JP2015078905A - Calibration sample for space charge measurement and calibration method using same - Google Patents

Calibration sample for space charge measurement and calibration method using same Download PDF

Info

Publication number
JP2015078905A
JP2015078905A JP2013216108A JP2013216108A JP2015078905A JP 2015078905 A JP2015078905 A JP 2015078905A JP 2013216108 A JP2013216108 A JP 2013216108A JP 2013216108 A JP2013216108 A JP 2013216108A JP 2015078905 A JP2015078905 A JP 2015078905A
Authority
JP
Japan
Prior art keywords
calibration
calibration sample
space charge
insulating portion
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013216108A
Other languages
Japanese (ja)
Other versions
JP6230367B2 (en
Inventor
森 大樹
Daiki Mori
大樹 森
幸弘 八木
Yukihiro Yagi
幸弘 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viscas Corp
Original Assignee
Viscas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viscas Corp filed Critical Viscas Corp
Priority to JP2013216108A priority Critical patent/JP6230367B2/en
Publication of JP2015078905A publication Critical patent/JP2015078905A/en
Application granted granted Critical
Publication of JP6230367B2 publication Critical patent/JP6230367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calibration sample having small size and a favorable handling property.SOLUTION: A calibration sample comprises a cylindrical insulation part 11 consisting of insulation material, and electrodes 12 and 13 provided at an inner periphery and an outer periphery of the cylindrical insulation part 11 respectively.

Description

本発明は電圧印加によって電力ケーブル中の材料中に蓄積する空間電荷の蓄積量とその分布を測定する空間電荷測定用の校正試料及びこれを用いた校正方法に関するものである。   The present invention relates to a calibration sample for measuring space charge for measuring the amount and distribution of space charge accumulated in a material in a power cable by applying a voltage, and a calibration method using the same.

絶縁体に架橋ポリエチレンなどの高分子絶縁材料を用いた直流ケーブルでは、直流電圧の印加により絶縁体中に現れる空間電荷が絶縁特性を大きく左右することから、その高分子絶縁材料の空間電荷特性を精度良く評価することが重要である。絶縁材料中の空間電荷測定には一般にパルス静電応力法が用いられる。   In DC cables using polymer insulation materials such as cross-linked polyethylene as the insulator, the space charge that appears in the insulator due to the application of DC voltage greatly affects the insulation characteristics. It is important to evaluate accurately. A pulse electrostatic stress method is generally used for measuring space charge in an insulating material.

パルス静電測定法では、空間電荷の測定対象となる試料を電極で挟み、一方の電極から直流電圧(バイアス電圧)を印加しつつパルス電圧を印加し、このとき試料から発生する振動の圧力波を圧電素子により検出する。そして、検出される圧力波の大きさから電荷量を求め、パルスを印加した時から圧力波を検出するまでの経過時間により電荷が存在していた位置を求める。これらにより、試料の厚さ方向における電荷密度分布を求めることができる。   In the pulse electrostatic measurement method, a sample to be measured for space charge is sandwiched between electrodes, and a pulse voltage is applied while applying a DC voltage (bias voltage) from one of the electrodes. At this time, a pressure wave of vibration generated from the sample is applied. Is detected by a piezoelectric element. Then, the amount of electric charge is obtained from the magnitude of the detected pressure wave, and the position where the electric charge has existed is obtained from the elapsed time from when the pulse is applied until the pressure wave is detected. Thus, the charge density distribution in the thickness direction of the sample can be obtained.

上記パルス静電測定法による測定を行う測定装置では、測定を行う前に校正を行う必要がある。この校正作業は、空間電荷を殆ど発生しない材料(例えば、セラミックス焼結体)からなる薄板状の校正用試料を用いて、次のように行われる。
(1)直流電圧を印加しない状態でパルス電圧を印加する。(2)直流電圧を印加した状態でパルス電圧を印加する。(3)再び、直流電圧を印加しない状態でパルス電圧を印加する。以上を順番に行う。
そして、上記(1)、(3)で得られた圧力波に基づく波形を比較して、上記(2)で校正用試料に電荷が蓄積しなかったことを確認する。
また、上記(2)で得られた圧力波の測定波形に基づいて、試料の厚さ方向の軸の校正、電荷分布の校正を行う(例えば、特許文献1、非特許文献1参照)。
In a measurement apparatus that performs measurement by the pulse electrostatic measurement method described above, it is necessary to perform calibration before performing measurement. This calibration operation is performed as follows using a thin plate-shaped calibration sample made of a material (for example, a ceramic sintered body) that hardly generates space charges.
(1) Apply pulse voltage without applying DC voltage. (2) Apply pulse voltage with DC voltage applied. (3) Apply pulse voltage again without applying DC voltage. The above is performed in order.
Then, the waveform based on the pressure wave obtained in the above (1) and (3) is compared, and it is confirmed in (2) that no charge has accumulated in the calibration sample.
Further, based on the measurement waveform of the pressure wave obtained in the above (2), calibration of the axis in the thickness direction of the sample and calibration of the charge distribution are performed (for example, see Patent Document 1 and Non-Patent Document 1).

特開平09−311122号公報JP 09-311122 A

JEC−TR 電気学会 電気規格調査会テクニカルレポート パルス静電応力法による空間電荷分布測定の校正法 JEC-TR-61004-2012 電気学会発行「5.校正手順」、2012年12月25日発行JEC-TR Electrical Society Technical Report Technical Report Calibration Method for Space Charge Distribution Measurement by Pulse Electrostatic Stress Method JEC-TR-61004-2012 "5. Calibration Procedure" published by the Institute of Electrical Engineers, December 25, 2012

ところで、高圧電力ケーブルの絶縁層のように、厚い試料の電荷密度分布を測定する場合は、試料に高圧の直流電圧を印加する必要がある。すなわち、測定装置の直流電圧発生部を高圧化する必要がある。
このような測定装置の校正を、従来の薄板状の校正用試料を用いて行う場合は、校正用試料の表面を通して表裏の電極間が短絡しないように、沿面距離を長くする必要がある。即ち、面積の大きな校正用試料を準備して、表裏の電極から試料の外周縁までの距離を離す必要がある。
しかしながら、このように2次元方向に面積の広い試料は取扱い難いので、校正作業に手間取るという問題があった。
By the way, when measuring the charge density distribution of a thick sample such as an insulating layer of a high-voltage power cable, it is necessary to apply a high-voltage DC voltage to the sample. That is, it is necessary to increase the voltage of the DC voltage generator of the measuring device.
When such a calibration of the measuring apparatus is performed using a conventional thin plate-shaped calibration sample, it is necessary to increase the creepage distance so that the front and back electrodes do not short-circuit through the surface of the calibration sample. That is, it is necessary to prepare a calibration sample having a large area and to increase the distance from the front and back electrodes to the outer peripheral edge of the sample.
However, since it is difficult to handle a sample having a large area in the two-dimensional direction as described above, there is a problem that it takes time for calibration work.

