JP2015076272A - All-solid-state battery - Google Patents

All-solid-state battery Download PDF

Info

Publication number
JP2015076272A
JP2015076272A JP2013211794A JP2013211794A JP2015076272A JP 2015076272 A JP2015076272 A JP 2015076272A JP 2013211794 A JP2013211794 A JP 2013211794A JP 2013211794 A JP2013211794 A JP 2013211794A JP 2015076272 A JP2015076272 A JP 2015076272A
Authority
JP
Japan
Prior art keywords
battery
solid
electrode body
layer
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013211794A
Other languages
Japanese (ja)
Inventor
寛 広瀬
Hiroshi Hirose
寛 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013211794A priority Critical patent/JP2015076272A/en
Publication of JP2015076272A publication Critical patent/JP2015076272A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an all-solid-state battery capable of preventing or suppressing a short circuit of an electrode body without substantially changing a configuration of the electrode body.SOLUTION: The all-solid-state battery includes an electrode body and a laminate film covering the electrode body. An adhesive tape is provided on an internal surface of the laminate film.

Description

本発明は、全固体電池に関し、さらに詳しくは電極体を覆うラミネートに特定の部材を設けることにより電池の短絡を防止乃至は抑制し得る全固体電池に関する。   The present invention relates to an all-solid battery, and more particularly to an all-solid battery that can prevent or suppress a short circuit of the battery by providing a specific member on a laminate that covers an electrode body.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて電解液を用いないため、非水電解液を用いる場合の安全性向上のために必要なシステムを簡略化し得て構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、電解質層として固体電解質層を備えた全固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, since the electrolyte is not used compared to the conventional non-aqueous electrolyte lithium battery, the system required for improving the safety when using the non-aqueous electrolyte can be simplified. Therefore, practical use of an all-solid-state battery having a solid electrolyte layer as an electrolyte layer is expected.

しかし、全固体電池の実用化が実現するためには様々な改良が必要である。
その1つとして、全固体電池の使用時に、全固体電池における正極層、固体電解質層および負極層を有する電極体から活物質が滑落する、場合により電極体そのものが滑落して生じる電池の短絡を防止乃至は抑制する技術が挙げられる。
一方、電池の使用時における短絡を防止乃至は抑制する技術に適用し得ると推測される技術が提案されている。
However, various improvements are necessary in order to realize practical use of all solid state batteries.
For example, when an all-solid battery is used, the active material slides down from the electrode body having the positive electrode layer, the solid electrolyte layer, and the negative electrode layer in the all-solid battery. The technique of prevention thru | or suppressing is mentioned.
On the other hand, a technique that is estimated to be applicable to a technique for preventing or suppressing a short circuit during use of a battery has been proposed.

例えば、特許文献1には、正極層、電解質層および負極層が積層されてなる単電池層のそれぞれの周囲に単電池層と外気との接触を遮断するシール部を含む電池モジュールが記載されている。   For example, Patent Document 1 describes a battery module that includes a seal portion that blocks contact between a single battery layer and outside air around each single battery layer in which a positive electrode layer, an electrolyte layer, and a negative electrode layer are stacked. Yes.

また、特許文献2には、集電体と、前記集電体の表面に形成される活物質層とを有し、活物質層の厚さ方向に貫通したアンカー部材が配置された、活物質粒子の脱落を防止し得る電池用電極が記載されており、具体例として前記アンカー部材の少なくとも一部の表面にバインダーを付着した例が示されている。   Patent Document 2 discloses an active material having a current collector and an active material layer formed on the surface of the current collector, and an anchor member penetrating in the thickness direction of the active material layer is disposed. A battery electrode that can prevent the particles from falling off is described, and as an example, a binder is attached to at least a part of the surface of the anchor member.

また、特許文献3には、固体電解質層、集電体及び前記両層に挟まれた活物質層を備える電極体であって、前記活物質層の端面および端面の周縁部を被覆する絶縁材料を備える電極体が記載されており、前記電極体により活物質層の端部が変形又は脱落することに起因する短絡の発生を防止できることが示されている。   Patent Document 3 discloses an electrode body including a solid electrolyte layer, a current collector, and an active material layer sandwiched between the two layers, and an insulating material that covers an end surface of the active material layer and a peripheral portion of the end surface. It has been shown that the electrode body can prevent the occurrence of a short circuit due to the end portion of the active material layer being deformed or dropped.

