JP2015079678A5 - Conductive carbon - Google Patents

Conductive carbon Download PDF

Info

Publication number
JP2015079678A5
JP2015079678A5 JP2013216784A JP2013216784A JP2015079678A5 JP 2015079678 A5 JP2015079678 A5 JP 2015079678A5 JP 2013216784 A JP2013216784 A JP 2013216784A JP 2013216784 A JP2013216784 A JP 2013216784A JP 2015079678 A5 JP2015079678 A5 JP 2015079678A5
Authority
JP
Japan
Prior art keywords
conductive carbon
leq
solid phase
phase component
hydrophilic solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013216784A
Other languages
Japanese (ja)
Other versions
JP2015079678A (en
JP6170804B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2013216784A priority Critical patent/JP6170804B2/en
Priority claimed from JP2013216784A external-priority patent/JP6170804B2/en
Publication of JP2015079678A publication Critical patent/JP2015079678A/en
Publication of JP2015079678A5 publication Critical patent/JP2015079678A5/en
Application granted granted Critical
Publication of JP6170804B2 publication Critical patent/JP6170804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

したがって、本発明はまず、リチウムイオン二次電池の電極のための導電性カーボンであって、親水性固相成分を含み、該親水性固相成分の、ラマンスペクトルから算出された、グラフェン面方向のねじれを含まない結晶子サイズLaと、グラフェン面方向のねじれを含む結晶子サイズLeqとが、1.3nm≦La≦1.5nm、且つ、1.5nm≦Leq≦2.3nm、且つ、1.0≦Leq/La≦1.55の関係を満たし、上記親水性固相成分のラマンスペクトルにおける、1510cm−1付近のアモルファス成分バンドのピーク面積の、980〜1780cm−1の範囲のピーク面積に対する割合が、13〜19%、好ましくは14〜18%の範囲であり、且つ、上記導電性カーボン100gあたりのフタル酸ジブチル吸油量が100〜200mLの範囲であることを特徴とする導電性カーボンに関する。 Therefore, the present invention is a conductive carbon for an electrode of a lithium ion secondary battery, and includes a hydrophilic solid phase component, and the graphene surface direction calculated from the Raman spectrum of the hydrophilic solid phase component The crystallite size La that does not include twist and the crystallite size Leq that includes twist in the graphene plane direction are 1.3 nm ≦ La ≦ 1.5 nm and 1.5 nm ≦ Leq ≦ 2.3 nm. And the range of 980 to 1780 cm −1 of the peak area of the amorphous component band in the vicinity of 1510 cm −1 in the Raman spectrum of the hydrophilic solid phase component, satisfying the relationship of 1.0 ≦ Leq / La ≦ 1.55 The ratio to the peak area is 13 to 19%, preferably 14 to 18%, and dibutyl phthalate absorption per 100 g of the conductive carbon. It relates to conductive carbon, characterized in that the amount of oil is in the range of 100 to 200 mL.

波形分離の結果得られた成分d、すなわちGバンドのピーク面積、成分b、すなわちDバンドのピーク面積、及び、成分f、すなわち2Dバンドのピーク面積を用いて、La及びLeqが以下の式に従って算出される。
La=4.4×(Gバンドのピーク面積/Dバンドのピーク面積)nm
Leq=8.8×(2Dバンドのピーク面積/Dバンドのピーク面積)nm
Using the component d obtained as a result of the waveform separation, that is, the peak area of the G band, the component b, that is, the peak area of the D band, and the component f, that is, the peak area of the 2D band, La and Leq are in accordance with the following expressions: Calculated.
La = 4.4 × (G band peak area / D band peak area) nm
Leq = 8.8 × (2D band peak area / D band peak area) nm

本発明の導電性カーボンは、高い柔軟性を有し、導電性カーボンに圧力が印加されると、カーボンの粒子が変形して糊状に広がるが、この性質は、導電性カーボンの低いストラクチャと、導電性カーボンに含まれる親水性固相成分に主に起因する。導電性カーボンのDBP吸油量は、100〜200mL/100gである。また、親水性固相成分のラマンスペクトルから算出されたグラフェン面方向のねじれを含まない結晶子サイズLaと、グラフェン面方向のねじれを含む結晶子サイズLeqとは、1.3nm≦La≦1.5nm、且つ、1.5nm≦Leq≦2.3nm、且つ、1.0≦Leq/La≦1.55の関係を満たし、この親水性固相成分のラマンスペクトから算出されたアモルファス成分率は、13〜19%、好ましくは14〜18%の範囲である。本発明の導電性カーボンにおける親水性固相成分は、リチウムイオン二次電池の電極形成のために従来使用されているケッチェンブラック、アセチレンブラック等の導電性カーボンの親水性固相成分に比較して、La及びLeqの値が小さく、Leq/Laの値を尺度として判断されるグラフェン面におけるねじれが少なく、またアモルファス成分率が高いという特徴を有する。 The conductive carbon of the present invention has high flexibility, and when pressure is applied to the conductive carbon, the carbon particles are deformed and spread in a paste-like shape. This is mainly due to the hydrophilic solid phase component contained in the conductive carbon. The conductive carbon has a DBP oil absorption of 100 to 200 mL / 100 g. Further, a crystallite size La not including a twist in the graphene plane direction calculated from a Raman spectrum of the hydrophilic solid phase component and a crystallite size Leq including a twist in the graphene plane direction are 1.3 nm ≦ La ≦ 1. .5 nm and 1.5 nm ≦ Leq ≦ 2.3 nm and 1.0 ≦ Leq / La ≦ 1.55 and satisfy the relationship of 1.0 ≦ Leq / La ≦ 1.55 and calculated from the Raman spectrum of this hydrophilic solid phase component The component ratio is in the range of 13 to 19%, preferably 14 to 18%. The hydrophilic solid phase component in the conductive carbon of the present invention is compared with the hydrophilic solid phase component of conductive carbon such as ketjen black and acetylene black conventionally used for forming electrodes of lithium ion secondary batteries. Thus, the values of La and Leq are small, the twist on the graphene surface judged by using the value of Leq / La is small, and the amorphous component ratio is high.

表1には、実施例1〜3及び比較例1,2の導電性カーボンについての、DBP吸油量、La、Leq、Leq/La、アモルファス成分率及び電極密度の値をまとめて示す。DBP吸油量が200mL/100gよりも大きく、親水性固相成分のLa、Leqが、1.3nm≦La≦1.5nm、且つ、1.5nm≦Leq≦2.3nm、且つ、1.0≦Leq/La≦1.55の関係を満たさず、親水性固相成分のアモルファス成分率が13%未満である比較例1,2の導電性カーボンを使用しても、電極密度が上がらず、言い換えると電極材料中の活物質粒子の量を増加させることができないことがわかる。

Figure 2015079678
Table 1 summarizes the values of DBP oil absorption, La, Leq, Leq / La, amorphous component ratio, and electrode density for the conductive carbons of Examples 1 to 3 and Comparative Examples 1 and 2. DBP oil absorption is larger than 200 mL / 100 g, La and Leq of the hydrophilic solid phase component are 1.3 nm ≦ La ≦ 1.5 nm and 1.5 nm ≦ Leq ≦ 2.3 nm , and Even if the conductive carbon of Comparative Examples 1 and 2 in which the amorphous component ratio of the hydrophilic solid phase component does not satisfy the relationship of 1.0 ≦ Leq / La ≦ 1.55 and the amorphous component ratio is less than 13%, the electrode density is low. It can be seen that the amount of active material particles in the electrode material cannot be increased.
Figure 2015079678

Claims (2)

リチウムイオン二次電池の電極のための導電性カーボンであって、
親水性固相成分を含み、
該親水性固相成分の、ラマンスペクトルから算出された、グラフェン面方向のねじれを含まない結晶子サイズLaと、グラフェン面方向のねじれを含む結晶子サイズLeqとが、
1.3nm≦La≦1.5nm、且つ、
1.5nm≦Leq≦2.3nm、且つ、
1.0≦Leq/La≦1.55
の関係を満たし、
前記親水性固相成分のラマンスペクトルにおける、1510cm−1付近のアモルファス成分バンドのピーク面積の、980〜1780cm−1の範囲のピーク面積に対する割合が、13〜19%の範囲であり、且つ、
前記導電性カーボン100gあたりのフタル酸ジブチル吸油量が100〜200mLの範囲である
ことを特徴とする導電性カーボン。
A conductive carbon for an electrode of a lithium ion secondary battery,
A hydrophilic solid phase component,
The crystallite size La that does not include a twist in the graphene plane direction, and the crystallite size Leq that includes a twist in the graphene plane direction, calculated from the Raman spectrum of the hydrophilic solid phase component,
1.3 nm ≦ La ≦ 1.5 nm , and
1.5 nm ≦ Leq ≦ 2.3 nm , and
1.0 ≦ Leq / La ≦ 1.55
Satisfy the relationship
Wherein in the Raman spectrum of a hydrophilic solid phase component, the peak area of amorphous component band near 1510 cm -1, the ratio to the peak area in the range of 980~1780Cm -1 is in the range of 13 to 19%, and,
Conductive carbon, wherein dibutyl phthalate oil absorption per 100 g of the conductive carbon is in the range of 100 to 200 mL.
空隙を有するカーボン原料を酸化処理して製造される、請求項1に記載の導電性カーボン。   The conductive carbon according to claim 1, which is produced by oxidizing a carbon raw material having voids.
JP2013216784A 2013-10-17 2013-10-17 Conductive carbon Active JP6170804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216784A JP6170804B2 (en) 2013-10-17 2013-10-17 Conductive carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216784A JP6170804B2 (en) 2013-10-17 2013-10-17 Conductive carbon

Publications (3)

Publication Number Publication Date
JP2015079678A JP2015079678A (en) 2015-04-23
JP2015079678A5 true JP2015079678A5 (en) 2016-11-17
JP6170804B2 JP6170804B2 (en) 2017-07-26

Family

ID=53010939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216784A Active JP6170804B2 (en) 2013-10-17 2013-10-17 Conductive carbon

Country Status (1)

Country Link
JP (1) JP6170804B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155599B2 (en) 2018-05-14 2022-10-19 日本ケミコン株式会社 ELECTRODE, METHOD FOR MANUFACTURING THIS ELECTRODE, AND POWER STORAGE DEVICE INCLUDING THIS ELECTRODE
US20210320354A1 (en) * 2018-07-16 2021-10-14 Umicore Rechargeable lithium ion battery with improved life characteristics
JP2022035788A (en) 2020-08-21 2022-03-04 日本ケミコン株式会社 Conductive carbon and production method thereof, production method of conductive carbon mixture containing the conductive carbon, and production method of electrode by use of the conductive carbon or conductive carbon mixture

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077479A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive auxiliary agent dispersion liquid for electrode material of lithium ion secondary battery
US9905853B2 (en) * 2013-10-17 2018-02-27 Nippon Chemi-Con Corporation Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
CN105765774B (en) * 2013-10-17 2018-11-13 日本贵弥功株式会社 Conductive carbon, the electrode material comprising the carbon, using the electrode material electrode and have the electrical storage device of the electrode

Similar Documents

Publication Publication Date Title
JP2015079681A5 (en)
JP6278679B2 (en) A conductive composition, a positive electrode, and a lithium ion secondary battery.
JP6310242B2 (en) A positive electrode for a secondary battery, and a secondary battery.
US20160036059A1 (en) Current collector also serving as electrode for battery, and battery including the same
JP6889408B2 (en) Iron oxide-carbon composite particle powder and its production method
JP2013201125A5 (en)
Liu et al. A facile hydrothermal synthesis of a reduced graphene oxide modified cobalt disulfide composite electrode for high-performance supercapacitors
JP7349347B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
WO2012138127A3 (en) Positive electrode material for a lithium secondary battery for improving output, and lithium secondary battery comprising same
JP2009117256A5 (en)
JP2013118057A5 (en)
JP2016518705A (en) Graphene / carbon composition
JP2013225501A5 (en)
JP6581991B2 (en) Battery carbon black, mixed powder, battery coating solution, battery electrode and battery
JP2018045820A (en) Carbon conductive material slurry
JP2015079678A5 (en) Conductive carbon
WO2018221632A1 (en) Carbon black for electrode and electrode slurry
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP2017147338A (en) Carbon material for capacitor and capacitor
JP2015079680A5 (en) Conductive carbon
JP2016524301A5 (en)
JP2012033440A (en) Silicon-based negative electrode of lithium ion battery
JP2018095517A (en) Graphite material, method for producing graphite material, and secondary battery
WO2015099379A8 (en) Conductive composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
JP2021012792A (en) Solid electrolyte for sodium ion battery