本発明は、取り扱いが容易な空間電荷測定用の校正試料及びこれを用いた校正方法を提供することをその目的とする。   An object of the present invention is to provide a calibration sample for space charge measurement that is easy to handle and a calibration method using the same.

前記課題を解決する本願の校正試料に係る発明は、絶縁材料からなる筒状の絶縁部と、その内周及び外周にそれぞれ設けられた電極とを備えることを特徴とする。   The invention according to the calibration sample of the present application that solves the above-described problems includes a cylindrical insulating portion made of an insulating material, and electrodes provided on the inner periphery and the outer periphery thereof, respectively.

この校正試料では、筒状の絶縁部の内外に電極を設けたので、絶縁部の周方向には両電極が短絡することが無い。従って、周方向には、沿面距離を考慮する必要が無い。従って、校正試料の軸方向のみ沿面距離を考慮すればよいことになる。すなわち、一次元方向に絶縁部を延ばすだけで、この校正試料を高い直流電圧に適応させることができ、二次元方向への拡大を抑制して小型で取り扱い性の良好な校正試料を提供することが可能となる。   In this calibration sample, since the electrodes are provided inside and outside the cylindrical insulating portion, both electrodes do not short-circuit in the circumferential direction of the insulating portion. Therefore, it is not necessary to consider the creepage distance in the circumferential direction. Therefore, it is only necessary to consider the creepage distance only in the axial direction of the calibration sample. In other words, the calibration sample can be adapted to a high DC voltage simply by extending the insulating part in the one-dimensional direction, and the calibration sample having a small size and good handleability can be provided by suppressing expansion in the two-dimensional direction. Is possible.

校正試料の絶縁部の外形は、軸方向と交わる方向の断面が円形であることが望ましい。   As for the external shape of the insulating part of the calibration sample, it is desirable that the cross section in the direction intersecting the axial direction is circular.

また、上記校正試料では、前記導体電極を前記絶縁部の中心から偏心した位置に設けることが好適である。
このように校正試料を構成することにより、圧力波を検出する位置を絶縁部の外周の周方向に沿って変えることにより、絶縁部の厚さを変えて校正を行うことができる。つまり、校正時の絶縁部の厚さの調節を容易に行うことが可能となる。
In the calibration sample, it is preferable that the conductor electrode is provided at a position eccentric from the center of the insulating portion.
By configuring the calibration sample in this way, calibration can be performed by changing the thickness of the insulating portion by changing the position where the pressure wave is detected along the circumferential direction of the outer periphery of the insulating portion. That is, it becomes possible to easily adjust the thickness of the insulating portion during calibration.

また、上記校正試料では、前記絶縁部を、その軸方向の位置によって厚さが変化する形状とすることが好適である。
このように校正試料を構成することにより、圧力波を検出する位置を絶縁部の軸方向に沿って変えることにより、絶縁部の厚さを変えて校正を行うことができる。つまり、校正時の絶縁部の厚さの調節を容易に行うことが可能となる。
In the calibration sample, it is preferable that the insulating portion has a shape whose thickness varies depending on the position in the axial direction.
By configuring the calibration sample in this manner, calibration can be performed by changing the thickness of the insulating portion by changing the position where the pressure wave is detected along the axial direction of the insulating portion. That is, it becomes possible to easily adjust the thickness of the insulating portion during calibration.

また、上記校正試料では、前記絶縁部を、樹脂材料から形成することが好適である。
このように構成することにより、絶縁部の形状及び寸法について任意に成形することが容易となる。
In the calibration sample, it is preferable that the insulating portion is formed of a resin material.
By comprising in this way, it becomes easy to shape | mold arbitrarily about the shape and dimension of an insulation part.

また、上記校正試料では、前記絶縁部を、ポリメタクリル酸メチル樹脂により形成することが好適である。
このように構成することにより、空間電荷の発生を抑制し、より適正な校正を行うことができる校正試料を提供することが可能となる。
In the calibration sample, it is preferable that the insulating portion is formed of a polymethyl methacrylate resin.
With this configuration, it is possible to provide a calibration sample that can suppress the generation of space charge and perform more appropriate calibration.

前記課題を解決するための校正方法にかかる本発明は、前記校正試料を用いた空間電荷測定方法であって、一方の前記電極に直流電圧を印加すると共に他方の前記電極にパルス電圧を印加した状態での圧電素子の出力波形の検出を行う前と後の両方において、前記パルス電圧のみを前記他方の電極に印加して前記圧電素子の出力波形の検出を行い、これら前後に行われたパルス電圧のみを印加した状態での圧電素子の出力波形を比較することにより、前記直流電圧とパルス電圧の両方を印加したときに校正試料への電荷残留が生じなかったことを判定することを特徴とする。   The present invention according to a calibration method for solving the above-described problems is a space charge measurement method using the calibration sample, wherein a DC voltage is applied to one of the electrodes and a pulse voltage is applied to the other electrode. Before and after detecting the output waveform of the piezoelectric element in the state, only the pulse voltage is applied to the other electrode to detect the output waveform of the piezoelectric element, and the pulses performed before and after these are detected. By comparing the output waveform of the piezoelectric element in a state where only the voltage is applied, it is determined that there is no charge remaining on the calibration sample when both the DC voltage and the pulse voltage are applied. To do.

上記校正方法により、空間電荷測定をより適正に行うことが可能となる。   By the calibration method, space charge measurement can be performed more appropriately.

本発明によれば、小型で取り扱い性の良好な校正試料を提供することが可能である。
また、本発明によれば、空間電荷測定に適した校正方法を提供することが可能である。
According to the present invention, it is possible to provide a calibration sample that is small and has good handleability.
Moreover, according to the present invention, it is possible to provide a calibration method suitable for space charge measurement.

