JP2015077012A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2015077012A
JP2015077012A JP2013212398A JP2013212398A JP2015077012A JP 2015077012 A JP2015077012 A JP 2015077012A JP 2013212398 A JP2013212398 A JP 2013212398A JP 2013212398 A JP2013212398 A JP 2013212398A JP 2015077012 A JP2015077012 A JP 2015077012A
Authority
JP
Japan
Prior art keywords
power storage
storage medium
smoothing capacitor
temperature
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013212398A
Other languages
Japanese (ja)
Inventor
祐輔 中島
Yusuke Nakajima
祐輔 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2013212398A priority Critical patent/JP2015077012A/en
Publication of JP2015077012A publication Critical patent/JP2015077012A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of efficiently operating a power storage medium by avoiding an increase in internal resistance of the power storage medium due to a temperature decrease and a decrease in the capacity of the power storage medium without using an air conditioner and a heater, and the like.SOLUTION: A power storage device comprises: an inverter INV connected to a system; a smoothing capacitor C1 connected to a DC side of the inverter INV; a power storage medium 2 having an internal resistance; a DC/DC chopper 1 connected between the smoothing capacitor C1 and the power storage medium 2; and a control device 4 which controls operation of the DC/DC chopper 1. The inverter INV performs smoothing capacitor voltage constant control. When a temperature of the power storage medium 2 becomes lower than or equal to a predetermined setting value, the control device 4 repeats charge and discharge between the smoothing capacitor C1 and the power storage medium 2 by increasing and decreasing the output voltage of the DC/DC chopper 1.

Description

本発明は、 系統の電圧補償装置や、系統の電力量を充放電により調整し系統を安定させる装置などに設置された蓄電媒体の温度保持技術に関する。   The present invention relates to a temperature compensation technique for a power storage medium installed in a voltage compensation device for a system, a device for adjusting a power amount of the system by charging and discharging, and stabilizing the system.

蓄電媒体として電気二重層キャパシタを使用した瞬低補償装置が特許文献1に開示されている。図13に示すように、特許文献1は、電気二重層キャパシタの温度検出値に応じた短時間定格仕様の補償時間を満たす電圧設定値でキャパシタを充電するものである。   Patent Document 1 discloses a voltage sag compensator using an electric double layer capacitor as a power storage medium. As shown in FIG. 13, Patent Document 1 charges a capacitor with a voltage setting value that satisfies the compensation time of the short-time rated specification according to the temperature detection value of the electric double layer capacitor.

特開2008−29064号公報JP 2008-29064 A

蓄電媒体(例えば、電気二重層キャパシタ)の内部抵抗は、温度が低いほど大きい値となることが知られている。このため、蓄電媒体に蓄積されたエネルギーを効率良く取り出すためには内部抵抗を極力小さくする必要がある。このため、空調機やヒータ等を用いて蓄電媒体の周囲温度を調節していることが多い。    It is known that the internal resistance of a power storage medium (for example, an electric double layer capacitor) increases as the temperature decreases. For this reason, in order to efficiently extract the energy stored in the power storage medium, it is necessary to reduce the internal resistance as much as possible. For this reason, the ambient temperature of the power storage medium is often adjusted using an air conditioner, a heater, or the like.

しかしながら、空調機やヒータ等による蓄電媒体の温度上昇では、周囲温度を上昇させることで蓄電媒体を加温するため、直接、蓄電媒体を暖められていないことによる損失がある。また、設置環境によりヒータ量の調節が必要となる問題もある。さらに、空調機やヒータ等を設置することにより、装置のコストアップ,設置スペースの増加といった問題も生じていた。   However, when the temperature of the power storage medium is increased by an air conditioner, a heater, or the like, the power storage medium is heated by increasing the ambient temperature, and thus there is a loss due to the fact that the power storage medium is not directly warmed. There is also a problem that the amount of heater needs to be adjusted depending on the installation environment. In addition, the installation of air conditioners, heaters, and the like has also caused problems such as increased device costs and increased installation space.

