JP2012154879A - Partial discharge measuring apparatus - Google Patents

Partial discharge measuring apparatus Download PDF

Info

Publication number
JP2012154879A
JP2012154879A JP2011016182A JP2011016182A JP2012154879A JP 2012154879 A JP2012154879 A JP 2012154879A JP 2011016182 A JP2011016182 A JP 2011016182A JP 2011016182 A JP2011016182 A JP 2011016182A JP 2012154879 A JP2012154879 A JP 2012154879A
Authority
JP
Japan
Prior art keywords
insulator
partial discharge
temperature
optical fiber
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011016182A
Other languages
Japanese (ja)
Inventor
Kazushiro Oishi
和城 大石
Yasuhiro Yoshioka
靖浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2011016182A priority Critical patent/JP2012154879A/en
Publication of JP2012154879A publication Critical patent/JP2012154879A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve electrical insulation and chemical corrosion resistance and further to detect partial discharge with high detection sensitivity/accuracy in a technique for detecting occurrence of partial discharge caused by pulse voltage application from a temperature change of an insulator.SOLUTION: A pulse power source 1 generates a pulse voltage of a fixed width in a fixed cycle while gradually increasing the pulse voltage in order to measure a partial discharge starting voltage and applies the pulse voltage between two enamel wires A and B of a twist pair sample. An optical fiber temperature sensor comprises two sensors 2A and 2B. The temperature sensor 2A fixes a sensor portion in contact with the twist pair sample and measures the temperature thereof, and the temperature sensor 2B separates a sensor portion from the twist pair sample for measuring a reference temperature of the twist pair sample, disposes the sensor portion in the vicinity of the twist pair sample and measures a surrounding temperature. A temperature indicator 3 determines and indicates a temperature difference ΔT (=T1-T2) between temperatures T1 and T2 measured by the temperature sensors 2A and 2B.

Description

本発明は、絶縁体(測定試料)に部分放電を発生させ、この部分放電の検出を基に絶縁体の絶縁劣化を判定する部分放電計測装置に係り、特にパルス電圧印加による部分放電の発生を絶縁体の温度変化から検出する計測装置に関する。   The present invention relates to a partial discharge measuring device that generates a partial discharge in an insulator (measurement sample) and determines insulation deterioration of the insulator based on the detection of the partial discharge, and particularly generates a partial discharge due to application of a pulse voltage. The present invention relates to a measuring device that detects a temperature change of an insulator.

電動機・コンデンサ・ケーブルなど、電気機器の導体間を絶縁する絶縁体中に微小な空隙状欠陥などがあると、電気機器の導体に印加される交流電圧やパルス電圧によって空隙部分に電界が集中し、絶縁体中で微弱な放電が発生する。この放電現象は、部分放電と呼ばれ、絶縁体の内部に限らず、絶縁体の表面の放電、あるいは空気に晒された高圧充電部でも同様な現象が発生する。このような部分放電の発生は、絶縁体の劣化を進展させ、長期間の部分放電によって絶縁体に絶縁破壊が発生、例えば電動機の巻線(エナメル線)に絶縁破壊が発生すると、その導体間や電極間に短絡事故や焼損を起こす。   If there are minute voids in the insulator that insulates the conductors of electrical equipment such as motors, capacitors, cables, etc., the electric field concentrates on the gap due to the AC voltage or pulse voltage applied to the electrical equipment conductor A weak discharge is generated in the insulator. This discharge phenomenon is called partial discharge, and the same phenomenon occurs not only in the interior of the insulator but also in the discharge of the surface of the insulator or in the high-voltage charging portion exposed to air. The occurrence of such partial discharge advances the deterioration of the insulator, causing dielectric breakdown in the insulator due to long-term partial discharge. For example, when dielectric breakdown occurs in the winding (enameled wire) of an electric motor, Cause short circuit accidents or burning between electrodes.

部分放電計測装置は、絶縁劣化の度合い判定に、部分放電開始電圧(PDIV:Partial Discharge Inception Voltage)を測定する。このPDIVは、絶縁体に印加する電圧を低い値から徐々に上昇させ、この電圧上昇で絶縁体に部分放電が発生したときの電圧値であり、この部分放電が最初に発生したときの電圧値の高低から絶縁劣化の度合い、すなわち電圧値が低いほど絶縁劣化が進んでいると判定される。   The partial discharge measuring device measures a partial discharge start voltage (PDIV) for determining the degree of insulation deterioration. The PDIV is a voltage value when the voltage applied to the insulator is gradually increased from a low value, and a partial discharge is generated in the insulator due to the voltage increase, and a voltage value when the partial discharge is first generated. It is determined that the degree of insulation deterioration progresses from the height of the lower the degree of insulation deterioration, that is, the lower the voltage value.

上記のPDIVの測定値は、絶縁体に印加する電圧波形、印加電圧の上昇速度、部分放電の検出方法で異なる。例えば、印加する電圧波形には交流電圧とパルス電圧があり、パルス電圧にも同じ極性で複数のパルスを出力する片極性(単極性)パターンと、極性を反転して出力する両極性(双極性)パターンがあり、これら測定条件によって異なる値を呈する。   The measured value of PDIV differs depending on the voltage waveform applied to the insulator, the rising speed of the applied voltage, and the partial discharge detection method. For example, there are AC voltage and pulse voltage in the applied voltage waveform, and the unipolar (single polarity) pattern that outputs multiple pulses with the same polarity as the pulse voltage, and the bipolar polarity (bipolar) that is output with the polarity reversed ) There are patterns, and these values vary depending on these measurement conditions.

これら測定条件のうち、パルス電圧印加によって発生させる部分放電の検出方法は、インバータ駆動モータの巻線における部分放電開始電圧の測定で非常に重要になってきている。インバータ駆動ではモータ巻線にパルス波形状の電圧が印加されることにより、交流電圧とは違った故障モードが発生することが予想されるためである。   Among these measurement conditions, a method for detecting a partial discharge generated by applying a pulse voltage has become very important in measuring a partial discharge start voltage in a winding of an inverter drive motor. This is because, in the inverter drive, a failure mode different from the AC voltage is expected to occur when a voltage in the form of a pulse wave is applied to the motor winding.

