位置データを学習データとして、GMM等のクラスタリング(教師なし分類)が実行される。これにより、滞留位置座標(滞留位置データ)を入力して対応する滞留クラスタ番号を出力する予測関数(学習モデル)が生成され、学習モデル記憶部13に出力および記憶される。
続いて、移動グラフデータ作成部14によって、移動グラフデータ作成処理が実行される(ステップS2、移動グラフデータ作成ステップ)。具体的には、ユーザ端末の複数時点における滞留位置データと、当該ユーザ端末に対応する予測関数とに基づいて、対応する滞留クラスタ番号の列が取得される。続いて、当該滞留クラスタ番号の列に基づいて、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータが作成される。作成された移動グラフデータは、移動グラフデータ記憶部15に出力および記憶される。
続いて、滞留目的推定部16によって、滞留目的推定処理が実行される(ステップS3、滞留目的推定ステップ)。具体的には、人の移動パターンに関する仮説に基づいて、移動グラフデータから滞留クラスタごとの滞留目的が推定される。推定された滞留目的は、端末識別子および滞留クラスタ番号に対応付けられて、滞留クラスタ−目的対応データとして滞留クラスタ−目的対応データ記憶部17に出力および記憶される。
最後に、結合部18によって、結合処理が実行される(ステップS4)。具体的には、ユーザ端末の滞留位置データに含まれる滞留位置座標が、当該ユーザ端末の端末識別子に対応付けられた予測関数に入力され、滞留クラスタ番号が取得される。続いて、取得された滞留クラスタ番号に対応する滞留目的が、滞留クラスタ−目的対応データを参照することで取得される。取得された滞留目的は、滞留位置データに付与され、滞留位置−目的対応データとして滞留位置−目的対応データ記憶部19に出力される。
以上述べた滞留目的推定装置10では、滞留クラスタ推定部12が、ユーザ端末の複数の滞留位置データに基づいて、滞留位置データを入力して対応する滞留クラスタ番号を出力する予測関数を生成する。続いて、移動グラフデータ作成部14が、生成された予測関数を用いることで、滞留クラスタC1〜C3間の移動方向および移動回数を示す移動グラフデータを作成する。続いて、滞留目的推定部16が、当該移動グラフデータに基づいて滞留クラスタC1〜C3ごとの滞留目的を推定する。このように、滞留目的推定装置10によれば、複数の滞留位置データを各滞留クラスタに分類し、滞留クラスタ間の移動方向および移動回数を示す移動グラフデータに基づいて滞留クラスタに対応するユーザの滞留目的を簡易かつ精度よく推定することができる。すなわち、おおまかな滞留位置(例えば滞留クラスタの中心位置)に対応するユーザの滞留目的を簡易かつ精度よく推定することができる。
また、結合部18が、滞留目的推定部16によって推定された滞留クラスタに対応する滞留目的を、当該滞留クラスタに含まれる滞留位置データに対応付けることで、滞留位置ごとにユーザの滞留目的を把握することができる。
また、滞留クラスタ推定部12がGMM(混合ガウスモデル)によるクラスタリング(教師なし分類)を実行することにより、滞留位置データにより示される滞留位置の座標が複数の独立した滞留地点(混合ガウス分布)から発生するという仮定の下、滞留位置データを精度よく各滞留クラスタに分類することができる。
10…滞留目的推定装置、10A…CPU、10B…RAM、10C…ROM、10D…入力装置、10E…通信装置、10F…補助記憶装置、10G…出力装置、11…滞留位置データ記憶部、12…滞留クラスタ推定部、13…学習モデル記憶部、14…移動グラフデータ作成部、15…移動グラフデータ記憶部、16…滞留目的推定部、17…滞留クラスタ−目的対応データ記憶部、18…結合部、19…滞留位置−目的対応データ記憶部、20…外部システム、C1,C2,C3…滞留クラスタ。

Claims (5)

