JP2015074803A - Method for manufacturing steel component made of steel for machine structural use excellent in crystal grain size characteristic and impact characteristic - Google Patents

Method for manufacturing steel component made of steel for machine structural use excellent in crystal grain size characteristic and impact characteristic Download PDF

Info

Publication number
JP2015074803A
JP2015074803A JP2013211470A JP2013211470A JP2015074803A JP 2015074803 A JP2015074803 A JP 2015074803A JP 2013211470 A JP2013211470 A JP 2013211470A JP 2013211470 A JP2013211470 A JP 2013211470A JP 2015074803 A JP2015074803 A JP 2015074803A
Authority
JP
Japan
Prior art keywords
steel
quenching
grain size
less
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211470A
Other languages
Japanese (ja)
Other versions
JP6282078B2 (en
Inventor
悠太郎 石原
Yutaro Ishihara
悠太郎 石原
藤松 威史
Takeshi Fujimatsu
威史 藤松
常陰 典正
Norimasa Tokokage
典正 常陰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2013211470A priority Critical patent/JP6282078B2/en
Publication of JP2015074803A publication Critical patent/JP2015074803A/en
Application granted granted Critical
Publication of JP6282078B2 publication Critical patent/JP6282078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a steel component such as a gear and a speed reducer which requires long life or high strength by fining prior austenite grain diameter of a steel material thereby improving impact characteristic thereof.SOLUTION: A steel containing, by mass%, C:0.25 to 0.75%, Si:0.05 to 2.00%, Mn:0.10 to 0.50%, P:0.030% or less, S:0.030% or less, Cr:1.80 to 3.00%, Al:0.010 to 0.050%, Nb:0.02 to 0.10%, N:0.0300% or less, and the balance Fe with inevitable impurities is used, quenched at 810 to 880°C after annealed at 750 to 900°C. Then immersion quenching or high frequency quenching is conducted at 810 to 880°C as repeat quenching and tempering is conducted to manufacture a steel component containing a steel for machine structural use excellent in crystal grain size characteristic and impact characteristic.

Description

本発明は、自動車などの部品、例えばギヤや減速機などの長寿命化や高強度化が要求される部品の製造に用いる結晶粒度特性および衝撃特性に優れた機械構造用鋼からなる鋼部品の製造方法に関する。   The present invention relates to a steel part made of steel for machine structural use, which has excellent crystal grain size characteristics and impact characteristics, which are used in the manufacture of parts such as automobiles, such as gears and reduction gears that require a longer life and higher strength. It relates to a manufacturing method.

ギヤ、CVJなどの自動車用部品では、小型軽量化に伴う高強度化が要求される。そこで、一般的にはJIS規格におけるニッケル・クロム・モリブデン鋼のようにNiやCrやMo等の合金元素を添加して高強度化を図っている。しかし、このように合金元素を添加して高強度化を図った材料では、素材コストが高くなり、変形抵抗が高く冷間加工性が劣るため冷間鍛造できず、さらに熱間鍛造後そのままでは強度が高くなりすぎるため切削できない問題がある。   Automotive parts such as gears and CVJs are required to have high strength as they are reduced in size and weight. Therefore, generally, alloying elements such as Ni, Cr, and Mo are added to increase the strength as in the case of nickel, chromium, molybdenum steel in JIS standards. However, materials that have been strengthened by adding alloying elements in this way have high material costs, high deformation resistance, and poor cold workability, so cold forging is not possible. There is a problem that cutting is not possible because the strength becomes too high.

また、高強度化には、材料の旧オーステナイト粒径微細化が有効であることがわかっており、加工と熱処理の組み合わせによって結晶粒の微細化を図ることで高強度化している。しかし、この場合も、成型と熱処理を組み合わせるため、成型の難しいものには適用できず、部品形状が限定されるなどの問題がある。   Further, it has been found that refinement of the prior austenite grain size of the material is effective for increasing the strength, and the strength is increased by refining crystal grains by a combination of processing and heat treatment. However, in this case as well, since molding and heat treatment are combined, it cannot be applied to those that are difficult to mold, and there is a problem that the part shape is limited.