空間電荷測定用の校正試料の斜視図である。It is a perspective view of the calibration sample for space charge measurement. 空間電荷測定装置の構成図である。It is a block diagram of a space charge measuring device. 図3(A)と図3(C)は参照信号波形を示す線図、図3(B)は校正信号波形を示す線図である。3A and 3C are diagrams showing reference signal waveforms, and FIG. 3B is a diagram showing calibration signal waveforms. 校正試料の他の例の斜視図である。It is a perspective view of the other example of a calibration sample. 校正試料のさらに他の例の斜視図である。It is a perspective view of other example of a calibration sample.

[発明の実施形態の概略]
以下、本発明の実施形態として、空間電荷測定用の校正試料(以下、単に「校正試料」という)と空間電荷測定装置について図面に基づいて説明する。
上記空間電荷測定装置は、電力ケーブルの導体部の外周に形成された円筒状の絶縁層を空間電荷測定の対象(測定試料)とすることを前提としている。次に、当該空間電荷測定装置と空間電荷測定の前に行う校正作業に好適な校正試料について説明を行う。
[Outline of Embodiment of the Invention]
Hereinafter, a calibration sample for space charge measurement (hereinafter simply referred to as “calibration sample”) and a space charge measurement device will be described with reference to the drawings as embodiments of the present invention.
The space charge measuring device is based on the premise that a cylindrical insulating layer formed on the outer periphery of the conductor portion of the power cable is a target (measurement sample) for space charge measurement. Next, a description will be given of the space charge measuring device and a calibration sample suitable for the calibration work performed before the space charge measurement.

[校正試料]
校正試料10は、図1に示すように、絶縁材料からなる円筒状の絶縁部11と、当該絶縁部11の内周に設けられ、直流電圧が印加される導体電極12と、当該導体電極12の外周に設けられ、パルス電圧が印加される遮蔽電極13,13とを備えている。
[Calibration sample]
As shown in FIG. 1, the calibration sample 10 includes a cylindrical insulating portion 11 made of an insulating material, a conductor electrode 12 provided on the inner periphery of the insulating portion 11, to which a DC voltage is applied, and the conductor electrode 12. And shielding electrodes 13 and 13 to which a pulse voltage is applied.

絶縁部11は、絶縁性の樹脂、例えば、PMMA(ポリメタクリル酸メチル樹脂、通称:アクリル樹脂)から形成されている。ポリメタクリル酸メチル樹脂は、所定の限界値に満たない範囲で直流電圧が印加された場合、空間電荷は殆ど発生せず、空間電荷特性が安定している。
また、絶縁部11は、その中心部に断面円形の貫通孔が形成されている。そして、絶縁部11の内径と外径は、空間電荷測定の対象とする電力ケーブルの絶縁層の内径と外径と一致又は近い値とすることが望ましい。
ここで、絶縁部11の寸法について一例を挙げると、その外径は10〜30[mm]、全長は1[m]、厚みは3〜5[mm]としている。但し、これらの数値に限定されるものではなく、空間電荷の測定対象である電力ケーブルの各部の寸法に応じて適宜変更可能である。
The insulating part 11 is made of an insulating resin, for example, PMMA (polymethyl methacrylate resin, commonly called acrylic resin). When a DC voltage is applied to the polymethyl methacrylate resin in a range not satisfying a predetermined limit value, almost no space charge is generated and the space charge characteristics are stable.
The insulating portion 11 has a through hole having a circular cross section at the center thereof. And it is desirable that the inner diameter and outer diameter of the insulating portion 11 be equal to or close to the inner diameter and outer diameter of the insulating layer of the power cable to be subjected to space charge measurement.
Here, when an example is given about the dimension of the insulation part 11, the outer diameter is 10-30 [mm], the full length is 1 [m], and thickness is 3-5 [mm]. However, it is not limited to these numerical values, and can be appropriately changed according to the dimensions of each part of the power cable that is the target of space charge measurement.

導体電極12は、絶縁部11よりも幾分長い断面円形の棒状体であり、その両端部が絶縁部11から突出している。
導体電極12と絶縁部11はそれぞれ個別に形成して、絶縁部11の貫通孔に導体電極12を挿入しても良いし、導体電極12を形成してからその外周上に絶縁部11を形成しても良い。
導体電極12の外周面と絶縁部11の内周面との間の隙間は小さいことが望ましく、相互に密着していることがより望ましい。
The conductor electrode 12 is a rod-like body having a circular cross section somewhat longer than the insulating portion 11, and both end portions thereof protrude from the insulating portion 11.
The conductor electrode 12 and the insulating portion 11 may be formed separately, and the conductor electrode 12 may be inserted into the through hole of the insulating portion 11, or the insulating portion 11 is formed on the outer periphery after the conductor electrode 12 is formed. You may do it.
The gap between the outer peripheral surface of the conductor electrode 12 and the inner peripheral surface of the insulating portion 11 is preferably small, and more preferably in close contact with each other.

なお、導体電極12を絶縁部11から突出させることで後述する直流電源20との接続が容易となるが、導体電極12の突出は必須ではない。
例えば、導体電極12と絶縁部11の長さを等しくして、導体電極12の端面に直流電源20を接続することは可能である。
In addition, although the conductor electrode 12 protrudes from the insulating part 11, the connection with the DC power supply 20 mentioned later becomes easy, but the protrusion of the conductor electrode 12 is not essential.
For example, it is possible to connect the DC power supply 20 to the end face of the conductor electrode 12 by making the lengths of the conductor electrode 12 and the insulating portion 11 equal.

遮蔽電極13,13は、絶縁部11の中心線方向における中間部を挟んで当該絶縁部11の外周面を被覆している。これらの遮蔽電極13,13は、同一の幅で形成されている。また、遮蔽電極13,13は、絶縁部11の外周面に対して金属成膜技術により形成しても良いし、金属箔を巻き付けることにより形成しても良い。
また、各遮蔽電極13,13は、導体電極12との絶縁状態を維持するために、絶縁部11の端部からの沿面距離を十分な長さとしている。
そして、これら遮蔽電極13,13の間には、非遮蔽部14が存在し、当該非遮蔽部14において、試料から発生する振動の圧力波の検出が行われる。
なお、導体電極12と遮蔽電極13,13は、いずれも、良導体、例えば、アルミニウム(アルミ合金を含む)、金、真鍮等から形成されている。
The shielding electrodes 13, 13 cover the outer peripheral surface of the insulating part 11 with an intermediate part in the center line direction of the insulating part 11 interposed therebetween. These shielding electrodes 13 and 13 are formed with the same width. The shield electrodes 13 and 13 may be formed on the outer peripheral surface of the insulating portion 11 by a metal film forming technique or may be formed by winding a metal foil.
Further, each of the shielding electrodes 13 and 13 has a sufficient creeping distance from the end portion of the insulating portion 11 in order to maintain the insulation state with the conductor electrode 12.
A non-shielding portion 14 exists between the shield electrodes 13 and 13, and the pressure wave of vibration generated from the sample is detected in the non-shielding portion 14.
The conductor electrode 12 and the shielding electrodes 13 and 13 are both made of a good conductor, for example, aluminum (including an aluminum alloy), gold, brass, or the like.