以上示したようなことから、蓄電媒体を使用した蓄電装置において、空調機やヒータ等を用いずに、温度低下による蓄電媒体の内部抵抗の増大および容量の低下を回避し、効率的に蓄電媒体を運用することが課題となる。   As described above, in a power storage device using a power storage medium, without using an air conditioner, a heater, or the like, an increase in internal resistance and a decrease in capacity of the power storage medium due to a temperature drop can be avoided, and the power storage medium can be efficiently It becomes a problem to operate.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、系統に接続されたインバータと、インバータの直流側に接続された平滑コンデンサと、内部抵抗を有する蓄電媒体と、平滑コンデンサと蓄電媒体との間に接続されるDC/DCチョッパと、DC/DCチョッパの作動を制御する制御装置と、を備えた蓄電装置であって、前記インバータは、平滑コンデンサ電圧一定制御を行い、前記制御装置は、蓄電媒体の温度が予め設定された設定値以下になったとき、DC/DCチョッパの出力電圧を上下させて、平滑コンデンサと蓄電媒体との間で充放電を繰り返させることを特徴とする。   The present invention has been devised in view of the conventional problems, and one aspect thereof is an inverter connected to the system, a smoothing capacitor connected to the DC side of the inverter, and a storage medium having an internal resistance. A power storage device comprising: a DC / DC chopper connected between the smoothing capacitor and the power storage medium; and a control device for controlling the operation of the DC / DC chopper. The control device repeats charging and discharging between the smoothing capacitor and the power storage medium by raising and lowering the output voltage of the DC / DC chopper when the temperature of the power storage medium falls below a preset set value. It is characterized by making it.

また、その他の態様として、系統に接続されたインバータと、インバータの直流側に接続された蓄電媒体と、前記インバータの作動を制御する制御装置と、を備えた蓄電装置であって、前記制御装置は、蓄電媒体の温度が予め設定された設定値以下になったとき、インバータの出力電圧を上下させて、系統と蓄電媒体との間で充放電を繰り返させ、系統電圧が高い時の放電量は放電されたエネルギーがインバータのスイッチング損失で消費される量であることを特徴とする。   In another aspect, the power storage device includes an inverter connected to a system, a power storage medium connected to a DC side of the inverter, and a control device that controls the operation of the inverter, the control device Is the amount of discharge when the system voltage is high when the temperature of the power storage medium falls below a preset value, and the output voltage of the inverter is increased and decreased to repeatedly charge and discharge between the system and the power storage medium. Is characterized in that the discharged energy is the amount consumed by the switching loss of the inverter.

本発明によれば、蓄電媒体を使用した蓄電装置において、空調機やヒータ等を用いずに、温度低下による蓄電媒体の内部抵抗の増大および容量の低下を回避し、効率的に蓄電媒体を運用することが可能となる。   According to the present invention, in a power storage device using a power storage medium, without using an air conditioner or a heater, the increase in the internal resistance and capacity of the power storage medium due to a temperature drop is avoided, and the power storage medium is operated efficiently. It becomes possible to do.

実施形態1における蓄電装置を示すブロック図。1 is a block diagram illustrating a power storage device in Embodiment 1. FIG. 実施形態1における蓄電装置の充放電動作を示すフローチャート。3 is a flowchart illustrating a charge / discharge operation of the power storage device according to the first embodiment. 実施形態1における蓄電装置の充放電動作を示すタイムチャート。3 is a time chart illustrating a charge / discharge operation of the power storage device according to the first embodiment. 通常時における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus in the normal time. 低温時における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus at the time of low temperature. 実施形態2における蓄電装置を示すブロック図。FIG. 6 is a block diagram illustrating a power storage device in Embodiment 2. 通常時における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus in the normal time. 電圧補償時および電力不足時における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus at the time of voltage compensation and an electric power shortage. 電圧補償後および系統余剰電力時における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus after voltage compensation and at the time of system | strain surplus electric power. 実施形態2における蓄電装置の充放電動作を示すフローチャート。9 is a flowchart showing a charge / discharge operation of the power storage device according to the second embodiment. 低温時における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus at the time of low temperature. 低温時(系統への放電不可時)における蓄電装置の状態を示すブロック図。The block diagram which shows the state of the electrical storage apparatus at the time of low temperature (when the discharge to a system | strain is impossible). 従来の瞬低補償装置の一例を示す概略図。Schematic which shows an example of the conventional sag compensation apparatus.

以下、本発明における蓄電装置の実施形態1,2を図1〜図12に基づいて詳細に説明する。    Hereinafter, Embodiments 1 and 2 of a power storage device according to the present invention will be described in detail with reference to FIGS.