さらに、特許文献4には、プラスチック系基材の少なくとも一方の面にアクリル系粘着剤層から成る粘着剤層を有する電気化学デバイス用粘着テープが記載されており、例として極板、電極端子、極板端部、セパレータにおける極板端部が接触する部分、活物質の塗布部と未塗布部の境界部分、巻回型電池の巻端部に前記粘着テープを貼付けた例が示されている。   Furthermore, Patent Document 4 describes an adhesive tape for an electrochemical device having an adhesive layer composed of an acrylic adhesive layer on at least one surface of a plastic substrate. Examples include an electrode plate, an electrode terminal, An example is shown in which the pressure-sensitive adhesive tape is pasted on the end of the electrode plate, the part of the separator where the end of the electrode plate contacts, the boundary part between the active material application part and the non-application part, and the winding end part of the wound battery. .

しかし、前記特許文献に記載の技術を適用した全固体電池によれば、シール部を用いて集電箔間を両面シールして上下を密着させると充放電時に膨張収縮の影響を受けて電極体の一部に割れなどが起こり得る、電極体の構成を変更するため電池自体の性能低下が避けられない、あるいは電池を使用する際、例えば充電時に電池の膨張により活物質層の端部の変形又は脱落を防止乃至は抑制し得ない。
このように、公知の技術によっては、電極体の構成を変更することなく電極体の短絡を防止乃至は抑制し得る全固体電池を得ることは困難であった。
However, according to the all-solid-state battery to which the technology described in the above-mentioned patent document is applied, the electrode body is affected by expansion and contraction at the time of charge and discharge when both sides of the current collector foil are sealed using a seal portion and the top and bottom are in close contact with each other. Part of the battery may be cracked, the performance of the battery itself is unavoidable due to the change in the configuration of the electrode body, or when using the battery, for example, deformation of the end of the active material layer due to battery expansion during charging Or drop-off cannot be prevented or suppressed.
As described above, it is difficult to obtain an all-solid-state battery that can prevent or suppress a short circuit of the electrode body without changing the configuration of the electrode body, depending on a known technique.

特開2007−213990号公報JP 2007-213990 A 特開2008−21453号公報JP 2008-21453 A 特開2012−38425号公報JP 2012-38425 A 特開2012−226991号公報JP 2012-226991 A

従って、本発明の目的は、電極体の構成を実質的に変更することなく電極体の短絡を防止乃至は抑制し得る全固体電池を提供することである。   Accordingly, an object of the present invention is to provide an all-solid battery that can prevent or suppress short-circuiting of an electrode body without substantially changing the configuration of the electrode body.

本発明は、電極体と、電極体を覆うラミネートフィルムとを有する全固体電池において、ラミネートフィルムの内面に粘着テープを設けてなる全固体電池に関する。   The present invention relates to an all-solid battery comprising an electrode body and a laminate film covering the electrode body, the adhesive film being provided on the inner surface of the laminate film.

本発明によれば、電極体の構成を実質的に変更することなく電極体の短絡を防止乃至は抑制し得る全固体電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state battery which can prevent thru | or suppress the short circuit of an electrode body can be obtained, without changing the structure of an electrode body substantially.

図1は、本発明の実施態様の全固体電池の模式図である。FIG. 1 is a schematic view of an all solid state battery according to an embodiment of the present invention. 図2は、図1の全固体電池において電極体から活性物質が滑落した状態を示す集電タブ部を除いた部分拡大模式図である。FIG. 2 is a partially enlarged schematic view of the all solid state battery of FIG. 1 excluding a current collecting tab portion showing a state in which an active substance slides down from an electrode body. 図3は、従来の全固体電池の模式図である。FIG. 3 is a schematic diagram of a conventional all solid state battery. 図4は、図3の全固体電池において電極体から活性物質が滑落した状態を示す集電タブ部を除いた部分拡大模式図である。FIG. 4 is a partially enlarged schematic view of the all solid state battery of FIG. 3 excluding the current collecting tab portion showing a state where the active material has slid from the electrode body.