[空間電荷測定装置]
空間電荷測定装置100は、図2に示すように、校正試料又は測定試料に対してバイアス電圧としての直流電圧を印加する直流電源20と、校正試料又は測定試料に対してパルス電圧を印加するパルス発生装置30と、校正試料又は測定試料が振動したとき発生する圧力波を検出する検出部としての圧電素子40とを備えている。
さらに、空間電荷測定装置100は、圧電素子40の検出信号を増幅するアンプ(図示省略)と、増幅された検出信号の波形を表示するオシロスコープ60と、検出信号に対して所定の信号処理を行う信号処理部としてのパーソナルコンピューター(以下、「PC」とする)70とを備えている。
なお、図2では校正試料10を設置した状態を図示している。
[Space charge measuring device]
As shown in FIG. 2, the space charge measuring apparatus 100 includes a DC power source 20 that applies a DC voltage as a bias voltage to a calibration sample or a measurement sample, and a pulse that applies a pulse voltage to the calibration sample or the measurement sample. A generator 30 and a piezoelectric element 40 as a detector for detecting a pressure wave generated when the calibration sample or the measurement sample vibrates are provided.
Furthermore, the space charge measuring apparatus 100 performs an amplifier (not shown) that amplifies the detection signal of the piezoelectric element 40, an oscilloscope 60 that displays the waveform of the amplified detection signal, and predetermined signal processing on the detection signal. And a personal computer (hereinafter referred to as “PC”) 70 as a signal processing unit.
FIG. 2 shows a state where the calibration sample 10 is installed.

直流電源20は、絶縁部11から突出した導体電極12の一端部に接続され、当該導体電極12に対して所定の直流電圧の印加を行う。
直流電源20から印加する直流電圧は、極性は正負いずれもでも良く、印加電圧の値は絶縁部11の材料、半径方向の厚さに応じて適宜決定される。直流電源20は、例えば、50〜3000[kV]の直流電圧を導体電極12に印加する。
The DC power supply 20 is connected to one end of the conductor electrode 12 protruding from the insulating portion 11 and applies a predetermined DC voltage to the conductor electrode 12.
The direct-current voltage applied from the direct-current power supply 20 may be either positive or negative, and the value of the applied voltage is appropriately determined according to the material of the insulating portion 11 and the thickness in the radial direction. The DC power supply 20 applies, for example, a DC voltage of 50 to 3000 [kV] to the conductor electrode 12.

パルス発生装置30は、二つの遮蔽電極13,13に対して同極性、同電位のパルス電圧を同時に印加する。
上記パルス発生装置30から印加するパルス電圧は、極性は正負いずれもでも良く、パルス電圧の値は絶縁部11の半径方向の厚さや圧電素子40の検出分解能に応じて適宜決定される。パルス電圧の値は絶縁部11の材料、半径方向の厚さに応じて適宜決定される。パルス発生装置30は、例えば、1[kV]の直流電圧を各遮蔽電極13,13に印加する。
The pulse generator 30 applies a pulse voltage of the same polarity and the same potential to the two shielding electrodes 13 and 13 simultaneously.
The pulse voltage applied from the pulse generator 30 may be either positive or negative, and the value of the pulse voltage is appropriately determined according to the thickness of the insulating portion 11 in the radial direction and the detection resolution of the piezoelectric element 40. The value of the pulse voltage is appropriately determined according to the material of the insulating portion 11 and the thickness in the radial direction. For example, the pulse generator 30 applies a DC voltage of 1 [kV] to the shielding electrodes 13 and 13.

校正試料10は、非遮蔽部14において、検出台41の上面に載置された状態で、固定ブロック42をボルト締めすることにより固定支持される。検出台41及び固定ブロック42はいずれも導体であり、遮蔽電極13,13には接触せず、非遮蔽部14のみが接触した状態で校正試料10の固定を行っている。
そして、圧電素子40は検出台41の下面側に装備されている。検出台41には非遮蔽部14から振動の圧力波が圧電素子40に良好に伝達するように液体シリコンが塗布されている。圧電素子40は、非遮蔽部14から伝わる圧力波に応じた電圧信号を出力し、アンプ50で増幅してオシロスコープ60に入力する。
The calibration sample 10 is fixedly supported by bolting the fixing block 42 while being placed on the upper surface of the detection table 41 in the non-shielding portion 14. The detection table 41 and the fixed block 42 are both conductors, and the calibration sample 10 is fixed in a state where only the non-shielding part 14 is in contact with the shield electrodes 13 and 13.
The piezoelectric element 40 is provided on the lower surface side of the detection table 41. Liquid silicon is applied to the detection table 41 so that the pressure wave of vibration is transmitted from the non-shielding part 14 to the piezoelectric element 40 satisfactorily. The piezoelectric element 40 outputs a voltage signal corresponding to the pressure wave transmitted from the non-shielding portion 14, is amplified by the amplifier 50, and is input to the oscilloscope 60.

オシロスコープ60は、増幅された圧電素子40からの検出信号を時系列の波形に変換してモニタに表示する。
PC70は、オシロスコープ60を介して圧電素子40に接続されている。そして、PC70は、パルス発生装置30に対して、パルス発信を開始させる制御指令を入力し、パルス発信からの経過時間と圧電素子40の検出信号の出力強度とを記録する。そして、圧電素子40で検出した圧力の時系列的な変化のデータを生成する。
そして、生成したデータに対して所定の信号処理を行い、装置を校正し、空間電荷の測定に有用なパラメータを取得する。
The oscilloscope 60 converts the amplified detection signal from the piezoelectric element 40 into a time-series waveform and displays it on a monitor.
The PC 70 is connected to the piezoelectric element 40 via the oscilloscope 60. And PC70 inputs the control command which starts pulse transmission with respect to the pulse generator 30, and records the elapsed time from pulse transmission and the output strength of the detection signal of the piezoelectric element 40. FIG. And the data of the time-sequential change of the pressure detected with the piezoelectric element 40 are produced | generated.
Then, predetermined signal processing is performed on the generated data, the apparatus is calibrated, and parameters useful for space charge measurement are acquired.