パルス電圧印加による部分放電検出は、交流電源で用いる検知器類の仕様では使用できず、新しい検出方法が考えられている。このパルス電圧印加による部分放電発生の検出方法と問題点を以下に示す。   Partial discharge detection by applying a pulse voltage cannot be used in the specification of detectors used in an AC power supply, and a new detection method is considered. A method for detecting the occurrence of partial discharge due to the application of the pulse voltage and its problems are described below.

(1)電磁波をアンテナで受信する方法
部分放電が発生した時の電磁波をアンテナで受信抽出する方法である。部分放電の周波数帯域は0.7〜5GHzであり、この帯域すべてもしくは一部帯域電磁波を抽出する。なお、部分放電位置の特定を行うために、2本以上のアンテナを用いる場合もある。
(1) Method of receiving electromagnetic waves with antenna This is a method of receiving and extracting electromagnetic waves with an antenna when partial discharge occurs. The frequency band of partial discharge is 0.7 to 5 GHz, and all or a partial band electromagnetic wave is extracted. Note that two or more antennas may be used to specify the partial discharge position.

例えば、特許文献1では、部分放電信号を含む信号を変流器(CT)で検出やアンテナで受信し、この信号から複数の周波数帯に分配してそれぞれパルス信号に変換し、変換したパルス信号からパルス数ごとに分類してデータとして抽出し、抽出されたデータの信号発生時間を印加電圧の1/2周期またはn周期ごとに区切ってデータを信号処理し、その信号処理により得たデータ分布パターンと、予め部分放電発生時のデータ分布パターンやノイズ信号分布パターンが格納された診断データベースの分布パターンと照合し、その照合結果から部分放電信号の有無を判定する。   For example, in Patent Document 1, a signal including a partial discharge signal is detected by a current transformer (CT) or received by an antenna, and this signal is distributed to a plurality of frequency bands and converted into pulse signals, respectively, and the converted pulse signal The data distribution obtained by performing signal processing by classifying the number of pulses and extracting the data as data, dividing the signal generation time of the extracted data into ½ cycles or n cycles of the applied voltage, and processing the data. The pattern is collated with a distribution pattern of a diagnostic database in which a data distribution pattern and a noise signal distribution pattern at the time of partial discharge are stored in advance, and the presence / absence of a partial discharge signal is determined from the collation result.

このアンテナ受信による検出方法は、非常に一般的な方法であるが、周囲からの電磁ノイズ(携帯電話などの通信機器、電気設備、部分放電検出装置の電源)の影響が大きく、ノイズ除去のための複雑な処理が必要である。   This detection method using antenna reception is a very general method, but it is greatly affected by electromagnetic noise from the surroundings (communication equipment such as mobile phones, electrical equipment, and power supplies for partial discharge detection devices), so that noise can be removed. Complicated processing is required.

(2)音響センサで受信する方法
部分放電が発生したときの放電音を音響センサで捉える方法である。アンテナ受信と同様に、部分放電の周波数帯域すべてもしくは一部帯域を検出する。この方法も一般的に用いられるが、電磁波の受信と同様、周囲から発生する音(ノイズ)の影響を受ける。
(2) Method of receiving by acoustic sensor This is a method of capturing a discharge sound when a partial discharge occurs by an acoustic sensor. Similar to antenna reception, all or part of the frequency band of partial discharge is detected. Although this method is also generally used, it is affected by sound (noise) generated from the surroundings as in the case of reception of electromagnetic waves.

(3)放電光を検出する方法
部分放電が生じると光が発生する。この光を光電子増倍管で捉える方法である。この方法は、光を検出するため暗室で行う必要がある。また、部分放電で生じる光はごく僅かであり、非常に高感度の光電子増倍管が必要となる。
(3) Method of detecting discharge light Light is generated when partial discharge occurs. This is a method of capturing this light with a photomultiplier tube. This method needs to be performed in a dark room to detect light. Further, the amount of light generated by the partial discharge is very small, and an extremely high sensitivity photomultiplier tube is required.

(4)印加電圧のひずみやインピーダンスの変化を測定する方法
絶縁体で絶縁される導体にパルス状の電圧を印加すると、絶縁体に放電が生じたときに電磁波などの影響を受け、歪んだ波形が観測される。この歪波形や回路インピーダンスの変化を測定する方法である。
(4) Method of measuring applied voltage distortion and impedance change When a pulsed voltage is applied to a conductor insulated by an insulator, the waveform is distorted by the influence of electromagnetic waves when the insulator is discharged. Is observed. This is a method of measuring changes in the distortion waveform and circuit impedance.

この方法は、周囲からの電磁ノイズの影響が大きく、特許文献1のように、ノイズ除去のための複雑な処理が必要である。   This method is greatly affected by electromagnetic noise from the surroundings, and requires complicated processing for noise removal as in Patent Document 1.

(5)部分放電による温度変化を測定する方法
熱電対または測温抵抗体を温度センサとし、放電エネルギーによる絶縁体の温度変化から部分放電を検出する方法である。
(5) Method of measuring temperature change due to partial discharge This is a method of using a thermocouple or a resistance temperature detector as a temperature sensor and detecting partial discharge from the temperature change of the insulator due to discharge energy.

例えば、エナメル線間にパルス状の電圧を印加すると、ある電圧以上で放電が生じ始める。放電箇所は電界に弱い部分でのみ生じる部分放電となる。この部分放電が生じると、放電エネルギーにより発熱して測定試料の温度を上昇させる。この温度上昇分を温度センサで測定することで部分放電が発生しているか否かを判定する。さらに、部分放電開始電圧(PDIV)も測定することができる。   For example, when a pulse voltage is applied between enamel wires, discharge starts to occur at a certain voltage or higher. The discharge location is a partial discharge that occurs only in a portion that is weak against an electric field. When this partial discharge occurs, heat is generated by the discharge energy and the temperature of the measurement sample is raised. It is determined whether or not partial discharge has occurred by measuring the temperature rise with a temperature sensor. Furthermore, the partial discharge start voltage (PDIV) can also be measured.