[実施形態1]
図1は、本実施形態1における蓄電装置を示すブロック図である。図1に示すように、蓄電装置は、インバータINVと、平滑コンデンサC1と、DC/DCチョッパ1と、蓄電媒体2と、蓄電媒体2の温度を検出する温度センサ3と、制御装置4と、を備えている。
[Embodiment 1]
FIG. 1 is a block diagram illustrating the power storage device according to the first embodiment. As shown in FIG. 1, the power storage device includes an inverter INV, a smoothing capacitor C1, a DC / DC chopper 1, a power storage medium 2, a temperature sensor 3 that detects the temperature of the power storage medium 2, a control device 4, It has.

インバータINVは、系統に接続され、平滑コンデンサ電圧一定制御を行う。平滑コンデンサC1の電圧が低い場合は系統の交流電圧を直流電圧に変換して平滑コンデンサC1に供給し、平滑コンデンサC1を充電する。一方、平滑コンデンサ電圧が高い場合は、平滑コンデンサC1の直流電圧を交流電圧に変換して系統に供給する。   The inverter INV is connected to the system and performs constant smoothing capacitor voltage control. When the voltage of the smoothing capacitor C1 is low, the AC voltage of the system is converted into a DC voltage and supplied to the smoothing capacitor C1, and the smoothing capacitor C1 is charged. On the other hand, when the smoothing capacitor voltage is high, the DC voltage of the smoothing capacitor C1 is converted into an AC voltage and supplied to the system.

平滑コンデンサC1は系統の交流電圧から変換された直流電圧を平滑化する。   The smoothing capacitor C1 smoothes the DC voltage converted from the AC voltage of the system.

DC/DCチョッパ1は、図示しないコイル,トランジスタ,コンデンサを用いて構成される。DC/DCチョッパ1は、直流電圧をコイル等を用いて昇降圧する機能を有する。例えば、トランジスタのスイッチング動作に応じて流れる電流をコイルに電磁エネルギーとして蓄積し、さらに、その電磁エネルギーをコンデンサに電荷を蓄積することで昇圧を行う。DC/DCチョッパ1は、周知であるため、その詳細については説明を省略する。   The DC / DC chopper 1 is configured using a coil, a transistor, and a capacitor (not shown). The DC / DC chopper 1 has a function of stepping up and down DC voltage using a coil or the like. For example, the current that flows in accordance with the switching operation of the transistor is stored as electromagnetic energy in the coil, and further, the electromagnetic energy is stored in a capacitor to increase the voltage. Since the DC / DC chopper 1 is well known, a detailed description thereof will be omitted.

蓄電媒体2は、例えば、電気二重層キャパシタであり、大容量を瞬時に充放電できる大容量コンデンサである。   The power storage medium 2 is, for example, an electric double layer capacitor, and is a large capacity capacitor that can charge and discharge a large capacity instantaneously.

制御装置4は、系統の電圧を監視する電圧監視部4aと、温度センサ3により検出された蓄電媒体2の温度と予め設定された設定温度とを比較する温度感知部4cと、温度感知部4cの比較結果に基づいてDC/DCチョッパ1に充放電信号を出力する充放電信号出力部4bと、を備えている。   The control device 4 includes a voltage monitoring unit 4a that monitors the system voltage, a temperature sensing unit 4c that compares the temperature of the power storage medium 2 detected by the temperature sensor 3 with a preset temperature, and a temperature sensing unit 4c. And a charge / discharge signal output unit 4b for outputting a charge / discharge signal to the DC / DC chopper 1 based on the comparison result.

前記蓄電装置は、系統の電力量を充放電により調整し、系統を安定させる。次に、充放電動作の運転について、図2のフローチャート,図3のタイムチャート,図4,図5のブロック図に基づいて詳細に説明する。   The said electrical storage apparatus adjusts the electric energy of a system | strain by charging / discharging, and stabilizes a system | strain. Next, the operation of the charge / discharge operation will be described in detail based on the flowchart of FIG. 2, the time chart of FIG. 3, and the block diagrams of FIGS.