[校正試料を用いた校正方法]
上記空間電荷測定装置100による校正方法について説明する。
校正試料10を検出台41に固定し、導体電極12を直流電源20に接続し、各遮蔽電極13,13をパルス発生装置30に接続する。
[Calibration method using calibration sample]
A calibration method using the space charge measuring apparatus 100 will be described.
The calibration sample 10 is fixed to the detection table 41, the conductor electrode 12 is connected to the DC power source 20, and the shield electrodes 13 and 13 are connected to the pulse generator 30.

そして、直流電圧を印加せずに、周期的に繰り返されるパルス電圧を校正試料10に印加して圧電素子40の検出信号を記録する。この時、PC70は、個々のパルス電圧に基づく圧電素子40の検出信号の加算平均を算出する。この時に得られる検出信号波形を参照信号波形という。
図3(A)は参照信号波形の一例を示している。なお、図3に示すそれぞれの信号波形は所定の信号処理が施されたものが図示されている。
Then, a pulse signal that is periodically repeated is applied to the calibration sample 10 without applying a DC voltage, and a detection signal of the piezoelectric element 40 is recorded. At this time, the PC 70 calculates the addition average of the detection signals of the piezoelectric elements 40 based on the individual pulse voltages. The detection signal waveform obtained at this time is referred to as a reference signal waveform.
FIG. 3A shows an example of a reference signal waveform. Note that each signal waveform shown in FIG. 3 is subjected to predetermined signal processing.

次に、校正試料10の絶縁部11に空間電荷が発生しない範囲の直流電圧を印加した状態で、パルス電圧を校正試料10に印加する。PC70は、周期的に繰り返されるパルス電圧に基づく圧電素子40の検出信号の加算平均を算出する。この時に得られる検出信号波形を校正信号波形という。
図3(B)は校正信号波形の一例を示している。導体電極12と絶縁部11との界面と遮蔽電極13と絶縁部11との界面とには、それぞれ誘導電荷が発生し、圧力波のピークが発生している。
そして、正常な校正信号波形の場合には、上記二つのピークの間には信号レベルが0となる部分が存在する。仮に、信号レベルが0となる部分が存在しない場合には、パルス発生装置30からのノイズの発生、圧力波の発生位置を検出するための分解能の不足等が考えられ、これらの対策を講じて校正のやり直しとなる。
Next, a pulse voltage is applied to the calibration sample 10 in a state where a DC voltage in a range where no space charge is generated is applied to the insulating portion 11 of the calibration sample 10. The PC 70 calculates the average of the detection signals of the piezoelectric elements 40 based on the periodically repeated pulse voltage. The detection signal waveform obtained at this time is called a calibration signal waveform.
FIG. 3B shows an example of a calibration signal waveform. Induced charges are generated at the interface between the conductor electrode 12 and the insulating part 11 and the interface between the shielding electrode 13 and the insulating part 11, respectively, and a pressure wave peak is generated.
In the case of a normal calibration signal waveform, there is a portion where the signal level is 0 between the two peaks. If there is no portion where the signal level is 0, noise from the pulse generator 30 and insufficient resolution to detect the position where the pressure wave is generated can be considered. Recalibration is required.

再び、直流電圧を印加せずに周期的に繰り返されるパルス電圧を校正試料10に印加して、個々のパルス電圧に基づく圧電素子40の検出信号の加算平均を、PC70により算出する。図3(C)はこの時に得られる参照信号波形の一例を示している。
そして、PC70は、この時に得られた参照信号波形と、最初の参照信号波形とを比較する。
Again, a pulse voltage that is periodically repeated without applying a DC voltage is applied to the calibration sample 10, and the addition average of detection signals of the piezoelectric elements 40 based on the individual pulse voltages is calculated by the PC 70. FIG. 3C shows an example of a reference signal waveform obtained at this time.
Then, the PC 70 compares the reference signal waveform obtained at this time with the first reference signal waveform.

上記の比較において、二つの参照信号波形が同一又は同一とみなせる範囲内であって、増減を生じていない場合、校正信号波形を得るために行った直流電圧印加の際に、校正試料10の絶縁部に空間電荷が発生しなかったことを意味するので、この時に得られた校正信号波形は適正な波形として校正に用いられることになる。   In the above comparison, when the two reference signal waveforms are within the range that can be regarded as the same or the same and there is no increase or decrease, the insulation of the calibration sample 10 is performed when the DC voltage is applied to obtain the calibration signal waveform. This means that no space charge was generated in the portion, and the calibration signal waveform obtained at this time is used as an appropriate waveform for calibration.

また、上記の比較において、二つの参照信号波形が同一とみなせる範囲内ではない場合、増減を生じている場合には、空間電荷の発生、ノイズの発生、空間電荷測定装置の不具合等が考えられる。
この場合には、校正試料10の周囲のノイズ対策、空間電荷測定装置の不具合箇所の点検等を行ってから校正試料10に対する測定をやり直す。それでも参照信号波形に増減を生じる場合には、校正試料10の絶縁部11の交換、導体電極12に対する直流電圧の低減等を行い、校正試料10に対する測定をやり直す。
In the above comparison, if the two reference signal waveforms are not within the same range, or if there is an increase / decrease, there may be space charge generation, noise generation, a space charge measuring device failure, etc. .
In this case, the measurement of the calibration sample 10 is performed again after taking measures against noise around the calibration sample 10 and checking the defective portion of the space charge measuring device. If the reference signal waveform still increases or decreases, the measurement of the calibration sample 10 is performed again by exchanging the insulating portion 11 of the calibration sample 10 or reducing the DC voltage with respect to the conductor electrode 12.