この方法は、上記のノイズ除去のための複雑な処理が不要になるし、光電子増倍管などの高感度センサも不要になる。   This method eliminates the need for complicated processing for noise removal as described above, and eliminates the need for highly sensitive sensors such as photomultiplier tubes.

特開2010−133747号公報JP 2010-133747 A

前記のように、放電エネルギーによる絶縁体の温度変化から部分放電を検出する方法は、他の方法に比して、ノイズ除去のための複雑な処理が不要になるし、光電子増倍管などの高感度のセンサも不要となるが、以下の問題がある。   As described above, the method for detecting a partial discharge from the temperature change of the insulator due to the discharge energy eliminates the need for complicated processing for noise removal, as compared to other methods, and provides a photomultiplier tube or the like. A highly sensitive sensor is also unnecessary, but has the following problems.

絶縁体の温度を測定する温度センサには、熱電対(または測温抵抗体)を用いる。しかし、通常の熱電対は接点部を保護するため、ステンレス保護管またはセラミック保護管で覆われている。ステンレス保護管は伝熱性に優れているが、電気的絶縁性がないため、放電によって短絡事故が起きる場合がある。逆に、セラミック保護管は電気的絶縁性に優れるが、伝熱性が悪く、また肉厚を薄く出来ないため熱的応答性が非常に悪い。保護管のない熱電対は放電電流が温度測定系に流れて破損する。このため、熱電対を用いた温度測定方法は、高電圧を印加した状態で行うPDIV測定には使用できない。   A thermocouple (or a resistance temperature detector) is used as a temperature sensor for measuring the temperature of the insulator. However, a normal thermocouple is covered with a stainless steel protective tube or a ceramic protective tube in order to protect the contact portion. Although the stainless steel protective tube is excellent in heat conductivity, there is a case where a short circuit accident may occur due to electric discharge because there is no electrical insulation. On the contrary, the ceramic protective tube is excellent in electrical insulation, but has poor heat conductivity, and since the thickness cannot be reduced, the thermal response is very poor. A thermocouple without a protective tube is damaged by discharge current flowing through the temperature measurement system. For this reason, the temperature measurement method using a thermocouple cannot be used for PDIV measurement performed in a state where a high voltage is applied.

特殊な例として、プラスチック樹脂(フィルム)で被覆した熱電対がある。ステンレス保護管のものと比較してやや熱応答性に欠けるが、電気的絶縁性に優れる。しかし、放電電界中で使用すると樹脂に化学的腐食を起し、やがて破損する。   A special example is a thermocouple coated with a plastic resin (film). Compared to the stainless steel protective tube, it is slightly inferior in thermal response, but it has excellent electrical insulation. However, when it is used in a discharge electric field, it causes chemical corrosion to the resin and eventually breaks.

本発明の目的は、パルス電圧印加による部分放電の発生を絶縁体の温度変化から検出する手法において、電気的絶縁性および化学的腐食耐性に優れ、しかも高い検出感度・精度で部分放電を検出できる部分放電計測装置を提供することにある。   An object of the present invention is a method for detecting the occurrence of partial discharge due to application of a pulse voltage from a temperature change of an insulator, which is excellent in electrical insulation and chemical corrosion resistance, and can detect partial discharge with high detection sensitivity and accuracy. It is to provide a partial discharge measuring device.

本発明は、前記の課題を解決するため、絶縁体(測定試料)にパルス電圧を印加して絶縁体に部分放電を発生させ、絶縁体の温度を光ファイバの熱膨張を利用した光ファイバ式温度センサで測定し、この温度変化から絶縁体の部分放電の発生を検出するようにしたもので、以下の装置を特徴とする。   In order to solve the above-mentioned problems, the present invention applies a pulse voltage to an insulator (measurement sample) to generate a partial discharge in the insulator, and the temperature of the insulator is an optical fiber type utilizing the thermal expansion of the optical fiber. It is measured by a temperature sensor, and the occurrence of partial discharge of the insulator is detected from this temperature change, and features the following devices.

(1)絶縁体にパルス電圧を印加して該絶縁体に部分放電を発生させ、この部分放電の発生を該絶縁体の温度変化から検出し、該検出を基に絶縁体の絶縁劣化を判定する部分放電計測装置であって、
センサ部分を光ファイバで構成し、部分放電による絶縁体の局所発熱で該光ファイバが熱膨張し、この熱膨張による導通光のひずみ量から前記絶縁体の温度を測定する光ファイバ式温度センサを備え、
前記光ファイバ式温度センサで測定する絶縁体の温度変化から該絶縁体の部分放電の発生を検出することを特徴とする。
(1) Apply a pulse voltage to the insulator to generate a partial discharge in the insulator, detect the partial discharge from the temperature change of the insulator, and determine the insulation deterioration of the insulator based on the detection A partial discharge measuring device,
An optical fiber temperature sensor for measuring the temperature of the insulator from the amount of distortion of the conduction light due to the thermal expansion of the optical fiber due to the local heat generation of the insulator due to partial discharge. Prepared,
Generation of partial discharge of the insulator is detected from a temperature change of the insulator measured by the optical fiber temperature sensor.

(2)前記光ファイバ式温度センサは、
センサ部分を前記絶縁体に接触固定させ、絶縁体にパルス電圧を印加したときの該絶縁体の温度を測定する第1の光ファイバ式温度センサと、
センサ部分を前記絶縁体の近傍に配置し、該絶縁体の周辺温度を測定する第2の光ファイバ式温度センサを備え、
前記第1の光ファイバ式温度センサで測定する温度と、前記第2の光ファイバ式温度センサで測定する温度との温度差から該絶縁体の部分放電の発生を検出することを特徴とする。
(2) The optical fiber type temperature sensor is
A first optical fiber temperature sensor for fixing a sensor part to the insulator and measuring a temperature of the insulator when a pulse voltage is applied to the insulator;
A sensor portion is disposed in the vicinity of the insulator, and a second optical fiber temperature sensor for measuring the ambient temperature of the insulator is provided.
Generation of partial discharge of the insulator is detected from a temperature difference between a temperature measured by the first optical fiber temperature sensor and a temperature measured by the second optical fiber temperature sensor.