以下、図面を参照して本発明の実施の形態を詳説する。
本発明の実施態様の全固体電池1は、図1および2に示すように、正極層2、固体電解質層3および負極層4を有する電極体5と、電極体5を覆うラミネートフィルム6を有する全固体電池において、ラミネートフィルム6の内面に粘着テープ7aを設けてなり、落ちてきた活物質9などを粘着テープ7aに固定することで電池の短絡を防ぎ得る。さらに、前記の本発明の実施態様の全固体電池1は、最も水分が透過しやすい集電タブ部8の近傍のラミネートフィルムの内面にも粘着テープ7bが設けられており、電極体に含まれている固体電解質を集電タブ近傍に固定し電池外部からの透過水分を固体電解質に吸着させて電極体の水分による劣化を抑制し得る。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 and 2, the all-solid battery 1 according to the embodiment of the present invention includes an electrode body 5 having a positive electrode layer 2, a solid electrolyte layer 3 and a negative electrode layer 4, and a laminate film 6 covering the electrode body 5. In the all solid state battery, the adhesive tape 7a is provided on the inner surface of the laminate film 6, and the short-circuit of the battery can be prevented by fixing the fallen active material 9 or the like to the adhesive tape 7a. Furthermore, the all-solid-state battery 1 according to the embodiment of the present invention includes the adhesive tape 7b on the inner surface of the laminate film in the vicinity of the current collecting tab portion 8 through which moisture is most easily transmitted, and is included in the electrode body. The solid electrolyte is fixed in the vicinity of the current collecting tab, and the permeated moisture from the outside of the battery is adsorbed to the solid electrolyte, so that deterioration of the electrode body due to moisture can be suppressed.

これに対して、従来の全固体電池10は、図3および4に示すように、正極層2、固体電解質層3および負極層4を有する電極体5と、電極体5を覆うラミネートフィルム6を有するものであり、電池の使用時に電極体5から活物質9や電極体そのものが滑落すると、電解質層3を跨いで端部で接触し得て、電池の短絡が生じてしまう。また、外部からの水分透過が起こり、経時的に電池特性が劣化してしまう。   On the other hand, as shown in FIGS. 3 and 4, the conventional all-solid battery 10 includes an electrode body 5 having a positive electrode layer 2, a solid electrolyte layer 3 and a negative electrode layer 4, and a laminate film 6 covering the electrode body 5. If the active material 9 or the electrode body itself slides from the electrode body 5 during use of the battery, it can contact the end portion across the electrolyte layer 3, resulting in a short circuit of the battery. In addition, moisture permeation from the outside occurs, and the battery characteristics deteriorate with time.

従来の全固体電池における電池の短絡および外部からの水分透過による電池特性の劣化は、1)全固体電池が活物質と固体電解質という異種の物質を混合し、圧縮して形成されているため、活物質などの滑落が起こりやすい、2)ラミネートセルでは集電タブを出す場所の密着性が弱いため、その部位からの水分透過が多いために生じると考えられる。
そして、本発明の実施態様の前記固体電池によれば、前記の電池の短絡および外部からの水分透過による電池特性の劣化が防止乃至は抑制され得る。
The deterioration of the battery characteristics due to the short circuit of the battery and the permeation of moisture from the outside in the conventional all solid state battery is because 1) the all solid state battery is formed by mixing and compressing different materials such as active material and solid electrolyte, 2) In the laminate cell, the adhesiveness of the place where the current collecting tab is put out is weak, and it is considered that the moisture permeation from the part is large.
And according to the said solid battery of the embodiment of this invention, the deterioration of the battery characteristic by the short circuit of the said battery and the water permeation from the outside can be prevented thru | or suppressed.

前記の全固体電池の電極体は、それ自体公知の方法、例えば固体電解質、例えば硫化物固体電解質材料を金型に収容したセルに入れ、プレスして固体電解質層を形成し、その片側に正極合剤を入れ、プレスして正極体を形成し、次いでその逆側に負極合剤を入れ、プレスして負極体を形成し、正極体および負極体に各々集電体を取付けて正極層および負極層とすることによって得ることができる。
前記の正極用の集電体として金属箔、例えばSUS箔、Al箔を、前記の負極用の集電体として金属箔、例えばSUS箔、Cu箔を用い得る。
The electrode body of the all-solid-state battery is a method known per se, for example, a solid electrolyte, for example, a sulfide solid electrolyte material is placed in a cell accommodated in a mold and pressed to form a solid electrolyte layer, and a positive electrode is formed on one side thereof. A mixture is put and pressed to form a positive electrode body, then a negative electrode mixture is placed on the opposite side, and pressed to form a negative electrode body. A current collector is attached to each of the positive electrode body and the negative electrode body, and a positive electrode layer and It can obtain by setting it as a negative electrode layer.
A metal foil such as SUS foil or Al foil can be used as the current collector for the positive electrode, and a metal foil such as SUS foil or Cu foil can be used as the current collector for the negative electrode.