  1. ユーザの滞留位置を示す複数の滞留位置データを学習データとして機械学習を実行することにより、前記滞留位置データを入力して対応する滞留クラスタを示す情報を出力する学習モデルを生成する滞留クラスタ推定手段と、
    複数時点における前記滞留位置データと前記学習モデルによって得られる当該滞留位置データに対応する滞留クラスタを示す情報とに基づいて、前記滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成する移動グラフデータ作成手段と、
    前記移動グラフデータに基づいて前記滞留クラスタごとの滞留目的を推定する滞留目的推定手段と、
    を備える滞留目的推定装置。
  2. 前記滞留位置データおよび前記学習モデルに基づいて、前記滞留目的推定手段により推定された前記滞留クラスタごとの滞留目的を、当該滞留クラスタに含まれる滞留位置データに対応付ける結合手段を更に備える、請求項1に記載の滞留目的推定装置。
  3. 前記滞留クラスタ推定手段は、前記機械学習として混合ガウスモデルによる学習を実行する、請求項1または2に記載の滞留目的推定装置。
  4. 前記滞留目的推定手段は、出発地として選択された回数と到着地として選択された回数とから算出される重要度が最大となる滞留クラスタに対応する滞留目的を自宅と推定し、前記重要度が2番目に大きい滞留クラスタに対応する滞留目的を職場と推定する、請求項1〜3のいずれか一項に記載の滞留目的推定装置。
  5. 滞留目的推定装置により実行される滞留目的推定方法であって、
    ユーザの滞留位置を示す複数の滞留位置データを学習データとして機械学習を実行することにより、前記滞留位置データを入力して対応する滞留クラスタを示す情報を出力する学習モデルを生成する滞留クラスタ推定ステップと、
    複数時点における前記滞留位置データと前記学習モデルによって得られる当該滞留位置データに対応する滞留クラスタを示す情報とに基づいて、前記滞留クラスタ間の移動方向および移動回数を示す移動グラフデータを作成する移動グラフデータ作成ステップと、
    前記移動グラフデータに基づいて前記滞留クラスタごとの滞留目的を推定する滞留目的推定ステップと、
    を含む滞留目的推定方法。
JP2013218400A 2013-10-21 2013-10-21 滞留目的推定装置および滞留目的推定方法 Active JP6175346B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013218400A JP6175346B2 (ja) 2013-10-21 2013-10-21 滞留目的推定装置および滞留目的推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013218400A JP6175346B2 (ja) 2013-10-21 2013-10-21 滞留目的推定装置および滞留目的推定方法

Publications (2)

Publication Number Publication Date
JP2015082137A true JP2015082137A (ja) 2015-04-27
JP6175346B2 JP6175346B2 (ja) 2017-08-02

Family

ID=53012722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013218400A Active JP6175346B2 (ja) 2013-10-21 2013-10-21 滞留目的推定装置および滞留目的推定方法

Country Status (1)

