JP4174530B2 - Electronic device apparatus having a charging circuit - Google Patents

Electronic device apparatus having a charging circuit Download PDF

Info

Publication number
JP4174530B2
JP4174530B2 JP2006175017A JP2006175017A JP4174530B2 JP 4174530 B2 JP4174530 B2 JP 4174530B2 JP 2006175017 A JP2006175017 A JP 2006175017A JP 2006175017 A JP2006175017 A JP 2006175017A JP 4174530 B2 JP4174530 B2 JP 4174530B2
Authority
JP
Japan
Prior art keywords
voltage
charging
current
power
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006175017A
Other languages
Japanese (ja)
Other versions
JP2008005667A (en
Inventor
繁 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006175017A priority Critical patent/JP4174530B2/en
Publication of JP2008005667A publication Critical patent/JP2008005667A/en
Application granted granted Critical
Publication of JP4174530B2 publication Critical patent/JP4174530B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Power Sources (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、蓄電器とその充電器を備えた電子機器装置の充電制御に関するものである。   The present invention relates to charge control of an electronic device provided with a capacitor and its charger.

電気二重層コンデンサ等の蓄電器への充電を一定電流で行う場合、蓄電器に対する供給電力は電圧と電流の積で与えられる。従って、充電初期では供給電力が小さく、充電末期では充電された電圧に比例して供給電力が大きくなる傾向がある。このような充電を行う場合には蓄電器の充電電圧が高くなると充電のための供給電力が極端に増えることになり、充電回路の電力供給能力を確保するために充電回路のコスト、サイズがアップしてしまう問題がある。   When charging a capacitor such as an electric double layer capacitor with a constant current, the power supplied to the capacitor is given by the product of voltage and current. Accordingly, the supplied power is small at the beginning of charging, and the supplied power tends to increase in proportion to the charged voltage at the end of charging. When performing such charging, the power supply for charging will increase drastically when the charging voltage of the battery increases, and the cost and size of the charging circuit will increase to ensure the power supply capacity of the charging circuit. There is a problem.

また、オフィスや家庭で使われる電子機器装置の場合、一般のコンセントには最大供給電流の制限があり、装置全体として充電回路のピーク電力まで考慮した消費電力配分の設計を行わなければならない。   In addition, in the case of electronic equipment used in offices and homes, general outlets have a limit on the maximum supply current, and the power consumption distribution must be designed in consideration of the peak power of the charging circuit as a whole.

そこで、充電段階に応じて蓄電器に対する給電形態を変更し、定電力化等による充電効率を高めるキャパシタの充電制御手法が考えられている(例えば特許文献1参照)。   In view of this, a charging control method for a capacitor is proposed in which the power supply mode for the battery is changed in accordance with the charging stage and the charging efficiency is increased by constant power (see, for example, Patent Document 1).

図9に充電回路の概略構成のブロック図、図10に充電時の電流と電圧の関係を示すグラフを示す。   FIG. 9 is a block diagram of a schematic configuration of the charging circuit, and FIG. 10 is a graph showing the relationship between current and voltage during charging.

図9中のVinは充電回路への入力電源、C1、TR1、R1、D1、L1、C2は制御部により定電流、定電圧、定電力で充電を制御するための電力制御回路を構成する。C3、C4は充電される蓄電器、R2、R3は蓄電器両端の端子電圧検出用抵抗、R4は蓄電器に流れる電流検出用抵抗であり、それぞれ検出された電圧情報と電流情報から電力情報を得る電力検知回路を備えている。また、LOADは蓄電器に接続された負荷を示している。   In FIG. 9, Vin is an input power source to the charging circuit, and C1, TR1, R1, D1, L1, and C2 constitute a power control circuit for controlling charging with a constant current, a constant voltage, and a constant power by the control unit. C3 and C4 are capacitors to be charged, R2 and R3 are resistances for detecting terminal voltages at both ends of the capacitor, R4 is a resistor for detecting current flowing through the capacitors, and power detection for obtaining power information from detected voltage information and current information, respectively. It has a circuit. LOAD indicates a load connected to the capacitor.

制御部101は充電初期状態では、図10に示す電流値iで定電流充電を開始する。一定電流で充電が進むと充電電圧が上昇し、充電電圧が所定値に達したところで電力目標値Poである定電力制御に切り替わる。その後定電力制御による充電を行う。更に充電電圧が上昇し、その電圧値がvに到達すると定電圧制御による充電に切り替わって充電電流値が減少し、電流がゼロになったところで充電が完了する。   In the initial charging state, the control unit 101 starts constant current charging at a current value i shown in FIG. When charging proceeds at a constant current, the charging voltage rises, and when the charging voltage reaches a predetermined value, switching to constant power control that is the power target value Po is performed. Thereafter, charging is performed by constant power control. When the charging voltage further rises and the voltage value reaches v, the charging is switched to constant voltage control, the charging current value decreases, and the charging is completed when the current becomes zero.

このような充電制御は従来からリチウムイオン電池等の二次電池の充電方法として知られており、充電時におけるピーク電力の低減には効果的である。
特開2005−253288号公報
Such charge control is conventionally known as a method for charging a secondary battery such as a lithium ion battery, and is effective in reducing peak power during charging.
JP 2005-253288 A

しかし、上述した方式では以下のような問題点があった。   However, the above-described method has the following problems.

一般的なオフィスや家庭では商用電源供給用のコンセントには供給電流の上限が定められており、電子機器装置の設計において装置の最大電力消費時にこの上限電流値を超えないような内部の電力配分を行う必要がある。   In general offices and homes, there is an upper limit on the supply current for outlets for commercial power supply, and internal power distribution is such that the maximum current value is not exceeded when the maximum power consumption of the device is used in the design of electronic equipment. Need to do.