本発明の実施態様の全固体電池は、前記の電極体を、内面および最も水分が透過しやすい集電タブの近傍のラミネートフィルムの内面に粘着テープを設けたラミネートフィルムで覆うことによって得ることができる。
前記の粘着テープを設置する位置は、電極体の側面および電極体における集電タブの近傍の位置を予め予測し、その予測位置に設けることが好ましい。
The all solid state battery of the embodiment of the present invention can be obtained by covering the electrode body with a laminate film provided with an adhesive tape on the inner surface and the inner surface of the laminate film in the vicinity of the current collecting tab through which moisture is most permeable. it can.
As for the position where the adhesive tape is installed, it is preferable to predict in advance the position of the side surface of the electrode body and the vicinity of the current collecting tab in the electrode body, and to provide it at the predicted position.

前記のラミネートフィルムとしては、金属箔、例えば40μm程度の厚さのアルミ箔を基板とし、その片面にポリオレフィン膜、例えば80μm程度の厚さのポリプロピレン(PP)やポリエチレン(PE)等の接着層を、もう片面に耐熱性ポリマー保護層、例えば25μm程度の厚さのポリアミド等の表面保護層をそれぞれコーティングしたものが挙げられる。   As the laminate film, a metal foil, for example, an aluminum foil having a thickness of about 40 μm is used as a substrate, and a polyolefin film, for example, an adhesive layer having a thickness of about 80 μm, such as polypropylene (PP) or polyethylene (PE), is provided on one side thereof. The other surface is coated with a heat-resistant polymer protective layer, for example, a surface protective layer such as polyamide having a thickness of about 25 μm.

前記の粘着テープとしては、基材、例えばカーボン(紙)、樹脂フィルムなどのシート状に成形し得る任意の材料からなるシートの両面に接着剤、例えばアクリル系樹脂、例えば(メタ)アクリル酸アルキルエステルの(コ)ポリマーなどの公知の粘着テープに用いられる任意の接着剤を設けたものが挙げられる。   As the above-mentioned pressure-sensitive adhesive tape, an adhesive such as an acrylic resin such as an alkyl (meth) acrylate is used on both sides of a sheet made of an arbitrary material that can be formed into a base material such as carbon (paper) or a resin film. What provided the arbitrary adhesives used for well-known adhesive tapes, such as ester (co) polymer, is mentioned.

前記の正極層に含有される正極活物質としては、Liを挿入することができる材料、例えばコバルト酸リチウムやLiNOなどの公知の正極活物質を適宜用い得る。また、正極層に含有される固体電解質としては任意の硫化物固体電解質、例えばLiS:P=50:50〜100:0(質量比)となるようにLiSおよびPを混合して得られる硫化物固体電解質、あるいは酸化物電解質など任意の固体電解質を用い得る。
また、正極層は結着用バインダー、例えばポリフッ化ビニリデンなどのフッ素含有樹脂や導電材、例えばアセチレンブラックなどを含有し得る。
前記正極層の厚みは、特に制限されないが、例えば0.1〜1000μmの範囲であり得る。
As the positive electrode active material contained in the positive electrode layer, a material capable of inserting Li, for example, a known positive electrode active material such as lithium cobaltate or LiNO can be used as appropriate. Also, any sulfide solid electrolyte as the solid electrolyte contained in the positive electrode layer, for example, Li 2 S: P 2 S 5 = 50: 50~100: 0 so that (mass ratio) Li 2 S and P 2 sulfide solid electrolyte obtained by mixing S 5, or any solid electrolyte such as oxide electrolyte may be used.
The positive electrode layer may contain a binder for binding, for example, a fluorine-containing resin such as polyvinylidene fluoride, or a conductive material such as acetylene black.
The thickness of the positive electrode layer is not particularly limited, but may be in the range of 0.1 to 1000 μm, for example.

前記の負極層に含有される負極活物質としては、Liを挿入することができる材料、例えばグラファイトなどの公知のカーボン系負極合材を用い得る。また、負極層に含有される固体電解質としては正極層に適用され得る硫化物固体電解質あるいは酸化物電解質などを用い得る。
また、負極層は結着用バインダー、例えばポリフッ化ビニリデンなどのフッ素含有樹脂や導電材、例えばアセチレンブラックなどを含有し得る。
前記負極層の厚みは、特に制限されないが例えば0.1〜1000μmの範囲であり得る。
As the negative electrode active material contained in the negative electrode layer, a material into which Li can be inserted, for example, a known carbon-based negative electrode mixture such as graphite can be used. Moreover, as the solid electrolyte contained in the negative electrode layer, a sulfide solid electrolyte or oxide electrolyte that can be applied to the positive electrode layer can be used.
Further, the negative electrode layer may contain a binder for binding, for example, a fluorine-containing resin such as polyvinylidene fluoride, or a conductive material such as acetylene black.
The thickness of the negative electrode layer is not particularly limited, but may be in the range of 0.1 to 1000 μm, for example.

