JP2015074927A - Construction method of floor coating material - Google Patents

Construction method of floor coating material Download PDF

Info

Publication number
JP2015074927A
JP2015074927A JP2013212169A JP2013212169A JP2015074927A JP 2015074927 A JP2015074927 A JP 2015074927A JP 2013212169 A JP2013212169 A JP 2013212169A JP 2013212169 A JP2013212169 A JP 2013212169A JP 2015074927 A JP2015074927 A JP 2015074927A
Authority
JP
Japan
Prior art keywords
floor
coating
conductive
coating material
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013212169A
Other languages
Japanese (ja)
Other versions
JP6124075B2 (en
Inventor
喜昭 竹本
Yoshiaki Takemoto
喜昭 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2013212169A priority Critical patent/JP6124075B2/en
Publication of JP2015074927A publication Critical patent/JP2015074927A/en
Application granted granted Critical
Publication of JP6124075B2 publication Critical patent/JP6124075B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Floor Finish (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of applying a floor coating material capable of obtaining satisfactory antistatic performance at low costs.SOLUTION: In the method of applying a floor coating material, after forming a coated floor 12 by applying a floor coating material over a subfloor 10, the surface of the floor coating material is engraved to form grid-like grooves 13. After disposing the ground wires 14 in the grooves 13 formed in grid-like patterns, a conductive floor coating material is applied over the coated floor 12 to form a new coated floor 20. The ground wire 14 may be formed of, for example, a conductive tape material or conductive coating material.

Description

本発明は、建物の床に塗布した塗床材に導電性を付与するための塗床材の施工方法に関する。   The present invention relates to a method for constructing a coating material for imparting conductivity to a coating material applied to a floor of a building.

エポキシ樹脂やウレタン樹脂等の塗床材は、電気的な抵抗値が高いため、施工後の塗床上を人が歩行すると、人体に静電気が溜まり易い。そこで、塗床材を施工した床面上での導電性を確保し、人体への静電気の帯電を抑制するために、導電性フィラーを混入した導電性塗床材を床基盤上に塗布する方法や、カーボン繊維混抄ペーパーを床基盤上に貼着してその上に導電性塗床材を塗布する方法が提案されている(特許文献1参照)。   Since coating materials such as epoxy resins and urethane resins have high electrical resistance, static electricity tends to accumulate on the human body when a person walks on the coated floor after construction. Therefore, in order to secure the conductivity on the floor surface where the flooring material was applied and to suppress the electrostatic charge to the human body, a method of applying a conductive flooring material mixed with conductive filler on the floor base Alternatively, a method has been proposed in which a carbon fiber mixed paper is stuck on a floor base and a conductive flooring material is applied thereon (see Patent Document 1).

ところで、建物の改修工事において既存の塗床材が残っている場合には、施工期間と施工コストを考慮して既存の塗床材を除去せず、その上に新たな塗床材を塗り重ねる方法が採用されることが多い。その場合、塗床材がさらに厚くなるため電気的な抵抗値がさらに高くなり、人体に帯電する静電気は一層激しいものとなるため、その対策が求められる。   By the way, if the existing flooring material remains in the renovation work of the building, the existing flooring material is not removed in consideration of the construction period and construction cost, and a new flooring material is applied on top of it. The method is often adopted. In that case, since the coating material becomes thicker, the electrical resistance value becomes higher, and the static electricity charged on the human body becomes more intense, and therefore countermeasures are required.

特開平6−2417号公報JP-A-6-2417

そこで、上記のように既存の塗床材を残したまま、上から新たな厚塗りの塗床材を施工した場合に激しい放電を伴うような静電気の発生を抑えるために、以下の方法が考えられる。   Therefore, the following method is considered to suppress the generation of static electricity that causes severe discharge when a new thick coating is applied from above while leaving the existing coating as described above. It is done.

例えば、既存の塗床上にカーボン等を混入した導電性プライマーを全面に塗布し、その上から導電性塗床材を施工する方法がある。この方法は、上記従来技術のような通常の導電性塗床材を施工する場合と同様な方法であり、十分な帯電防止効果は得られるものの施工コストが高い。   For example, there is a method in which a conductive primer mixed with carbon or the like is applied to the entire surface of an existing coating floor, and a conductive coating material is applied thereon. This method is the same as the case of constructing a normal conductive coating material as in the above-mentioned prior art, and although a sufficient antistatic effect can be obtained, the construction cost is high.

また、例えば、既存の塗床上に通常の塗床材を施工し、その表面に帯電防止ワックスを塗布する方法がある。この方法では、帯電防止ワックスは比較的低コストで帯電防止効果を得ることができるという利点があるが、数ヶ月毎に塗り直しのメンテナンスを行う必要があり、結果的にコストや手間が高くなってしまう。また、工場など常に稼働している施設ではメンテナンスのスケジュールが確保しにくい。   Further, for example, there is a method in which an ordinary coating material is applied on an existing coating floor and an antistatic wax is applied to the surface. In this method, the antistatic wax has an advantage that an antistatic effect can be obtained at a relatively low cost, but it is necessary to perform repainting maintenance every several months, resulting in an increase in cost and labor. End up. In addition, it is difficult to secure a maintenance schedule in facilities such as factories that are always in operation.

本発明は、上記従来の問題を考慮してなされたものであり、低コストで十分な帯電防止性能を得ることができる塗床材の施工方法を提供することを目的とする。   The present invention has been made in consideration of the above-described conventional problems, and an object of the present invention is to provide a method for applying a coating material that can obtain sufficient antistatic performance at low cost.

本発明に係る塗床材の施工方法は、下地の上に塗床材を塗布して形成した塗床の表面を斫ることで格子状の溝部を形成した後、該溝部の上から前記塗床上へと導電性を有する導電性塗床材を塗布することで新たな塗床を施工することを特徴とする。   The method for applying a coating material according to the present invention comprises forming a grid-like groove by rolling the surface of a coating floor formed by applying a coating material on a base, and then applying the coating from above the groove. A new coating floor is constructed by applying a conductive coating floor material having conductivity to the floor.