まず、S1において、温度感知部4cにより、蓄電媒体2の温度が設定温度より低いか否かを判定する。蓄電媒体2の温度が設定温度以上の場合は、図4に示すように、 DC/DCチョッパ1の動作を停止し、平滑コンデンサC1と蓄電媒体2との間で充放電を行わず、待機状態とする。   First, in S1, the temperature sensing unit 4c determines whether or not the temperature of the power storage medium 2 is lower than a set temperature. When the temperature of the electric storage medium 2 is equal to or higher than the set temperature, as shown in FIG. 4, the operation of the DC / DC chopper 1 is stopped, charging / discharging is not performed between the smoothing capacitor C1 and the electric storage medium 2, and the standby state And

蓄電媒体2の温度が設定温度よりも低い場合は、S2において、充放電信号出力部4bからDC/DCチョッパ1に充放電信号を出力し、DC/DCチョッパ1を動作させる。図3,図5に示すように、DC/DCチョッパ1のスイッチング動作により平滑コンデンサC1と蓄電媒体2との間で充放電を繰り返し行い、蓄電媒体2の内部抵抗により蓄電媒体2の温度を上昇させる。   When the temperature of the power storage medium 2 is lower than the set temperature, a charge / discharge signal is output from the charge / discharge signal output unit 4b to the DC / DC chopper 1 in S2, and the DC / DC chopper 1 is operated. As shown in FIGS. 3 and 5, charging / discharging is repeatedly performed between the smoothing capacitor C <b> 1 and the power storage medium 2 by the switching operation of the DC / DC chopper 1, and the temperature of the power storage medium 2 is increased by the internal resistance of the power storage medium 2. Let

S3において、温度感知部4cにより、蓄電媒体2の温度が設定温度よりも高いか否かを判定する。蓄電媒体2の温度が設定温度以下の場合は、S2に戻り、再度、平滑コンデンサC1と蓄電媒体2との間で充放電を行う。   In S3, the temperature sensing unit 4c determines whether or not the temperature of the power storage medium 2 is higher than the set temperature. When the temperature of the power storage medium 2 is equal to or lower than the set temperature, the process returns to S2, and charging / discharging is performed again between the smoothing capacitor C1 and the power storage medium 2.

S3において、蓄電媒体2の温度が設定温度よりも高いと判断された場合は、DC/DCチョッパ1を停止させる。このように、上記S1〜S4の処理により蓄電媒体2が設定温度以下の状態を回避することができる。   When it is determined in S3 that the temperature of the power storage medium 2 is higher than the set temperature, the DC / DC chopper 1 is stopped. Thus, the state where the power storage medium 2 is equal to or lower than the set temperature can be avoided by the processes of S1 to S4.

ここで、平滑コンデンサC1,蓄電媒体2の平均電圧は一定にする。平滑コンデンサC1に電流iを流すと電圧変化は以下の(1)式となる。平均電圧を一定にするには、充電電流による電流増加分である以下の(2)式と放電電流による電圧減少分である以下の(3)式は同じとする必要がある。   Here, the average voltage of the smoothing capacitor C1 and the power storage medium 2 is made constant. When the current i is passed through the smoothing capacitor C1, the voltage change is expressed by the following equation (1). In order to make the average voltage constant, it is necessary to make the following equation (2), which is the current increase due to the charging current, and the following equation (3), which is the voltage decrease due to the discharge current.

Figure 2015077012
Figure 2015077012

例えば、充電時間と放電時間を同じ値するならば同一電流値 の充放電電流指令値とすればよい。   For example, if the charge time and the discharge time are the same value, the charge / discharge current command value having the same current value may be used.

本実施形態1は、電気二重層キャパシタ等の蓄電媒体2は充放電による劣化が少ない特性を利用し、DC/DCチョッパ1により、平滑コンデンサC1と蓄電媒体2との間で微小な充放電を繰り返すことで蓄電媒体2の内部抵抗により、蓄電媒体2本体の温度を上昇させるものである。    In the first embodiment, the electric storage medium 2 such as an electric double layer capacitor uses a characteristic that the deterioration due to charging / discharging is small, and the DC / DC chopper 1 performs minute charging / discharging between the smoothing capacitor C1 and the electric storage medium 2. By repeating, the temperature of the power storage medium 2 body is increased by the internal resistance of the power storage medium 2.

本実施形態1における蓄電装置によれば、温度低下による蓄電媒体2の内部抵抗の増大を回避するとともに、蓄電媒体2の容量の低下を回避し、効率的な蓄電媒体2の運用が可能となる。    According to the power storage device in the first embodiment, an increase in internal resistance of the power storage medium 2 due to a temperature decrease is avoided, and a decrease in the capacity of the power storage medium 2 is avoided, so that the power storage medium 2 can be operated efficiently. .