前記の電解質層に用いられる固体電解質としては、特に限定されず前記の正極層および負極層に適用され得る前記硫化物固体電解質を用い得る。
前記固体電解質層の厚みは、電解質の種類や電池の構成などによって異なるが、例えば0.3〜1000μm、中でも0.3〜300μm程度であり得る。
The solid electrolyte used for the electrolyte layer is not particularly limited, and the sulfide solid electrolyte that can be applied to the positive electrode layer and the negative electrode layer can be used.
The thickness of the solid electrolyte layer varies depending on the type of electrolyte, the configuration of the battery, and the like, but may be, for example, about 0.3 to 1000 μm, particularly about 0.3 to 300 μm.

前記の正極集電体および負極集電体は、外部に通ずる正極端子および負極端子までの間を、集電タブ部を用いて接続し得る。
前記の集電タブ部は電極体に付随する集電体を延長してラミネートセルの外側に出ている。前記のタブ部は金属箔からなっている。
The positive electrode current collector and the negative electrode current collector can be connected to the positive electrode terminal and the negative electrode terminal that communicate with the outside using a current collecting tab portion.
The said current collection tab part has extended the electrical power collector accompanying the electrode body, and has come out to the outer side of the laminate cell. The tab portion is made of a metal foil.

本発明の実施態様の全固体電池は、アルミニウムやステンレスなどの金属を基材とするラミネートパックや、SUSなどの缶のような外装、さらには既知のLiイオン電池、Li電池で用いられる一般的な外装体で保護してもよい。   The all-solid battery according to the embodiment of the present invention is generally used in a laminate pack based on a metal such as aluminum or stainless steel, an exterior such as a can such as SUS, and a known Li ion battery or Li battery. You may protect with a simple exterior body.

本発明の実施態様の全固体電池によれば、電極体の構成を実質的に変更することなく電極体の短絡を防止乃至は抑制し得る全固体電池を得ることができるが、電池自体の性能低下が防止できる範囲であれば電極体の構成を変更することを排除するものではない。   According to the all solid state battery of the embodiment of the present invention, it is possible to obtain an all solid state battery that can prevent or suppress a short circuit of the electrode body without substantially changing the configuration of the electrode body. Changing the configuration of the electrode body is not excluded as long as the reduction can be prevented.

本発明によって、電極体の構成を実質的に変更することなく電極体の短絡を防止乃至は抑制し得る全固体電池を得ることができる。   According to the present invention, it is possible to obtain an all-solid-state battery that can prevent or suppress a short circuit of an electrode body without substantially changing the configuration of the electrode body.

1 本発明の実施態様の全固体電池
2 正極層
3 固体電解質層
4 負極層
5 電極体
6 ラミネートフィルム
7a 粘着テープ
7b 粘着テープ
8 集電タブ部
9 脱落した活物質
10 従来の全固体電池
DESCRIPTION OF SYMBOLS 1 All-solid-state battery of embodiment of this invention 2 Positive electrode layer 3 Solid electrolyte layer 4 Negative electrode layer 5 Electrode body 6 Laminated film 7a Adhesive tape 7b Adhesive tape 8 Current collection tab part 9 Dropped active material 10 Conventional all-solid battery

Claims (1)

電極体と、電極体を覆うラミネートとを有する全固体電池において、ラミネートの内面に粘着テープを設けてなる全固体電池。   An all solid state battery comprising an electrode body and a laminate covering the electrode body, wherein an adhesive tape is provided on the inner surface of the laminate.
JP2013211794A 2013-10-09 2013-10-09 All-solid-state battery Pending JP2015076272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211794A JP2015076272A (en) 2013-10-09 2013-10-09 All-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211794A JP2015076272A (en) 2013-10-09 2013-10-09 All-solid-state battery

Publications (1)

Publication Number Publication Date
JP2015076272A true JP2015076272A (en) 2015-04-20

Family

ID=53000974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211794A Pending JP2015076272A (en) 2013-10-09 2013-10-09 All-solid-state battery