また、近年の複雑化した電子機器装置内では動作状態に応じてその時々に使われるデバイスが異なり、デバイスごとの消費電力はそれぞれ異なるので、ピーク電力が重ならないような動作シーケンスを組むなどの工夫がされているのが通常である。   Furthermore, devices that are used at different times depending on the operating state in electronic devices that have become more complex in recent years, and the power consumption of each device is different, so it is possible to create an operation sequence such that peak power does not overlap. It is normal that it is done.

しかしながら、従来の充電制御方法では電力消費のピークを無制御時と比較して低減できるものの、目標電力を外部から制御することはできない。   However, although the conventional charge control method can reduce the peak of power consumption compared to the case of no control, the target power cannot be controlled from the outside.

そこで、本発明の目的は、蓄電器の充電電力を制御することで装置全体の消費電力を所定値内に常時収めることができる電子機器装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide an electronic device device that can always keep the power consumption of the entire device within a predetermined value by controlling the charging power of the battery.

上記課題を解決するために、本発明の電子機器装置は、蓄電器に充電を行う充電回路を有する電子機器装置において、交流を入力して直流電圧を出力する電源と、前記交流により前記電子機器装置に供給される入力電流の情報を取得する入力電流情報取得手段と、前記蓄電器の端子間電圧を検出する電圧検出手段と、前記蓄電器に流れる電流を検出する電流検出手段と、前記蓄電器に対して定電流制御により充電を開始させ、前記電圧検出手段の出力と前記電流検出手段の出力に基づいて前記蓄電器に供給される電力が目標値に到達したことを判断すると定電力制御による充電に切り替え、前記電圧検出手段の出力に基づいて前記蓄電器の端子間電圧が所定の電圧に到達したことを判断すると定電圧制御による充電に切り替える制御手段と、を有し、前記制御手段は、前記入力電流情報取得手段により取得した入力電流情報と前記電源の効率と前記蓄電器への充電の効率とに基づいて前記定電力充電における前記目標値を設定することを特徴とする。   In order to solve the above-described problems, an electronic device device according to the present invention includes a power source that inputs an alternating current and outputs a direct-current voltage in an electronic device device that has a charging circuit that charges a capacitor. Input current information acquisition means for acquiring information on the input current supplied to the battery, voltage detection means for detecting the voltage across the terminals of the battery, current detection means for detecting the current flowing through the battery, and the battery When charging is started by constant current control, when it is determined that the power supplied to the battery has reached a target value based on the output of the voltage detection means and the output of the current detection means, switching to charging by constant power control is performed, Control means for switching to charging by constant voltage control when it is determined that the voltage between the terminals of the battery has reached a predetermined voltage based on the output of the voltage detection means; And the control means sets the target value in the constant power charging based on the input current information acquired by the input current information acquisition means, the efficiency of the power source, and the efficiency of charging the battery. Features.

本発明によれば、電子機器装置の動作状態に応じて入力電力に占める蓄電器への充電電力最大値を制御することで、常時装置の入力電力が規定値を超えることなく、且つ蓄電器への最適な充電を行うことができる。   According to the present invention, by controlling the charging power maximum value to the storage device that occupies the input power according to the operating state of the electronic device device, the input power of the device always does not exceed the specified value and is optimal for the storage device. Can be recharged.

以下、本発明の各実施の形態について、図1〜8を用いて説明する。   Hereinafter, each embodiment of the present invention will be described with reference to FIGS.

(第1の実施の形態)
まず、本発明の第1の実施の形態について、図1〜4を用いて説明する。
(First embodiment)
First, a first embodiment of the present invention will be described with reference to FIGS.

図1は、本発明の第1の実施形態に係る蓄電器への充電制御回路を示すブロック図である。図2は、図1の充電制御回路が内蔵される電子機器装置のハードウエア構成を示すブロック図である。図3は、蓄電器への充電時に蓄電器端子間にかかる電圧と蓄電器に流れる電流の関係を示すグラフである。図4は、蓄電器への充電制御方法を示すフローチャートである。   FIG. 1 is a block diagram showing a charge control circuit for a battery according to the first embodiment of the present invention. FIG. 2 is a block diagram showing a hardware configuration of an electronic device apparatus in which the charge control circuit of FIG. 1 is built. FIG. 3 is a graph showing the relationship between the voltage applied between the capacitor terminals during charging of the capacitor and the current flowing through the capacitor. FIG. 4 is a flowchart showing a method for controlling charging of the battery.

図1において、Vinは充電回路への入力電源である。コンデンサC1、スイッチング素子TR1、抵抗R1、ダイオードD1、コイルL1、コンデンサC2はCPU10により定電流、定電圧、定電力で充電を制御するための電力制御回路を構成する。14はキャパシタC3、C4を有する蓄電器、R2、R3は蓄電器両端の端子電圧検出用抵抗、R4は蓄電器に流れる電流検出用抵抗である。電圧検出回路11は抵抗R2,R3で分圧された電圧から蓄電器両端の端子電圧を検出する。電流検出回路12は抵抗R4の両端の電圧から蓄電器14に流れる電流を検出する。また、13は蓄電器14に接続された負荷を示している。   In FIG. 1, Vin is an input power source to the charging circuit. The capacitor C1, the switching element TR1, the resistor R1, the diode D1, the coil L1, and the capacitor C2 constitute a power control circuit for controlling charging with constant current, constant voltage, and constant power by the CPU 10. 14 is a capacitor having capacitors C3 and C4, R2 and R3 are terminal voltage detection resistors at both ends of the capacitor, and R4 is a current detection resistor flowing through the capacitor. The voltage detection circuit 11 detects the terminal voltage across the capacitor from the voltage divided by the resistors R2 and R3. The current detection circuit 12 detects the current flowing through the battery 14 from the voltage across the resistor R4. Reference numeral 13 denotes a load connected to the battery 14.

