JP2015074643A - Neuroblastoma therapeutic agent - Google Patents

Neuroblastoma therapeutic agent Download PDF

Info

Publication number
JP2015074643A
JP2015074643A JP2013213663A JP2013213663A JP2015074643A JP 2015074643 A JP2015074643 A JP 2015074643A JP 2013213663 A JP2013213663 A JP 2013213663A JP 2013213663 A JP2013213663 A JP 2013213663A JP 2015074643 A JP2015074643 A JP 2015074643A
Authority
JP
Japan
Prior art keywords
neuroblastoma
lmo1
therapeutic agent
src
rasa1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013213663A
Other languages
Japanese (ja)
Inventor
宣久 佐伯
Nobuhisa Saeki
宣久 佐伯
博己 佐々木
Hiromi Sasaki
博己 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAT CANCER CT
NATIONAL CANCER CENTER
Original Assignee
NAT CANCER CT
NATIONAL CANCER CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAT CANCER CT, NATIONAL CANCER CENTER filed Critical NAT CANCER CT
Priority to JP2013213663A priority Critical patent/JP2015074643A/en
Publication of JP2015074643A publication Critical patent/JP2015074643A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish an effective therapy for treating patients with a high risk of neuroblastoma because in spite of the strength treatment using surgical resection, chemotherapy, radiotherapy and the like, the prognosis is bad by causing frequently metastasis and relapse, the chemotherapeutic agent used for the conventional therapy for neuroblastoma, such as cisplatin, is ineffective for the relapse case, and an effective therapy thereof is not established at present.SOLUTION: The inventors estimated two or more molecular pathways (LMO1 molecular pathways) functioning oncogenically in a neuroblastoma by identifying the gene (LMO1 target gene) in which the expression is regulated by transcription factor LMO1 which is shown to function oncogenically in a neuroblastoma by preceding studies. Administering the molecule inhibitor inhibiting these molecular pathways to a neuroblastoma cultured cell showed that they inhibits proliferation of the neuroblastoma cell.

Description

本発明は神経芽腫に対する治療剤および細胞増殖抑制方法に関するものである。 The present invention relates to a therapeutic agent for neuroblastoma and a method for inhibiting cell growth.

神経芽腫は白血病、脳腫瘍についで頻度の高い小児がんである。近年、神経芽腫に対する治療は格段に進歩し、低リスク群及び中リスク群の患者の5年生存率は95%を超えるまでになった。しかしながら高リスク群患者においては、外科的切除・化学療法・放射線療法などを用いた強度な治療にも関わらず、高頻度に転移・再燃(手術・化学療法などにより治癒に向かったが再度悪化すること)を起こすことからその予後は悪く、5年生存率は未だに50%以下となっている(非特許文献1)。再燃症例に対しては、シスプラチンなどの従来神経芽腫の治療に用いられている化学療法剤は効果がなく、現在のところ有効な治療法は確立されていない。そのため、再燃症例に有効な薬剤を開発するための、新たな治療標的分子の発見が重要な課題となっており、様々な分子がその候補として提唱されている(非特許文献2、非特許文献3)。 Neuroblastoma is a common childhood cancer after leukemia and brain tumor. In recent years, treatments for neuroblastoma have made significant progress, and the 5-year survival rate for patients in the low and medium risk groups has exceeded 95%. However, in high-risk patients, metastasis / relapse often occurs (healed by surgery / chemotherapy but worsens again, despite intense treatment using surgical resection, chemotherapy, radiation therapy, etc.) The 5-year survival rate is still 50% or less (Non-patent Document 1). For relapse cases, chemotherapeutic agents conventionally used for the treatment of neuroblastoma such as cisplatin are ineffective, and no effective treatment has been established at present. Therefore, the discovery of a new therapeutic target molecule for developing a drug effective for relapse cases has become an important issue, and various molecules have been proposed as candidates (Non-patent document 2, Non-patent document). 3).

最近、本発明者らが参加した最新のゲノム解析により、転写因子 Lim domain only 1 (LMO1)が神経芽腫、その中の特に高リスク群の発症に関わっていることが示され、さらに、神経芽腫の発生においてLMO1ががん遺伝子として腫瘍促進的に機能していることが明らかとなった(非特許文献4)。 Recently, the latest genomic analysis that the present inventors have participated has shown that the transcription factor Lim domain only 1 (LMO1) is involved in the development of neuroblastoma, particularly high-risk groups within it. It has been clarified that LMO1 functions as an oncogene for tumor promotion in the development of blastoma (Non-patent Document 4).