このような方法によれば、建物の改修工事等において、塗床材で形成された既存の塗床を除去せずに、その上から新たな塗床を施工する場合であっても、導電性塗床材で形成された新たな塗床の下に格子状の溝部を設けているため、例えば、溝部内に流れ込んだ導電性塗布材や別途溝部内に配置されるアース線への新たな塗床からの導通が確保され、十分な帯電防止性能を持った帯電防止床を構築することができる。これにより、既存の塗床を残したまま新たな塗床を施工でき、しかも既存の塗床と新たな塗床との間の全面にアース用の導電性部材を埋設する必要等がないため、低コストでの施工が可能となる。   According to such a method, even in the case of constructing a new painted floor from above without removing the existing painted floor formed of the coated floor material in the renovation work of the building, etc. Since a grid-like groove is provided under the new coating floor formed of the coating material, for example, a new coating is applied to the conductive coating material that has flowed into the groove or to a ground wire separately disposed in the groove. Conductivity from the floor is ensured, and an antistatic floor having sufficient antistatic performance can be constructed. As a result, it is possible to construct a new paint floor while leaving the existing paint floor, and there is no need to embed a conductive member for grounding on the entire surface between the existing paint floor and the new paint floor. Construction at low cost is possible.

前記溝部にアース線を配置した後、該アース線の上から前記塗床上へと前記導電性塗床材を塗布するようにしてもよい。溝部内にアース線を配置することにより、新たな塗床での帯電防止性能を一層高めることができる。   After the ground wire is disposed in the groove, the conductive coating material may be applied from above the ground wire to the coating floor. By arranging the ground wire in the groove, the antistatic performance in a new coating floor can be further enhanced.

前記アース線は、少なくとも表面に導電性を有し、裏面に接着面を有するテープ状部材で形成され、前記テープ状部材は、前記接着面が前記溝部の底面に貼着られ、前記表面が前記導電性塗床材に接触配置されるとよい。そうすると、アース線の溝部への設置作業を容易に行うことができ、しかも導電性塗床材で形成した新たな塗床とアース線との間の導通を確保することができる。   The ground wire is formed of a tape-like member having conductivity on at least the surface and having an adhesive surface on the back surface, and the tape-like member is bonded to the bottom surface of the groove portion, and the surface is It is good to be placed in contact with the conductive coating floor material. If it does so, the installation operation | work to the groove part of an earth wire can be performed easily, and also the conduction | electrical_connection between the new coating floor formed with the electroconductive coating material and an earth wire can be ensured.

前記アース線は、導電性を有する塗布材で形成されてもよい。この場合にも、アース線の溝部への設置作業を容易に行うことができ、しかも導電性塗床材で形成した新たな塗床とアース線との間の導通を確保することができる。   The ground wire may be formed of a conductive coating material. Also in this case, the installation work to the groove part of an earth wire can be performed easily, and also the conduction between the new coating floor formed with the conductive flooring material and the earth wire can be secured.

本発明によれば、導電性塗床材で形成される新たな塗床の下に格子状の溝部を設けているため、例えば、溝部内に流れ込んだ導電性塗布材や別途溝部内に配置されるアース線への新たな塗床からの導通が確保され、十分な帯電防止性能を持った帯電防止床を構築することができる。これにより、既存の塗床を残したまま新たな塗床を施工でき、低コストでの帯電防止床の施工が可能となる。   According to the present invention, since the grid-like groove is provided under the new coating floor formed of the conductive coating material, for example, the conductive coating material that has flowed into the groove or a separate groove is disposed. Therefore, it is possible to construct an antistatic floor having sufficient antistatic performance by ensuring conduction from the new coating floor to the ground wire. Thereby, a new coating floor can be constructed while leaving the existing coating floor, and an antistatic floor can be constructed at a low cost.

図1は、既存の塗床の上にアース線を格子状に配置した状態を模式的に示す斜視断面図である。FIG. 1 is a perspective sectional view schematically showing a state in which ground wires are arranged in a grid pattern on an existing coating floor. 図2は、図1に示す塗床及びアース線の上に導電性塗床材によって新たな塗床を施工して帯電防止床を構築した状態を模式的に示す斜視断面図である。FIG. 2 is a perspective cross-sectional view schematically showing a state in which an antistatic floor is constructed by constructing a new coating floor with a conductive coating material on the coating floor and the ground wire shown in FIG. 図3は、図2に示す帯電防止床のアースターミナルをアンカー杭によって構成した場合の構造例を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a structural example in the case where the ground terminal of the antistatic floor shown in FIG.

以下、本発明に係る塗床材の施工方法について好適な実施の形態を挙げて詳細に説明する。   Hereinafter, the construction method of the flooring material according to the present invention will be described in detail with reference to preferred embodiments.

本発明の一実施形態に係る塗床材の施工方法は、建物の改修工事等において、コンクリート等の下地(床基盤)の上に塗布材を塗布して形成された既存の塗床を除去せず、その上に新たな塗床を形成することで、十分な帯電防止性能を持った帯電防止床を低コストで構築する方法である。   According to an embodiment of the present invention, there is provided a method for constructing a flooring material by removing an existing flooring formed by applying a coating material on a foundation (floor base) such as concrete in a renovation work of a building or the like. First, it is a method for constructing an antistatic floor having sufficient antistatic performance at low cost by forming a new coating floor thereon.

先ず、本実施形態に係る塗床材の施工方法では、図1に示すように、下地10の上に施工された塗床12の表面を格子状(碁盤目状)に斫ることで溝部13を格子状に形成し、この溝部13にアース線14を配置することでアース線14を格子状に配置する。   First, in the construction method of the coating material according to the present embodiment, as shown in FIG. 1, the groove portion 13 is formed by rolling the surface of the coating floor 12 applied on the base 10 in a lattice shape (a grid pattern). Is formed in a lattice shape, and the ground wire 14 is disposed in the groove portion 13 so that the ground wire 14 is disposed in a lattice shape.