図2において、商用電源21から入力された交流は途中分岐して負荷1に接続されている。負荷1は、例えばACモーターやヒーターなど直接商用交流で動作可能なものを想定している。もう一方の分岐先は電源装置22である。電源装置22は小型化のためスイッチング方式の絶縁型電源を用いる。電源装置22の出力は例えば24Vや12V、5V、3.3Vといった直流電圧であり、接続される負荷デバイスによって使い分ける。   In FIG. 2, the alternating current input from the commercial power supply 21 is branched halfway and connected to the load 1. The load 1 is assumed to be capable of operating with direct commercial alternating current, such as an AC motor or heater. The other branch destination is the power supply device 22. The power supply device 22 uses a switching type insulated power supply for miniaturization. The output of the power supply device 22 is a DC voltage such as 24 V, 12 V, 5 V, and 3.3 V, for example, and is selectively used depending on the connected load device.

本実施形態では電源出力は更に2系統に分かれており、一方は負荷2へ供給される。負荷2は例えばメモリなどの半導体デバイスなどである。もう一方は充電器23へ供給される。充電器23は負荷3へ電力供給する。負荷3はDCモーターなど特定タイミングで起動時などに急激なピーク電流を流す必要があるデバイスである。負荷3に電力供給する際に、電源側から見たピーク電流を平準化する狙いで負荷3と電源の間に蓄電器が接続されている。この蓄電器は図1の蓄電器14(キャパシタC3,C4)に相当し、負荷3は図1の負荷13に相当する。   In this embodiment, the power output is further divided into two systems, one of which is supplied to the load 2. The load 2 is a semiconductor device such as a memory. The other is supplied to the charger 23. The charger 23 supplies power to the load 3. The load 3 is a device such as a DC motor that requires a rapid peak current to flow at a specific timing. When supplying power to the load 3, a capacitor is connected between the load 3 and the power supply for the purpose of leveling the peak current viewed from the power supply side. This capacitor corresponds to the capacitor 14 (capacitors C3 and C4) in FIG. 1, and the load 3 corresponds to the load 13 in FIG.

蓄電器は大容量であればあるほど多くのピーク時電力を吸収して平準化することが可能である。従って、蓄電器14のキャパシタC3,C4としては近年小型化、大容量化、低価格化が進んできた電気二重層コンデンサなどを用いる。   The larger the capacity of the battery, the more the peak power can be absorbed and leveled. Therefore, as the capacitors C3 and C4 of the capacitor 14, an electric double layer capacitor or the like that has been recently reduced in size, increased in capacity, and reduced in price is used.

本実施形態では充電器23内にCPU(中央演算装置)を搭載しており、様々な情報を演算し、処理することが可能となっている。このCPUは図1のCPU10に相当する。   In this embodiment, a CPU (Central Processing Unit) is mounted in the charger 23, and various information can be calculated and processed. This CPU corresponds to the CPU 10 of FIG.

商用電源21の入力部には例えばカレントトランスような電流電圧変換素子を用いた電流検知手段24を設けており、検知結果はCPU10に入力電流情報として送られる。   The input part of the commercial power supply 21 is provided with current detection means 24 using a current-voltage conversion element such as a current transformer, for example, and the detection result is sent to the CPU 10 as input current information.

CPU10には上述した装置入力電流検出結果の他、電圧検出回路11による蓄電器14の端子電圧検出結果、電流検出回路12による蓄電器14に流れる電流検出結果がそれぞれ情報として入力されている。   In addition to the above-described device input current detection result, the CPU 10 receives the terminal voltage detection result of the capacitor 14 by the voltage detection circuit 11 and the detection result of the current flowing through the capacitor 14 by the current detection circuit 12 as information.

CPU10は、装置入力電流検出結果により、予め設定されている商用電源21の電圧情報との演算により入力電力情報を得、その結果から蓄電器14への充電に利用できる電力余裕度を算出する。   The CPU 10 obtains input power information by calculation with voltage information of the commercial power source 21 set in advance from the device input current detection result, and calculates a power margin that can be used for charging the battery 14 from the result.

また、CPU10は電圧検出回路11によって検出された蓄電器14の端子間の電圧情報と電流検出回路12によって検出された蓄電器に流れる電流情報とから、充電器23で消費している電力を演算する。   Further, the CPU 10 calculates the power consumed by the charger 23 from the voltage information between the terminals of the battery 14 detected by the voltage detection circuit 11 and the current information flowing through the battery detected by the current detection circuit 12.

次に図3のグラフと、図4のフローチャートを用いて充電時の制御について説明する。   Next, the control at the time of charge is demonstrated using the graph of FIG. 3, and the flowchart of FIG.

まず、充電器内のCPU10は、電圧検出回路11により蓄電器14の電圧を監視し、充電の要不要を判断する(ステップ1)。蓄電器14の電圧が基準値よりも低く、充電が必要であると判断した場合、装置の入力電流値を読み込み(ステップ2)、装置全体の入力電力余裕度(充電に使用可能な電力)を算出して(ステップ3)、蓄電器14への充電目標電力値を設定する(ステップ4)。   First, the CPU 10 in the charger monitors the voltage of the battery 14 by the voltage detection circuit 11 and determines whether or not charging is necessary (step 1). When it is determined that the voltage of the battery 14 is lower than the reference value and charging is required, the input current value of the device is read (step 2), and the input power margin (power usable for charging) of the entire device is calculated. (Step 3), the charging target power value for the battery 14 is set (Step 4).