あるいは、旧オーステナイト結晶粒径の微細化手段として、TiやNb等のピン止め粒子として有効に働く元素を添加した材料に繰り返し焼入れ処理を施したものがあり、旧オーステナイト結晶粒径がJIS G0551で規定されている粒度No.11以上の結晶粒径を安定して得られており、強度も向上しているとされている(例えば、特許文献1および特許文献2参照。)。   Alternatively, as a means for refining the prior austenite crystal grain size, there is a material obtained by repeatedly quenching a material added with an element that works effectively as a pinning particle such as Ti or Nb. The former austenite crystal grain size is JIS G0551. The specified particle size No. It is said that a crystal grain size of 11 or more is stably obtained and the strength is improved (see, for example, Patent Document 1 and Patent Document 2).

特開2003−034839号公報JP 2003-034839 A 特開2008−291341号公報JP 2008-293141 A

しかし、上記した提案の方法では、ピン止め粒子としてのTiの添加が、衝撃特性を悪化させており、旧オーステナイト結晶粒径がJIS G0551で規定されている粒度No.12以上の結晶粒径を安定して得たうえで靭性を確保できない。   However, in the proposed method described above, the addition of Ti as pinning particles deteriorates the impact characteristics, and the grain size No. 1 in which the prior austenite grain size is defined by JIS G0551. Toughness cannot be secured after a crystal grain size of 12 or more is stably obtained.

そこで、本発明が解決しようとする課題は、自動車などの部品、例えばギヤや減速機など、の長寿命化や高強度化に応え得る結晶粒度特性および衝撃特性に優れた機械構造用鋼からなる鋼部品の製造方法を提供することである。   Therefore, the problem to be solved by the present invention is made of mechanical structural steel that has excellent crystal grain size characteristics and impact characteristics that can respond to longer life and higher strength of parts such as automobiles, such as gears and reduction gears. It is to provide a method for manufacturing steel parts.

上記の課題を解決するための本発明の手段は、第1の手段では、鋼の化学成分として、質量%で、C:0.25〜0.75%、Si:0.05〜2.00%、Mn:0.10〜0.50%、P:0.030%以下、S:0.030%以下、Cr:1.80〜3.00%、Al:0.010〜0.050%、Nb:0.02〜0.10%、N:0.0300%以下を有し、残部Feおよび不可避不純物からなる鋼を用い、この鋼からなる鋼部品を炭化物球状化のため750〜900℃の間で焼鈍した後、冷間加工または熱間鍛造し、炭化物とオーステナイト2相状態から焼入れることを目指し810〜880℃で焼入れする。その後、さらに繰り返し焼入れとして810〜880℃でずぶ焼入れもしくは高周波焼入れをおこない、次いで焼戻しを行うことからなる、結晶粒度特性および衝撃特性に優れた機械構造用鋼からなる鋼部品の製造方法である。   The means of the present invention for solving the above-mentioned problems is that, in the first means, as a chemical component of steel, in mass%, C: 0.25 to 0.75%, Si: 0.05 to 2.00 %, Mn: 0.10 to 0.50%, P: 0.030% or less, S: 0.030% or less, Cr: 1.80 to 3.00%, Al: 0.010 to 0.050% , Nb: 0.02 to 0.10%, N: 0.0300% or less, and using steel consisting of the remainder Fe and inevitable impurities, the steel part made of this steel is 750 to 900 ° C. for spheroidizing carbide After annealing, the steel is cold worked or hot forged and quenched at 810 to 880 ° C. with the aim of quenching from a carbide and austenite two-phase state. Then, it is a method for producing a steel part made of steel for machine structural use, which is excellent in crystal grain size characteristics and impact characteristics, and further comprising repeated quenching or induction quenching at 810 to 880 ° C. and then tempering.