下地10は、建物の床を構成するコンクリート、モルタル等の一般的な床材料で形成された床基盤であり、本実施形態では、コンクリート系の下地10を用いた場合を例示する。   The base 10 is a floor base formed of a general floor material such as concrete or mortar constituting a floor of a building. In the present embodiment, a case where a concrete base 10 is used is illustrated.

塗床(第1塗床)12は、例えば、従来より一般的に用いられている帯電防止性能を持たないエポキシ樹脂系やウレタン樹脂系の塗床材を、下地10の表面に流し延べによって塗布・乾燥させて形成したものである。   The coating floor (first coating floor) 12 is, for example, applied by pouring and spreading an epoxy resin-based or urethane resin-based coating material, which has been conventionally used and has no antistatic performance, onto the surface of the base 10. -It was formed by drying.

溝部13は、塗床12の表面を格子状に斫って形成したものである(図3も参照)。図3に示すように、溝部13の深さは、塗床12の厚みと同程度又は多少大きいか小さい程度に形成するとよい。図1に示す例では、塗床12の表面に、溝部13を一定間隔をあけて縦横が直交した格子状となるように形成している。溝部13は、その縦横が斜めに交差した斜め格子状等に形成されてもよい。溝部13の断面形状は、図3に示すような矩形状以外、例えば、円形状等であってもよい。溝部13の配置間隔は、一つの帯電防止床22内で一定であってもよいし、変化するものであってもよい。溝部13は、格子状ではなく、平行方向に並列させた配置等であってもよい。溝部13の幅は、例えば、1〜5cm程度、溝部13の配置間隔は、例えば、10〜150cm程度である。溝部13の配置間隔、つまりアース線14の配置間隔を適宜変更することにより、構築される帯電防止床22の抵抗値を調整することができる。また、溝部13の幅を変更することによっても、構築される帯電防止床22の抵抗値を調整することができる。   The groove 13 is formed by covering the surface of the coating floor 12 in a lattice shape (see also FIG. 3). As shown in FIG. 3, the depth of the groove portion 13 is preferably formed to be approximately the same as the thickness of the coating floor 12 or slightly larger or smaller. In the example shown in FIG. 1, the groove portions 13 are formed on the surface of the coating floor 12 so as to have a lattice shape in which the vertical and horizontal directions are orthogonal to each other with a predetermined interval. The groove portion 13 may be formed in an oblique lattice shape or the like in which the longitudinal and lateral directions intersect obliquely. The cross-sectional shape of the groove 13 may be other than the rectangular shape as shown in FIG. The arrangement interval of the groove portions 13 may be constant in one antistatic floor 22 or may be changed. The grooves 13 may be arranged in parallel with each other in a parallel direction instead of a lattice shape. The width of the groove 13 is, for example, about 1 to 5 cm, and the arrangement interval of the groove 13 is, for example, about 10 to 150 cm. The resistance value of the antistatic floor 22 to be constructed can be adjusted by appropriately changing the arrangement interval of the grooves 13, that is, the arrangement interval of the ground wire 14. Also, the resistance value of the antistatic floor 22 to be constructed can be adjusted by changing the width of the groove 13.

アース線14は、導電性部材を線状に形成したものである。アース線14は、溝部13の底面に導電性を持ったテープ状部材(導電性テープ)を貼着するテープ方式、又は、溝部13の内部に導電性を持った塗料や樹脂等の塗布材(導電性塗布材)を塗布する塗布方式によって形成するとよい。アース線14は溝部13内に埋設可能な形状であればよく、溝部13内に完全に埋設可能なもののみならず、その上部開口から上方へと多少突出する程度のものであってもよい。アース線14は、工場等で予め複数のアース線14を所定間隔の格子状のシート(メッシュシート)として形成しておき、このシートを現場で溝部13に合わせ、接着等によって施工してもよい。   The ground wire 14 is a conductive member formed in a linear shape. The ground wire 14 is a tape system in which a tape-like member (conductive tape) having conductivity is attached to the bottom surface of the groove portion 13 or a coating material such as paint or resin having conductivity in the groove portion 13 ( It may be formed by a coating method in which a conductive coating material is coated. The ground wire 14 may have any shape as long as it can be embedded in the groove portion 13, and may be not only a shape that can be completely embedded in the groove portion 13 but also a portion that protrudes slightly upward from its upper opening. The ground wire 14 may be preliminarily formed at a factory or the like as a plurality of ground wires 14 as a lattice-like sheet (mesh sheet) with a predetermined interval, and this sheet is applied to the groove portion 13 on the site, and is applied by bonding or the like. .

テープ方式のアース線14としては、銅やアルミニウム等の素材自体が導電性を持った金属材料をテープ状に形成した導電性金属テープ、又は、樹脂テープの表面にカーボンや金属粉を付着させた導電性樹脂テープを例示できる。すなわち、導電性テープは、少なくとも表面(上面)に導電性を持った導電面を有し、裏面に接着面を有するテープ状部材であればよい。ここで、接着面は、テープの裏面自体に接着剤が付着されていてもよく、所定の接着剤を別途塗布して用いるものでもよい。例えば、一般的な市販品の導電性テープの抵抗値は、0.01〜0.2(Ω/cm)程度である。 As the tape-type ground wire 14, carbon or metal powder is attached to the surface of a conductive metal tape in which a metal material having conductivity such as copper or aluminum is formed in a tape shape, or a resin tape surface. A conductive resin tape can be exemplified. That is, the conductive tape should just be a tape-shaped member which has the electroconductive surface which has electroconductivity on the surface (upper surface) at least, and has an adhesive surface on the back surface. Here, the adhesive surface may have an adhesive attached to the back surface of the tape itself, or may be used by separately applying a predetermined adhesive. For example, the resistance value of a general commercially available conductive tape is about 0.01 to 0.2 (Ω / cm 2 ).