CPU10は目標電力設定後、一定電流iで蓄電器14の充電を開始させる(ステップ5)。この時CPU10は、電流検出回路12で検出される電流情報に基づいて、検出電流値が目標値iになるようスイッチング素子TR1のスイッチング動作を制御する。   After setting the target power, the CPU 10 starts charging the battery 14 with a constant current i (step 5). At this time, based on the current information detected by the current detection circuit 12, the CPU 10 controls the switching operation of the switching element TR1 so that the detected current value becomes the target value i.

定電流制御による充電が進むと蓄電器14の端子間電圧は上昇する。一定電流で電圧が上昇するということは消費電力量が増加することを意味している。そして、並行して電圧検出回路11で検出を行っている蓄電器14の端子間電圧情報を取得し(ステップ6)、端子間電圧情報と定電流値iとに基づいて消費電力量を演算する(ステップ7)。定電流充電制御は上述した充電使用可能電力によって決まる充電電力目標値に到達するまで継続する。   When charging by constant current control proceeds, the voltage between terminals of the battery 14 increases. An increase in voltage at a constant current means an increase in power consumption. And the voltage information between the terminals of the battery 14 that is detected by the voltage detection circuit 11 in parallel is acquired (step 6), and the power consumption is calculated based on the voltage information between the terminals and the constant current value i ( Step 7). The constant current charge control is continued until the charge power target value determined by the charge available power described above is reached.

算出した充電電力が電力目標値に到達したか否かを判断し(ステップ8)、到達したと判断すると、今度は電圧検出回路11によって得られる電圧情報と電流検出回路12によって得られる電流情報から演算した消費電力量が一定となるようにスイッチング素子TR1のスイッチング動作を制御する(ステップ9)。即ち、定電流制御による充電から定電力制御による充電に切り替える。   It is determined whether or not the calculated charging power has reached the power target value (step 8). When it is determined that the charging power has been reached, this time, from the voltage information obtained by the voltage detection circuit 11 and the current information obtained by the current detection circuit 12. The switching operation of the switching element TR1 is controlled so that the calculated power consumption is constant (step 9). That is, the charging is switched from charging by constant current control to charging by constant power control.

この際の定電力制御の目標値を可変できる構成とし、その目標値は装置全体の電力消費量からCPU10が演算する。例えば100Vの入力で一般的な上限が15Aのコンセントを使用する場合、装置の入力電流検出手段24により検出した電流値が15Aに対してどの程度余裕があるのか計算する。本実施形態で言えば電源装置の効率、充電器の効率を含めて充電に使用できる最大電力を求める。本実施形態では入力電圧値を予め決めた固定値としているが、例えばオペレータが操作部から使用されるコンセントの電圧情報を入力するような形でもよい。また、装置に供給される入力電圧を検出する手段を設け、CPU10がこの入力電圧検出手段から入力電圧情報を取得し、取得した入力電流情報と入力電圧情報とから充電に使用できる電力余裕度を求めても良い。   At this time, the target value of the constant power control can be varied, and the target value is calculated by the CPU 10 from the power consumption of the entire apparatus. For example, in the case of using an outlet having a general upper limit of 15 A with an input of 100 V, it is calculated how much the current value detected by the input current detecting means 24 of the apparatus has a margin with respect to 15 A. In this embodiment, the maximum power that can be used for charging is determined including the efficiency of the power supply device and the efficiency of the charger. In this embodiment, the input voltage value is set to a predetermined fixed value. However, for example, the operator may input voltage information of an outlet used from the operation unit. Also, a means for detecting the input voltage supplied to the apparatus is provided, and the CPU 10 acquires the input voltage information from the input voltage detection means, and determines the power margin that can be used for charging from the acquired input current information and the input voltage information. You may ask.

一例として、入力電流値が14A、電源の効率が80%、充電器の効率が85%と仮定すると、充電に使用できる最大電力は以下のように求められる。
100×(15−14)×0.8×0.85=68ワット
更に入力電流値が13.5Aだったとすると、充電に使用できる最大電力は、
100×(15−13.5)×0.8×0.85=102ワット
となる。
As an example, assuming that the input current value is 14 A, the efficiency of the power supply is 80%, and the efficiency of the charger is 85%, the maximum power that can be used for charging is obtained as follows.
100 × (15-14) × 0.8 × 0.85 = 68 watts Further, if the input current value is 13.5 A, the maximum power that can be used for charging is
100 × (15-13.5) × 0.8 × 0.85 = 102 watts.

図3の例では、電力目標値がP1の場合とP2の場合の二通りを示している。目標電力をP1として制御している場合の方が目標電力をP2のとして制御した場合と比較して、充電器を除いた装置全体の消費電力が少なく、電力余裕度が高いことを示している。   In the example of FIG. 3, two types of cases where the power target value is P1 and P2 are shown. When the target power is controlled as P1, the power consumption of the entire apparatus excluding the charger is less and the power margin is higher than when the target power is controlled as P2. .

上の計算式において、P1を102ワット、P2を68ワットと置き換えると装置の電力余裕度はそれぞれ、
P1の場合:100×(15−13.5)=150ワット
P2の場合:100×(15−14)=100ワット
となる。
In the above formula, if P1 is replaced with 102 watts and P2 is replaced with 68 watts, the power margin of the device is
In the case of P1: 100 × (15-13.5) = 150 watts In the case of P2: 100 × (15-14) = 100 watts.

当然のことながらP1を目標電力値として充電した場合の方が充電時間は短縮されるが、装置全体としての電力消費量は変化しないと言える。また、目標電力値は装置の使用状態に応じてリアルタイムに変動させてもよい。   As a matter of course, the charging time is shortened when P1 is charged as the target power value, but it can be said that the power consumption of the entire apparatus does not change. The target power value may be changed in real time according to the usage state of the apparatus.