適正な校正信号波形が得られた場合には、当該校正信号波形に対して、信号処理として、デコンボリューション処理を行い、当該デコンボリューション処理に用いたインパルス応答を記憶する。
さらに、校正信号波形の時間軸を絶縁部の厚さ方向の位置軸に変換する。そして、校正信号波形を位置で積分すると共に、検出信号軸を電界軸に校正する。この時、PC70は、当該校正において、適正な係数Kを求め、これを記憶する。
これによって得られた電界分布波形を位置で微分して電荷分布波形を取得する。
When an appropriate calibration signal waveform is obtained, deconvolution processing is performed on the calibration signal waveform as signal processing, and an impulse response used for the deconvolution processing is stored.
Further, the time axis of the calibration signal waveform is converted into a position axis in the thickness direction of the insulating portion. Then, the calibration signal waveform is integrated at the position, and the detection signal axis is calibrated to the electric field axis. At this time, the PC 70 obtains an appropriate coefficient K and stores it in the calibration.
The electric field distribution waveform thus obtained is differentiated by position to obtain a charge distribution waveform.

[空間電荷測定]
電力ケーブル等の測定試料に対する空間電荷測定を行う際には、校正試料10と同様に空間電荷測定装置100に測定試料を設置する。
そして、直流電圧を印加した状態で、パルス電圧を測定試料に印加して、周期的に繰り返されるパルス電圧に基づく圧電素子40の検出信号の加算平均を、PC70で算出する。
さらに、この検出信号波形に対して、校正試料の場合と同様にして、デコンボリューション処理を行う。この時、校正試料のデコンボリューション処理で用いたインパルス応答を利用する。
そして、デコンボリューション処理後の検出信号波形の時間軸を絶縁部の厚さ方向の位置軸に変換し、検出信号波形を位置で積分すると共に、校正試料で用いた係数Kを用いて検出信号軸を電界軸に校正する。
そして、これによって得られた電界分布波形を位置で微分して、測定試料における電荷分布波形を取得する。
これにより、電力ケーブルの絶縁層の厚さ方向について、空間電荷の分布を取得することができる。
[Space charge measurement]
When space charge measurement is performed on a measurement sample such as a power cable, the measurement sample is installed in the space charge measurement device 100 in the same manner as the calibration sample 10.
Then, with the DC voltage applied, the pulse voltage is applied to the measurement sample, and the addition average of the detection signals of the piezoelectric elements 40 based on the periodically repeated pulse voltage is calculated by the PC 70.
Further, deconvolution processing is performed on the detection signal waveform in the same manner as in the case of the calibration sample. At this time, the impulse response used in the deconvolution process of the calibration sample is used.
Then, the time axis of the detection signal waveform after the deconvolution processing is converted to the position axis in the thickness direction of the insulating portion, the detection signal waveform is integrated with the position, and the detection signal axis is used using the coefficient K used in the calibration sample. Is calibrated to the electric field axis.
And the electric field distribution waveform obtained by this is differentiated by the position, and the charge distribution waveform in the measurement sample is acquired.
Thereby, the distribution of space charge can be acquired in the thickness direction of the insulating layer of the power cable.

[実施形態の技術的効果]
以上のように、校正試料10は、絶縁部11を円筒状とし、その内側に導体電極12、その外周に遮蔽電極13,13を設けているので、円周方向には両電極が短絡することが無い。軸方向に導体電極と遮蔽電極の沿面距離を調節する必要があるが、このためには絶縁部11の長さを調整するだけでよい。従って、導体電極12に直流の高電圧を印加する場合には校正試料を一次元方向(軸方向)にのみ伸長すればよく、二次元方向への拡大を抑制して小型で取り扱い性の良好な校正試料を提供することが可能となる。
[Technical effects of the embodiment]
As described above, the calibration sample 10 has the insulating portion 11 in the cylindrical shape, and the conductor electrode 12 is provided inside thereof, and the shielding electrodes 13 and 13 are provided on the outer periphery thereof. Therefore, both electrodes are short-circuited in the circumferential direction. There is no. Although it is necessary to adjust the creeping distance between the conductor electrode and the shield electrode in the axial direction, it is only necessary to adjust the length of the insulating portion 11 for this purpose. Therefore, when a DC high voltage is applied to the conductor electrode 12, it is only necessary to extend the calibration sample only in the one-dimensional direction (axial direction). A calibration sample can be provided.

また、絶縁部11の外周に二つの遮蔽電極13,13を設け、その間の非遮蔽部14で圧電素子40が振動の圧力波の検出を行っているので、パルス電圧の印加による圧力波を増幅させることができ、より良好な検出を行うことが可能となる。   Further, two shielding electrodes 13 and 13 are provided on the outer periphery of the insulating portion 11, and the piezoelectric element 40 detects the vibration pressure wave at the non-shielding portion 14 between them, so that the pressure wave due to the application of the pulse voltage is amplified. Therefore, better detection can be performed.

また、校正試料10は、絶縁部11を円筒状とし、中心に導体電極12を設けているので、電力ケーブルに近似した構造とすることができ、この校正試料10による校正を行うことで、電力ケーブルの空間電荷測定により適したパラメータを求めることが可能となる。
さらに、校正試料10の絶縁部11の厚さを電力ケーブルの絶縁層の厚さと等しく又は近似させることで、さらに適正なパラメータを求めることが可能となる。
Further, the calibration sample 10 has a cylindrical shape of the insulating portion 11 and a conductor electrode 12 provided at the center, and therefore can have a structure approximate to a power cable. A more suitable parameter can be obtained by measuring the space charge of the cable.
Furthermore, by making the thickness of the insulating portion 11 of the calibration sample 10 equal or approximate to the thickness of the insulating layer of the power cable, it is possible to obtain a more appropriate parameter.

また、校正試料10を用いた校正方法において、パルス電圧のみの印加による2回の参照信号波形を比較するので、適正な校正信号波形を得ることができ、空間電荷測定に適したインパルス応答、係数Kからなるパラメータを取得することができ、より適正な空間電荷測定を行うことが可能となる。   Further, in the calibration method using the calibration sample 10, since the reference signal waveforms of two times by applying only the pulse voltage are compared, an appropriate calibration signal waveform can be obtained, and an impulse response and coefficient suitable for space charge measurement. A parameter consisting of K can be acquired, and more appropriate space charge measurement can be performed.