塗布方式のアース線14としては、カーボンや金属粉等の導電性フィラーを混入した導電性を持つ樹脂材料や塗料等の塗布材を例示でき、特に施工作業の効率を考慮して速乾性のものを用いることが好ましい。この塗布方式のアース線14の代わりに、後述する塗床20を形成する導電性塗床材を溝部13内に流し入れることで作業工程上アース線14の設置を省略し、溝部13内で十分な高さ寸法(断面積)を持って硬化した導電性塗床材を実質上のアース線として機能させることもできる。   As the ground wire 14 of the coating method, a conductive resin material mixed with a conductive filler such as carbon or metal powder or a coating material such as a paint can be exemplified, and in particular, a quick-drying wire in consideration of the efficiency of construction work Is preferably used. In place of the ground wire 14 of this coating method, a conductive coating material for forming a coating floor 20 to be described later is poured into the groove portion 13, thereby omitting the installation of the ground wire 14 in the work process, and sufficient in the groove portion 13. The conductive coating material cured with a height dimension (cross-sectional area) can also function as a substantially ground wire.

図1に示すように、溝部13を介して格子状に配置されたアース線14のうち、1本(又は複数本)のアース線14がアースターミナル16に接続される。アースターミナル16は、建物の柱や壁に近い場所では、そこに施工された鉄筋や金属製枠等に対してアースされればよい。また、図3に示すように、既存の塗床12から下地10へと金属製のアンカー杭18を打ち込み、このアンカー杭18にアース線14を接続することでアースターミナル16としてもよい。   As shown in FIG. 1, one (or a plurality) of ground wires 14 out of the ground wires 14 arranged in a lattice shape via the groove 13 are connected to the ground terminal 16. The ground terminal 16 may be grounded to a reinforcing bar, a metal frame, or the like installed there in a place near the pillar or wall of the building. Further, as shown in FIG. 3, a metal anchor pile 18 may be driven from the existing coating floor 12 to the base 10 and a ground wire 14 may be connected to the anchor pile 18 to form the ground terminal 16.

次に、図2に示すように、格子状に配置したアース線14の上から塗床12上へと導電性塗床材を塗布して新たな塗床20を施工し、これにより十分な帯電防止性能を持った帯電防止床22が構築される。   Next, as shown in FIG. 2, a conductive coating material is applied to the coating floor 12 from the ground wires 14 arranged in a lattice shape, and a new coating floor 20 is constructed, whereby sufficient charging is performed. An antistatic floor 22 having a prevention performance is constructed.

塗床(第2塗床)20は、導電性を持った塗床材(導電性塗床材)を、塗床12及びアース線14の表面に流し延べによって塗布・乾燥させて形成したものである。塗床20は、アース線14の表面(導電面)に接触するように施工される。上記のようにアース線14を設置しない場合には、導電性塗床材が溝部13の内部に確実に流れ込むように施工する必要がある。導電性塗床材としては、上記した塗床12を形成する一般的なエポキシ樹脂系やウレタン樹脂系の塗床材を基材とし、この基材に対して導電性フィラーやイオン性液体を混入することで、帯電防止性能を有するものを用いるとよい。例えば、導電性フィラーを混入したものでは約10Ω、イオン性液体を混入したもので約10Ωの電気抵抗値を持った帯電防止塗床材(導電性塗床材)となる。この導電性塗床材の塗布量は、特に限定されないが、例えば、乾燥・硬化後(施工完了後)の塗布厚みが0.5mm〜2mm程度、好ましくは、1mm程度となるようにするとよい。塗布方法としては、例えば金ゴテによる流し延べ工法等、通常の塗り床材と同様の施工方法でよく、一般的な使用量としては0.8〜1.2Kg/m程度となる。 The coating floor (second coating floor) 20 is formed by applying and drying a conductive coating floor material (conductive coating floor material) on the surface of the coating floor 12 and the ground wire 14 by spreading and drying. is there. The coating floor 20 is constructed so as to be in contact with the surface (conductive surface) of the ground wire 14. In the case where the ground wire 14 is not installed as described above, it is necessary to construct the conductive coating material so as to surely flow into the groove portion 13. As the conductive coating material, a general epoxy resin-based or urethane resin-based coating material that forms the above-described coating floor 12 is used as a base material, and a conductive filler or ionic liquid is mixed into the base material. Therefore, it is preferable to use one having antistatic performance. For example, an antistatic coating material (conductive coating material) having an electric resistance of about 10 6 Ω when mixed with a conductive filler and about 10 9 Ω when mixed with an ionic liquid. The coating amount of the conductive coating material is not particularly limited. For example, the coating thickness after drying / curing (after completion of construction) is about 0.5 mm to 2 mm, preferably about 1 mm. As a coating method, for example, a construction method similar to a normal coating floor material such as a casting method using a gold trowel may be used, and a general usage amount is about 0.8 to 1.2 Kg / m 2 .

導電性フィラーとしては、特に限定されないが、従来より塗床材や接着剤等に帯電防止目的で用いられているものでよく、銀、銅、ニッケル、アルミニウム、亜鉛等の導電性金属やその酸化物の粉末、酸化チタンやチタン酸カリウム等を酸化錫、酸化アンチモン等で表面処理を行った粉末、導電性カーボン、グラファイト等の粉末の導電性無機物等、又はそれらの混合物を用いればよい。導電性フィラーの形状は任意であり、例えば、フレーク状、球状(粒状)、繊維状等とすればよい。   The conductive filler is not particularly limited, but may be conventionally used for antistatic purposes in coating materials and adhesives, and conductive metals such as silver, copper, nickel, aluminum, and zinc, and their oxidation. A powder of a product, a powder obtained by surface-treating titanium oxide or potassium titanate with tin oxide, antimony oxide, or the like, a conductive inorganic substance such as conductive carbon or graphite, or a mixture thereof may be used. The shape of the conductive filler is arbitrary, and may be, for example, flaky, spherical (granular), fibrous or the like.