図4に戻って、定電力充電制御中に電圧検出回路11で検出した電圧値が目標値vに到達したか否かを判断する(ステップ10)。到達したと判断すると、定電力充電から電圧値vでの定電圧充電を行うようにスイッチング素子TR1のスイッチング動作を制御(ステップ11)。その後充電が進むと徐々に充電電流は低減し、最後に電流がゼロとなった時点で満充電となり、充電を終了する(ステップ12)。   Returning to FIG. 4, it is determined whether or not the voltage value detected by the voltage detection circuit 11 during the constant power charging control has reached the target value v (step 10). If it is determined that it has reached, the switching operation of the switching element TR1 is controlled so as to perform constant voltage charging at a voltage value v from constant power charging (step 11). Thereafter, as charging progresses, the charging current gradually decreases, and when the current finally becomes zero, the battery is fully charged and charging is terminated (step 12).

このように蓄電器への充電状態を監視し、定電流充電、定電力充電、定電圧充電と切り替えることにより、電力オーバーすることなく、効率良く充電を行うことができる。また、装置の動作状態に応じて最大充電電力目標値を可変できるようにしていることで、オフィスや家庭などの電力制限値がそれほど大きくない環境でブレーカーを動作させるようなことなく、安全且つ効率よく充電を行うことができる。   Thus, by monitoring the charge state of the battery and switching between constant current charge, constant power charge, and constant voltage charge, it is possible to charge efficiently without power over. In addition, by making the maximum charge power target value variable according to the operating state of the device, it is safe and efficient without operating the breaker in an environment where the power limit value is not so large, such as in offices and homes. It can be charged well.

(第2の実施の形態)
次に、本発明の第2の実施の形態について、図5〜8を用いて説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS.

図5は、本発明の第2の実施形態に係る蓄電器への充電回路のブロック図である。図6は、図5の充電回路を内蔵する電子機器装置のハードウエア構成を示すブロック図である。図7は、蓄電器への充電時に蓄電器端子間にかかる電圧と蓄電器に流れる電流の関係を示すグラフである。図8は、蓄電器への充電制御方法を示すフローチャートである。   FIG. 5 is a block diagram of a charging circuit for a battery according to the second embodiment of the present invention. FIG. 6 is a block diagram showing a hardware configuration of an electronic device apparatus incorporating the charging circuit of FIG. FIG. 7 is a graph showing the relationship between the voltage applied between the capacitor terminals during charging of the capacitor and the current flowing through the capacitor. FIG. 8 is a flowchart showing a method for controlling charging of the battery.

一般的に商用電源電圧は送電設備の状態や周辺の電力消費状態等により必ず定格値を供給できるわけではなく、供給電圧値は常に変動している。また、商用電源電圧が変動することを想定すると、入力電流値の検出結果だけで最大消費電力を見積もることができなくなる。そこで、第2の実施形態では、商用電源の入力電圧検知手段を設け、電流検知手段の検知結果との演算により装置の電力余裕度を求めている。   In general, the rated value of the commercial power supply voltage cannot always be supplied depending on the state of the power transmission equipment or the surrounding power consumption state, and the supply voltage value always fluctuates. Further, assuming that the commercial power supply voltage fluctuates, the maximum power consumption cannot be estimated only from the detection result of the input current value. Thus, in the second embodiment, commercial power input voltage detection means is provided, and the power margin of the apparatus is obtained by calculation with the detection result of the current detection means.

電力余裕度の演算は装置を制御するCPU31が行うものとする。なお、充電器33内にはCPUを持たない構成としてもよい。充電器33に専用のCPUを持たないようにすることで充電器のコスト低減を実現できる。   The calculation of the power margin is performed by the CPU 31 that controls the apparatus. The charger 33 may not have a CPU. By not having a dedicated CPU in the charger 33, the cost of the charger can be reduced.

図6において、図2に示す構成と異なるのは、電子機器のCPU31が充電器の制御を行う点と、充電器33がCPUを持たないことであり、その他の構成は同じである。また、図5において、図1に示す構成と異なるのは、CPU10、電圧検出回路11、電流検出回路12の代わりに、制御部30、誤差増幅器OP1〜OP3、電圧源Vr1,Vr,2、抵抗R5,R6が設けられている点である。その他の構成要素は図1と同じである。   6 differs from the configuration shown in FIG. 2 in that the CPU 31 of the electronic device controls the charger and that the charger 33 does not have a CPU, and the other configurations are the same. 5 differs from the configuration shown in FIG. 1 in that instead of the CPU 10, the voltage detection circuit 11, and the current detection circuit 12, a control unit 30, error amplifiers OP1 to OP3, voltage sources Vr1, Vr, 2, and resistors R5 and R6 are provided. Other components are the same as those in FIG.

CPU31は、まず装置への商用電源の入力電圧及び入力電流を読み込み(ステップ21)、入力電圧及び入力電流に基づいて入力電力の余裕度を算出する(ステップ2)。   The CPU 31 first reads the input voltage and input current of the commercial power supply to the apparatus (step 21), and calculates the margin of input power based on the input voltage and input current (step 2).

次に、予め設定されている電力余裕度と充電電力設定値との関係を示すデータを格納したテーブルを参照し、算出した結果に基づいて充電電力設定値を決定する(ステップ3)。なお、このテーブルは、商用電源の入力電圧と入力電流と充電電力設定値との関係を示すものであっても良い。   Next, referring to a table storing data indicating the relationship between the preset power margin and the charging power setting value, the charging power setting value is determined based on the calculated result (step 3). In addition, this table may show the relationship between the input voltage of commercial power supply, input current, and charging power setting value.