[校正試料の他の例]
上記校正試料10は、円筒状の絶縁部11の内側に同心で円柱状の導体電極12を設けているが、その配置及び形状については適宜変更可能である。
例えば、図4の校正試料10Aに示すように、円筒状の絶縁部11に対して円柱状の導体電極12を中心から偏心させた位置に配置しても良い。
この場合、絶縁部11の外周方向のいずれの位置で圧電素子40による圧力波の検出を行うかにより、絶縁部11の厚さを変えたのと同じ効果が得られる。このため、絶縁部11の厚さを調節して校正を行うことが容易になる。
[Other examples of calibration samples]
The calibration sample 10 is provided with the concentric columnar conductor electrode 12 inside the cylindrical insulating portion 11, but the arrangement and shape thereof can be changed as appropriate.
For example, as shown in the calibration sample 10A of FIG. 4, the cylindrical conductor electrode 12 may be arranged at a position eccentric from the center with respect to the cylindrical insulating portion 11.
In this case, the same effect as changing the thickness of the insulating part 11 can be obtained depending on which position in the outer peripheral direction of the insulating part 11 the pressure wave is detected by the piezoelectric element 40. For this reason, it becomes easy to adjust by adjusting the thickness of the insulating part 11.

また、図5の校正試料10Bに示すように、円筒状の絶縁部11の中心に円錐台形状の導体電極12を同心で配置しても良い。
この場合、絶縁部11の軸方向に沿ったいずれの位置に圧電素子40を配置して圧力波を検出するかに応じて、絶縁部11の厚さを変えたのと同じ効果を得ることができる。このため、容易に絶縁部11の厚さを調節して校正を行うことが可能となる。
なお、導体電極12の外径を一定とし、絶縁部11を円錐台形状とした場合も絶縁部11の軸方向に沿ったいずれの位置に圧電素子40を配置するかに応じて、絶縁部11の厚さを変えた効果を得ることができる。
Further, as shown in a calibration sample 10B in FIG. 5, a truncated cone-shaped conductor electrode 12 may be disposed concentrically at the center of the cylindrical insulating portion 11.
In this case, it is possible to obtain the same effect as changing the thickness of the insulating portion 11 depending on which position along the axial direction of the insulating portion 11 the piezoelectric element 40 is disposed and pressure waves are detected. it can. For this reason, calibration can be easily performed by adjusting the thickness of the insulating portion 11.
In addition, even when the outer diameter of the conductor electrode 12 is constant and the insulating portion 11 has a truncated cone shape, the insulating portion 11 depends on which position along the axial direction of the insulating portion 11 the piezoelectric element 40 is disposed. The effect of changing the thickness of can be obtained.

さらに、前記導体電極12は絶縁部11より短くても良い。この場合、絶縁部11の貫通孔に挿入した導体電極11の端部に絶縁電線を半田付けしておくことにより、電圧を印加することができる。   Further, the conductor electrode 12 may be shorter than the insulating portion 11. In this case, a voltage can be applied by soldering an insulated wire to the end portion of the conductor electrode 11 inserted into the through hole of the insulating portion 11.

10,10A,10B 校正試料
11 絶縁部
12 導体電極
13 遮蔽電極
14 非遮蔽部
20 直流電源
30 パルス発生装置
40 圧電素子
60 オシロスコープ
70 PC
100 空間電荷測定装置
10, 10A, 10B Calibration sample 11 Insulating part 12 Conductor electrode 13 Shielding electrode 14 Non-shielding part 20 DC power supply 30 Pulse generator 40 Piezoelectric element 60 Oscilloscope 70 PC
100 Space charge measuring device

Claims (6)

絶縁材料からなる筒状の絶縁部と、その内周及び外周にそれぞれ設けられた電極と備えることを特徴とする空間電荷測定用の校正試料。   A calibration sample for space charge measurement, comprising: a cylindrical insulating portion made of an insulating material; and electrodes respectively provided on an inner periphery and an outer periphery thereof. 前記内周の電極を前記絶縁部の中心から偏心した位置に設けたことを特徴とする請求項1記載の空間電荷測定用の校正試料。   The calibration sample for space charge measurement according to claim 1, wherein the inner peripheral electrode is provided at a position eccentric from a center of the insulating portion. 前記絶縁部を、その軸方向の位置によって厚さが変化する形状としたことを特徴とする請求項1記載の空間電荷測定用の校正試料。   The calibration sample for space charge measurement according to claim 1, wherein the insulating portion has a shape whose thickness varies depending on an axial position thereof. 前記絶縁部を、樹脂材料から形成したことを特徴とする請求項1から3のいずれか一項に記載の空間電荷測定用の校正試料。   The space charge measurement calibration sample according to any one of claims 1 to 3, wherein the insulating part is formed of a resin material. 前記絶縁部を、ポリメタクリル酸メチル樹脂により形成したことを特徴とする請求項4記載の空間電荷測定用の校正試料。   The space charge measurement calibration sample according to claim 4, wherein the insulating portion is formed of a polymethyl methacrylate resin. 請求項1から5のいずれか一項に記載の校正試料を用いた空間電荷測定方法であって、
一方の前記電極に直流電圧を印加すると共に他方の前記電極にパルス電圧を印加した状態での圧電素子の出力波形の検出を行う前と後の両方において、前記パルス電圧のみを前記他方の電極に印加して前記圧電素子の出力波形の検出を行い、
これら前後に行われたパルス電圧のみを印加した状態での圧電素子の出力波形を比較することにより、前記直流電圧とパルス電圧の両方を印加したときに校正試料への電荷残留が生じなかったことを判定することを特徴とする空間電荷測定用の校正試料を用いた校正方法。
A space charge measurement method using the calibration sample according to any one of claims 1 to 5,
Before and after detecting the output waveform of the piezoelectric element with a DC voltage applied to one of the electrodes and a pulse voltage applied to the other electrode, only the pulse voltage is applied to the other electrode. Apply to detect the output waveform of the piezoelectric element,
By comparing the output waveform of the piezoelectric element with only the pulse voltage applied before and after these, no residual charge was generated on the calibration sample when both the DC voltage and the pulse voltage were applied. A calibration method using a calibration sample for space charge measurement, characterized in that
JP2013216108A 2013-10-17 2013-10-17 Calibration sample for space charge measurement and calibration method using the same Active JP6230367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013216108A JP6230367B2 (en) 2013-10-17 2013-10-17 Calibration sample for space charge measurement and calibration method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013216108A JP6230367B2 (en) 2013-10-17 2013-10-17 Calibration sample for space charge measurement and calibration method using the same

Publications (2)

Publication Number Publication Date
JP2015078905A true JP2015078905A (en) 2015-04-23
JP6230367B2 JP6230367B2 (en) 2017-11-15

Family

ID=53010438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013216108A Active JP6230367B2 (en) 2013-10-17 2013-10-17 Calibration sample for space charge measurement and calibration method using the same

Country Status (1)