また、従来の回路方式を変更する必要がない。さらに、空調機やヒータ等を設置する必要がないため、装置のコストアップ,設置スペースの増加を抑制することが可能となる。   Further, there is no need to change the conventional circuit system. Furthermore, since it is not necessary to install an air conditioner, a heater, or the like, it is possible to suppress an increase in cost of the apparatus and an increase in installation space.

さらに、DC/DCチョッパ1を動作させること、平滑コンデンサC1と蓄電媒体2に平均電流ゼロを流すことで損失(スイッチング損失,内部抵抗による損失)が発生する。インバータINVが停止していれば、長い間充放電を繰り返すことにより平滑コンデンサC1と蓄電媒体2の直流電圧は低下する。しかし、インバータINVはコンデンサ電圧一定制御を行っているため、損失分を補充し平滑コンデンサC1での電圧低下は生じない。この動作は瞬低補償装置では常時行われている動作である。    Further, loss (switching loss, loss due to internal resistance) is generated by operating the DC / DC chopper 1 and flowing an average current of zero through the smoothing capacitor C1 and the power storage medium 2. If the inverter INV is stopped, the DC voltage of the smoothing capacitor C1 and the power storage medium 2 is lowered by repeating charging and discharging for a long time. However, since the inverter INV performs constant capacitor voltage control, the loss is replenished and no voltage drop occurs in the smoothing capacitor C1. This operation is an operation that is always performed in the voltage sag compensator.

また、上記動作において、前記(2)式の充電電流による電流増加分ΔVまたは前記(3)式の放電電流による電流減少分ΔVが大きいと平滑コンデンサ電圧が上昇または下降してしまう。このような場合も、インバータINVは平滑コンデンサ電圧 一定制御を行っているため、充電電流による電流増加分ΔVが大きい場合は系統へ電流を流入し、放電電流による電流減少分ΔVが大きい場合は系統から電流が流出されることとなる。    Further, in the above operation, the smoothing capacitor voltage increases or decreases when the current increase ΔV due to the charging current of the equation (2) or the current decrease ΔV due to the discharge current of the equation (3) is large. Even in such a case, since the inverter INV performs constant control of the smoothing capacitor voltage, the current flows into the system when the current increase ΔV due to the charging current is large, and the system when the current decrease ΔV due to the discharge current is large. Current will flow out of the.

[実施形態2]
次に、本実施形態2における蓄電装置について説明する。以下、実施形態1と同様の箇所は説明を省略し、実施形態1と異なる点についてのみ説明する。図6に示すように、本実施形態2における蓄電装置は、インバータINVと蓄電媒体2と、温度センサ3と、制御装置4と、を備える。系統に瞬時電圧低下・瞬時停電が発生した時、インバータINVを介して蓄電媒体2に蓄電された電気エネルギーを系統に供給することで瞬低補償を行う。
[Embodiment 2]
Next, the power storage device in Embodiment 2 will be described. Hereinafter, description of the same parts as those in the first embodiment will be omitted, and only differences from the first embodiment will be described. As illustrated in FIG. 6, the power storage device according to the second embodiment includes an inverter INV, a power storage medium 2, a temperature sensor 3, and a control device 4. When an instantaneous voltage drop or instantaneous power failure occurs in the system, instantaneous voltage drop compensation is performed by supplying electric energy stored in the storage medium 2 to the system via the inverter INV.

通常運転時は、図7に示すように、インバータINVを停止し、蓄電媒体2の充放電を行わず、待機状態とする。   During normal operation, as shown in FIG. 7, the inverter INV is stopped and the power storage medium 2 is not charged / discharged, and is set in a standby state.

系統に電圧補償を行う場合、または、系統の電力不足時には、図8に示すように、インバータINVを動作させて、蓄電媒体2の放電を行う。   When voltage compensation is performed on the system, or when power is insufficient in the system, the inverter INV is operated to discharge the power storage medium 2 as shown in FIG.

電圧補償後または、系統余剰電力時には、図9に示すように、インバータINVを動作させて蓄電媒体2への充電を行う。   After voltage compensation or at the time of system surplus power, as shown in FIG. 9, the inverter INV is operated to charge the power storage medium 2.