イオン性液体とは、イオンのみから構成される塩、特に液体化合物をいい、支持電解質を加えなくても電流を流すことができて広い電位窓を示すものである。イオン性液体の中でも、脂環式系イオン性液体と脂肪族系イオン性液体が好ましい。イオン性液体には、アミン系、ピリジン系、ハロゲン系、ホウ素系、リン系等があるが、特にアミン系のもの(脂環式アミン系イオン性液体、脂肪族アミン系イオン性液体)は、エポキシ樹脂の塗膜物性(例えば、製品強度や耐久性)を低下させにくいため、本実施形態の塗床材に好適に用いることができる。   The ionic liquid refers to a salt composed of only ions, particularly a liquid compound, and can pass a current without adding a supporting electrolyte and exhibits a wide potential window. Among the ionic liquids, alicyclic ionic liquids and aliphatic ionic liquids are preferable. Ionic liquids include amine-based, pyridine-based, halogen-based, boron-based, phosphorus-based, etc., but especially amine-based liquids (alicyclic amine-based ionic liquids, aliphatic amine-based ionic liquids) Since it is difficult to reduce the physical properties (for example, product strength and durability) of the epoxy resin, it can be suitably used for the coating material of this embodiment.

脂環式アミン系イオン性液体としては、特に限定されないが、例えば、N−メチル−N−プロピルピペリジニウムブロマイド、N−メチル−N−プロピルピペリジニウムクロライド、N−メチル−N−プロピルピペリジニウムテトラフルオロボレート、N−メチル−N−プロピルピペリジニウムヘキサフルオロホスフェート、N−メチル−N−プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド、N−メチル−N−プロピルピロリジニウムブロマイド、N−メチル−N−プロピルピロリジニウムクロライド、N−メチル−N−プロピルピロリジニウムテトラフルオロボレート、N−メチルーN−プロピルピロリジニウムヘキサフルオロホスフェート、N−メチル−N−プロピルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N−メチル−N−ブチルピロリジニウムブロマイド、N−メチル−N−ブチルピロリジニウムクロライド、N−メチルーN−ブチルピロリジニウムテトラフルオロボレート、N−メチル−N−ブチルピロリジニウムヘキサフルオロホスフェート、N−メチル−N−ブチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、等、またこれら脂環式アミンの混合物等が挙げられる。   The alicyclic amine-based ionic liquid is not particularly limited. For example, N-methyl-N-propylpiperidinium bromide, N-methyl-N-propylpiperidinium chloride, N-methyl-N-propylpi Peridinium tetrafluoroborate, N-methyl-N-propylpiperidinium hexafluorophosphate, N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide, N-methyl-N-propylpyrrolidinium bromide, N-methyl-N-propylpyrrolidinium chloride, N-methyl-N-propylpyrrolidinium tetrafluoroborate, N-methyl-N-propylpyrrolidinium hexafluorophosphate, N-methyl-N-propylpyrrolidinium bis (Trifluoromethanes Phonyl) imide, N-methyl-N-butylpyrrolidinium bromide, N-methyl-N-butylpyrrolidinium chloride, N-methyl-N-butylpyrrolidinium tetrafluoroborate, N-methyl-N-butylpyrrolidi Examples thereof include nium hexafluorophosphate, N-methyl-N-butylpyrrolidinium bis (trifluoromethanesulfonyl) imide, and a mixture of these alicyclic amines.

脂肪族アミン系イオン性液体としては、特に限定されないが、例えば、N,N,N−トリメチル−N−プロピルアンモニウムブロマイド、N,N,N−トリメチルーN−プロピルアンモニウムクロライド、N,N,N−トリメチルーN−プロピルアンモニウムテトラフルオロボレート、N,N,N−トリメチルーN−プロピルアンモニウムヘキサフルオロホスフェート、N,N,N−トリメチルーN−プロピルアンモニウムビス(トリフルオロメタンスルホニル)イミド、ヘキシルトリメチルビスアミド等、またこれら脂肪族アミンの混合物等が挙げられる。   The aliphatic amine-based ionic liquid is not particularly limited. For example, N, N, N-trimethyl-N-propylammonium bromide, N, N, N-trimethyl-N-propylammonium chloride, N, N, N- Trimethyl-N-propylammonium tetrafluoroborate, N, N, N-trimethyl-N-propylammonium hexafluorophosphate, N, N, N-trimethyl-N-propylammonium bis (trifluoromethanesulfonyl) imide, hexyltrimethylbisamide, etc. And a mixture of aliphatic amines.

なお、一般に、脂肪族系イオン性液体は脂環式系イオン性液体を含む概念として用いられるが、本発明では、互いに混合される脂肪族系イオン性液体と脂環式系イオン性液体とを区別するため、脂肪族系イオン性液体は脂環式系イオン性液体を含まず、鎖状の脂肪族系イオン性液体を示すものとする。   In general, an aliphatic ionic liquid is used as a concept including an alicyclic ionic liquid, but in the present invention, an aliphatic ionic liquid and an alicyclic ionic liquid mixed together are used. In order to distinguish, an aliphatic ionic liquid does not contain an alicyclic ionic liquid, but shows a chain-like aliphatic ionic liquid.

当該導電性塗床材には、必要に応じて、硬化剤や充填材等をさらに含有してもよい。硬化剤としては、例えば、アミン化合物等の一般に知られているエポキシ樹脂用の硬化剤を用いるとよい。充填材としては、例えば、シリカ粉等の無機充填材を用いるとよく、さらに顔料等を混合してもよい。また、当該導電性塗床材は、硬化剤を含んだ1液型であってもよく、硬化剤を含まない帯電防止塗り床材と硬化剤との2液型であってもよい。   The conductive coating material may further contain a curing agent, a filler, or the like as necessary. As the curing agent, for example, generally known curing agents for epoxy resins such as amine compounds may be used. As the filler, for example, an inorganic filler such as silica powder may be used, and a pigment or the like may be further mixed. The conductive coating material may be a one-component type containing a curing agent, or may be a two-component type consisting of an antistatic coating floor material that does not contain a curing agent and a curing agent.