(3)前記光ファイバ式温度センサは、センサ部分を前記絶縁体に接触固定させて該絶縁体の温度を測定する1つの光ファイバ式温度センサで構成し、
絶縁体にパルス電圧を印加したときの前記光ファイバ式温度センサで測定する該絶縁体の温度と、パルス電圧を印加していないときの該絶縁体の温度との温度差から、該絶縁体の部分放電の発生を検出することを特徴とする。
(3) The optical fiber type temperature sensor is constituted by a single optical fiber type temperature sensor that measures the temperature of the insulator by fixing the sensor portion to the insulator.
From the temperature difference between the temperature of the insulator measured by the optical fiber temperature sensor when a pulse voltage is applied to the insulator and the temperature of the insulator when a pulse voltage is not applied, It is characterized by detecting the occurrence of partial discharge.

(4)一定周期で一定幅のパルス電圧を徐々に高めながら前記絶縁体に印加するパルス電源を備え、
前記パルス電圧の印加で、前記絶縁体に部分放電が発生したときの部分放電開始電圧PDIVから該絶縁体の絶縁劣化の度合いを判定することを特徴とする。
(4) A pulse power supply that is applied to the insulator while gradually increasing a pulse voltage with a constant width at a constant period,
The degree of insulation deterioration of the insulator is determined from the partial discharge start voltage PDIV when the partial discharge is generated in the insulator by the application of the pulse voltage.

(5)前記パルス電源は、絶縁体に部分放電が起きやすい波形のパルス電圧を、正極または負極の一方に繰り返して出力する片極性パルス電圧発生手段、または正極・負極交互に出力する両極性パルス電圧発生手段を備えたことを特徴とする。   (5) The pulse power source is a unipolar pulse voltage generating means for repeatedly outputting a pulse voltage having a waveform that is likely to cause partial discharge to the insulator to either the positive electrode or the negative electrode, or a bipolar pulse that outputs the positive electrode and the negative electrode alternately. A voltage generating means is provided.

(6)前記光ファイバ式温度センサは、PWM波形のパルス電圧が印加される電動機巻線の巻き始めの付け根位置に設置し、該巻線の温度を測定することを特徴とする。   (6) The optical fiber type temperature sensor is installed at the base position of the winding start of the motor winding to which the pulse voltage of the PWM waveform is applied, and measures the temperature of the winding.

以上のとおり、本発明によれば、絶縁体(測定試料)にパルス電圧を印加して絶縁体に部分放電を発生させ、絶縁体の温度を光ファイバの熱膨張を利用した光ファイバ式温度センサで測定し、この温度変化から絶縁体の部分放電の発生を検出するようにしたため、電気的絶縁性および化学的腐食耐性に優れ、しかも高い検出感度・精度で部分放電を検出できる。   As described above, according to the present invention, a pulse voltage is applied to an insulator (measurement sample) to generate a partial discharge in the insulator, and the temperature of the insulator is measured using the thermal expansion of the optical fiber. Since the occurrence of partial discharge of the insulator is detected from this temperature change, the partial discharge can be detected with excellent electrical insulation and chemical corrosion resistance and high detection sensitivity and accuracy.

本発明の実施形態を示す部分放電計測装置の構成図。The block diagram of the partial discharge measuring device which shows embodiment of this invention. 光ファイバ式温度センサによる温度測定原理の説明図。Explanatory drawing of the temperature measurement principle by an optical fiber type temperature sensor. パルス電圧波形と部分放電開始電圧の測定結果。Measurement results of pulse voltage waveform and partial discharge start voltage. 片極性パルス電圧波形における電圧(V)−時間(t)特性の試験結果。The test result of the voltage (V) -time (t) characteristic in a unipolar pulse voltage waveform. 両極性パルス電圧波形における電圧(V)−時間(t)特性の試験結果。The test result of the voltage (V) -time (t) characteristic in a bipolar pulse voltage waveform. 印加電圧と放電電荷との関係図。The relationship diagram of an applied voltage and discharge charge. 光ファイバ式温度センサの取り付け構造例。An example of an optical fiber temperature sensor mounting structure.

(1)装置の構成
図1は部分放電計測装置の構成を示す。同図は測定試料としてツイストペア試料を用いた場合であり、計測装置はパルス電源と、光ファイバ式温度センサと、温度表示器(演算器)で構成する。
(1) Device Configuration FIG. 1 shows a configuration of a partial discharge measuring device. This figure shows a case where a twisted pair sample is used as a measurement sample, and the measurement device is composed of a pulse power source, an optical fiber temperature sensor, and a temperature display (calculator).

パルス電源1は、部分放電開始電圧PDIVを測定するため、一定周期で一定幅のパルス(矩形波)の電圧を徐々に高めながら発生し、このパルス電圧をツイストペア試料の2本のエナメル線A,Bの線間に印加する。光ファイバ式温度センサは、2つのセンサ2A、2Bで構成し、一方の温度センサ2Aはツイストペア試料にセンサ部分を接触固定させてツイストペア試料自体の温度を測定し、他方の温度センサ2Bはツイストペア試料の基準温度測定用としてセンサ部分をツイストペア試料から離してその近傍に配置し、ツイストペア試料の周辺温度を測定する。温度表示器3は温度センサ2Aおよび2Bで測定する温度T1およびT2の温度差ΔT(=T1−T2)を求めて表示する。   In order to measure the partial discharge start voltage PDIV, the pulse power source 1 is generated while gradually increasing the voltage of a pulse (rectangular wave) having a constant width at a constant cycle, and this pulse voltage is generated by two enamel wires A, Applied between B lines. The optical fiber temperature sensor includes two sensors 2A and 2B. One temperature sensor 2A measures the temperature of the twisted pair sample itself by fixing the sensor portion to the twisted pair sample, and the other temperature sensor 2B is the twisted pair sample. In order to measure the reference temperature, the sensor portion is separated from the twisted pair sample and arranged in the vicinity thereof, and the ambient temperature of the twisted pair sample is measured. The temperature indicator 3 calculates and displays the temperature difference ΔT (= T1−T2) between the temperatures T1 and T2 measured by the temperature sensors 2A and 2B.