次に、図10,図11,図12に基づいて充放電動作を説明する。   Next, the charge / discharge operation will be described with reference to FIGS. 10, 11, and 12.

まず、S11において、温度感知部4cにより蓄電媒体2の温度が設定温度よりも低いか否かを判定する。蓄電媒体2の温度が設定温度以上の場合は、図7に示すように、インバータINVを停止し、蓄電媒体2の充放電を行わず、待機状態とする。   First, in S11, the temperature sensing unit 4c determines whether or not the temperature of the power storage medium 2 is lower than the set temperature. When the temperature of the power storage medium 2 is equal to or higher than the set temperature, the inverter INV is stopped and the power storage medium 2 is not charged / discharged, as shown in FIG.

蓄電媒体2の温度が設定温度よりも低い場合は、S12において、充放電信号出力部4bからインバータINVに充放電信号を出力し、インバータINVを動作させる。図11に示すように、インバータINVの動作により系統と蓄電媒体2との間で充放電を繰り返し行い、蓄電媒体2の内部抵抗により温度を上昇させる。   When the temperature of the power storage medium 2 is lower than the set temperature, in S12, a charge / discharge signal is output from the charge / discharge signal output unit 4b to the inverter INV to operate the inverter INV. As shown in FIG. 11, charging and discharging are repeatedly performed between the system and the power storage medium 2 by the operation of the inverter INV, and the temperature is increased by the internal resistance of the power storage medium 2.

次に、S13において、電圧監視部4aにより、系統電圧が上昇しているか否かを判定する。系統電圧が予め設定された閾値よりも高い場合はS14へ移行し、系統電圧が閾値以下の場合はS15へ移行する。   Next, in S13, the voltage monitoring unit 4a determines whether or not the system voltage is rising. If the system voltage is higher than a preset threshold value, the process proceeds to S14, and if the system voltage is equal to or less than the threshold value, the process proceeds to S15.

S14では、図12に示すように、充放電信号出力部4bからの充放電信号を切り換えて、放電容量を減少させる。このとき、蓄電媒体2からの放電量は、放電されたエネルギーがインバータINVのスイッチング損失のみで消費され、系統へ流出されない量とする。   In S14, as shown in FIG. 12, the charge / discharge signal from the charge / discharge signal output unit 4b is switched to reduce the discharge capacity. At this time, the amount of discharge from the power storage medium 2 is set such that the discharged energy is consumed only by the switching loss of the inverter INV and is not discharged to the system.

S15において、温度感知部4cにより、蓄電媒体2の温度が設定温度よりも高いか否かを判定する。蓄電媒体2の温度が設定温度以下の場合は、S12に戻り、再度、系統と蓄電媒体2との間で充放電を行う。   In S15, the temperature sensing unit 4c determines whether or not the temperature of the power storage medium 2 is higher than the set temperature. When the temperature of the power storage medium 2 is equal to or lower than the set temperature, the process returns to S12, and charging / discharging is performed again between the system and the power storage medium 2.

S15において、蓄電媒体2の温度が設定値よりも高いと判断された場合は、インバータINVを停止させる。このように、蓄電媒体2が設定温度より低い状態を回避することができる。   If it is determined in S15 that the temperature of the power storage medium 2 is higher than the set value, the inverter INV is stopped. In this way, it is possible to avoid a state where the power storage medium 2 is lower than the set temperature.

以上示したように、本実施形態2によれば、実施形態1と同様の作用効果を奏する。   As described above, according to the second embodiment, the same operational effects as those of the first embodiment can be obtained.

また、系統電圧が高い場合は、放電量をスイッチング損失のみの量とすることにより、系統電圧が上昇することを抑制することが可能となる。   Further, when the system voltage is high, it is possible to suppress the system voltage from rising by setting the discharge amount to the amount of only the switching loss.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、実施形態では、蓄電媒体2として電気二重層キャパシタを例示したが、二次電池等でも良い。   For example, in the embodiment, the electric double layer capacitor is exemplified as the power storage medium 2, but a secondary battery or the like may be used.

INV…インバータ
C1…平滑コンデンサ
1…DC/DCチョッパ
2…蓄電媒体
4…制御装置
INV ... Inverter C1 ... Smoothing capacitor 1 ... DC / DC chopper 2 ... Power storage medium 4 ... Control device

Claims (2)

系統に接続されたインバータと、
インバータの直流側に接続された平滑コンデンサと、
内部抵抗を有する蓄電媒体と、
平滑コンデンサと蓄電媒体との間に接続されるDC/DCチョッパと、
DC/DCチョッパの作動を制御する制御装置と、を備えた蓄電装置であって、
前記インバータは、平滑コンデンサ電圧一定制御を行い、
前記制御装置は、蓄電媒体の温度が予め設定された設定値以下になったとき、DC/DCチョッパの出力電圧を上下させて、平滑コンデンサと蓄電媒体との間で充放電を繰り返させることを特徴とする蓄電装置。
An inverter connected to the grid;
A smoothing capacitor connected to the DC side of the inverter;
A power storage medium having internal resistance;
A DC / DC chopper connected between the smoothing capacitor and the storage medium;
A power storage device comprising a control device for controlling the operation of the DC / DC chopper,
The inverter performs smoothing capacitor voltage constant control,
When the temperature of the power storage medium is equal to or lower than a preset value, the control device increases or decreases the output voltage of the DC / DC chopper and repeats charging / discharging between the smoothing capacitor and the power storage medium. A power storage device.
系統に接続されたインバータと、
インバータの直流側に接続された蓄電媒体と、
前記インバータの作動を制御する制御装置と、を備えた蓄電装置であって、
前記制御装置は、蓄電媒体の温度が予め設定された設定値以下になったとき、インバータの出力電圧を上下させて、系統と蓄電媒体との間で充放電を繰り返させ、系統電圧が高い時の放電量は放電されたエネルギーがインバータのスイッチング損失で消費される量であることを特徴とする蓄電装置。
An inverter connected to the grid;
A storage medium connected to the DC side of the inverter;
A control device for controlling the operation of the inverter, and a power storage device comprising:
When the temperature of the power storage medium falls below a preset value, the control device increases and decreases the output voltage of the inverter, repeats charging and discharging between the system and the power storage medium, and when the system voltage is high The amount of discharge of is an amount that the discharged energy is consumed by the switching loss of the inverter.
JP2013212398A 2013-10-10 2013-10-10 Power storage device Pending JP2015077012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212398A JP2015077012A (en) 2013-10-10 2013-10-10 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212398A JP2015077012A (en) 2013-10-10 2013-10-10 Power storage device

Publications (1)

Publication Number Publication Date
JP2015077012A true JP2015077012A (en) 2015-04-20

Family

ID=53001472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212398A Pending JP2015077012A (en) 2013-10-10 2013-10-10 Power storage device

Country Status (1)

Country Link
JP (1) JP2015077012A (en)

Similar Documents

Publication Publication Date Title
JP5938746B2 (en) Power control system and photovoltaic power generation system
CN108701996B (en) Virtual inertia power supply supporting grid control
US10491039B2 (en) Power transfer circuit and method utilizing power capability proclamation to transfer electrical power to charger
CN108776244B (en) Electronic load
JP2008141924A (en) On-vehicle battery charger, on-vehicle battery apparatus and on-vehicle battery charging method
US10938293B2 (en) Voltage converting unit
US9846403B2 (en) Electric power supply device and image forming apparatus including such an electric power supply device
JP2013169083A (en) Power supply system
CN105474525A (en) Two-stage clocked electronic energy converter
WO2013069284A1 (en) Power management device
US20120139339A1 (en) Power supply apparatus and method to control the same
JP4174530B2 (en) Electronic device apparatus having a charging circuit
CN110048616B (en) Inverter control device and air conditioner
JP2016046851A (en) Power supply
JP2011087407A (en) Vehicle controller and vehicle control method
JP2012125085A (en) Instantaneous voltage drop protection device
JP2015077012A (en) Power storage device
JP7022942B2 (en) Power conversion system, power conversion device
JP6966009B2 (en) Power converter and power conditioner with this device
JP2015213384A (en) Battery voltage compensation system
KR20150074395A (en) A change method of the capacitance value of the output capacitor of the power factor corrector and an apparatus thereof
JP2017205013A (en) Conversion device for storage battery, power supply system and power supply control method
JP6845108B2 (en) Power conditioner and control method of power conditioner
WO2019058821A1 (en) Power storage apparatus
JP5141385B2 (en) Image forming apparatus