当該導電性塗床材(塗床20)では、脂環式系イオン性液体(例えば、脂環式アミン系イオン性液体)と脂肪族系イオン性液体(例えば、脂肪族アミン系イオン性液体)との混合物の合計含有量が、無溶剤型エポキシ樹脂に対して、3質量%〜10質量%、好ましくは、5質量%となるように配合するとよい。この配合量とすることで、高い耐久性や製品品質を有しつつ、十分な帯電防止性能を有する導電性塗床材を生成することができる。イオン性液体の合計配合量が3質量%より低いと導電性が低くなり過ぎることがあり、また、イオン性液体の合計配合量が10質量%より高いと、塗膜物性が低下して耐久性等に問題を生じることがある。   In the conductive coating material (coating floor 20), an alicyclic ionic liquid (for example, an alicyclic amine-based ionic liquid) and an aliphatic ionic liquid (for example, an aliphatic amine-based ionic liquid). It is good to mix | blend so that the total content of a mixture may become 3 mass%-10 mass% with respect to a solventless type epoxy resin, Preferably, it is 5 mass%. By using this blending amount, it is possible to produce a conductive coating material having sufficient antistatic performance while having high durability and product quality. If the total blending amount of the ionic liquid is lower than 3% by mass, the electrical conductivity may be too low. If the total blending amount of the ionic liquid is higher than 10% by mass, the physical properties of the coating will be lowered and the durability will be reduced. May cause problems.

このような導電性塗床材(塗床20)は、その下層となる塗床12との間に介在するアース線14(又は溝部13内に入り込んだ導電性塗床材)との間で十分な導通が確保できればよく、例えば、印加電圧10V〜1000V(室温23℃、相対湿度30%)での抵抗値(電気抵抗値)が、10Ωオーダー、すなわち1010Ω未満となるようにするとよい。導電性塗床材の電気抵抗値が、上記条件下で1010Ω未満となるようにすると、塗床20の帯電防止性能を、人が痛みを感じる静電気放電を抑えることができる程度に高いものとすることができる。 Such a conductive coating material (coating floor 20) is sufficient between the ground wire 14 (or the conductive coating material that has entered the groove 13) interposed between the coating floor 12 and the underlying coating floor 12. For example, the resistance value (electric resistance value) at an applied voltage of 10 V to 1000 V (room temperature 23 ° C., relative humidity 30%) is on the order of 10 9 Ω, that is, less than 10 10 Ω. Good. When the electrical resistance value of the conductive coating material is less than 10 10 Ω under the above conditions, the antistatic performance of the coating floor 20 is high enough to suppress electrostatic discharge that causes human pain. It can be.

脂環式系イオン性液体と脂肪族系イオン性液体との混合比としては、その重量比(脂環式系イオン性液体:脂肪族系イオン性液体。例えば、脂環式アミン系イオン性液体:脂肪族アミン系イオン性液体)が、30:70〜90:10程度、好ましくは、45:55であると、前記導電性塗床材の塗膜性状や導電性への影響を少なくすることができる。脂環式系イオン性液体の脂肪族系イオン性液体に対する重量比が30:70より低いと(例えば、20:80)、塗膜の強度低下、導電性の低下を生じることがあり、重量比が90:10より高いと(例えば、95:5)、導電性が低くなり十分な帯電防止性能を得ることができないことがある。   As a mixing ratio of the alicyclic ionic liquid and the aliphatic ionic liquid, the weight ratio (alicyclic ionic liquid: aliphatic ionic liquid. For example, alicyclic amine ionic liquid. : Aliphatic amine ionic liquid) is about 30:70 to 90:10, preferably 45:55, to reduce the influence on the coating properties and conductivity of the conductive coating material. Can do. When the weight ratio of the alicyclic ionic liquid to the aliphatic ionic liquid is lower than 30:70 (for example, 20:80), the strength of the coating film may be decreased, and the conductivity may be decreased. When the ratio is higher than 90:10 (for example, 95: 5), the conductivity may be low and sufficient antistatic performance may not be obtained.

以上のように、本実施形態に係る塗床材の施工方法によれば、下地10の上に塗床材を塗布して形成した塗床12の表面を斫ることで格子状の溝部13を形成した後、該溝部13の上から塗床12上へと導電性を有する導電性塗床材を塗布することで新たな塗床20を施工する。   As mentioned above, according to the construction method of the flooring material which concerns on this embodiment, the grid-shaped groove part 13 is formed by rolling the surface of the coating floor 12 formed by apply | coating a flooring material on the foundation | substrate 10. After the formation, a new coating floor 20 is constructed by applying a conductive coating floor material having conductivity from the groove 13 to the coating floor 12.