(2)温度センサの構成
光ファイバ式温度センサ2A、2Bは、コア素材が石英ガラスで構成される光ファイバでセンサ部分を構成し、この光ファイバの熱膨張による光の波長・屈折率・透過率などの変化を捉えて温度を測定する。この構成により、電気的絶縁性が非常に優れ、さらに光ファイバが無機材料であることから樹脂材料と比較して部分放電による劣化を受けにくい構成になる。
(2) Configuration of temperature sensor The optical fiber type temperature sensors 2A and 2B are composed of an optical fiber having a core material made of quartz glass, and the wavelength, refractive index, and transmission of light due to thermal expansion of the optical fiber. Measure temperature by capturing changes such as rate. With this configuration, the electrical insulation is very excellent, and furthermore, since the optical fiber is an inorganic material, it is less susceptible to deterioration due to partial discharge than a resin material.

図2は光ファイバ式温度センサによる温度測定原理の説明図である。ツイストペア試料A,Bに相当するエナメル電線束から部分放電が発生すると、放電による局所発熱が生じる。光ファイバ式温度センサ2Aはこの部分放電による発熱によってセンサ部分である光ファイバが熱膨張する。この光ファイバの熱膨張量をレーザなどの導通光のひずみ量として高い感度で測定し、あらかじめ求めておいたひずみ量―温度校正線に従って高い精度の温度測定値を得る。   FIG. 2 is an explanatory diagram of the temperature measurement principle by the optical fiber type temperature sensor. When partial discharge is generated from the enamel wire bundle corresponding to the twisted pair samples A and B, local heat generation is caused by the discharge. In the optical fiber type temperature sensor 2A, the optical fiber which is a sensor part is thermally expanded by heat generated by the partial discharge. The amount of thermal expansion of the optical fiber is measured with high sensitivity as the amount of strain of conduction light such as a laser, and a highly accurate temperature measurement value is obtained according to the strain-temperature calibration line obtained in advance.

(3)部分放電の検出動作
図1の構成において、パルス電源1によってツイストペア試料A,Bに一定周期で一定幅のパルス電圧を徐々に高めながら印加した場合、このパルス電圧でツイストペア試料に部分放電が発生したか否かによって、ツイストペア試料の温度上昇に変化が生じ、このときの温度を温度センサ2Aで測定する。一方、ツイストペア試料の周辺温度(ツイストペア試料の温度が上昇する直前の温度)を温度センサ2Bで連続的に測定する。
(3) Partial discharge detection operation In the configuration shown in FIG. 1, when a pulse power supply 1 applies a pulse voltage of a constant width to a twisted pair sample A, B while gradually increasing it at a constant period, a partial discharge is applied to the twisted pair sample with this pulse voltage. The temperature rise of the twisted pair sample varies depending on whether or not the occurrence of the occurrence of the occurrence, and the temperature at this time is measured by the temperature sensor 2A. On the other hand, the ambient temperature of the twisted pair sample (the temperature immediately before the temperature of the twisted pair sample rises) is continuously measured by the temperature sensor 2B.

温度表示器3は、温度センサ2Aと温度センサ2Bでそれぞれ測定する温度の差ΔT(=T1−T2)を表示する。この温度差ΔTが一定の閾値を超えたときに、ツイストペア試料A,Bに部分放電が発生したと判定する。また、この判定が得られたときにパルス電源が発生したパルス電圧を部分放電開始電圧(PDIV)として求める。   The temperature indicator 3 displays a temperature difference ΔT (= T1−T2) measured by the temperature sensor 2A and the temperature sensor 2B. When the temperature difference ΔT exceeds a certain threshold value, it is determined that partial discharge has occurred in the twisted pair samples A and B. Further, the pulse voltage generated by the pulse power supply when this determination is obtained is obtained as a partial discharge start voltage (PDIV).

なお、光ファイバ式温度センサを1つだけ用いる装置構成とする場合は、この温度センサをツイストペア試料に接触固定し、ツイストペア試料にはパルス電圧を徐々に上昇させて印加していき、パルス電圧を印加していないときの測定温度をツイストペア試料の基準温度T2とし、パルス電圧を印加したときの測定温度をツイストペア試料の測定温度T1とすることで、ツイストペア試料に部分放電が発生したか否かの判定、および部分放電が発生したときの部分放電開始電圧(PDIV)を求めることができる。   When the device configuration uses only one optical fiber temperature sensor, this temperature sensor is fixed in contact with the twisted pair sample, and the pulse voltage is applied to the twisted pair sample by gradually increasing the pulse voltage. Whether or not partial discharge has occurred in the twisted pair sample by setting the measured temperature when not applied as the reference temperature T2 of the twisted pair sample and the measured temperature when applying the pulse voltage as the measured temperature T1 of the twisted pair sample. Determination and partial discharge start voltage (PDIV) when partial discharge occurs can be obtained.

(4)パルス電圧波形と部分放電開始電圧の測定
図1で構成した部分放電計測装置で発生するパルス電圧波形と部分放電開始電圧の測定結果を図3に示す。
(4) Measurement of Pulse Voltage Waveform and Partial Discharge Start Voltage FIG. 3 shows the measurement results of the pulse voltage waveform and partial discharge start voltage generated by the partial discharge measuring apparatus configured in FIG.

ここで、印加するパルス電圧は、片極性の場合は正極または負極の一方にパルス波形を繰り返して出力したもの、両極性の場合は正極・負極交互にパルス電圧波形を出力したものである。図3の(a)は実際のパルス電圧波形である。パルス波形の詳細は表1に記載している。立ち上がり時間・立ち下がり時間を100ns未満とし、サージによる部分放電が起きやすい波形とする。   Here, the pulse voltage to be applied is one in which the pulse waveform is repeatedly output to one of the positive electrode and the negative electrode in the case of unipolar, and the pulse voltage waveform is output alternately in the positive and negative electrodes in the case of both polarities. FIG. 3A shows an actual pulse voltage waveform. Details of the pulse waveform are listed in Table 1. The rise time and fall time are set to less than 100 ns, and the waveform is likely to cause partial discharge due to surge.

Figure 2012154879
Figure 2012154879

使用した光ファイバ式温度センサは、フィゾー・テクノロジー社の光ファイバ温度センサ(型式:FOT-L)とシグナルコンディショナを用いたが、特に限定されるものではない。   The optical fiber temperature sensor used was an optical fiber temperature sensor (model: FOT-L) manufactured by Fizeau Technology, Inc. and a signal conditioner, but is not particularly limited.

使用したエナメル電線は日立電線製のKMK−20E、線径φ=0.8mmのものを使用した。この電線は部分放電が生じると数時間で皮膜が破壊する。   The enameled wire used was KMK-20E manufactured by Hitachi Cable, with a wire diameter of φ = 0.8 mm. When a partial discharge occurs in this electric wire, the coating is destroyed in a few hours.

図3の(b)は温度測定結果である。片極性のパルス電圧波形の場合では1.54kVp−pを超えると温度上昇値(温度差)ΔTが上昇したことから、片極性でのPDIVは約1.6kVp−pである。両極性の場合では1.87kVp−pを超えると温度上昇値(温度差)ΔTが上昇したことから、両極性でのPDIVは約1.9kVp−pである。   FIG. 3B shows the temperature measurement result. In the case of a unipolar pulse voltage waveform, the temperature rise value (temperature difference) ΔT increases when the pulse voltage waveform exceeds 1.54 kVp-p, and therefore the PDIV in the unipolar is about 1.6 kVp-p. In the case of both polarities, since the temperature rise value (temperature difference) ΔT rises above 1.87 kVp-p, the PDIV in both polarities is about 1.9 kVp-p.

図4、図5は片極性・両極性パルス電圧波形における電圧(V)−時間(t)特性の試験結果である。図4の片極性の場合は1.54kVp−pでは120時間以上の寿命であり、部分放電が生じていないか、検出限界以下である。図5の両極性の場合は1.87kVp−pで120時間以上の寿命であり、部分放電が生じていないか、検出限界以下である。   4 and 5 are test results of voltage (V) -time (t) characteristics in a unipolar / bipolar pulse voltage waveform. In the case of the unipolar in FIG. 4, the lifetime is 120 hours or longer at 1.54 kVp-p, and partial discharge has not occurred or is below the detection limit. In the case of the bipolar shown in FIG. 5, the lifetime is 120 hours or more at 1.87 kVp-p, and partial discharge does not occur or is below the detection limit.

これら2つのV−t特性で寿命が非常に長くなる電圧と図3(b)の温度測定結果で電線温度が上昇しない最大の電圧とが完全に一致している。すなわち、本実施形態による部分放電計測装置で温度上昇値(温度差)ΔT>0であれば、部分放電が生じていると判断できる。   The voltage at which the lifetime becomes very long by these two Vt characteristics and the maximum voltage at which the wire temperature does not increase in the temperature measurement result of FIG. That is, if the temperature rise value (temperature difference) ΔT> 0 in the partial discharge measuring apparatus according to the present embodiment, it can be determined that partial discharge has occurred.

以上の試験結果から、光ファイバ式温度センサによる温度測定によって、絶縁体の部分放電開始電圧を測定できることが検証されたが、どの程度の放電電荷に対して応答しているかどうかを校正しておく必要がある。そこで、同じ電線を用い、50Hz交流電源を使用して印加電圧と放電電荷の関係を調べた。その結果を図6に示す。   From the above test results, it was verified that the partial discharge start voltage of the insulator can be measured by temperature measurement using an optical fiber temperature sensor. However, it is calibrated whether or not it is responding to the discharge charge. There is a need. Therefore, using the same electric wire, the relationship between the applied voltage and the discharge charge was examined using a 50 Hz AC power supply. The result is shown in FIG.

温度上昇のない最大電圧(l.87kVp−p)では放電電荷110pC(ピコ・クーロン)であり、これ以上の電圧では部分放電が発生していると判断できる。したがって、実施した装置構成では110pC以上の放電電荷に対して有効に測定できることが判る。   The discharge voltage is 110 pC (pico coulomb) at the maximum voltage (1.87 kVp-p) with no temperature rise, and it can be determined that partial discharge is occurring at a voltage higher than this. Therefore, it can be seen that the implemented device configuration can effectively measure discharge charges of 110 pC or more.

なお、温度センサの取り付け方・放電電荷の測定方法を最適化することで測定精度が向上するため、図3及び図6の結果はこの限りではない。   Note that the results of FIGS. 3 and 6 are not limited to this because the measurement accuracy is improved by optimizing the temperature sensor mounting method and the discharge charge measurement method.

(5)電動機巻線の部分放電測定
以上までの説明は測定試料をツイストペア試料とする場合であるが、実際の電動機(モータ)に実装される巻線の部分放電も同じ原理で測定できる。ただし、光ファイバ式温度センサの実装は図7に示す取り付け構造とする。
(5) Partial Discharge Measurement of Motor Winding The above explanation is for the case where the measurement sample is a twisted pair sample, but the partial discharge of the winding mounted on the actual motor (motor) can also be measured by the same principle. However, the mounting of the optical fiber temperature sensor has the mounting structure shown in FIG.

図7はスター結線の場合における巻線の1例である。実際の鉄心は円筒状であるが、説明上平板状にしてある。実際のモータの巻線に印加される電圧は、PWM制御インバータから巻線に駆動電流を流す場合、PWM波形のパルス電圧が印加され、モータの端子に入力される。このとき巻線の巻始め位置で電界集中して放電が起きやすい。   FIG. 7 shows an example of a winding in the case of star connection. Although the actual iron core is cylindrical, it has a flat plate shape for explanation. As the voltage applied to the actual motor winding, when a drive current is passed from the PWM control inverter to the winding, a pulse voltage having a PWM waveform is applied and input to the motor terminal. At this time, the electric field concentrates at the winding start position of the winding, and discharge is likely to occur.

そこで、巻線の巻き始めの付け根位置に光ファイバ式温度センサ2(U),2(V)を設置する。センサ数は各相1つとし、パルス状の電圧波形をU−V相間(U−W相間)に印加して通電前後の温度差ΔTを測定する。   Therefore, the optical fiber temperature sensors 2 (U) and 2 (V) are installed at the base position of the winding start. The number of sensors is one for each phase, and a pulsed voltage waveform is applied between the U and V phases (between U and W phases) to measure the temperature difference ΔT before and after energization.

A,B エナメル線(測定試料)
1 パルス電源
2A,2B,2(U),2(V) 光ファイバ式温度センサ
3 温度表示器(演算器)
A, B Enamelled wire (measurement sample)
1 Pulse power supply 2A, 2B, 2 (U), 2 (V) Optical fiber temperature sensor 3 Temperature indicator (calculator)

Claims (6)

絶縁体にパルス電圧を印加して該絶縁体に部分放電を発生させ、この部分放電の発生を該絶縁体の温度変化から検出し、該検出を基に絶縁体の絶縁劣化を判定する部分放電計測装置であって、
センサ部分を光ファイバで構成し、部分放電による絶縁体の局所発熱で該光ファイバが熱膨張し、この熱膨張による導通光のひずみ量から前記絶縁体の温度を測定する光ファイバ式温度センサを備え、
前記光ファイバ式温度センサで測定する絶縁体の温度変化から該絶縁体の部分放電の発生を検出することを特徴とする部分放電計測装置。
A partial discharge is generated by applying a pulse voltage to the insulator to generate a partial discharge in the insulator, detecting the occurrence of this partial discharge from the temperature change of the insulator, and determining insulation deterioration of the insulator based on the detection A measuring device,
An optical fiber temperature sensor for measuring the temperature of the insulator from the amount of distortion of the conduction light due to the thermal expansion of the optical fiber due to the local heat generation of the insulator due to partial discharge. Prepared,
A partial discharge measuring apparatus for detecting occurrence of partial discharge of an insulator from a temperature change of the insulator measured by the optical fiber temperature sensor.
前記光ファイバ式温度センサは、
センサ部分を前記絶縁体に接触固定させ、絶縁体にパルス電圧を印加したときの該絶縁体の温度を測定する第1の光ファイバ式温度センサと、
センサ部分を前記絶縁体の近傍に配置し、該絶縁体の周辺温度を測定する第2の光ファイバ式温度センサを備え、
前記第1の光ファイバ式温度センサで測定する温度と、前記第2の光ファイバ式温度センサで測定する温度との温度差から該絶縁体の部分放電の発生を検出することを特徴とする請求項1に記載の部分放電計測装置。
The optical fiber type temperature sensor is
A first optical fiber temperature sensor for fixing a sensor part to the insulator and measuring a temperature of the insulator when a pulse voltage is applied to the insulator;
A sensor portion is disposed in the vicinity of the insulator, and a second optical fiber temperature sensor for measuring the ambient temperature of the insulator is provided.
The occurrence of partial discharge of the insulator is detected from a temperature difference between a temperature measured by the first optical fiber temperature sensor and a temperature measured by the second optical fiber temperature sensor. Item 2. The partial discharge measuring device according to Item 1.
前記光ファイバ式温度センサは、センサ部分を前記絶縁体に接触固定させて該絶縁体の温度を測定する1つの光ファイバ式温度センサで構成し、
絶縁体にパルス電圧を印加したときの前記光ファイバ式温度センサで測定する該絶縁体の温度と、パルス電圧を印加していないときの該絶縁体の温度との温度差から、該絶縁体の部分放電の発生を検出することを特徴とする請求項1に記載の部分放電計測装置。
The optical fiber type temperature sensor is composed of one optical fiber type temperature sensor for fixing the sensor part to the insulator and measuring the temperature of the insulator,
From the temperature difference between the temperature of the insulator measured by the optical fiber temperature sensor when a pulse voltage is applied to the insulator and the temperature of the insulator when a pulse voltage is not applied, The partial discharge measuring apparatus according to claim 1, wherein occurrence of the partial discharge is detected.
一定周期で一定幅のパルス電圧を徐々に高めながら前記絶縁体に印加するパルス電源を備え、
前記パルス電圧の印加で、前記絶縁体に部分放電が発生したときの部分放電開始電圧PDIVから該絶縁体の絶縁劣化の度合いを判定することを特徴とする請求項1〜3のいずれか1項に記載の部分放電計測装置。
A pulse power source that is applied to the insulator while gradually increasing a pulse voltage with a constant width at a constant period,
The degree of insulation deterioration of the insulator is determined from the partial discharge start voltage PDIV when the partial discharge occurs in the insulator by the application of the pulse voltage. The partial discharge measuring device described in 1.
前記パルス電源は、絶縁体に部分放電が起きやすい波形のパルス電圧を、正極または負極の一方に繰り返して出力する片極性パルス電圧発生手段、または正極・負極交互に出力する両極性パルス電圧発生手段を備えたことを特徴とする請求項1〜4のいずれか1項に記載の部分放電計測装置。   The pulse power source is a unipolar pulse voltage generating means for repeatedly outputting a pulse voltage having a waveform that is likely to cause partial discharge in an insulator to one of a positive electrode and a negative electrode, or a bipolar pulse voltage generating means for alternately outputting a positive electrode and a negative electrode The partial discharge measuring device according to claim 1, wherein the partial discharge measuring device is provided. 前記光ファイバ式温度センサは、PWM波形のパルス電圧が印加される電動機巻線の巻き始めの付け根位置に設置し、該巻線の温度を測定することを特徴とする請求項1〜5のいずれか1項に記載の部分放電計測装置。   6. The optical fiber type temperature sensor is installed at a root position at the beginning of winding of an electric motor winding to which a pulse voltage of a PWM waveform is applied, and measures the temperature of the winding. The partial discharge measuring device according to claim 1.
JP2011016182A 2011-01-28 2011-01-28 Partial discharge measuring apparatus Pending JP2012154879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016182A JP2012154879A (en) 2011-01-28 2011-01-28 Partial discharge measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016182A JP2012154879A (en) 2011-01-28 2011-01-28 Partial discharge measuring apparatus