次に、決定された充電電流設定値と現在の充電電力目標値を比較し、充電電力目標値を現在の値から変更する必要があるか否かを判断する(ステップ4)。変更する必要があれば充電電力設定値を変更し(ステップ5)、変更する必要が無ければ再度入力電流、入力電圧を読み込みにゆく動作を繰り返す。   Next, the determined charging current set value is compared with the current charging power target value, and it is determined whether or not the charging power target value needs to be changed from the current value (step 4). If it is necessary to change, the charging power set value is changed (step 5). If there is no need to change, the operation of reading the input current and input voltage is repeated.

これによりリアルタイムに装置の入力電力余裕値を読み取って、充電時に使える電力最大値を制御することができる。   Thereby, the input power margin value of the apparatus can be read in real time, and the maximum power value that can be used during charging can be controlled.

次に図5を用いて充電器の構成及び動作を説明する。   Next, the configuration and operation of the charger will be described with reference to FIG.

第2の実施形態では、複雑な電力演算を擬似定電力制御という形を取ることで簡素化している。回路の構成と動作について説明する。   In the second embodiment, complicated power calculation is simplified by taking the form of pseudo constant power control. The configuration and operation of the circuit will be described.

図5において、R4は蓄電器14のキャパシタC3、C4に流れる電流を検出して電圧レベルに変換するための抵抗である。誤差増幅器OP3は抵抗R4に流れた電流によって発生するR4両端電圧、すなわち蓄電器14に流れる電流と可変電圧源Vr2で決められる値との差分を増幅する。制御部30は誤差増幅器OP1の出力が0になるよう、即ち蓄電器14に流れる電流と可変電圧源Vr2で決められる値とが一致するようにスイッチング素子TR1のスイッチング動作を制御する。   In FIG. 5, R4 is a resistor for detecting the current flowing in the capacitors C3 and C4 of the battery 14 and converting it to a voltage level. The error amplifier OP3 amplifies the voltage across R4 generated by the current flowing through the resistor R4, that is, the difference between the current flowing through the battery 14 and the value determined by the variable voltage source Vr2. The control unit 30 controls the switching operation of the switching element TR1 so that the output of the error amplifier OP1 becomes 0, that is, the current flowing through the battery 14 coincides with the value determined by the variable voltage source Vr2.

R2、R3は蓄電器14両端の端子間電圧Voを検出するための抵抗である。誤差増幅器OP2は抵抗R2,R3で分圧された電圧と基準電圧Vr1との差分を増幅する。制御部30は誤差増幅器OP2との出力に基づいて、出力電圧VoをR2とR3で分圧した電圧が基準電圧Vr1と同じになる、すなわち蓄電器の端子間電圧Voが一定になるようにスイッチング素子TR1のスイッチング動作を制御する。   R2 and R3 are resistors for detecting the voltage Vo between the terminals at both ends of the capacitor 14. The error amplifier OP2 amplifies the difference between the voltage divided by the resistors R2 and R3 and the reference voltage Vr1. Based on the output from the error amplifier OP2, the control unit 30 switches the output voltage Vo so that the voltage divided by R2 and R3 is the same as the reference voltage Vr1, that is, the voltage Vo between the terminals of the capacitor is constant. Controls the switching operation of TR1.

R5、R6は蓄電器14の両端の端子電圧Voを検出するための抵抗である。基準電圧Vr2(可変電圧源の出力値)は外部から可変できるようになっている。即ち、Vr2の値はCPU31により決められた目標電力に基づいて決定する。また、端子電圧検出用抵抗R5、R6から見た場合、蓄電器14に流れる電流によって電流検出抵抗R4に発生する電圧降下量が変化するため、結果として以下のような関係式が成り立つ。
Vr2=Vo×R6/(R5+R6)+Io×R4
この式をVoについて解くと、以下のようになる。
Vo=−((R5+R6)×R4/R6)×Io+((R5+R6)/R6)×Vr2
更に回路内の抵抗値で決まる固定値を定数a、bに置き換えると以下のように表すことができる。
Vo=−a×Io+b×Vr2 (1)
式(1)によると、蓄電器端子間電圧Voは蓄電器14に流れるIoに関する一次式として表すことができ、回路抵抗値により傾き−aが決まり、外部から設定される基準電圧Vr2で切片を可変にすることができることを示している。
R5 and R6 are resistors for detecting the terminal voltage Vo at both ends of the battery 14. The reference voltage Vr2 (output value of the variable voltage source) can be varied from the outside. That is, the value of Vr2 is determined based on the target power determined by the CPU 31. Further, when viewed from the terminal voltage detection resistors R5 and R6, the amount of voltage drop generated in the current detection resistor R4 varies depending on the current flowing through the battery 14, and as a result, the following relational expression is established.
Vr2 = Vo * R6 / (R5 + R6) + Io * R4
Solving this equation for Vo gives:
Vo = − ((R5 + R6) × R4 / R6) × Io + ((R5 + R6) / R6) × Vr2
Furthermore, when the fixed value determined by the resistance value in the circuit is replaced with constants a and b, it can be expressed as follows.
Vo = −a × Io + b × Vr2 (1)
According to the equation (1), the capacitor terminal voltage Vo can be expressed as a linear equation related to Io flowing through the capacitor 14, the slope -a is determined by the circuit resistance value, and the intercept can be varied by the reference voltage Vr2 set from the outside. It shows you can.

次に蓄電器端子間電圧Voと蓄電器に流れる電流Ioから算出される充電電力Poは、
Po=Vo×Ioであり、この式をVoについて解くと、
Vo=Po/Io (2)
となる。
Next, the charging power Po calculated from the capacitor terminal voltage Vo and the current Io flowing through the capacitor is
Po = Vo × Io, and solving this equation for Vo,
Vo = Po / Io (2)
It becomes.