本発明の製造方法における鋼材の化学成分およびこの鋼からなる鋼部品の熱処理方法について説明する。
まず、本発明における鋼の化学成分について説明する。本発明の方法における鋼部品は、繰り返し焼入れによって結晶粒を微細化する。まず焼鈍によって球状化炭化物を析出させておく。この炭化物および、添加したAlやNbといったピンニング力の高い元素によって、1回目の焼入れ加熱時に生成した非常に微細なオーステナイト初期粒の成長を押さえ、さらに焼入れ時の加熱時に鋼材中の炭化物を完全に固溶させないことにより、この炭化物をピン止め粒子として利用している。
The chemical composition of the steel material and the heat treatment method for steel parts made of this steel in the production method of the present invention will be described.
First, the chemical components of steel in the present invention will be described. The steel part in the method of the present invention refines crystal grains by repeated quenching. First, spheroidized carbides are precipitated by annealing. These carbides and elements with high pinning power such as Al and Nb added suppress the growth of very fine austenite initial grains generated during the first quenching heating, and further completely eliminate the carbides in the steel during heating during quenching. This carbide is used as pinning particles by not dissolving in solid solution.

次に上記の繰り返し焼入れについて説明すると、繰り返し焼入れ法を結晶粒の微細化手法として用いている。繰り返し焼入れ回数は1回よりも2回のほうが効果は大きいが、成分によっては混粒が発生し、強度が低下することがあり、望ましくは2回までとする。   Next, the repetitive quenching will be described. The repetitive quenching method is used as a method for refining crystal grains. The effect of repeated quenching is greater when twice than when once, but depending on the component, mixed grains may be generated and the strength may be reduced.

本発明の方法における鋼材の化学成分の限定理由をさらに詳細に説明する。なお、化学成分は質量%で示す。ただし、NiおよびMoは不可避不純物そして含有される元素である。   The reason for limiting the chemical composition of the steel material in the method of the present invention will be described in more detail. In addition, a chemical component is shown by the mass%. However, Ni and Mo are inevitable impurities and contained elements.

C:0.025〜0.075%
Cは焼入れ処理および焼戻し処理にて硬さを確保するために必要な元素で、このためには0.025%以上必要であり、さらにピンニング粒子となる炭化物を生成し、結晶粒微細化に有効に働くが、Cが0.065%以上となると、衝撃特性が低下する。そこで、C量は0.025〜0.075%、望ましくは、0.035〜0.065%とする。
C: 0.025 to 0.075%
C is an element necessary for ensuring hardness in the quenching and tempering processes. For this purpose, 0.025% or more is necessary. Further, carbide is generated as pinning particles, and is effective for refining crystal grains. However, when C is 0.065% or more, impact characteristics are deteriorated. Therefore, the C content is 0.025 to 0.075%, preferably 0.035 to 0.065%.

Si:0.05〜2.00%
Siは脱酸に必要な元素であり、0.05%未満では脱酸が十分に行われない。一方、Siが2.0%を超えると加工性を低下させる。そこで、Siは0.05〜2.00%とし、望ましくは0.05〜1.00%とする。
Si: 0.05-2.00%
Si is an element necessary for deoxidation, and if it is less than 0.05%, deoxidation is not sufficiently performed. On the other hand, if Si exceeds 2.0%, workability is lowered. Therefore, Si is set to 0.05 to 2.00%, preferably 0.05 to 1.00%.

Mn:0.10〜2.00%
Mnは焼入れ生を確保するために必要な元素であり、Mnが0.10%未満では焼入れ性の効果は十分に得られない。また、Mnが2.00%を超えると加工性が悪化する。そこで、Mnは0.10〜2.00%とし、望ましくは0.20〜0.50%とする。
Mn: 0.10 to 2.00%
Mn is an element necessary for securing a hardened raw material. If Mn is less than 0.10%, the effect of hardenability cannot be sufficiently obtained. Moreover, when Mn exceeds 2.00%, workability will deteriorate. Therefore, Mn is set to 0.10 to 2.00%, preferably 0.20 to 0.50%.

P:0.030%以下
Pはスクラップなどから含有される不可避な元素であり、オーステナイト粒界に偏析して衝撃強度や曲げ強度などの靭性を悪化させる。そこでPは0.030%以下とする。
P: 0.030% or less P is an unavoidable element contained from scraps and the like, and segregates at austenite grain boundaries to deteriorate toughness such as impact strength and bending strength. Therefore, P is set to 0.030% or less.

S:0.030%以下
Sは被削性を向上させる元素である。しかし、SはMnと結合して非金属介在物であるMnSを生成して、横方向の靭性および疲労強度を低下させる、そこでSは0.030%以下とする。
S: 0.030% or less S is an element that improves machinability. However, S combines with Mn to form MnS, which is a non-metallic inclusion, and lowers the toughness and fatigue strength in the transverse direction, where S is made 0.030% or less.

Cr:1.80〜3.00%
Crは鋼の焼入れ性を上昇させる元素であるが、1.80%未満ではその効果が十分に得られない。一方、Crは炭化物を生成することで、繰り返し焼入れ時、ピン止め粒子の役割を果たし、結晶粒を微細化する。しかし、Crが3.00%より過剰に添加されると加工性を損なう。そこでCrは1.80〜3.00%とする。
Cr: 1.80 to 3.00%
Cr is an element that increases the hardenability of steel, but if it is less than 1.80%, the effect cannot be sufficiently obtained. On the other hand, Cr produces carbides, and plays the role of pinning particles during repeated quenching, thereby refining crystal grains. However, if Cr is added in excess of 3.00%, workability is impaired. Therefore, Cr is 1.80 to 3.00%.

Ni:0.25%以下
Niは鋼の焼入れ性や靭性を向上させる元素であるが、Niを0.25%より多く添加すると、本発明においては結晶粒度特性に不利なベイナイトが析出し、それを核とした結晶粒粗大化が発生する。そのため、合金元素添加による靭性向上効果よりも、結晶粒粗大化による靭性低下のほうが大きく、靭性が低下する。そこで、ベイナイトの析出を回避するため、Niは不可避的不純物量レベルである0.25%以下とする。
Ni: 0.25% or less Ni is an element that improves the hardenability and toughness of steel. However, when Ni is added in an amount of more than 0.25%, bainite, which is disadvantageous to the grain size characteristics, precipitates in the present invention. Grain coarsening occurs at the core. Therefore, the toughness reduction due to the coarsening of the crystal grains is larger than the toughness improving effect by adding the alloy element, and the toughness is reduced. Therefore, in order to avoid precipitation of bainite, Ni is set to 0.25% or less which is an inevitable impurity amount level.

Mo:0.05%以下
Moは鋼の焼入れ性や靭性を向上させる元素であるが、Moを0.05%より多く添加すると、本発明においては結晶粒度特性に不利なベイナイトが析出し、それを核とした結晶粒粗大化が発生する。そのため、合金元素添加による靭性向上効果よりも、結晶粒粗大化による靭性低下のほうが大きく、靭性が低下する。そこで、ベイナイトの析出を回避するため、Niは不可避的不純物量レベルである0.05%以下とする。
Mo: 0.05% or less Mo is an element that improves the hardenability and toughness of steel. However, when Mo is added in an amount of more than 0.05%, bainite, which is disadvantageous to the grain size characteristics, precipitates in the present invention. Grain coarsening occurs at the core. Therefore, the toughness reduction due to the coarsening of the crystal grains is larger than the toughness improving effect by adding the alloy element, and the toughness is reduced. Therefore, in order to avoid precipitation of bainite, Ni is set to 0.05% or less, which is an unavoidable impurity level.

Al:0.010〜0.050%
Alは脱酸材として使用される元素であり、また、後述するようにNと結合してAlNを析出させ、ピン止め効果によって結晶粒粗大化を抑制する。また、繰り返し焼入れ時、ピン止め粒子となり、結晶粒を微細化させる。この効果を得るにはAlは0.010%以上添加する必要がある。一方、Alは0.050%より多く添加した場合、アルミナ系酸化物が増加し、疲労特性および加工性が低下する。そこでAlは0.010〜0.050%とする。
Al: 0.010 to 0.050%
Al is an element used as a deoxidizing material, and also binds to N to precipitate AlN as will be described later, and suppresses coarsening of crystal grains by a pinning effect. Moreover, at the time of repeated hardening, it becomes a pinning particle | grain and refines | miniaturizes a crystal grain. In order to obtain this effect, Al needs to be added by 0.010% or more. On the other hand, when Al is added in an amount of more than 0.050%, the alumina-based oxide increases, and the fatigue characteristics and workability deteriorate. Therefore, Al is made 0.010 to 0.050%.

Nb:0.02〜0.10%
NbはNb炭化物やNb窒化物あるいはNb炭窒化物を形成して、それらのピン止め効果により、結晶粒粗大化防止効果をもたらす。また、繰り返し焼入れ時、ピン止め粒子となり、結晶粒を微細化させる。特に鋼中に微細に分散したナノオーダーのNb炭化物またはNb炭窒化物は結晶粒の成長を抑制する。Nbは0.02%以未満ではそれらの効果が得られず、0.10%を超えると析出物の量が過剰となり、加工性が低下する。そこで、Nbは0.02〜0.10%、望ましくは0.02〜0.08%とする。
Nb: 0.02-0.10%
Nb forms Nb carbide, Nb nitride, or Nb carbonitride, and brings about the effect of preventing the coarsening of crystal grains by their pinning effect. Moreover, at the time of repeated hardening, it becomes a pinning particle | grain and refines | miniaturizes a crystal grain. In particular, nano-order Nb carbide or Nb carbonitride finely dispersed in steel suppresses the growth of crystal grains. If Nb is less than 0.02%, those effects cannot be obtained, and if it exceeds 0.10%, the amount of precipitates becomes excessive and the workability deteriorates. Therefore, Nb is 0.02 to 0.10%, preferably 0.02 to 0.08%.

N:0.0050〜0.0300%
Nは鋼中でAlNやNb窒化物、Nb炭窒化物として微細析出し、そのピン止め効果により結晶粒粗大化防止効果や、繰り返し焼入れ時に結晶粒微細化効果をもたらすため、Nは0.0050%以上添加する。しかし、N量が0.0300%を超えると窒化物が増加し、疲労強度や加工性が低下する、このため、Nは0.0050〜0.0300%とし、望ましくは0.0050〜0.0250%とする。
N: 0.0050 to 0.0300%
N is finely precipitated as AlN, Nb nitride, and Nb carbonitride in the steel, and its pinning effect brings about the effect of preventing grain coarsening and the effect of grain refinement during repeated quenching. Add at least%. However, if the amount of N exceeds 0.0300%, nitride increases and fatigue strength and workability decrease. For this reason, N is set to 0.0050 to 0.0300%, preferably 0.0050 to 0.00. 0250%.

結晶粒度No.12以上
結晶粒微細化は衝撃値を向上させると共に、材料の寿命を向上させるため、粒度No.12以上、望ましくは12.5以上とする。
Grain size No. 12 or more Grain refinement improves impact value and improves material life. 12 or more, preferably 12.5 or more.

本発明の効果について述べる。本発明の中炭素鋼からなる鋼部品は、750℃〜900℃にて焼鈍後、2回の810℃〜880℃での焼入れ処理を行うことが特に重要であり、通常の焼入れまま(高周波焼入れを含む)では、結晶粒は微細化しない。焼鈍して炭化物を球状化した鋼を、炭化物を完全に固溶させない条件にて一度焼入れし、前組織をマルテンサイト(またはベイナイト)化した状態で再び焼入れすると、旧オーステナイト粒径が、JIS G0551で規定される粒度No.12以上の極めて微細な組織となる。   The effect of the present invention will be described. It is particularly important for steel parts made of medium carbon steel of the present invention to be subjected to two quenching treatments at 810 ° C to 880 ° C after annealing at 750 ° C to 900 ° C. The crystal grains are not refined. When steel that has been annealed and spheroidized into carbides is quenched once under the condition that the carbides are not completely dissolved, and the previous structure is quenched in the state of martensite (or bainite), the prior austenite grain size becomes JIS G0551. The particle size no. It becomes 12 or more extremely fine structures.

ここでは、1回目の焼入れで生成したマルテンサイト(またはベイナイト)は、再焼入れの加熱時に一旦オーステナイト化するが、このオーステナイト生成サイトが多いため、いたるところからオーステナイト粒ができ、このオーステナイト粒は微細分散したピンニング粒子(各種炭化物や窒化物および炭窒化物)によってピンニングされて成長が止まり、その状態から焼入れされるため、微細なマルテンサイト組織ができる。   Here, the martensite (or bainite) generated by the first quenching is once austenitized during the re-quenching heating, but since there are many austenite generation sites, austenite grains can be produced everywhere, and these austenite grains are fine. Pinning by dispersed pinning particles (various carbides, nitrides, and carbonitrides) stops growth and quenches from that state, so that a fine martensite structure is formed.

本発明は上記の手段とすることで、鋼部品の結晶粒径が粒度No.12以上に微細であると同時に、NiやMoなどの高価な元素を用いず、高い衝撃特性を有する機械構造用鋼ができる。   By adopting the above-mentioned means, the present invention allows the grain size of the steel part to be no. A mechanical structural steel having high impact characteristics can be obtained without using expensive elements such as Ni and Mo at the same time as fine as 12 or more.

焼入れ後の試験片の(a)は側面図、(b)は前面図である。(A) of the test piece after hardening is a side view, (b) is a front view. シャルピー衝撃試験片の詳細な形状を示す。(a)は試験片側面図、(b)は試験片前面面図である。The detailed shape of a Charpy impact test piece is shown. (A) is a side view of the test piece, and (b) is a front view of the test piece.

表1に示す化学成分から成る比較例および実施例の鋼を100kg真空溶解炉で溶解し、インゴットに鋳造し、これを1200℃に加熱し、4時間保持して溶体化した後、直径20mmの棒材に鍛伸した。さらに、この鍛伸した棒材からなる素材を、775℃で焼鈍した後、850℃で20分加熱後油焼入れ(60℃)にて1回目の焼入れを実施し、さらに830℃で20分加熱後に2回目の油焼入れ(60℃)を実施し、結晶粒度を、1回目の焼入れ後と2回目の焼入れした直後、図1のように長さ方向に沿って切断し、この断面を鏡面研磨し、飽和ピクリン酸溶液にて腐食し、旧オーステナイト粒界を現出させた。この試験片を光学顕微鏡で観察し、材料中周部から粒度番号を判定した。   The steels of Comparative Examples and Examples having chemical components shown in Table 1 were melted in a 100 kg vacuum melting furnace, cast into an ingot, heated to 1200 ° C. and held for 4 hours to form a solution. Forged into bars. Furthermore, after annealing the material made of the forged bar material at 775 ° C., the material was first heated by oil quenching (60 ° C.) after heating at 850 ° C. for 20 minutes, and further heated at 830 ° C. for 20 minutes. Later, the second oil quenching (60 ° C.) was performed, and the crystal grain size was cut along the length direction as shown in FIG. 1 after the first quenching and immediately after the second quenching. Then, it was corroded with a saturated picric acid solution, and the former austenite grain boundaries appeared. The test piece was observed with an optical microscope, and the particle size number was determined from the middle part of the material.

Figure 2015074803
Figure 2015074803

表2に比較例および実施例の1回焼入れ後と2回焼入れ後の旧オーステナイト結晶粒度No.と、2回焼入れ後のシャルピー衝撃試験結果の衝撃値を示す。1回焼入れ後は、全ての試料で旧オーステナイト粒径が粒度No.12以下となっている。一方で2回焼入れ後の実施例はいずれも旧オーステナイト粒径が粒度No.12よりも微細となり、かつ衝撃値100J/cm2以上と比較例よりも良好な衝撃値を示した。
No.9以外の比較例には、2回焼き入れ後の結晶粒度の目標値である粒度No.12に達しなかった。また、比較例No.9も結晶粒度は微細だったが、C量とAl量が非常に高く、衝撃値が実施例よりも悪化している。また、比較例No.3はNiとMo量が多く、良好な衝撃値を示したが、ピン止め粒子量が足らず、2回焼入れでは結晶粒径が微細化しなかった。
Table 2 shows the prior austenite grain size No. 1 after quenching and twice quenching in Comparative Examples and Examples. And the impact value of the Charpy impact test result after 2 times quenching is shown. After the single quenching, the prior austenite grain size was the same as the grain size no. 12 or less. On the other hand, in all the examples after quenching twice, the prior austenite grain size is no. The impact value was finer than 12, and an impact value of 100 J / cm 2 or more was better than that of the comparative example.
No. In comparative examples other than 9, the grain size No., which is the target value of the crystal grain size after quenching twice. 12 was not reached. Comparative Example No. 9 also had a fine grain size, but the amounts of C and Al were very high, and the impact value was worse than that of the examples. Comparative Example No. No. 3 had a large amount of Ni and Mo and showed a good impact value, but the amount of pinning particles was insufficient, and the crystal grain size was not refined by two-time quenching.

Figure 2015074803
Figure 2015074803

本願発明においては、繰返し焼入れ処理の前に焼鈍を加えることも重要な要素である。そこで本願発明と対比するために、焼鈍を施すことなく繰返し焼入れ処理を施した場合の結果を、下記の表3に比較例のNo.1〜24として示す。
この表3の比較例は、表1に示す化学成分から成るNo.1〜24の材料を鍛伸し、850℃で20分加熱後油焼入れ(60℃)にて1回目の焼入れを実施し、さらに830℃で20分加熱後に2回目の油焼入れ(60℃)を実施した。その後、1回目の焼入れ後と2回目の焼入れ後の直径の20mmの棒材を、図1のように長さ方向に沿って切断し、この断面を鏡面研磨し、飽和ピクリン酸溶液にて腐食し、旧オーステナイト粒界を現出させた。この試験片を光学顕微鏡で観察し、材料中周部から粒度番号を判定した。この結果を表3に示す。いずれの鋼種においても、結晶粒度No.12以上を満たさなかった。
In the present invention, it is also an important factor to add annealing before the repeated quenching treatment. Therefore, for comparison with the present invention, the results of repeated quenching without annealing are shown in Table 3 below as comparative example Nos. Shown as 1-24.
The comparative example of Table 3 is a No. made up of chemical components shown in Table 1. Forging materials 1 to 24, heating at 850 ° C. for 20 minutes, followed by first quenching with oil quenching (60 ° C.), and further heating at 830 ° C. for 20 minutes followed by second oil quenching (60 ° C.) Carried out. After that, after the first quenching and the second quenching, a 20 mm diameter rod is cut along the length direction as shown in FIG. 1, and this section is mirror-polished and corroded with a saturated picric acid solution. The former austenite grain boundary was revealed. The test piece was observed with an optical microscope, and the particle size number was determined from the middle part of the material. The results are shown in Table 3. In any steel type, grain size No. It did not satisfy 12 or more.

Figure 2015074803
Figure 2015074803

1 焼入れ後の試験片
2 結晶粒度測定位置
3 シャルピー衝撃試験片
1 Test piece after quenching 2 Grain size measurement position 3 Charpy impact test piece

Claims (1)

質量%で、C:0.25〜0.75%、Si:0.05〜2.00%、Mn:0.10〜0.50%、P:0.030%以下、S:0.030%以下、Cr:1.80〜3.00%、Al:0.010〜0.050%、Nb:0.02〜0.10%、N:0.0300%以下を有し、残部Feおよび不可避不純物からなる鋼を用い、この鋼からなる鋼材を750℃〜900℃の間で焼鈍した後、810〜880℃で焼入れし、その後、さらに繰り返し焼入れとして810〜880℃でずぶ焼入れもしくは高周波焼入れを行い、次いで焼戻しを行うことを特徴とする晶粒度特性および衝撃特性に優れた機械構造用鋼からなる鋼部品の製造方法。   In mass%, C: 0.25 to 0.75%, Si: 0.05 to 2.00%, Mn: 0.10 to 0.50%, P: 0.030% or less, S: 0.030 %: Cr: 1.80 to 3.00%, Al: 0.010 to 0.050%, Nb: 0.02 to 0.10%, N: 0.0300% or less, and the balance Fe and Using steel consisting of inevitable impurities, after annealing this steel material between 750 ° C. and 900 ° C., quenching at 810 to 880 ° C., and then repeatedly quenching or induction quenching at 810 to 880 ° C. And then tempering, a method for producing a steel part made of mechanical structural steel having excellent grain size characteristics and impact characteristics.
JP2013211470A 2013-10-08 2013-10-08 Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics Active JP6282078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211470A JP6282078B2 (en) 2013-10-08 2013-10-08 Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211470A JP6282078B2 (en) 2013-10-08 2013-10-08 Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics

Publications (2)

Publication Number Publication Date
JP2015074803A true JP2015074803A (en) 2015-04-20
JP6282078B2 JP6282078B2 (en) 2018-02-21

Family

ID=52999912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211470A Active JP6282078B2 (en) 2013-10-08 2013-10-08 Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics

Country Status (1)

Country Link
JP (1) JP6282078B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100862A (en) * 2018-12-20 2020-07-02 山陽特殊製鋼株式会社 Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249570A (en) * 2005-03-14 2006-09-21 Sanyo Special Steel Co Ltd Steel for high-temperature carburization superior in grain-coarsening resistance, manufacturing method therefor, formed article for high-temperature carburization, and carburizing and quenching method therefor
JP2008291341A (en) * 2007-05-28 2008-12-04 Sanyo Special Steel Co Ltd Method for manufacturing quenched steel component having superior indentation resistance
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
JP2009114484A (en) * 2007-11-02 2009-05-28 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2009299148A (en) * 2008-06-13 2009-12-24 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2010007119A (en) * 2008-06-25 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2013072104A (en) * 2011-09-27 2013-04-22 Sanyo Special Steel Co Ltd Steel excellent in toughness and wear resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249570A (en) * 2005-03-14 2006-09-21 Sanyo Special Steel Co Ltd Steel for high-temperature carburization superior in grain-coarsening resistance, manufacturing method therefor, formed article for high-temperature carburization, and carburizing and quenching method therefor
JP2008291341A (en) * 2007-05-28 2008-12-04 Sanyo Special Steel Co Ltd Method for manufacturing quenched steel component having superior indentation resistance
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
JP2009114484A (en) * 2007-11-02 2009-05-28 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2009299148A (en) * 2008-06-13 2009-12-24 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2010007119A (en) * 2008-06-25 2010-01-14 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2013072104A (en) * 2011-09-27 2013-04-22 Sanyo Special Steel Co Ltd Steel excellent in toughness and wear resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100862A (en) * 2018-12-20 2020-07-02 山陽特殊製鋼株式会社 Machine component for automobiles made of steel material for carburization excellent in static torsional strength and torsional fatigue strength
JP7175182B2 (en) 2018-12-20 2022-11-18 山陽特殊製鋼株式会社 Automobile mechanical parts made of carburizing steel with excellent static torsional strength and torsional fatigue strength

Also Published As

Publication number Publication date
JP6282078B2 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP5862802B2 (en) Carburizing steel
JP5655366B2 (en) Bainite steel
JP6680142B2 (en) High-strength seamless oil country tubular good and method for manufacturing the same
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP6794012B2 (en) Mechanical structural steel with excellent grain coarsening resistance, bending fatigue resistance, and impact resistance
WO2017047767A1 (en) Hard steel with excellent toughness
JP5436928B2 (en) Non-tempered steel for ferrite-pearlite hot forging with excellent fatigue strength and machinability and rail components used in common rail systems made of the non-tempered steel
JP2010007120A (en) Method for manufacturing high-strength carburized component
JP6620490B2 (en) Age-hardening steel
JP2006037177A (en) Age-hardening steel
JP2013028860A (en) Steel material made of carburizing steel having excellent torsion-fatigue characteristics
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP2006233269A (en) Steel parts with excellent balance between strength and torsional characteristic, method for manufacturing the steel parts, and steel for the steel parts
JP7223997B2 (en) Steel with high hardness and excellent toughness
JP5688742B2 (en) Steel manufacturing method with excellent toughness and wear resistance
JP6282078B2 (en) Manufacturing method of steel parts made of mechanical structural steel with excellent grain size characteristics and impact characteristics
JP2007513259A (en) Steel wire for cold heading having excellent low temperature impact characteristics and method for producing the same
JP2009299165A (en) Method for manufacturing high-strength carburized component by induction hardening
JP2019019374A (en) Hot tool steel excellent in hardening property and toughness
JP2013072104A (en) Steel excellent in toughness and wear resistance
JP2012201984A (en) Steel for induction hardening excellent in cold forgeability and torsional strength, and method of manufacturing the same
JP2008144270A (en) Non-heat-treated steel for machine structure excellent in fatigue property and toughness, its manufacturing method, component for machine structure, and its manufacturing method
JP2017014556A (en) Martensitic stainless steel excellent in precipitation hardening performance
JP5233848B2 (en) Non-tempered steel bar for direct cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180123

R150 Certificate of patent or registration of utility model

Ref document number: 6282078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250