従って、建物の改修工事等において、塗床材で形成された既存の塗床12を除去せずに、その上から新たな塗床20を施工する場合であっても、導電性塗床材で形成された塗床20の下に格子状の溝部13を設けているため、例えば、溝部13内に流れ込んだ導電性塗布材や別途溝部13内に配置されるアース線14への塗床20からの導通が確保され、十分な帯電防止性能を持った帯電防止床22を構築することができる。これにより、既存の塗床12を残したまま新たな塗床20を施工でき、しかも塗床12と塗床20との間の全面にアース線14等を埋設する必要等がないため、低コストでの施工が可能となる。換言すれば、本実施形態によれば、施工後の新たな塗床20上で発生する静電気は、その下面側に設けられた溝部13内に流れ込んで十分な断面積を持った導電性塗床材、又は溝部13内に配置されたアース線14から除電されるため、その下地となる既存の塗床12の導電性能は関係しない。従って、建物の改修工事時に、既存の塗床12の導電性能を考慮することなく、そのまま十分な帯電防止性能を持った帯電防止床22を構築できるため、作業効率も向上する。このような施工方法は、建物の改修工事の他、新築工事時においても勿論使用可能である。   Therefore, even in the case of constructing a new coating floor 20 from above without removing the existing coating floor 12 formed of the coating floor material in the renovation work of the building or the like, the conductive coating floor material is used. Since the grid-like groove portion 13 is provided under the formed coating floor 20, for example, from the coating floor 20 to the conductive coating material that has flowed into the groove portion 13 or to the ground wire 14 separately disposed in the groove portion 13. Therefore, the antistatic floor 22 having sufficient antistatic performance can be constructed. As a result, it is possible to construct a new coating floor 20 while leaving the existing coating floor 12, and there is no need to bury the ground wire 14 or the like on the entire surface between the coating floor 12 and the coating floor 20. It becomes possible to construct with. In other words, according to the present embodiment, the static electricity generated on the new coating floor 20 after construction flows into the groove 13 provided on the lower surface side thereof and has a sufficient cross-sectional area. Since the static electricity is removed from the ground wire 14 disposed in the material or the groove portion 13, the conductive performance of the existing coating floor 12 as the base is not related. Therefore, the antistatic floor 22 having sufficient antistatic performance can be constructed as it is without considering the conductive performance of the existing coating floor 12 at the time of renovation of the building, so that work efficiency is also improved. Such a construction method can of course be used at the time of new construction as well as renovation of a building.

なお、溝部13にアース線14を配置しておけば、帯電防止床22の帯電防止性能を一層高めることができる。   If the ground wire 14 is disposed in the groove 13, the antistatic performance of the antistatic floor 22 can be further enhanced.

溝部13及びアース線14は、その上から施工される導電性塗床材(塗床20)によって隠されるため、格子の間隔は多少のずれや歪みがあっても意匠上・帯電防止性能上の問題を生じることはない。この際、溝部13の施工品質やアース線14の配置によっては、部分的に若干の抵抗値のばらつきを生じる可能性もある。しかしながら、帯電防止床22上を歩行する人は、数歩の歩行の間に1歩のペースで除電ができれば、人体での帯電電位の上昇は抑えられるため問題はない。   Since the groove portion 13 and the ground wire 14 are concealed by a conductive coating material (coating floor 20) applied from above, the design and antistatic performance are improved even if there is a slight gap or distortion in the lattice spacing. There is no problem. At this time, depending on the construction quality of the groove 13 and the arrangement of the ground wire 14, there may be some variation in resistance value. However, if the person who walks on the antistatic floor 22 can eliminate the charge at a pace of one step during several steps, there is no problem because the increase of the charged potential in the human body can be suppressed.

すなわち、本実施形態に係る塗床材の施工方法を用いることにより、溝部13(アース線14)から外れた塗床20上でも10Ω程度、溝部13(アース線14)の真上では10Ω程度の電気抵抗値を持った帯電防止床22を構成できる。このため、溝部13から外れた部分であっても十分な除電効果が担保され、さらに人が数歩に1歩程度の割合で溝部13の真上を踏むことにより、より高い除電効果を得ることができる。従って、溝部13の形成間隔(格子の間隔)は、例えば、50cm〜150cm程度のピッチとしておくと、高い帯電防止性能を確保できるため好ましい。 That is, by using the method for applying the coating material according to the present embodiment, about 10 9 Ω even on the coating floor 20 removed from the groove 13 (earth wire 14), and 10 above the groove 13 (earth wire 14). electric resistance value of approximately 7 Omega can be configured antistatic floor 22 with a. For this reason, even if it is the part removed from the groove part 13, sufficient static elimination effect is ensured, and also a higher static elimination effect is obtained by a person stepping on the groove part 13 at a rate of about one step per several steps. Can do. Accordingly, it is preferable to set the groove 13 formation interval (lattice interval) to a pitch of about 50 cm to 150 cm, for example, because high antistatic performance can be secured.

塗床20を構成する導電性塗床材は、基材となる樹脂材料にイオン性液体を混入させたものであってもよく、樹脂材料に導電性フィラーを混入させたものであってもよい。イオン性液体を混入させて導電性塗床材を生成する場合には、イオン性液体として、脂環式系イオン性液体と、脂肪族系イオン性液体とを配合すると、十分な導電性を備えた導電性塗床材を生成することができる。ここで、脂環式系イオン性液体として脂環式アミン系イオン性液体を用い、脂肪族系イオン性液体として脂肪族アミン系イオン性液体を用いると、その塗膜物性を低下させることを防止でき、より均一な塗布が可能となり、また、塗布後の塗床20の耐久性を向上させることができる。   The conductive coating material constituting the coating floor 20 may be a resin material that is a base material mixed with an ionic liquid, or may be a resin material mixed with a conductive filler. . When a conductive flooring material is produced by mixing an ionic liquid, if an alicyclic ionic liquid and an aliphatic ionic liquid are blended as the ionic liquid, sufficient conductivity is provided. A conductive coating material can be produced. Here, using an alicyclic amine ionic liquid as the alicyclic ionic liquid and using an aliphatic amine ionic liquid as the aliphatic ionic liquid prevents the physical properties of the coating from being deteriorated. It is possible to apply more uniformly, and the durability of the coated floor 20 after application can be improved.

また、上記のように、溝部13、つまりアース線14の配置間隔を適宜変更することにより、帯電防止床22の抵抗値を所望の値に調整することができ、建物の帯電防止性能の要求に柔軟に対応できるため、帯電防止床22の施工コストや施工作業の工数を適切に管理することができる。   Moreover, as described above, the resistance value of the antistatic floor 22 can be adjusted to a desired value by appropriately changing the arrangement interval of the groove 13, that is, the ground wire 14, and the antistatic performance of the building is required. Since it can respond flexibly, the construction cost of the antistatic floor 22 and the man-hour of construction work can be managed appropriately.

なお、本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be freely changed without departing from the gist of the present invention.

10 下地
12,20 塗床
13 溝部
14 アース線
16 アースターミナル
18 アンカー杭
22 帯電防止床
DESCRIPTION OF SYMBOLS 10 Ground 12,20 Coating floor 13 Groove part 14 Ground wire 16 Ground terminal 18 Anchor pile 22 Antistatic floor

Claims (4)

下地の上に塗床材を塗布して形成した塗床の表面を斫ることで格子状の溝部を形成した後、該溝部の上から前記塗床上へと導電性を有する導電性塗床材を塗布することで新たな塗床を施工することを特徴とする塗床材の施工方法。   After forming a grid-like groove by rolling the surface of the coating floor formed by applying the coating material on the ground, a conductive coating material having conductivity from above the groove to the coating floor A method for constructing a flooring material, characterized in that a new floor is constructed by applying a coating. 請求項1記載の塗床材の施工方法において、
前記溝部にアース線を配置した後、該アース線の上から前記塗床上へと前記導電性塗床材を塗布することを特徴とする塗床材の施工方法。
In the construction method of the coating flooring material of Claim 1,
A grounding material is disposed in the groove, and then the conductive flooring material is applied onto the ground floor from above the grounding wire.
請求項2記載の塗床材の施工方法において、
前記アース線は、少なくとも表面に導電性を有し、裏面に接着面を有するテープ状部材で形成され、
前記テープ状部材は、前記接着面が前記溝部の底面に貼着られ、前記表面が前記導電性塗床材に接触配置されることを特徴とする塗床材の施工方法。
In the construction method of the coating flooring material of Claim 2,
The ground wire is formed of a tape-shaped member having conductivity on at least the front surface and having an adhesive surface on the back surface,
The tape-like member has a bonding surface adhered to the bottom surface of the groove, and the surface is placed in contact with the conductive flooring material.
請求項2記載の塗床材の施工方法において、
前記アース線は、導電性を有する塗布材で形成されることを特徴とする塗床材の施工方法。
In the construction method of the coating flooring material of Claim 2,
The ground wire is formed of a conductive coating material, and the coating floor material construction method is characterized in that:
JP2013212169A 2013-10-09 2013-10-09 How to apply coating materials Active JP6124075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212169A JP6124075B2 (en) 2013-10-09 2013-10-09 How to apply coating materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212169A JP6124075B2 (en) 2013-10-09 2013-10-09 How to apply coating materials

Publications (2)

Publication Number Publication Date
JP2015074927A true JP2015074927A (en) 2015-04-20
JP6124075B2 JP6124075B2 (en) 2017-05-10

Family

ID=53000014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212169A Active JP6124075B2 (en) 2013-10-09 2013-10-09 How to apply coating materials

Country Status (1)

Country Link
JP (1) JP6124075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868060A (en) * 2018-08-14 2018-11-23 江苏汇联活动地板股份有限公司 A kind of intelligent variable blasting floor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510287U (en) * 1978-07-07 1980-01-23
JPS5881845A (en) * 1981-11-09 1983-05-17 Tokyo Tatsuno Co Ltd Conductive pavement of gas filling station
JPS62271399A (en) * 1986-05-16 1987-11-25 株式会社 タジマ Method of protecting human body from charge
JPH0666013A (en) * 1992-08-18 1994-03-08 Tajima Inc Conductive welding material and working method for conductive floor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5510287U (en) * 1978-07-07 1980-01-23
JPS5881845A (en) * 1981-11-09 1983-05-17 Tokyo Tatsuno Co Ltd Conductive pavement of gas filling station
JPS62271399A (en) * 1986-05-16 1987-11-25 株式会社 タジマ Method of protecting human body from charge
JPH0666013A (en) * 1992-08-18 1994-03-08 Tajima Inc Conductive welding material and working method for conductive floor using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108868060A (en) * 2018-08-14 2018-11-23 江苏汇联活动地板股份有限公司 A kind of intelligent variable blasting floor
CN108868060B (en) * 2018-08-14 2020-04-03 江苏汇联活动地板股份有限公司 Intelligent variable air supply floor

Also Published As

Publication number Publication date
JP6124075B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
CN201228430Y (en) Permanent electrostatic prevention floor coating layer structure
JP6124075B2 (en) How to apply coating materials
CN1309727A (en) Cathodic protection methods and apparatus
JP2015092053A (en) Antistatic floor, and antistatic floor construction method
JP2015074926A (en) Antistatic floor and construction method of antistatic floor
JP5946668B2 (en) Epoxy resin coating flooring
JP7008473B2 (en) Foundation structure
JP3059997B2 (en) Anode installation method for reinforced concrete structure cathodic protection
CN109736538A (en) A kind of anti-static movable floor and its production technology
JPH0570977A (en) Electric corrosion preventing method for reinforced concrete structure
CN213062772U (en) Self-leveling anti-static coating terrace
US20170058511A1 (en) System and method for filling construction joint spaces
CN203867145U (en) Epoxy resin anti-static floor
CN106400030B (en) A kind of protecting reinforced concrete cathode device and method of CFRP anodes
AU608837B2 (en) Anode ribbon system for cathodic protection of steel-reinforced concrete
DE2722985C3 (en) Process for draining or maintaining basement masonry through active electroosmotic drainage
JP3199937U (en) Antistatic floor tiles
CN212367607U (en) Epoxy prevents static ground structure
JP2014234612A (en) Antistatic structure construction method of double floor
JP4151254B2 (en) Reinforced concrete anticorrosion system
JP4168891B2 (en) Reinforced concrete anticorrosion system
DE10261515B4 (en) Floor coating system, in particular for ESD requirements
CN211114619U (en) Anti-static copper strip porcelain floor structure
CN215829929U (en) Waterproof node of shower room
CN208088776U (en) Concrete epoxy floor coating structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6124075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150