図7は蓄電器14への充電時における電圧、電流の変化を示したグラフを示している。
式(2)はVoがIoに対して係数Poで単純に反比例していることを示している。従って例えば式(1)の係数aが1となるように回路定数を決定し、切片を決める基準電圧Vr2をPoに近づくような値とすれば目標電力値に対して図7の実線に示すような形で定電力制御時の電力を近似することが可能である。
FIG. 7 shows a graph showing changes in voltage and current when the battery 14 is charged.
Equation (2) shows that Vo is simply inversely proportional to Io with coefficient Po. Therefore, for example, if the circuit constant is determined so that the coefficient a in the equation (1) is 1, and the reference voltage Vr2 for determining the intercept is set to a value that approaches Po, the target power value is indicated by a solid line in FIG. It is possible to approximate the power during constant power control in a simple manner.

図7では、電力目標値P1に対して外部から設定される基準電圧をVr21とした場合と電力目標値P2に対して外部から設定される基準電圧をVr22とした場合についての充電特性を示している。基準電圧Vr2は装置CPUが31が演算した電力余裕度により決定され、電力目標値として充電器33に入力される。   FIG. 7 shows charging characteristics when the reference voltage set from the outside with respect to the power target value P1 is Vr21 and when the reference voltage set from the outside with respect to the power target value P2 is Vr22. Yes. The reference voltage Vr2 is determined by the power margin calculated by the device CPU 31 and is input to the charger 33 as a power target value.

続いて図7を用いて実際の充電が行われるときの流れを説明する。   Next, a flow when actual charging is performed will be described with reference to FIG.

まず、最初に一定電流iで充電が開始される。充電が進むと蓄電器14の充電電圧が上昇し、充電器33が消費する電力も増加する。その後、蓄電器14の端子間電圧が装置の電力消費量に応じて決められたVr2の値によって決まる値に達すると、定電流充電から上述した擬似定電力直線(蓄電器の電流の一次式)に従った充電へと切り替わる。実際に行いたい定電力目標値Poと擬似定電力目標値Vr2との関係は予め関係を表わすデータを記憶したテーブルを用意して決定する。そして蓄電器14の端子間電圧がvに達すると擬似定電力充電から定電圧充電に切り替わる。その後充電電流は減少し、ゼロになった時点で充電完了となる。   First, charging is started at a constant current i. As charging progresses, the charging voltage of the battery 14 increases, and the power consumed by the charger 33 also increases. After that, when the voltage between the terminals of the battery 14 reaches a value determined by the value of Vr2 determined according to the power consumption of the device, the constant current charging is followed by the pseudo constant power straight line (primary expression of the current of the battery). The battery is switched to charging. The relationship between the constant power target value Po to be actually performed and the pseudo constant power target value Vr2 is determined by preparing a table storing data representing the relationship in advance. When the voltage between the terminals of the battery 14 reaches v, the pseudo constant power charging is switched to the constant voltage charging. Thereafter, the charging current decreases, and charging is completed when it becomes zero.

本実施形態では装置本体制御に使用するCPUが装置全体の消費電力量を算出し、充電器側で消費してもよい電力値を決めて充電器の最大電力値を制御すること、充電器側では高価なCPUを専用に持つことなく、且つ消費電力演算のための複雑な回路を使わずに定電力曲線にほぼ近似した充電特性を得られることで装置の余計なコストアップ、サイズアップをしない構成とした。   In this embodiment, the CPU used for device main body control calculates the power consumption of the entire device, determines the power value that may be consumed on the charger side, and controls the maximum power value of the charger, the charger side Then, without having an expensive CPU dedicated, and without using a complicated circuit for power consumption calculation, it is possible to obtain a charging characteristic that approximates a constant power curve, so that the cost and size of the device are not increased. The configuration.

本発明の第1の実施形態に係る充電器の構成を示す回路図である。It is a circuit diagram which shows the structure of the charger which concerns on the 1st Embodiment of this invention. 図1の充電器を内蔵した電子機器装置のハードウエア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the electronic device apparatus which incorporated the charger of FIG. 蓄電器への充電時に蓄電器端子間にかかる電圧と蓄電器に流れる電流の関係を示すグラフである。It is a graph which shows the relationship between the voltage which applies between capacitor terminals at the time of charge to a capacitor, and the current which flows into a capacitor. 蓄電器への充電制御方法を示すフローチャートである。It is a flowchart which shows the charge control method to an electrical storage device. 本発明の第2の実施形態に係る充電器の構成を示す回路図である。It is a circuit diagram which shows the structure of the charger which concerns on the 2nd Embodiment of this invention. 図5の充電器を内蔵した電子機器装置のハードウエア構成を示すブロック図である。It is a block diagram which shows the hardware constitutions of the electronic device apparatus which incorporated the charger of FIG. 蓄電器への充電時に蓄電器端子間にかかる電圧と蓄電器に流れる電流の関係を示すグラフである。It is a graph which shows the relationship between the voltage which applies between capacitor terminals at the time of charge to a capacitor, and the current which flows into a capacitor. 本発明の第2の実施形態に係る蓄電器への充電制御方法を示すフローチャートである。It is a flowchart which shows the charge control method to the electrical storage device which concerns on the 2nd Embodiment of this invention. 従来の充電器の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional charger. 図9の充電器における充電時の電流と電圧の関係を示すずである。FIG. 10 is a diagram illustrating a relationship between current and voltage during charging in the charger of FIG. 9.