Publications (1)

Publication Number Publication Date
JP2012154879A true JP2012154879A (en) 2012-08-16

Family

ID=46836739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016182A Pending JP2012154879A (en) 2011-01-28 2011-01-28 Partial discharge measuring apparatus

Country Status (1)

Country Link
JP (1) JP2012154879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249123A (en) * 2015-06-04 2016-12-21 发那科株式会社 Corrosion detection circuitry and motor drive
US9945897B2 (en) 2015-12-29 2018-04-17 General Electric Company Monitoring of insulation conditions during electrical system events using differential current sensor
CN109244947A (en) * 2018-08-09 2019-01-18 中国电力科学研究院有限公司 insulator mounting platform
CN109270418A (en) * 2018-06-11 2019-01-25 哈尔滨理工大学 The tangential and adjustable paper oil insulation edge flashing electrode system of normal electric field
CN112635122A (en) * 2020-12-30 2021-04-09 北京无线电计量测试研究所 Novel twisted pair and micro alternating current quantum voltage trans-temperature-zone transmission method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052540U (en) * 1991-03-12 1993-01-14 三菱電機株式会社 Microwave arc detection circuit
JPH07128394A (en) * 1993-11-01 1995-05-19 Hitachi Ltd Dielectric deterioration monitoring/diagnosing system for electric equipment
JPH09257862A (en) * 1996-03-21 1997-10-03 Toshiba Corp Device for diagnosis of winding insulation
JP2003518905A (en) * 1999-12-23 2003-06-10 シーメンス アクチエンゲゼルシヤフト Optical measuring equipment for electrical equipment
JP2006038471A (en) * 2004-07-22 2006-02-09 Kyushu Institute Of Technology Method and instrument for measuring partial discharge starting voltage
JP2006038688A (en) * 2004-07-28 2006-02-09 Hitachi Industrial Equipment Systems Co Ltd Motor coil interturn partial discharge measurement apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052540U (en) * 1991-03-12 1993-01-14 三菱電機株式会社 Microwave arc detection circuit
JPH07128394A (en) * 1993-11-01 1995-05-19 Hitachi Ltd Dielectric deterioration monitoring/diagnosing system for electric equipment
JPH09257862A (en) * 1996-03-21 1997-10-03 Toshiba Corp Device for diagnosis of winding insulation
JP2003518905A (en) * 1999-12-23 2003-06-10 シーメンス アクチエンゲゼルシヤフト Optical measuring equipment for electrical equipment
JP2006038471A (en) * 2004-07-22 2006-02-09 Kyushu Institute Of Technology Method and instrument for measuring partial discharge starting voltage
JP2006038688A (en) * 2004-07-28 2006-02-09 Hitachi Industrial Equipment Systems Co Ltd Motor coil interturn partial discharge measurement apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249123A (en) * 2015-06-04 2016-12-21 发那科株式会社 Corrosion detection circuitry and motor drive
CN106249123B (en) * 2015-06-04 2020-08-21 发那科株式会社 Corrosion detection circuit and motor drive device
US9945897B2 (en) 2015-12-29 2018-04-17 General Electric Company Monitoring of insulation conditions during electrical system events using differential current sensor
CN109270418A (en) * 2018-06-11 2019-01-25 哈尔滨理工大学 The tangential and adjustable paper oil insulation edge flashing electrode system of normal electric field
CN109244947A (en) * 2018-08-09 2019-01-18 中国电力科学研究院有限公司 insulator mounting platform
CN109244947B (en) * 2018-08-09 2021-12-03 中国电力科学研究院有限公司 Insulator mounting platform
CN112635122A (en) * 2020-12-30 2021-04-09 北京无线电计量测试研究所 Novel twisted pair and micro alternating current quantum voltage trans-temperature-zone transmission method

Similar Documents

Publication Publication Date Title
JP2012154879A (en) Partial discharge measuring apparatus
CN102298104B (en) A kind of method for detecting ground fault of bridge cable
US20090302862A1 (en) Method and system for monitoring partial discharge within an electric generator
Madonia et al. Wireless partial discharge tracking on cross-linked polyethylene MV and HV cables
Rohani et al. Evaluation of Rogowski coil sensor performance using EMTP-ATP software
JP4378478B2 (en) Method and apparatus for measuring partial discharge start voltage
JP5719970B2 (en) Scintillation estimation method
JP2018151345A (en) Partial discharge detection method and partial discharge detection device
JPH02171649A (en) Method and apparatus for detecting defect of insulated cable
Gao et al. Measurement of the positive streamer charge
CN111707909A (en) Porcelain insulator detection method and porcelain insulator detection circuit
Fuhr et al. Localization of partial discharge sources in transformers by analysis of signals in time-and frequency-domain
JP2000046886A (en) Ground fault-inspecting apparatus
Staubach et al. Direct electrical field strength distribution determination on electrical apparatus by means of an electro-optical miniature field sensor
Habel et al. Fibre-optic Sensors for Early Damage Detection in Plastic Insulations of High Voltage Facilities
Li et al. Research and application of calibration and comparison system for partial discharge live detection equipment
JP4802302B2 (en) Diagnosis method for water tree deterioration of power cables
Shafiq et al. Identifcation and Location of Partial Discharge Defects in Medium Voltage AC Cables
TW497369B (en) Method of measuring electron energy distribution in plasma region and apparatus for measuring the same
Naveen et al. Investigation of the corona discharge activity in liquid nitrogen under transient voltage conditions using fluorescent fiber sensor
Kim et al. Analysis of Methodology of Breakpoint Detection Method for 22.9 kV Submarine Power cable based on the Time Domain Reflectometer (TDR)
CN220120968U (en) Socket switch circuit searching device
Masuda et al. Discussion on Partial Discharge Measurement Technique of Cable Joint in Three Phase High Voltage Overhead Transmission Line
Li et al. Implementation of temperature monitoring for MV cables based on signal propagation
JPH01160315A (en) Collector ring spark monitor for rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104