Country Link
JP (1) JP6175346B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018077608A (ja) * 2016-11-08 2018-05-17 株式会社Nttドコモ 拠点推定装置
KR20180101472A (ko) * 2016-06-12 2018-09-12 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 사용자가 위치되는 지리적 위치의 유형을 식별하기 위한 방법 및 디바이스
JP2019053434A (ja) * 2017-09-13 2019-04-04 ヤフー株式会社 推定装置、推定方法および推定プログラム
JP2019215883A (ja) * 2019-07-19 2019-12-19 Zホールディングス株式会社 推定装置、推定方法および推定プログラム
KR20220149810A (ko) * 2021-04-23 2022-11-08 (주)에프에이솔루션 사용자의 거점 정보를 추출하는 방법
WO2022255811A1 (ko) * 2021-06-02 2022-12-08 에스케이텔레콤 주식회사 체류 목적 추정장치 및 체류 목적 추정방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318503A (ja) * 2003-04-16 2004-11-11 Toshiba Corp 行動管理支援装置、行動管理支援方法、および行動管理支援プログラム
JP2011170811A (ja) * 2010-02-22 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 滞在場所推定装置、方法及びプログラム
JP2011171876A (ja) * 2010-02-17 2011-09-01 Kddi Corp ユーザの移動に伴って住所/居所を推定する携帯端末、サーバ、プログラム及び方法
JP2012085095A (ja) * 2010-10-12 2012-04-26 Kddi Corp 携帯端末を所持したユーザの有意圏を推定する装置、プログラム及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004318503A (ja) * 2003-04-16 2004-11-11 Toshiba Corp 行動管理支援装置、行動管理支援方法、および行動管理支援プログラム
JP2011171876A (ja) * 2010-02-17 2011-09-01 Kddi Corp ユーザの移動に伴って住所/居所を推定する携帯端末、サーバ、プログラム及び方法
JP2011170811A (ja) * 2010-02-22 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> 滞在場所推定装置、方法及びプログラム
JP2012085095A (ja) * 2010-10-12 2012-04-26 Kddi Corp 携帯端末を所持したユーザの有意圏を推定する装置、プログラム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黒川 茂莉: "携帯電話通信時に得られる疎な位置情報履歴を用いた有意位置検出", 電子情報通信学会論文誌 (J95−D)第4号, JPN6017015339, 1 April 2012 (2012-04-01), pages 722 - 733, ISSN: 0003547569 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101472A (ko) * 2016-06-12 2018-09-12 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 사용자가 위치되는 지리적 위치의 유형을 식별하기 위한 방법 및 디바이스
JP2019512764A (ja) * 2016-06-12 2019-05-16 ▲騰▼▲訊▼科技(深▲セン▼)有限公司 ユーザ地理的ロケーションのタイプを識別するための方法および装置
KR102121361B1 (ko) 2016-06-12 2020-06-10 텐센트 테크놀로지(센젠) 컴퍼니 리미티드 사용자가 위치되는 지리적 위치의 유형을 식별하기 위한 방법 및 디바이스
US11252534B2 (en) 2016-06-12 2022-02-15 Tencent Technology (Shenzhen) Company Limited Method and apparatus for identifying types of user geographical locations
JP2018077608A (ja) * 2016-11-08 2018-05-17 株式会社Nttドコモ 拠点推定装置
JP2019053434A (ja) * 2017-09-13 2019-04-04 ヤフー株式会社 推定装置、推定方法および推定プログラム
JP2019215883A (ja) * 2019-07-19 2019-12-19 Zホールディングス株式会社 推定装置、推定方法および推定プログラム
JP7030748B2 (ja) 2019-07-19 2022-03-07 ヤフー株式会社 推定装置、推定方法および推定プログラム
KR20220149810A (ko) * 2021-04-23 2022-11-08 (주)에프에이솔루션 사용자의 거점 정보를 추출하는 방법
KR102530675B1 (ko) * 2021-04-23 2023-05-09 (주)에프에이솔루션 사용자의 거점 정보를 추출하는 방법
WO2022255811A1 (ko) * 2021-06-02 2022-12-08 에스케이텔레콤 주식회사 체류 목적 추정장치 및 체류 목적 추정방법

Also Published As

Publication number Publication date
JP6175346B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6175346B2 (ja) 滞留目的推定装置および滞留目的推定方法
Nessa et al. A survey of machine learning for indoor positioning
Wang et al. Friendbook: a semantic-based friend recommendation system for social networks
Wang et al. Improved multi-order distributed HOSVD with its incremental computing for smart city services
RU2597524C2 (ru) Способ и аппаратура для классификации множества состояний устройства
US10380127B2 (en) Candidate search result generation
US20190130023A1 (en) Expanding search queries
US11334564B2 (en) Expanding search queries
Asl et al. How often social objects meet each other? Analysis of the properties of a social network of IoT devices based on real data
Bagci et al. Random walk based context-aware activity recommendation for location based social networks
JP6924571B2 (ja) 情報処理装置、情報処理方法、および情報処理プログラム
Want An introduction to ubiquitous computing
US20180011887A1 (en) Multiple database updates using paths
JP6478327B2 (ja) センサを搭載しない携帯端末におけるユーザ状態を推定するサーバ及びプログラム
Yazıcı et al. Integration of classification algorithms for indoor positioning system
JP5716739B2 (ja) 情報処理装置、情報処理システム及び情報処理方法
CN104615620A (zh) 地图搜索类型识别方法及装置、地图搜索方法及系统
Meng et al. Towards the inference of travel purpose with heterogeneous urban data
Shen A pervasive framework for real-time activity patterns of mobile users
Mashita et al. A content search system for mobile devices based on user context recognition
US10997245B2 (en) Dynamic graph extraction based on distributed hub and spoke big data analytics
Kim et al. Ontology based location reasoning method using smart phone data
Ruan et al. Exploring location-related data on smart phones for activity inference
JP5736910B2 (ja) メタ情報生成装置及びプログラム
Zhu et al. A bayesian-based approach for activity and mobility inference in location-based social networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250