Country Link
JP (1) JP6230367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633292A (en) * 2018-12-07 2019-04-16 南瑞集团有限公司 A kind of cable shield processing method for the test of pressure wave method cable space charge
CN117590100A (en) * 2023-11-27 2024-02-23 兰州理工大学 Space charge measurement method and system based on non-contact vibration measurement

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292074A (en) * 1985-05-31 1986-12-22 Mitsubishi Cable Ind Ltd Method for measuring residual voltage of cable
JPH05196673A (en) * 1992-01-09 1993-08-06 Central Res Inst Of Electric Power Ind Measurement of distribution of accumulated spatial charge for power cable
US5247260A (en) * 1991-04-29 1993-09-21 Jacques Lewiner Methods and apparatuses for determining the distribution of electric charge in electrical insulators produced by a sudden deformation in the insulators
JPH09311122A (en) * 1996-05-22 1997-12-02 Fujikura Ltd Standard sample for measuring space charge, and method of measuring space charge
JPH1164415A (en) * 1997-08-26 1999-03-05 Hitachi Cable Ltd Measurement method for storage space charge distribution of power cable
JPH11148960A (en) * 1997-11-17 1999-06-02 Kansai Electric Power Co Inc:The Space charge measurement method
JP2000506611A (en) * 1996-03-15 2000-05-30 エービービー リサーチ リミテッド Method and apparatus for measuring space charge in cables using pulsed electroacoustic methods
JP2001222167A (en) * 2000-02-08 2001-08-17 Nitto Denko Corp Sheet for forming internal charge and transfer method
JP2002033033A (en) * 2000-07-14 2002-01-31 Toshiba Corp Detecting device of conductive foreign matter for high voltage apparatus
CN102944763A (en) * 2012-11-20 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 System and method for in-situ testing of internal electric charge and electric field distribution of dielectric material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61292074A (en) * 1985-05-31 1986-12-22 Mitsubishi Cable Ind Ltd Method for measuring residual voltage of cable
US5247260A (en) * 1991-04-29 1993-09-21 Jacques Lewiner Methods and apparatuses for determining the distribution of electric charge in electrical insulators produced by a sudden deformation in the insulators
JPH05196673A (en) * 1992-01-09 1993-08-06 Central Res Inst Of Electric Power Ind Measurement of distribution of accumulated spatial charge for power cable
JP2000506611A (en) * 1996-03-15 2000-05-30 エービービー リサーチ リミテッド Method and apparatus for measuring space charge in cables using pulsed electroacoustic methods
US6236218B1 (en) * 1996-03-15 2001-05-22 Abb Research Ltd. Method and a device for space-charge measurement in cables using a pulsed electroacoustic method
JPH09311122A (en) * 1996-05-22 1997-12-02 Fujikura Ltd Standard sample for measuring space charge, and method of measuring space charge
JPH1164415A (en) * 1997-08-26 1999-03-05 Hitachi Cable Ltd Measurement method for storage space charge distribution of power cable
JPH11148960A (en) * 1997-11-17 1999-06-02 Kansai Electric Power Co Inc:The Space charge measurement method
JP2001222167A (en) * 2000-02-08 2001-08-17 Nitto Denko Corp Sheet for forming internal charge and transfer method
JP2002033033A (en) * 2000-07-14 2002-01-31 Toshiba Corp Detecting device of conductive foreign matter for high voltage apparatus
CN102944763A (en) * 2012-11-20 2013-02-27 中国航天科技集团公司第五研究院第五一〇研究所 System and method for in-situ testing of internal electric charge and electric field distribution of dielectric material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
福永 香: ""CVケーブル絶縁体中の空間電荷分布の測定"", 電気学会論文誌A, vol. 111, no. 11, JPN6017005646, November 1991 (1991-11-01), JP, pages 988 - 992, ISSN: 0003503401 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109633292A (en) * 2018-12-07 2019-04-16 南瑞集团有限公司 A kind of cable shield processing method for the test of pressure wave method cable space charge
CN109633292B (en) * 2018-12-07 2020-12-08 南瑞集团有限公司 Cable shielding treatment method for cable space charge test by pressure wave method
CN117590100A (en) * 2023-11-27 2024-02-23 兰州理工大学 Space charge measurement method and system based on non-contact vibration measurement

Also Published As

Publication number Publication date
JP6230367B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6284425B2 (en) Calibration method of charge density in space charge distribution measurement
CN108089068B (en) Composite flat plate sample three-dimensional space charge measuring device based on electroacoustic pulse method
CN107247196B (en) Multifunctional space charge measuring system and measuring method
Kumaoka et al. Development of space charge measurement system with high positionalal resolution using pulsed electro acoustic method
CN104007330A (en) Device for measuring space charges in transformer oil under impulse voltages
US11385274B2 (en) Cable junction with integrated space charge detector
JP6230367B2 (en) Calibration sample for space charge measurement and calibration method using the same
Hussaini et al. Review of space-charge measurement using pulsed electro-acoustic method: Advantages and limitations
Xu et al. Loss current studies of partial discharge activity
JP2012154879A (en) Partial discharge measuring apparatus
KR102028287B1 (en) Apparatus for estimating space charge, system comprising the apparatus and method for using the same
Zhang et al. A Novel IEPE AE-vibration-temperature-combined intelligent sensor for defect detection of power equipment
CN104698297B (en) A kind of modification method of large scale coaxial cable insulation cable space charge measurement
Al Agry et al. Calibration of electromagnetic dot sensor—Part 2: D-dot mode
CN111722026B (en) Insulating medium space charge measuring method and system based on magnetoacoustic system
Gallot-Lavallée et al. Space charge measurement in solid dielectrics by the pulsed electro-acoustic technique
Hao et al. Space charge dynamics in oil-impregnated pressboard under AC electric field
CN104833859B (en) A kind of plane plate specimen distribution of space charge pressure wave method measurement apparatus
Zheng Application of PEA technique to space charge measurement in cylindrical geometry HV cable systems
JPS61112923A (en) Apparatus for detecting displacement
Martin et al. Measurement of the electric potential distribution on piezoelectric ceramic surface
Othman et al. Comparative study on space charge distribution measurements using PEA and PWP methods on high voltage insulation
JP2016099207A (en) Voltage measuring device
CN111398697A (en) Space charge test system and test method under periodic pulse electric field
Penttinen Design of pulsed electroacoustic measurement system for space charge characterisation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20161117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171017

R151 Written notification of patent or utility model registration

Ref document number: 6230367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350