このため、LMO1が神経芽腫細胞内で発現を制御している遺伝子(LMO1標的遺伝子)をゲノム網羅的に同定することにより、神経芽腫において機能する重要な腫瘍促進分子経路が解明され、その分子経路に対する阻害剤の開発あるいは既存の阻害剤の適用によって、現在治療法のない高リスク群の再発症例に対して有効な治療法が確立されると考え、本発明に導くに至った。 Therefore, by comprehensively identifying the genes that regulate the expression of LMO1 in neuroblastoma cells (LMO1 target gene), an important tumor-promoting molecular pathway that functions in neuroblastoma has been elucidated. The development of inhibitors for molecular pathways or the application of existing inhibitors has led to the establishment of an effective treatment for recurrent cases in the high-risk group that currently has no treatment, leading to the present invention.

Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 22022211 (2010)Maris, J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 22022211 (2010) Cole KA, et al. New strategies in refractory and recurrent neuroblastoma: translational opportunities to impact patient outcome. Clin. Cancer Res. 18, 2423-2428 (2012)Cole KA, et al. New strategies in refractory and recurrent neuroblastoma: translational opportunities to impact patient outcome.Clin. Cancer Res. 18, 2423-2428 (2012) Verissimo CS, et al. Neuroblastoma therapy: what is in the pipeline? Endocr. Relat. Cancer 18, R213-231(2011)Verissimo CS, et al. Neuroblastoma therapy: what is in the pipeline? Endocr. Relat. Cancer 18, R213-231 (2011) Wang K, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469, 216220 (2011)Wang K, et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469, 216220 (2011)

神経芽腫は白血病、脳腫瘍についで頻度の高い小児がんである。近年、神経芽腫に対する治療は格段に進歩し、低リスク群及び中リスク群の患者の5年生存率は95%を超えるまでになったが、高リスク群については未だに50%以下となっている。これは高リスク群患者においては転移・再燃が高頻度に起こることと再燃症例に対する有効な治療法が確立されていないことによる。そのため、再燃症例に有効な薬剤を開発するための、新たな治療標的分子の発見が重要な課題となっている。本発明は、神経芽腫に対する新規の治療標的分子とこれを阻害することによる新規の治療剤および細胞増殖抑制方法を提供することを目的とする。 Neuroblastoma is a common childhood cancer after leukemia and brain tumor. In recent years, the treatment for neuroblastoma has made significant progress, and the 5-year survival rate for patients in the low-risk and medium-risk groups has exceeded 95%, but still remains below 50% in the high-risk group. Yes. This is due to the high frequency of metastasis and relapse in high-risk patients and the lack of effective treatment for relapse cases. Therefore, discovery of a new therapeutic target molecule for developing an effective drug for relapse cases has become an important issue. An object of the present invention is to provide a novel therapeutic target molecule for neuroblastoma, a novel therapeutic agent by inhibiting the same, and a method for inhibiting cell growth.

本発明者らは、クロマチン免疫沈降−シークエンス法(ChIP-Seq)と呼ばれる最新の解析手法を用いて、神経芽腫細胞においてLMO1が発現を調節している遺伝子(LMO1標的遺伝子)を同定し、これを基に神経芽腫細胞における腫瘍促進分子経路(LMO1分子経路)を複数明らかにした。これらのLMO1分子経路に係わるSrc、RAS p21 protein activator 1 (RASA1)、integrin-linked kinase (ILK)の3つの分子に注目した。 The present inventors identified a gene (LMO1 target gene) in which LMO1 regulates expression in neuroblastoma cells using the latest analysis technique called chromatin immunoprecipitation-sequence method (ChIP-Seq), Based on this, we clarified multiple tumor-promoting molecular pathways (LMO1 molecular pathway) in neuroblastoma cells. We focused on these three molecules, Src, RAS p21 protein activator 1 (RASA1), and integrin-linked kinase (ILK), related to the LMO1 molecular pathway.

これらのLMO1分子経路に係わるSrc、RASA1、ILKにおいて、Src分子阻害剤KX2-391(N-Benzyl-2-[5-[4-[2-(4-morpholinyl)ethoxy]phenyl]pyridin-2-yl]acetamide)、RASA1 分子阻害剤Pluripotin (N-(3-(7-(1,3-dimethyl-1H-pyrazol-5-ylamino)-1-methyl-2-oxo-1,2-dihydropyrimido[4,5-d]pyrimidin-3(4H)-yl)-4-methylphenyl)-3-(trifluoromethyl)benzamide)、およびILK 分子阻害剤Cpd 22 (N-methyl-3-(1-(4-(piperazin-1-yl)phenyl)-5-(4'-(trifluoromethyl)biphenyl-4-yl)-1H-pyrazol-3-yl)propanamide)を神経芽腫培養細胞に添加することで、その細胞増殖が抑制されることを見出した。 In Src, RASA1, and ILK related to these LMO1 molecular pathways, the Src molecule inhibitor KX2-391 (N-Benzyl-2- [5- [4- [2- (4-morpholinyl) ethoxy] phenyl] pyridin-2- yl] acetamide), RASA1 molecule inhibitor Pluripotin (N- (3- (7- (1,3-dimethyl-1H-pyrazol-5-ylamino) -1-methyl-2-oxo-1,2-dihydropyrimido [4 , 5-d] pyrimidin-3 (4H) -yl) -4-methylphenyl) -3- (trifluoromethyl) benzamide), and ILK molecule inhibitor Cpd 22 (N-methyl-3- (1- (4- (piperazin 1-yl) phenyl) -5- (4 '-(trifluoromethyl) biphenyl-4-yl) -1H-pyrazol-3-yl) propanamide) is added to the neuroblastoma cell culture, It was found to be suppressed.

KX2-391およびCpd 22は、前立腺がんの動物モデルでの効果が確認され、Pluripotinは培養条件下で胎児幹細胞(ES細胞)などの多分化能を維持する際の有用性が提唱されているが、神経芽腫治療においてこれらの分子に対する阻害剤を用いることは、知られていない。この知見は神経芽腫に対する新規の治療分子標的とその阻害剤を提示するものであり、新規の治療方法を提唱するものである。 KX2-391 and Cpd 22 have been confirmed to be effective in animal models of prostate cancer, and Pluripotin has been proposed to be useful in maintaining pluripotency such as embryonic stem cells (ES cells) under culture conditions However, it is not known to use inhibitors against these molecules in the treatment of neuroblastoma. This finding presents a novel therapeutic molecular target and inhibitor for neuroblastoma, and proposes a novel therapeutic method.

本発明のスクリーニング方法は、被検化合物の存在下と非存在下で、Srcの活性を比較し、Src阻害活性の有無を分析する工程を備えることを特徴とする。上記構成によって得られるSrc阻害活性を有する化合物は神経芽腫治療薬の開発に用いることができる。 The screening method of the present invention comprises a step of comparing the activity of Src in the presence and absence of a test compound and analyzing the presence or absence of Src inhibitory activity. The compound having Src inhibitory activity obtained by the above configuration can be used for the development of a therapeutic agent for neuroblastoma.

また、本発明のスクリーニング方法は、被検化合物の存在下と非存在下で、RASA1の活性を比較し、RASA1阻害活性の有無を分析する工程を備えることを特徴とする。上記構成によって得られるRASA1阻害活性を有する化合物は神経芽腫治療薬の開発に用いることができる。 The screening method of the present invention is characterized by comprising the steps of comparing the activity of RASA1 in the presence and absence of the test compound and analyzing for the presence or absence of RASA1 inhibitory activity. The compound having RASA1 inhibitory activity obtained by the above configuration can be used for the development of a therapeutic agent for neuroblastoma.

さらに、本発明のスクリーニング方法は、被検化合物の存在下と非存在下で、ILKの活性を比較し、ILK阻害活性の有無を分析する工程を備えることを特徴とする。上記構成によって得られるILK阻害活性を有する化合物は神経芽腫治療薬の開発に用いることができる。 Furthermore, the screening method of the present invention is characterized by comprising the steps of comparing the activity of ILK in the presence and absence of a test compound and analyzing the presence or absence of ILK inhibitory activity. The compound having ILK inhibitory activity obtained by the above configuration can be used for the development of a therapeutic agent for neuroblastoma.

LMO1標的遺伝子のひとつであるKHDRBS2遺伝子がコードするタンパクは、細胞分裂促進的に機能する分子であり、Src分子はこのタンパクをリン酸化することによってその機能を活性化することが知られている。Src分子阻害剤はSrc分子によるKHDRBS2タンパクの活性化を阻害することやSrc分子による他のタンパクのリン酸化を阻害することによりがん細胞の増殖を抑制することができる。 A protein encoded by the KHDRBS2 gene, which is one of the LMO1 target genes, is a molecule that functions in a mitogenic manner, and the Src molecule is known to activate its function by phosphorylating this protein. The Src molecule inhibitor can suppress the growth of cancer cells by inhibiting the activation of KHDRBS2 protein by the Src molecule or by inhibiting phosphorylation of other proteins by the Src molecule.

LMO1標的遺伝子のひとつであるRASA1遺伝子がコードするタンパクは、がん細胞の増殖能等について抑制的に機能するDLC1分子(がん抑制遺伝子として知られている)の機能を阻害する働きがある。RASA1分子阻害剤はRASA1によるこのがん抑制遺伝子に対する阻害作用を抑えることや他のリン酸化酵素の機能を阻害することによりがん細胞の増殖を抑制することができる。 A protein encoded by the RASA1 gene, which is one of the LMO1 target genes, has a function of inhibiting the function of a DLC1 molecule (known as a cancer suppressor gene) that functions repressively with respect to the ability of cancer cells to proliferate. RASA1 molecule inhibitors can suppress the growth of cancer cells by suppressing the inhibitory action of RASA1 on this tumor suppressor gene and by inhibiting the functions of other phosphorylases.

LMO1標的遺伝子のひとつであるLIMS1遺伝子がコードするタンパクは、ILK分子と複合体を形成し、がん細胞内で細胞分裂促進的に機能している分子である。したがって、ILK分子阻害剤はLIMS1-ILK複合体の機能を阻害することによりがん細胞の増殖を抑制することができる。 A protein encoded by the LIMS1 gene, which is one of the LMO1 target genes, is a molecule that forms a complex with ILK molecules and functions mitogenically in cancer cells. Therefore, an ILK molecule inhibitor can suppress the growth of cancer cells by inhibiting the function of the LIMS1-ILK complex.

神経芽腫高リスク群患者においては、再燃が高頻度に起こるにも関わらず再燃症例に対する有効な治療法は確立されていないことから、その予後は悪く5年生存率は50%以下となっている。LMO1は、高リスク群神経芽腫で機能している分子であり、この分子が調節している分子経路の阻害剤は再燃症例の治療に有効な可能性が高く、これらの分子阻害剤を治療に用いることにより高リスク群患者の予後を改善することが可能となる。本発明の神経芽腫の細胞増殖抑制法は、神経芽腫治療について、既存の製剤の新たな適用や新規分子阻害剤の創薬及びそれらの臨床研究を促進する効果を持つ。 In patients with high risk of neuroblastoma, despite the frequent occurrence of relapse, an effective treatment for relapse cases has not been established, so the prognosis is poor and the 5-year survival rate is 50% or less. Yes. LMO1 is a molecule that functions in high-risk group neuroblastoma, and inhibitors of the molecular pathways that this molecule regulates are likely to be effective in treating relapse cases and treat these molecular inhibitors It can be used to improve the prognosis of high-risk group patients. The method for inhibiting cell proliferation of neuroblastoma of the present invention has the effect of promoting new application of existing preparations, drug discovery of novel molecular inhibitors and their clinical research for neuroblastoma treatment.

本発明の3種の分子阻害剤は神経芽腫培養細胞の細胞増殖を抑制することから、生体内でも神経芽腫の細胞増殖を抑制することが期待できる。Src分子阻害剤KX2-391は、成人のがんである前立腺がんを対象に動物モデルでの評価が確認され、現在ヒトでの臨床試験(Phase II)が行われている。ヒトに対する投与が可能であることが確認されており、神経芽腫治療への適用についても臨床試験が可能である。 Since the three molecular inhibitors of the present invention inhibit cell proliferation of cultured neuroblastoma cells, it can be expected to inhibit neuroblastoma cell proliferation in vivo. The Src molecule inhibitor KX2-391 has been evaluated in animal models for prostate cancer, an adult cancer, and is currently undergoing clinical trials (Phase II) in humans. It has been confirmed that it can be administered to humans, and clinical trials are also possible for application to the treatment of neuroblastoma.

ILK分子阻害剤Cpd 22は経口投与で有効性があることが確認されており、前立腺がん培養細胞を移植したマウスモデルにおいて腫瘍縮小効果があること及びこのとき大きな有害事象が見られなかったことが報告されていることから、ヒトへの投与の可能性が考えられ、神経芽腫その他のがんについて臨床研究の実施を検討できる。 ILK molecule inhibitor Cpd 22 has been confirmed to be effective by oral administration, and has a tumor reduction effect in mouse models transplanted with prostate cancer cultured cells and no significant adverse events were observed at this time Therefore, the possibility of administration to humans is considered, and clinical studies on neuroblastoma and other cancers can be considered.

RASA1分子阻害剤Pluripotinは培養条件下で胎児幹細胞(ES細胞)やその他の細胞の多分化能を維持する際の有用性が確認されているのみで、がん細胞の細胞増殖抑制作用については知られておらず、本発明で初めてがんへの有効性が明らかになった。 The RASA1 molecule inhibitor Pluripotin has only been confirmed to be useful in maintaining the pluripotency of fetal stem cells (ES cells) and other cells under culture conditions. However, for the first time in the present invention, the effectiveness for cancer was revealed.

3種の分子阻害剤による神経芽腫細胞増殖の抑制。KX2-391(Src分子阻害剤)、Pluripotin(RASA1分子阻害剤)、Cpd 22(ILK分子阻害剤)を培養液中に異なる濃度で加え、3種の神経芽腫培養細胞(SK-N-BE(2)、SK-N-SH、LA-N-5)を72時間 培養したところ、溶媒であるDMSO (dimethyl sulfoxide)のみを加えたコントロールと比較して、濃度依存的に細胞増殖が抑制された。Inhibition of neuroblastoma cell proliferation by three molecular inhibitors. KX2-391 (Src molecule inhibitor), Pluripotin (RASA1 molecule inhibitor), Cpd 22 (ILK molecule inhibitor) were added to the culture solution at different concentrations, and three types of neuroblastoma cultured cells (SK-N-BE) (2), SK-N-SH, LA-N-5) were cultured for 72 hours, and cell growth was suppressed in a concentration-dependent manner compared to the control to which only the solvent DMSO (dimethyl sulfoxide) was added. It was.

以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明の神経芽腫治療剤は、LOM1シグナル伝達に係わるSrc、RASA1、ILKのいずれか機能を阻害する物質を有効成分として含有する。Src、RASA1、ILKのいずれか機能を阻害することは、その物質の存在により、Src、RASA1、ILKの特徴であるリン酸化が抑制され、がん化の方向に進むシグナル伝達を阻害することができる。 The therapeutic agent for neuroblastoma of the present invention contains a substance that inhibits the function of any one of Src, RASA1, and ILK related to LOM1 signaling as an active ingredient. Inhibiting the function of any of Src, RASA1, and ILK means that the presence of the substance suppresses phosphorylation, a characteristic of Src, RASA1, and ILK, and inhibits signal transduction that proceeds in the direction of canceration. it can.

Src阻害剤として、KX2-391、PP1(CAS # 172889-26-8 :4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-d-3,4-pyrimidine)、Src Kinase Inhibitor I(CAS # 179248-59-0: 4-(4′-Phenoxyanilino)-6,7-dimethoxyquinazoline)、TX-1123 (CAS # 157397-06-3: 2-((3,5-di-tert-Butyl-4-hydroxyphenyl)-methylene)-4-cyclopentene-1,3-dione)などが挙げられるが、これに限定されるものではない。 As Src inhibitors, KX2-391, PP1 (CAS # 172889-26-8: 4-amino-5- (4-methylphenyl) -7- (t-butyl) pyrazolo-d-3,4-pyrimidine), Src Kinase Inhibitor I (CAS # 179248-59-0: 4- (4′-Phenoxyanilino) -6,7-dimethoxyquinazoline), TX-1123 (CAS # 157397-06-3: 2-((3,5-di- tert-Butyl-4-hydroxyphenyl) -methylene) -4-cyclopentene-1,3-dione), but is not limited thereto.

RASA1阻害剤として、Pluripotinなどが挙げられるが、これに限定されるものではない。 RASA1 inhibitors include, but are not limited to, Pluripotin.

ILK阻害剤として、Cpd 22、DRM02、QLT0267、KP-392、T315などが挙げられるが、これに限定されるものではない。 Examples of ILK inhibitors include, but are not limited to, Cpd 22, DRM02, QLT0267, KP-392, T315 and the like.

本発明の薬剤は、Src、RASA1、ILKの機能を阻害する物質をそのままの形態でもよく、又は薬学的に許容される添加剤を配合した医薬組成物の形態であってもよい。 The agent of the present invention may be in the form of a substance that inhibits the functions of Src, RASA1, and ILK as it is, or may be in the form of a pharmaceutical composition containing a pharmaceutically acceptable additive.

本発明の薬剤を含む医薬組成物は、その形態は特に制限されるものではなく、例えば、粉末状、顆粒状、錠剤状などの固体状;溶液状、乳液状、分散液状等の液状;又はペースト状等の半固体状等の、任意の形態に調整することができる。経口製剤としては、散剤、顆粒剤、細粒剤、錠剤、丸剤、トローチ剤、カプセル剤(ソフトカプセル剤、ハードカプセル剤を含む)、チュアブル剤、溶液剤などの剤形とすることができる。また、非経口製剤としては、注射剤、点滴剤、外用薬剤、吸入剤、又は座剤などの剤形とすることができる。 The form of the pharmaceutical composition containing the drug of the present invention is not particularly limited, and is, for example, a solid form such as a powder, a granule, or a tablet; a liquid such as a solution, emulsion, or dispersion; or It can adjust to arbitrary forms, such as semi-solid forms, such as paste form. As oral preparations, dosage forms such as powders, granules, fine granules, tablets, pills, troches, capsules (including soft capsules and hard capsules), chewables, and solutions can be used. Moreover, as a parenteral formulation, it can be set as dosage forms, such as an injection, an instillation, an external medicine, an inhalant, or a suppository.

本発明の薬剤の投与量や投与形態は、対象、病態やその進行状況、投与経路、剤型その他の条件によって適宜選択すればよいが、通常、1日あたり0.001−100 mg/kg体重であり、好ましくは1日あたり0.01−10 mg/kgである。 The dosage and dosage form of the drug of the present invention may be appropriately selected depending on the subject, pathological condition and its progress, administration route, dosage form, and other conditions, but is usually 0.001-100 mg / kg body weight per day. Preferably, it is 0.01-10 mg / kg per day.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.

(実験材料)
3種の神経芽培養細胞を用意し投与実験を行った。SK-N-BE(2)細胞はEuropean Collection of Cell Cultures (ECACC)より購入し、ウシ胎児血清(15%)及び非必須アミノ酸(0.5%、ライフテクノロジー)を添加したEMEM (和光純薬) とHam’s F12 (和光純薬) の1:1混合液中にて培養した。SK-N-SH細胞はECACCより購入し、ウシ胎児血清(10%)を添加したDMEM (和光純薬)培養液中にて培養した。LA-N-5細胞は理化学研究所バイオリソースセンターより譲渡を受けウシ胎児血清(10%)を添加したRPMI1640 (ライフテクノロジー)培養液中にて培養した。相対的細胞数の計測にはCell Counting Kit-8(同仁化学)を用いMTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)法にて行った。Src分子阻害剤KX2-391(Selleckchem社)、ILK分子阻害剤Cpd 22(Calbiochem社)、RASA1分子阻害剤Pluripotin (Sigma社)の3種の分子阻害剤をdimethyl sulfoxide(DMSO、Merck社)に溶解して培養液中に添加した。
(Experimental material)
Three types of neuroblast culture cells were prepared and administration experiments were performed. SK-N-BE (2) cells were purchased from the European Collection of Cell Cultures (ECACC), with EMEM (Wako Pure Chemicals) supplemented with fetal calf serum (15%) and non-essential amino acids (0.5%, life technology). The cells were cultured in a 1: 1 mixture of Ham's F12 (Wako Pure Chemical Industries). SK-N-SH cells were purchased from ECACC and cultured in DMEM (Wako Pure Chemicals) culture medium supplemented with fetal bovine serum (10%). LA-N-5 cells were transferred from RIKEN BioResource Center and cultured in RPMI1640 (life technology) culture medium supplemented with fetal bovine serum (10%). The relative number of cells was measured by Cell Counting Kit-8 (Dojin Chemical) by the MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl tetrazolium bromide) method. Src molecule inhibitor KX2-391 (Selleckchem), ILK molecule inhibitor Cpd 22 (Calbiochem), RASA1 molecule inhibitor Pluripotin (Sigma) dissolved in dimethyl sulfoxide (DMSO, Merck) And added to the culture broth.

(実験方法)
細胞増殖抑制実験はCell Counting Kit-8(同仁化学)の添付文書に記載されている方法に準じて行なった。
3種の神経芽培養細胞をそれぞれ96ウェルプレートにまき(2000細胞/ウェル)、翌日段階的に希釈して作成した3種の濃度の分子阻害剤を各ウェルに加えた。72時間培養ののち、Cell Counting Kit-8試薬を加え2時間反応させたあと、450nmの吸光度を計測した。それぞれの分子阻害剤のそれぞれの濃度について5ウェル一組として実験を行い平均値や標準偏差を求めた。
(experimental method)
The cell growth suppression experiment was performed according to the method described in the package insert of Cell Counting Kit-8 (Dojindo Laboratories).
Three types of neuroblastic cultured cells were each seeded in a 96-well plate (2000 cells / well), and three concentrations of molecular inhibitors prepared by serial dilution the next day were added to each well. After culturing for 72 hours, Cell Counting Kit-8 reagent was added and reacted for 2 hours, and then the absorbance at 450 nm was measured. For each concentration of each molecular inhibitor, an experiment was carried out as a set of 5 wells, and the average value and standard deviation were obtained.

(結果)
3種のそれぞれ分子阻害剤は、SK-N-BE(2)細胞、SK-N-SH細胞およびLA-N-5細胞について、濃度依存的にその細胞増殖を抑制した(図1)。
(result)
Each of the three molecular inhibitors suppressed the cell proliferation of SK-N-BE (2) cells, SK-N-SH cells and LA-N-5 cells in a concentration-dependent manner (FIG. 1).

Claims (8)

LOM1シグナル伝達に係わるSrc、RASA1、ILKのいずれかの機能を阻害する物質を有効成分として含有することを特徴とする神経芽腫治療剤。 A therapeutic agent for neuroblastoma comprising as an active ingredient a substance that inhibits the function of any of Src, RASA1, and ILK related to LOM1 signaling. Srcを阻害する物質がKX2-391である請求項1記載の神経芽腫治療剤。 The therapeutic agent for neuroblastoma according to claim 1, wherein the substance that inhibits Src is KX2-391. RASA1を阻害する物質がPluripotinである請求項1記載の神経芽腫治療剤。 The therapeutic agent for neuroblastoma according to claim 1, wherein the substance that inhibits RASA1 is Pluripotin. ILKを阻害する物質がCpd22である請求項1記載の神経芽腫治療剤。 The therapeutic agent for neuroblastoma according to claim 1, wherein the substance that inhibits ILK is Cpd22. 被検化合物の存在下と非存在下で、Srcの活性を比較し、Src阻害活性の有無を分析する工程を含む、神経芽腫の治療薬のスクリーニング方法。 A method for screening a therapeutic agent for neuroblastoma, comprising a step of comparing the activity of Src in the presence and absence of a test compound and analyzing the presence or absence of Src inhibitory activity. 被検化合物の存在下と非存在下で、RASA1の活性を比較し、RASA1阻害活性の有無を分析する工程を含む、神経芽腫の治療薬のスクリーニング方法。 A method for screening a therapeutic agent for neuroblastoma, comprising a step of comparing the activity of RASA1 in the presence and absence of a test compound and analyzing the presence or absence of RASA1 inhibitory activity. 被検化合物の存在下と非存在下で、ILKの活性を比較し、ILK阻害活性を有する化合物を選択する工程を含む、神経芽腫の治療薬のスクリーニング方法。 A method for screening a therapeutic agent for neuroblastoma, comprising a step of comparing the activity of ILK in the presence and absence of a test compound and selecting a compound having ILK inhibitory activity. LOM1シグナル伝達に係わるSrc、RASA1、ILKのいずれかの機能を阻害することを特徴とする神経芽腫細胞増殖抑制方法。 A method for inhibiting neuroblastoma cell proliferation, which comprises inhibiting the function of any of Src, RASA1, and ILK related to LOM1 signaling.
JP2013213663A 2013-10-11 2013-10-11 Neuroblastoma therapeutic agent Pending JP2015074643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013213663A JP2015074643A (en) 2013-10-11 2013-10-11 Neuroblastoma therapeutic agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013213663A JP2015074643A (en) 2013-10-11 2013-10-11 Neuroblastoma therapeutic agent

Publications (1)

Publication Number Publication Date
JP2015074643A true JP2015074643A (en) 2015-04-20

Family

ID=52999774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013213663A Pending JP2015074643A (en) 2013-10-11 2013-10-11 Neuroblastoma therapeutic agent

Country Status (1)

Country Link
JP (1) JP2015074643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115154478A (en) * 2022-06-30 2022-10-11 浙江大学医学院附属儿童医院 Application of ZDHHC22 gene in preparing medicine for treating neuroblastoma
CN117298104A (en) * 2023-11-30 2023-12-29 首都医科大学附属北京儿童医院 Application of ELOVL6-IN-2 IN preparation of MYCN (MYCN-amplified neuroblastoma) drug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115154478A (en) * 2022-06-30 2022-10-11 浙江大学医学院附属儿童医院 Application of ZDHHC22 gene in preparing medicine for treating neuroblastoma
CN115154478B (en) * 2022-06-30 2023-08-15 浙江大学医学院附属儿童医院 Application of ZDHC 22 gene in preparation of neuroblastoma treatment drug
CN117298104A (en) * 2023-11-30 2023-12-29 首都医科大学附属北京儿童医院 Application of ELOVL6-IN-2 IN preparation of MYCN (MYCN-amplified neuroblastoma) drug
CN117298104B (en) * 2023-11-30 2024-03-12 首都医科大学附属北京儿童医院 Application of ELOVL6-IN-2 IN preparation of MYCN (MYCN-amplified neuroblastoma) drug

Similar Documents

Publication Publication Date Title
Ghelli Luserna di Rorà et al. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target
Canning et al. Inflammatory signaling by NOD-RIPK2 is inhibited by clinically relevant type II kinase inhibitors
Hong et al. Melatonin treatment induces interplay of apoptosis, autophagy, and senescence in human colorectal cancer cells
Chappell et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health
Matthews et al. Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo
Zhang et al. Polo-like kinase 4’s critical role in cancer development and strategies for Plk4-targeted therapy
Nör et al. The histone deacetylase inhibitor sodium butyrate promotes cell death and differentiation and reduces neurosphere formation in human medulloblastoma cells
Yu et al. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer
Jhamb et al. Molecular concepts in the pathogenesis of ameloblastoma: implications for therapeutics
Semov et al. Diindolilmethane (DIM) selectively inhibits cancer stem cells
Chang et al. Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells
Min et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer
Bai et al. Simultaneous targeting of Src kinase and receptor tyrosine kinase results in synergistic inhibition of renal cell carcinoma proliferation and migration
JP6569908B2 (en) Anticancer composition
US9573899B2 (en) USP7 inhibitor compounds and methods of use
TWI814723B (en) Kdm4 inhibitors
Cipro et al. Valproic acid overcomes hypoxia-induced resistance to apoptosis
Chang et al. Arsenic trioxide inhibits CXCR4-mediated metastasis by interfering miR-520h/PP2A/NF-κB signaling in cervical cancer
Zuo et al. 17‑AAG synergizes with Belinostat to exhibit a negative effect on the proliferation and invasion of MDA‑MB‑231 breast cancer cells
Yousefi et al. Therapeutic efficacy of silibinin on human neuroblastoma cells: Akt and NF-κB expressions may play an important role in silibinin-induced response
Kwiecińska et al. Effects of valproic acid and levetiracetam on viability and cell cycle regulatory genes expression in the OVCAR-3 cell line
Yang et al. Increased activity of CHK enhances the radioresistance of MCF-7 breast cancer stem cells
Tsao et al. Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway
Mui et al. Targeting YAP1/TAZ in nonsmall‐cell lung carcinoma: from molecular mechanisms to precision medicine
Hammoud et al. Drug repurposing in medulloblastoma: challenges and recommendations