Country Status (1)

Country Link
JP (1) JP2015076272A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180233711A1 (en) * 2017-02-14 2018-08-16 Toyota Jidosha Kabushiki Kaisha Method for producing laminated all-solid-state battery
KR20190005356A (en) 2017-07-06 2019-01-16 현대자동차주식회사 All-solid battery and method for manufacturing the same
KR20190026090A (en) 2017-09-04 2019-03-13 현대자동차주식회사 All-solid battery and method for manufacturing the same
KR20190048312A (en) 2017-10-31 2019-05-09 현대자동차주식회사 All-solid battery and method for manufacturing the same
KR20190056666A (en) 2017-11-17 2019-05-27 현대자동차주식회사 All-solid battery and method for manufacturing the same
JP2019164892A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 All-solid battery
CN110993836A (en) * 2018-10-03 2020-04-10 丰田自动车株式会社 Battery module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10971707B2 (en) * 2017-02-14 2021-04-06 Toyota Jidosha Kabushiki Kaisha Laminated all-solid-state battery including a filler
JP2018133175A (en) * 2017-02-14 2018-08-23 トヨタ自動車株式会社 Manufacturing method of laminate all-solid battery
US20180233711A1 (en) * 2017-02-14 2018-08-16 Toyota Jidosha Kabushiki Kaisha Method for producing laminated all-solid-state battery
KR20190005356A (en) 2017-07-06 2019-01-16 현대자동차주식회사 All-solid battery and method for manufacturing the same
US11532834B2 (en) 2017-07-06 2022-12-20 Hyundai Motor Company All-solid battery and method of manufacturing the same
US10950885B2 (en) 2017-07-06 2021-03-16 Hyundai Motor Company All-solid battery and method of manufacturing the same
KR20190026090A (en) 2017-09-04 2019-03-13 현대자동차주식회사 All-solid battery and method for manufacturing the same
US10601051B2 (en) 2017-09-04 2020-03-24 Hyundai Motor Company Method for manufacturing all-solid battery and all-solid battery manufactured by the same
KR20190048312A (en) 2017-10-31 2019-05-09 현대자동차주식회사 All-solid battery and method for manufacturing the same
US10581047B2 (en) 2017-10-31 2020-03-03 Hyundai Motor Company All-solid battery and method for manufacturing the same
KR20190056666A (en) 2017-11-17 2019-05-27 현대자동차주식회사 All-solid battery and method for manufacturing the same
US10971710B2 (en) 2017-11-17 2021-04-06 Hyundai Motor Company All-solid battery and method of manufacturing the same
JP2019164892A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 All-solid battery
JP7003762B2 (en) 2018-03-19 2022-01-21 トヨタ自動車株式会社 All solid state battery
CN110993836A (en) * 2018-10-03 2020-04-10 丰田自动车株式会社 Battery module

Similar Documents

Publication Publication Date Title
TWI591875B (en) Electric core for thin film battery
JP5720779B2 (en) Bipolar all-solid battery
EP3065205B1 (en) Electrode and cell having electrode
JP2015076272A (en) All-solid-state battery
EP2863449B1 (en) Secondary battery
KR101629499B1 (en) Electrode assembly and secondary battery comprising the same
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
US20090169986A1 (en) Non-aqueous secondary battery and method for producing the same
KR20150050131A (en) Stack-folding typed electrode assembly
JP6604324B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013048054A (en) Nonaqueous secondary battery and manufacturing method therefor
KR20160128835A (en) Pouch type secondary battery and method of fabricating the same
US20130280576A1 (en) Battery
JP2017224451A (en) Electric storage element
JP2019207750A (en) Lithium ion battery
JP2019145285A (en) All-solid battery
KR101629498B1 (en) Electrode assembly and secondary battery comprising the same
JP2014026986A (en) Separator for lithium secondary battery, and lithium secondary battery and manufacturing method therefor
JP6861127B2 (en) Electrode manufacturing method and manufacturing equipment
KR20100005792A (en) Secondary battery and method of producing the same
KR20060059698A (en) Lithum secondary battery having jelly-roll type electrode assembly
KR100898069B1 (en) Electorde assembly for lithium ion cell and pouched-type battery applying the same
JP4363558B2 (en) Flat non-aqueous electrolyte secondary battery
JP2010021043A (en) Separator, manufacturing method of separator and battery
JP2008311011A (en) Nonaqueous electrolyte secondary battery