符号の説明Explanation of symbols

10 CPU
11 電圧検出回路
12 電流検出回路
14 蓄電器
21 商用電源
22 電源回路
23 充電器
24 電流検出手段
10 CPU
DESCRIPTION OF SYMBOLS 11 Voltage detection circuit 12 Current detection circuit 14 Power storage device 21 Commercial power supply 22 Power supply circuit 23 Charger 24 Current detection means

Claims (2)

蓄電器に充電を行う充電回路を有する電子機器装置において、
交流を入力して直流電圧を出力する電源と、
前記交流により前記電子機器装置に供給される入力電流の情報を取得する入力電流情報取得手段と、
前記蓄電器の端子間電圧を検出する電圧検出手段と、
前記蓄電器に流れる電流を検出する電流検出手段と、
前記蓄電器に対して定電流制御により充電を開始させ、前記電圧検出手段の出力と前記電流検出手段の出力に基づいて前記蓄電器に供給される電力が目標値に到達したことを判断すると定電力制御による充電に切り替え、前記電圧検出手段の出力に基づいて前記蓄電器の端子間電圧が所定の電圧に到達したことを判断すると定電圧制御による充電に切り替える制御手段と、
を有し、前記制御手段は、前記入力電流情報取得手段により取得した入力電流情報と前記電源の効率と前記蓄電器への充電の効率とに基づいて前記定電力充電における前記目標値を設定することを特徴とする充電回路を有する電子機器装置。
In an electronic device having a charging circuit for charging a capacitor,
A power source that inputs alternating current and outputs direct current voltage;
Input current information acquisition means for acquiring information of an input current supplied to the electronic device by the alternating current;
Voltage detecting means for detecting a voltage between terminals of the capacitor;
Current detecting means for detecting a current flowing through the battery;
Wherein to initiate the charge by the constant current control with respect to the capacitor, the voltage output and the current when the power supplied to the capacitor on the basis of the output of the detection means determines that it has reached the goal value constant power detection means Control means for switching to charging by control, and switching to charging by constant voltage control when it is determined that the voltage between the terminals of the battery has reached a predetermined voltage based on the output of the voltage detection means ;
And the control means sets the target value in the constant power charging based on the input current information acquired by the input current information acquisition means, the efficiency of the power source, and the efficiency of charging the battery. An electronic device having a charging circuit.
前記交流により前記電子機器装置へ供給される入力電圧の情報を取得する入力電圧情報取得手段を有し、前記制御手段は、入力電流取得手段で取得した入力電流情報と前記入力電圧取得手段で取得した入力電圧情報とに基づいて前記定電力充電における前記目標値を設定することを特徴とする請求項1記載の充電回路を有する電子機器装置。 Input voltage information acquisition means for acquiring information on an input voltage supplied to the electronic device device by the alternating current, and the control means is acquired by the input current information acquired by the input current acquisition means and the input voltage acquisition means. The electronic device apparatus having a charging circuit according to claim 1, wherein the target value in the constant power charging is set based on the input voltage information.
JP2006175017A 2006-06-26 2006-06-26 Electronic device apparatus having a charging circuit Expired - Fee Related JP4174530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175017A JP4174530B2 (en) 2006-06-26 2006-06-26 Electronic device apparatus having a charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175017A JP4174530B2 (en) 2006-06-26 2006-06-26 Electronic device apparatus having a charging circuit

Publications (2)

Publication Number Publication Date
JP2008005667A JP2008005667A (en) 2008-01-10
JP4174530B2 true JP4174530B2 (en) 2008-11-05

Family

ID=39009559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175017A Expired - Fee Related JP4174530B2 (en) 2006-06-26 2006-06-26 Electronic device apparatus having a charging circuit

Country Status (1)

Country Link
JP (1) JP4174530B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4861260B2 (en) * 2007-06-27 2012-01-25 株式会社東芝 Battery charging apparatus, information processing apparatus including the battery charging apparatus, and battery charging method
KR101733487B1 (en) 2010-06-25 2017-05-10 엘지전자 주식회사 Method for controlling a device
JP5419290B2 (en) * 2010-07-21 2014-02-19 ニチコン株式会社 Charger
JP6469539B2 (en) * 2015-06-24 2019-02-13 日本車輌製造株式会社 Generator
JP6710106B2 (en) * 2016-06-07 2020-06-17 本田技研工業株式会社 Power supply system and power supply method

Also Published As

Publication number Publication date
JP2008005667A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP6038386B1 (en) Bidirectional contactless power supply device and bidirectional contactless power supply system
JP4207984B2 (en) Charging system and control method thereof
JP6541884B2 (en) DC / DC converter
JP5786325B2 (en) Power conversion circuit system
EP2784902A1 (en) Direct current (DC) microgrid charge/discharge system for secondary batteries connected in series
JP2007097397A (en) Constant current/constant voltage charging method and constant current/constant voltage charging device
US20050017677A1 (en) Method and system for providing induction charging having improved efficiency
TW583816B (en) Regulator circuit and control method thereof
CN108701996B (en) Virtual inertia power supply supporting grid control
EP3297146B1 (en) Charging circuit and capacitive power conversion circuit and charging control method thereof
US10491039B2 (en) Power transfer circuit and method utilizing power capability proclamation to transfer electrical power to charger
JP2000324715A (en) Charging controller
JP4174530B2 (en) Electronic device apparatus having a charging circuit
JP2007526731A (en) Energy storage system
US9827872B1 (en) Hybrid and electric battery cell rebalancer
CN104104154A (en) Electronic unit and feed system
CN109874366B (en) Electric machine and apparatus
JP2010041891A (en) Charger
JP2007285739A (en) Method and apparatus for determining remaining capacity of battery, and battery pack using it
JP2006325350A (en) Power supply device
WO2014083788A1 (en) Bidirectional converter
JP5196011B2 (en) Charge control system
KR102478056B1 (en) Apparatus and method for controlloing converter for charging battery of vehicle
JP6268786B2 (en) Power conditioner, power conditioner system, and control method of power conditioner
JP3929454B2 (en) Charger and charge control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees