JP2015071989A - Ammonia occlusion and release device and exhaust gas purification system - Google Patents

Ammonia occlusion and release device and exhaust gas purification system Download PDF

Info

Publication number
JP2015071989A
JP2015071989A JP2013208830A JP2013208830A JP2015071989A JP 2015071989 A JP2015071989 A JP 2015071989A JP 2013208830 A JP2013208830 A JP 2013208830A JP 2013208830 A JP2013208830 A JP 2013208830A JP 2015071989 A JP2015071989 A JP 2015071989A
Authority
JP
Japan
Prior art keywords
ammonia
release
amount
tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013208830A
Other languages
Japanese (ja)
Inventor
研二 森
Kenji Mori
研二 森
浩康 河内
Hiroyasu Kawachi
浩康 河内
藤 敬司
Takashi Fuji
敬司 藤
小島 由継
Yoshitsugu Kojima
由継 小島
市川 貴之
Takayuki Ichikawa
貴之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Hiroshima University NUC
Original Assignee
Toyota Industries Corp
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Hiroshima University NUC filed Critical Toyota Industries Corp
Priority to JP2013208830A priority Critical patent/JP2015071989A/en
Priority to PCT/JP2014/075722 priority patent/WO2015050065A1/en
Publication of JP2015071989A publication Critical patent/JP2015071989A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ammonia occlusion and release device and an exhaust gas purification system which can perform occlusion and release of NHat room temperature or at a temperature of several ten degree lower than room temperature with pressure adjustment, can make occlusion amount of NHper 1 g more than CaCland can make body dimensions in such a state as to occlude the same amount of NHless than CaCl.SOLUTION: An exhaust gas purification system 10 includes an exhaust channel 12 through which exhaust gas exhausted from an internal combustion engine (diesel engine 11) is circulated, a selective reduction catalyst (SCR catalyst 13) which is disposed on the exhaust channel 12, an ammonia occlusion and release device 14 which occludes NHand releases NHto the exhaust passage 12 via a pipe path and a control device 25. The ammonia occlusion and release device 14 includes an ammonia supply tank 16, etc. which stores LiCl as ammonia occlusion and release material 15. The control device 25 controls a release amount of NHto the exhaust channel 12 from the ammonia occlusion and release device 14 in accordance with an NOx amount in the exhaust channel 12.

Description

本発明は、アンモニア吸蔵放出装置及び排気ガス浄化システムに関する。   The present invention relates to an ammonia storage / release device and an exhaust gas purification system.

内燃機関が排出する排気ガス中のNOx(窒素酸化物)はNOx浄化装置により浄化されているが、特に、ディーゼルエンジンで用いられるNOx浄化装置はその排気系にSCR(選択還元触媒)が用いられている。このNOx浄化装置においては、尿素などの還元剤をSCR触媒に供給し、尿素から発生するアンモニア(NH)をSCR触媒に吸着させ、この吸着させたアンモニアにより排気ガス中のNOxの選択還元を行っている。 NOx (nitrogen oxides) in exhaust gas discharged from an internal combustion engine is purified by a NOx purification device. In particular, the NOx purification device used in a diesel engine uses an SCR (selective reduction catalyst) in its exhaust system. ing. In this NOx purification device, a reducing agent such as urea is supplied to the SCR catalyst, ammonia (NH 3 ) generated from urea is adsorbed to the SCR catalyst, and the NOx in the exhaust gas is selectively reduced by the adsorbed ammonia. Is going.

また、アンモニアを吸蔵するアンモニア吸蔵材料を使用して、SCR触媒にアンモニアを供給する方法も提案されている(特許文献1及び特許文献2)。特許文献1には、好ましいアンモニア吸蔵材料として、Mg(NHClが挙げられている。また、特許文献2には、好ましいアンモニア吸蔵材料としてMgCl、CaCl、SrClもしくはそれらの混合物が挙げられている。 In addition, a method of supplying ammonia to the SCR catalyst using an ammonia storage material that stores ammonia has also been proposed (Patent Document 1 and Patent Document 2). Patent Document 1 mentions Mg (NH 3 ) 6 Cl 2 as a preferred ammonia storage material. In Patent Document 2, MgCl 2 , CaCl 2 , SrCl 2 or a mixture thereof is listed as a preferable ammonia storage material.

特表2008−508186号公報Special table 2008-508186 特表2008−528431号公報Special table 2008-528431 gazette

NHを吸蔵する物質として知られている金属塩化物の中でもCaClはモル比で8倍量のNHを吸蔵可能である。
CaCl+8NH→Ca(NHCl
ところが塩化物は分子量が大きく、1モル当たりのNHの吸蔵量が同じ場合、重量当たりの吸蔵量は分子量が小さな化合物に比べて少なくなる。
Among the metal chlorides known as substances that occlude NH 3 , CaCl 2 can occlude 8 times the amount of NH 3 in molar ratio.
CaCl 2 + 8NH 3 → Ca (NH 3 ) 8 Cl 2
However, chloride has a large molecular weight, and when the storage amount of NH 3 per mole is the same, the storage amount per weight is smaller than that of a compound having a small molecular weight.

また、吸蔵されたNHの離脱(放出)温度が高いため、NHの供給(放出)に必要な熱量が大きくなる。特許文献1には、アンモニアは、好ましくは100℃〜700℃の、さらに好ましくは150℃〜500℃の温度範囲において、金属アンミン塩を加熱することによって金属アンミン塩から放出されうると記載されている。また、特許文献2には、金属アンミン塩錯体は、好ましくは30℃〜700℃の温度まで、より好ましくは100℃〜500℃の温度まで加熱されると記載されている。内燃機関の熱をアンモニアの加熱に使用することも可能であるが、その場合、加熱のための設備が複雑になる。また、ヒーター加熱方式を採用すれば、内燃機関の熱を利用する場合に比べて設備は簡単になるが、消費電力が大きくなる。 Further, since the desorption (release) temperature of the occluded NH 3 is high, the amount of heat necessary for the supply (release) of NH 3 increases. Patent Document 1 describes that ammonia can be released from a metal ammine salt by heating the metal ammine salt, preferably in a temperature range of 100 ° C to 700 ° C, more preferably 150 ° C to 500 ° C. Yes. Patent Document 2 describes that the metal ammine salt complex is heated to a temperature of preferably 30 ° C to 700 ° C, more preferably to a temperature of 100 ° C to 500 ° C. It is possible to use the heat of the internal combustion engine for heating ammonia, but in that case, the equipment for heating becomes complicated. In addition, if the heater heating method is adopted, the equipment becomes simpler than the case of using the heat of the internal combustion engine, but the power consumption increases.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、室温あるいは数十度以下の温度においてNHの吸蔵及び放出を圧力調整により行うことができ、1g当たりのNHの吸蔵量がCaClより多く、同量のNHを吸蔵した状態で体格を小さくできる吸蔵放出材料を用いたアンモニア吸蔵放出装置及びそれを用いた排気ガス浄化システムを提供することにある。 The present invention has been made in view of the above-mentioned problems, and the object thereof is to perform occlusion and release of NH 3 by adjusting the pressure at room temperature or a temperature of several tens of degrees or less, and NH 3 per gram. It is an object to provide an ammonia occlusion / release device using an occlusion / release material that can reduce the physique in a state where the amount of occlusion is greater than CaCl 2 and occludes the same amount of NH 3 , and an exhaust gas purification system using the same.

上記課題を解決するアンモニア吸蔵放出装置は、アンモニア吸蔵放出材料を貯蔵するタンクと、前記タンク内に貯蔵されたアンモニア吸蔵放出材料と、前記タンク内に加圧状態のNHの導入及び前記タンク内のNHの放出の少なくとも一方に使用され、途中にバルブを備えた配管と、前記タンク内のNHを放出するアンモニア放出配管と、前記アンモニア放出配管から放出されるNHの量を調整する調整手段とを備え、前記アンモニア吸蔵放出材料はLiClである。ここで、「タンク内に加圧状態のNHの導入及びタンク内のNHの放出の少なくとも一方に使用され、途中にバルブを備えた配管」が「タンク内のNHを放出するアンモニア放出配管」を兼用してもよい。 An ammonia storage / release device that solves the above problems includes a tank for storing ammonia storage / release material, an ammonia storage / release material stored in the tank, introduction of NH 3 in a pressurized state into the tank, and the inside of the tank. Used for at least one of the release of NH 3 , a pipe provided with a valve in the middle, an ammonia release pipe for releasing NH 3 in the tank, and an amount of NH 3 released from the ammonia release pipe And the ammonia storage / release material is LiCl. Here, “a pipe used for at least one of introduction of NH 3 under pressure into the tank and release of NH 3 in the tank, and a valve provided on the way” “ammonia release that releases NH 3 in the tank” “Piping” may also be used.

この構成によれば、途中にバルブを備えた配管からタンク内に加圧状態でNHが導入され、導入されたNHはタンク内に貯蔵されているアンモニア吸蔵放出材料に吸蔵される。アンモニア吸蔵放出材料を構成する物質(LiCl)は、1g当たりのNHの吸蔵量がCaClより多く、室温あるいは数十度以下の温度でアンモニア放出配管から放出されるNHの圧力を調整手段で調整することにより、目的とする量のNHが放出される。また、LiClの分子量は42.4であり、CaClの分子量111に比べてほぼ2/5と小さいため、同量のNHを吸蔵した状態で体格を小さくできる。 According to this configuration, NH 3 is introduced into the tank in a pressurized state from a pipe provided with a valve in the middle, and the introduced NH 3 is stored in the ammonia storage / release material stored in the tank. The substance (LiCl) constituting the ammonia storage / release material has a storage amount of NH 3 per gram larger than that of CaCl 2 and adjusts the pressure of NH 3 released from the ammonia release pipe at room temperature or a temperature of several tens of degrees or less. The desired amount of NH 3 is released by adjusting at. Moreover, since the molecular weight of LiCl is 42.4, which is as small as 2/5 compared to the molecular weight 111 of CaCl 2 , the physique can be reduced with the same amount of NH 3 occluded.

前記調整手段は、前記アンモニア放出配管の途中に設けられたリザーブタンクと、前記リザーブタンク内の圧力を検知する圧力センサと、前記アンモニア放出配管の途中に設けられ、前記リザーブタンクより下流側に設けられた第1の調整バルブと、前記リザーブタンクより前記タンク側に設けられた第2の調整バルブと、前記第1の調整バルブ及び前記第2の調整バルブの開度を制御する制御手段とを備えていることが好ましい。この構成によれば、アンモニア吸蔵放出材料が貯蔵されたタンクからNHを直接、目的とする箇所に目的の圧力で放出(供給)するのではなく、リザーブタンクに貯留した後、目的とする箇所に目的の圧力で放出(供給)する。したがって、放出するNHの圧力調整を精度良く行うことが容易になる。 The adjusting means includes a reserve tank provided in the middle of the ammonia discharge pipe, a pressure sensor for detecting the pressure in the reserve tank, and provided in the middle of the ammonia discharge pipe and provided downstream of the reserve tank. A first adjustment valve that is provided, a second adjustment valve that is provided closer to the tank than the reserve tank, and a control means that controls the opening of the first adjustment valve and the second adjustment valve. It is preferable to provide. According to this configuration, NH 3 is not directly released (supplied) from the tank in which the ammonia storage / release material is stored to the target location at the target pressure, but is stored in the reserve tank and then the target location. At the target pressure. Therefore, it becomes easy to accurately adjust the pressure of NH 3 to be released.

上記課題を解決する排気ガス浄化システムは、内燃機関から排出された排気ガスが流通する排気通路と、前記排気通路に設けられた選択還元触媒(SCR)と、NHを吸蔵するとともに前記排気通路に管路を介してNHを放出するアンモニア吸蔵放出装置と、前記排気通路内のNOx量に対応して前記アンモニア吸蔵放出装置から前記排気通路へのNHの放出量を制御する制御装置とを備え、前記アンモニア吸蔵放出装置として前記アンモニア吸蔵放出材料のLiClを貯蔵するタンク等を備えた前記アンモニア吸蔵放出装置を備えている。 An exhaust gas purification system that solves the above problems includes an exhaust passage through which exhaust gas discharged from an internal combustion engine circulates, a selective reduction catalyst (SCR) provided in the exhaust passage, and stores the NH 3 and the exhaust passage. An ammonia storage / release device that releases NH 3 via a pipe line, and a control device that controls the amount of NH 3 released from the ammonia storage / release device into the exhaust passage in accordance with the amount of NOx in the exhaust passage; The ammonia storage / release device includes a tank for storing LiCl of the ammonia storage / release material as the ammonia storage / release device.

この構成によれば、前記排気通路に設けられた選択還元触媒(SCR)に供給するNHの量、即ちアンモニア吸蔵放出装置から排気通路へのNHの放出量が、排気通路内のNOx量に対応して制御装置により制御されるため、排気通路内の排気ガスが選択還元触媒(SCR)を通過する際に、NOxが適切に還元処理される。排気通路内のNOx量は、例えば、NOxセンサで排気管内のNOx量を検出したり、内燃機関の負荷と排気通路内のNOx量との関係を予め調べておき、内燃機関の負荷から排気通路内のNOx量を演算したりすることで把握される。 According to this arrangement, the amount of NH 3 supplied the exhaust passage provided with the selective reduction catalyst (SCR), i.e. amount of released NH 3 of ammonia absorbing and releasing device to the exhaust passage, NOx quantity in the exhaust passage Therefore, when the exhaust gas in the exhaust passage passes through the selective reduction catalyst (SCR), NOx is appropriately reduced. For example, the NOx amount in the exhaust passage is detected by detecting the NOx amount in the exhaust pipe with a NOx sensor, or by examining the relationship between the load of the internal combustion engine and the NOx amount in the exhaust passage in advance. It is grasped by calculating the amount of NOx in the inside.

本発明によれば、室温あるいは数十度以下の温度においてNHの吸蔵及び放出を圧力調整により行うことができ、1g当たりのNHの吸蔵量がCaClより多く、同量のNHを吸蔵した状態で体格を小さくできる。 According to the present invention, can be carried out by the pressure regulating occluding and releasing NH 3 at room temperature or several tens of degrees below the temperature, storage amount of NH 3 per 1g is more than CaCl 2, and NH 3 in the same amount Physique can be reduced in the occluded state.

排気ガス浄化システムの構成を示す模式図。The schematic diagram which shows the structure of an exhaust-gas purification system. アンモニア吸蔵量を測定する装置の構成図。The block diagram of the apparatus which measures ammonia occlusion amount. LiClの0℃におけるPCT曲線を示す図。The figure which shows the PCT curve in 0 degreeC of LiCl. LiClの20℃におけるPCT曲線を示す図。The figure which shows the PCT curve in 20 degreeC of LiCl. LiClの40℃におけるPCT曲線を示す図。The figure which shows the PCT curve in 40 degreeC of LiCl. LiClの50℃におけるPCT曲線を示す図。The figure which shows the PCT curve in 50 degreeC of LiCl.

以下、排気ガス浄化システムの一実施形態を図1〜図6にしたがって説明する。
図1に示すように、排気ガス浄化システム10は、内燃機関としてのディーゼルエンジン11から排出された排気ガスが流通する排気通路12と、排気通路12に設けられたSCR触媒(選択還元触媒)13と、アンモニア吸蔵放出装置14とを備えている。
Hereinafter, an embodiment of an exhaust gas purification system will be described with reference to FIGS.
As shown in FIG. 1, an exhaust gas purification system 10 includes an exhaust passage 12 through which exhaust gas discharged from a diesel engine 11 as an internal combustion engine flows, and an SCR catalyst (selective reduction catalyst) 13 provided in the exhaust passage 12. And an ammonia storage / release device 14.

アンモニア吸蔵放出装置14は、アンモニア吸蔵放出材料15を貯蔵したタンクとしてのアンモニア供給タンク16を備えている。アンモニア供給タンク16には、図示しない蓋部が設けられ、蓋部を開けてアンモニア吸蔵放出材料15をアンモニア供給タンク16内に入れるように構成されている。アンモニア吸蔵放出材料15として、LiClが使用される。   The ammonia storage / release device 14 includes an ammonia supply tank 16 as a tank storing the ammonia storage / release material 15. The ammonia supply tank 16 is provided with a lid portion (not shown), and is configured to open the lid portion and put the ammonia storage / release material 15 into the ammonia supply tank 16. LiCl is used as the ammonia storage / release material 15.

アンモニア供給タンク16には、アンモニア供給タンク16内に加圧状態のNHを導入するアンモニア導入配管17が連結され、アンモニア導入配管17にはバルブ17aが設けられている。アンモニア導入配管17は、タンク(アンモニア供給タンク16)内に加圧状態のNHの導入及びタンク内のNHの放出の少なくとも一方に使用され、途中にバルブを備えた配管を構成する。この実施形態では、配管は加圧状態のNHの導入にのみ使用される。アンモニア供給タンク16は、アンモニア放出配管としての供給管18を介して排気通路12におけるSCR触媒13の上流側に連結されている。なお、アンモニア供給タンク16における供給管18の接続はアンモニア供給タンク16の上部に配置するなどアンモニア吸蔵放出材料15が供給管18に混入あるいは流入しない構成とすることが好ましい。供給管18の途中にはリザーブタンク19が設けられ、供給管18の排気通路12側の端部にはNHを排気通路12に噴射する噴射ノズル20が設けられている。供給管18のリザーブタンク19より噴射ノズル20側、即ち下流側には第1の調整バルブとしての電磁弁V1が、リザーブタンク19よりアンモニア供給タンク16側には第2の調整バルブとしての電磁弁V2がそれぞれ設けられている。リザーブタンク19は、アンモニア供給タンク16から供給されるNHを一時貯留し、所望の圧力で噴射ノズル20に供給するためのものである。 The ammonia supply tank 16 is connected with an ammonia introduction pipe 17 for introducing pressurized NH 3 into the ammonia supply tank 16, and the ammonia introduction pipe 17 is provided with a valve 17a. The ammonia introduction pipe 17 is used for at least one of introduction of NH 3 in a pressurized state and release of NH 3 in the tank (ammonia supply tank 16), and constitutes a pipe provided with a valve in the middle. In this embodiment, the piping is used only for introducing NH 3 under pressure. The ammonia supply tank 16 is connected to the upstream side of the SCR catalyst 13 in the exhaust passage 12 via a supply pipe 18 as an ammonia discharge pipe. The connection of the supply pipe 18 in the ammonia supply tank 16 is preferably arranged such that the ammonia storage / release material 15 does not enter or flow into the supply pipe 18 such as being arranged at the top of the ammonia supply tank 16. A reserve tank 19 is provided in the middle of the supply pipe 18, and an injection nozzle 20 for injecting NH 3 into the exhaust passage 12 is provided at the end of the supply pipe 18 on the exhaust passage 12 side. An electromagnetic valve V1 as a first adjustment valve is located on the injection nozzle 20 side, that is, downstream from the reserve tank 19 of the supply pipe 18, and an electromagnetic valve as a second adjustment valve is provided on the ammonia supply tank 16 side from the reserve tank 19. V2 is provided. The reserve tank 19 temporarily stores NH 3 supplied from the ammonia supply tank 16 and supplies it to the injection nozzle 20 at a desired pressure.

排気通路12における供給管18との連結部の上流側には、排気ガス中のNOx量を検知するためのNOxセンサ21が配置されている。アンモニア供給タンク16には、アンモニア供給タンク16内の圧力を検知する圧力センサ22と、アンモニア供給タンク16内の温度を検知する温度センサ23とが設けられている。また、リザーブタンク19には、リザーブタンク19内のNHの圧力を検知する圧力センサ24が設けられている。 A NOx sensor 21 for detecting the amount of NOx in the exhaust gas is arranged on the upstream side of the connection portion with the supply pipe 18 in the exhaust passage 12. The ammonia supply tank 16 is provided with a pressure sensor 22 that detects the pressure in the ammonia supply tank 16 and a temperature sensor 23 that detects the temperature in the ammonia supply tank 16. Further, the reserve tank 19 is provided with a pressure sensor 24 for detecting the pressure of NH 3 in the reserve tank 19.

排気通路12へのNHの供給量を制御する制御装置25は、NOxセンサ21、圧力センサ22、温度センサ23及び圧力センサ24と電気的に接続されている。また、制御装置25は、電磁弁V1,V2に制御信号を出力して電磁弁V1,V2の開度を調整する。制御装置25は、NOxセンサ21の検出信号に基づいて排気通路12へのNHの供給量を演算する。制御装置25には、NOxセンサ21の検出信号から求めたNOxの濃度と、排気通路12へ供給すべきNHの供給量との関係を示すマップあるいは関係式がメモリに記憶されており、それに基づいてNHの供給量を演算する。また、制御装置25は、圧力センサ22、温度センサ23及び圧力センサ24の検出信号を入力してそれらの検出信号と、排気通路12へ供給すべきNHの供給量に基づいて、電磁弁V1,V2の開度を制御する。 The control device 25 that controls the supply amount of NH 3 to the exhaust passage 12 is electrically connected to the NOx sensor 21, the pressure sensor 22, the temperature sensor 23, and the pressure sensor 24. The control device 25 outputs a control signal to the electromagnetic valves V1 and V2 to adjust the opening degree of the electromagnetic valves V1 and V2. The control device 25 calculates the supply amount of NH 3 to the exhaust passage 12 based on the detection signal of the NOx sensor 21. In the control device 25, a map or a relational expression indicating the relationship between the NOx concentration obtained from the detection signal of the NOx sensor 21 and the supply amount of NH 3 to be supplied to the exhaust passage 12 is stored in the memory. Based on this, the supply amount of NH 3 is calculated. Further, the control device 25 inputs detection signals of the pressure sensor 22, the temperature sensor 23, and the pressure sensor 24, and based on the detection signals and the supply amount of NH 3 to be supplied to the exhaust passage 12, the electromagnetic valve V1. , V2 is controlled.

リザーブタンク19、圧力センサ24、電磁弁V1,V2及び制御装置25により、供給管18から排気通路12へ放出されるNHの量を調整する調整手段が構成されている。 The reserve tank 19, the pressure sensor 24, the electromagnetic valves V 1 and V 2, and the control device 25 constitute adjusting means for adjusting the amount of NH 3 released from the supply pipe 18 to the exhaust passage 12.

次にアンモニア吸蔵放出材料としてのLiClについて説明する。
LiClは、分子量が42.4でCaClの分子量111に比べて半分以下(約38%)である。また、LiClは、NHの圧力を真空から0.6MPaまで上昇させた場合に吸蔵したNHを数十度以下で全て放出することが可能である。しかし、CaClは、NHの圧力を0.1MPaから0.6MPaまで上昇させた場合にCaCl(NHの構造でNHを吸蔵するが、圧力を0.6MPaから0.1MPaまで低下させてNHを放出後はCaCl(NHの構造となり、吸蔵したNHの一部は吸蔵されたまま残る。
Next, LiCl as an ammonia storage / release material will be described.
LiCl has a molecular weight of less than half compared to CaCl 2 of molecular weight 111 42.4 (38%). Further, LiCl can release all of the occluded NH 3 at several tens of degrees or less when the pressure of NH 3 is increased from vacuum to 0.6 MPa. However, CaCl 2 is occludes NH 3 in the structure of CaCl 2 (NH 3) 8 when the pressure of the NH 3 increased from 0.1MPa to 0.6MPa, 0.1MPa pressure from 0.6MPa After releasing NH 3 and releasing NH 3 , the structure becomes CaCl 2 (NH 3 ) 2 , and a part of the occluded NH 3 remains occluded.

以下、実施例により詳細に説明する。
LiClのNHの吸蔵量を図2に示す測定装置を用いて測定した。
測定装置30は、リアクタ31とバッファ32とを備え、リアクタ31とバッファ32とは配管33を介して連結され、配管33の途中にはバルブ34が設けられている。バッファ32にはバルブ35を備えた配管36が連結されている。バッファ32には圧力計37が設けられ、バッファ32内の圧力を検出可能になっている。リアクタ31には図示しない蓋が設けられ、蓋を開けた状態でリアクタ31内に試料38を入れることが可能になっている。バッファ32の体積は約7.2cm、リアクタ31の体積は30.2cmである。また、試料量は1〜2mmolで行った。
Hereinafter, the embodiment will be described in detail.
The amount of occlusion of NH 3 in LiCl was measured using a measuring apparatus shown in FIG.
The measuring device 30 includes a reactor 31 and a buffer 32, and the reactor 31 and the buffer 32 are connected via a pipe 33, and a valve 34 is provided in the middle of the pipe 33. A pipe 36 having a valve 35 is connected to the buffer 32. A pressure gauge 37 is provided in the buffer 32 so that the pressure in the buffer 32 can be detected. The reactor 31 is provided with a lid (not shown) so that the sample 38 can be put into the reactor 31 with the lid opened. The volume of the buffer 32 is about 7.2 cm 3 and the volume of the reactor 31 is 30.2 cm 3 . The sample amount was 1 to 2 mmol.

試験は、試料をリアクタ31内に入れた後、バルブ34を閉じた状態でバルブ35を開いて、バッファ32内にNHを所定量貯める。その後、バルブ35を閉じて、バルブ34を開くことにより、リアクタ31内の試料38とNHが接触してNHを吸蔵可能な状態になる。バッファ32内に貯めたNHを0.3〜0.8MPa(7.8〜20.8mmol)とし、バルブ34を開けた後、各圧力における保持時間を2〜30分の間で、変化が大きい場合は2分、変化が小さい場合は30分として、測定を行い、ブランクとの圧力差からNHの吸蔵量を算出した。この実験を繰り返してPCT測定を行い、PCT曲線(圧力−組成等温曲線)を求めた。また、圧力が0.1MPaと0.6MPaのNHの吸蔵量から可逆的なNHの吸蔵量を求めた。比較のためCaClについても同様の条件で測定を行った。 In the test, after putting the sample into the reactor 31, the valve 35 is opened with the valve 34 closed, and a predetermined amount of NH 3 is stored in the buffer 32. Thereafter, the valve 35 is closed and the valve 34 is opened, so that the sample 38 in the reactor 31 and NH 3 come into contact with each other, and NH 3 can be occluded. After NH 3 stored in the buffer 32 is 0.3 to 0.8 MPa (7.8 to 20.8 mmol) and the valve 34 is opened, the holding time at each pressure is changed between 2 and 30 minutes. The measurement was performed for 2 minutes when the change was large, and 30 minutes when the change was small, and the amount of storage of NH 3 was calculated from the pressure difference from the blank. This experiment was repeated to perform PCT measurement, and a PCT curve (pressure-composition isothermal curve) was obtained. Further, the pressure was determined storage amount of reversible NH 3 from storage amount of NH 3 of 0.1MPa and 0.6 MPa. For comparison, CaCl 2 was also measured under the same conditions.

結果を図2〜図6に示す。図2〜図6において、横軸は試料がNHを吸蔵した状態における試料1molに対するNHの量をmolで表している。縦軸は試料が存在する雰囲気、即ちリアクタ31内のNHの圧力を表している。 The results are shown in FIGS. In FIGS. 2-6, the horizontal axis represents the amount of NH 3 to the sample 1mol in a state in which the sample is occludes NH 3 in mol. The vertical axis represents the atmosphere in which the sample exists, that is, the pressure of NH 3 in the reactor 31.

図3に示す0℃におけるLiClのPCT曲線から、0℃では、NHの圧力が低い状態から吸蔵が行われ、NHの圧力が0.063MPaで、LiCl1molに対してNHが2.5mol程度まで吸蔵され、NHの圧力が約0.08MPaで、LiCl1molに対してNHが3.5mol程度まで吸蔵される。そして、NHの圧力が0.13MPaで、LiCl1molに対してNHが3.8mol程度まで吸蔵され、最終的にNHの圧力が0.42MPaで、LiCl1molに対してNHが4.0mol程度まで吸蔵される。 From the PCT curve of LiCl at 0 ℃ shown in FIG. 3, at 0 ℃, occlusion is carried out a pressure of NH 3 from a low state, at a pressure of NH 3 is 0.063MPa, the NH 3 with respect LiCl1mol 2.5 mol The pressure of NH 3 is about 0.08 MPa, and NH 3 is stored to about 3.5 mol with respect to 1 mol of LiCl. Then, the pressure of NH 3 is 0.13 MPa, and NH 3 is occluded to about 3.8 mol with respect to 1 mol of LiCl. Finally, the pressure of NH 3 is 0.42 MPa, and NH 3 is 4.0 mol with respect to LiCl 1 mol. Occluded to the extent.

図4に示す20℃におけるLiClのPCT曲線から、20℃では、NHの圧力が低い状態、0.02MPaからNHの吸蔵が行われ、NHの圧力が約0.18MPaで、LiCl1molに対してNHが3.1mol程度まで吸蔵される。そして、NHの圧力が約0.18MPaから0.27MPaまで上昇する間に、LiCl1molに対してNHが4.5mol程度まで吸蔵される。次にNHの圧力が0.6MPaまで上昇する間に、LiCl1molに対してNHが4.6mol程度まで吸蔵される。 From the LiCl PCT curve at 20 ° C. shown in FIG. 4, at 20 ° C., NH 3 pressure is low, and from 0.02 MPa to NH 3 is occluded, NH 3 pressure is about 0.18 MPa, and LiCl 1 mol. On the other hand, NH 3 is occluded up to about 3.1 mol. And while the pressure of NH 3 rises from about 0.18 MPa to 0.27 MPa, NH 3 is occluded to about 4.5 mol with respect to 1 mol of LiCl. Next, while the pressure of NH 3 rises to 0.6 MPa, NH 3 is occluded to about 4.6 mol with respect to 1 mol of LiCl.

図5に示す40℃におけるLiClのPCT曲線から、40℃では、NHの圧力が0.32MPaまではNHの吸蔵が殆ど行われず、NHの圧力が約0.32MPaより大きくなるとNHの吸蔵が開始され、NHの圧力が0.4MPaで、LiCl1molに対してNHが2mol吸蔵される。そして、NHの圧力が0.4MPaから0.48MPaまで上昇する間に、LiCl1molに対してNHが3.8mol程度まで吸蔵され、NHの圧力が0.48MPaから0.8MPaまで上昇する間に、LiCl1molに対してNHが4.0mol程度まで吸蔵される。 From the PCT curve of LiCl at 40 ° C. shown in FIG. 5, at 40 ° C., NH 3 was hardly occluded until the NH 3 pressure was 0.32 MPa, and when the NH 3 pressure was higher than about 0.32 MPa, NH 3 Is started, NH 3 pressure is 0.4 MPa, and 2 mol of NH 3 is occluded with respect to 1 mol of LiCl. Then, while the pressure of NH 3 is increased from 0.4MPa to 0.48 MPa, NH 3 relative LiCl1mol is occluded to about 3.8 mol, pressure of NH 3 is increased from 0.48 MPa to 0.8MPa In the meantime, NH 3 is occluded to about 4.0 mol with respect to 1 mol of LiCl.

図6に示す50℃におけるLiClのPCT曲線から、50℃では、NHの圧力が0MPaから0.64MPaまで上昇する間に、LiCl1molに対してNHが0.2mol吸蔵される。そして、NHの圧力が0.64MPaに達した後、NHの圧力が0.64MPaの状態で、LiCl1molに対してNHが3.2molまで吸蔵される。その後、NHの圧力が0.7MPaまで上昇した時点でLiCl1molに対してNHが4.2molまで吸蔵され、NHの圧力が0.8MPaまで上昇した時点でLiCl1molに対してNHが約4.5molまで吸蔵される。 From the PCT curve of LiCl at 50 ° C. shown in FIG. 6, at 50 ° C., 0.2 mol of NH 3 is occluded with respect to 1 mol of LiCl while the pressure of NH 3 increases from 0 MPa to 0.64 MPa. Then, after the pressure of the NH 3 reaches 0.64 MPa, while the pressure of NH 3 is 0.64 MPa, NH 3 relative LiCl1mol is occluded to 3.2 mol. Thereafter, when NH 3 pressure rises to 0.7 MPa, NH 3 is occluded to 4.2 mol with respect to LiCl 1 mol, and when NH 3 pressure rises to 0.8 MPa, NH 3 becomes about 3 mol with respect to LiCl 1 mol. Occludes up to 4.5 mol.

実施例の結果から、LiClの場合、LiCl1molに対して吸蔵されるNHの最大量は温度によって異なり、0℃及び40℃では4.0mol程度まで吸蔵され、20℃では4.6mol程度まで吸蔵され、50℃では4.2molまで吸蔵されることが分かった。LiClの場合、NHの最大吸蔵状態の構造は、20℃ではLiCl(NH4.6となり、0℃及び40℃ではLiCl(NHとなる。しかし、CaClと異なり、吸蔵したNHを全て放出可能なため、放出後の構造は温度に関係なくLiClとなる。 From the results of Examples, in the case of LiCl, the maximum amount of NH 3 stored with respect to 1 mol of LiCl varies depending on the temperature, and is stored up to about 4.0 mol at 0 ° C. and 40 ° C., and up to about 4.6 mol at 20 ° C. It was found that up to 4.2 mol was occluded at 50 ° C. For LiCl, the structure of the maximum storage state of NH 3 is at 20 ℃ LiCl (NH 3) 4.6, and becomes 0 at ° C. and 40 ℃ LiCl (NH 3) 4 . However, unlike CaCl 2 , all the occluded NH 3 can be released, so the structure after release becomes LiCl regardless of the temperature.

LiCl及びCaClについてNHを吸蔵した吸蔵体の最大NH放出量を表1に示す。 Table 1 shows the maximum amount of released NH 3 of the occlusion body that occludes NH 3 with respect to LiCl and CaCl 2 .

但し、吸蔵体の密度は、いずれも1cc=1g(1g=0,909cc)とした。 However, the density of each occlusion body was 1 cc = 1 g (1 g = 0,909 cc).

表1からLiClでは、1mol当たりNHを4.6mol吸蔵した場合、吸蔵体の体積当たりの放出量は、CaClに比べて、0.71/0.45=1.58≒1.6倍となり、吸蔵体の重量当たりの放出量も、0.65/0.41=1.59≒1.6倍となる。また、1mol当たりNHを4mol吸蔵した場合、吸蔵体の体積当たりの放出量は、CaClに比べて、0.68/45=1.51≒1.5倍となり、吸蔵体の重量当たりの放出量も、0.62/0.41=1.51≒1.5倍となる。 From Table 1, when LiCl occludes 4.6 mol of NH 3 per mol, the released amount per volume of the occlusion body is 0.71 / 0.45 = 1.58≈1.6 times that of CaCl 2. Thus, the release amount per weight of the occlusion body is also 0.65 / 0.41 = 1.59≈1.6 times. Further, when 4 mol of NH 3 is occluded per mol, the released amount per occluded volume of the occlusion body is 0.68 / 45 = 1.51≈1.5 times that of CaCl 2 , and the occlusion body weight per occlusion. The discharge amount is also 0.62 / 0.41 = 1.51≈1.5 times.

また、吸蔵体を基準として比較する代わりに、金属塩化物1g当たりの放出可能な吸蔵NH[g]及び金属塩化物1cc当たりの放出可能な吸蔵NH[g]で比較すると、次のようになる。 Also, instead of comparing the occlusion body as a reference, when compared with releasable occluding NH 3 per 1g metal chloride [g] and releasable occluding NH 3 per metal chloride 1 cc [g], the following become.

金属塩化物の密度は、LiClで2.1g/cc、CaClで2.15g/ccである。この値を用いてLiCl及びCaClについて1mol当たりの放出可能な吸蔵NH[g]、1g当たりの放出可能な吸蔵NH[g]及び1cc当たりの吸蔵NH[g]を計算すると次のようになる。 The density of the metal chloride is 2.1 g / cc for LiCl and 2.15 g / cc for CaCl 2 . For LiCl and CaCl 2 using this value releasable occluding NH 3 per 1 mol [g], releasable occluding NH 3 per 1 g [g] and storage of NH 3 per 1 cc [g] is calculated for the following It becomes like this.

CaCl(8mol吸蔵して6mol放出)の場合の放出可能な吸蔵NH[g]は、17.03×6=102.2g/molであり、1g当たりの放出可能な吸蔵NH[g]は、102.2/110.5=0.92g/gとなり、1cc当たりの放出可能な吸蔵NH[g]は、0.92×2.15=1.98g/ccとなる。 The releasable storage NH 3 [g] in the case of CaCl 2 (8 mol storage and 6 mol release) is 17.03 × 6 = 102.2 g / mol, and the releasable storage NH 3 [g] per 1 g. Is 102.2 / 110.5 = 0.92 g / g, and the releasable occluded NH 3 [g] per cc is 0.92 × 2.15 = 1.98 g / cc.

LiClの場合、1mol当たり4.6mol吸蔵した場合の放出可能な吸蔵NH[g]は、17.03×4.6=78.3g/molである。したがって、1g当たりの放出可能な吸蔵NH[g]は、78.3/42.4=1.85g/gとなり、CaClに比べて、1.85/0.92=2.01≒2.0倍となる。また、1cc当たりの放出可能な吸蔵NH[g]は、1.85×2.1=3.89g/ccとなり、CaClに比べて、3.89/1.98=1.96≒2.0倍となる。 In the case of LiCl, the releasable occluded NH 3 [g] when 4.6 mol is occluded per mol is 17.03 × 4.6 = 78.3 g / mol. Thus, releasable absorbing NH 3 [g] per 1g is, 78.3 / 42.4 = 1.85g / g, and the compared to CaCl 2, 1.85 / 0.92 = 2.01 ≒ 2 .0 times. Further, releasable absorbing NH 3 [g] is per 1cc, 1.85 × 2.1 = 3.89g / cc , and the compared to CaCl 2, 3.89 / 1.98 = 1.96 ≒ 2 .0 times.

また、1mol当たり4mol吸蔵した場合の放出可能な吸蔵NH[g]は、17.03×4=68.1g/molである。したがって、1g当たりの放出可能な吸蔵NH[g]は、68.1/42.4=1.61g/gとなり、CaClに比べて、1.61/0.92=1.75≒1.8倍となる。また、1cc当たりの放出可能な吸蔵NH[g]は、1.61×2.1=3.38g/ccとなり、CaClに比べて、3.38/1.98=1.71≒1.7倍となる。 Further, the releasable occluded NH 3 [g] when 4 mol is occluded per mol is 17.03 × 4 = 68.1 g / mol. Therefore, the releasable occluded NH 3 [g] per 1 g is 68.1 / 42.4 = 1.61 g / g, which is 1.61 / 0.92 = 1.75≈1 compared to CaCl 2. .8 times. Moreover, the releasable occluded NH 3 [g] per 1 cc is 1.61 × 2.1 = 3.38 g / cc, which is 3.38 / 1.98 = 1.71≈1 compared to CaCl 2. .7 times.

次に前記のように構成されたアンモニア吸蔵放出装置14及び排気ガス浄化システム10の作用を説明する。アンモニア供給タンク16にNHを貯蔵する場合は、バルブ17a及び電磁弁V1を閉じた状態でアンモニア導入配管17に、例えば、アンモニアボンベを接続する。そして、バルブ17aを開き、所定量のNHをアンモニア供給タンク16に導入する。次にバルブ17aを閉じて、アンモニア導入配管17とアンモニアボンベとの接続を解除する。この状態で排気ガス浄化システム10が作動可能な状態になる。 Next, the operation of the ammonia storage / release device 14 and the exhaust gas purification system 10 configured as described above will be described. When storing NH 3 in the ammonia supply tank 16, for example, an ammonia cylinder is connected to the ammonia introduction pipe 17 with the valve 17a and the electromagnetic valve V1 closed. Then, the valve 17 a is opened, and a predetermined amount of NH 3 is introduced into the ammonia supply tank 16. Next, the valve 17a is closed, and the connection between the ammonia introduction pipe 17 and the ammonia cylinder is released. In this state, the exhaust gas purification system 10 becomes operable.

制御装置25は、排気ガス浄化システム10が作動可能な状態になると、電磁弁V2を開いてリザーブタンク19内の圧力が予め設定された上限圧力になるまでNHを供給し、予め設定された圧力になると電磁弁V2を閉じる。そして、ディーゼルエンジン11が駆動されると、制御装置25は、NOxセンサ21の検出信号を入力して、NOxセンサ21の検出信号に基づいて排気通路12へのNHの供給量を演算する。また、制御装置25は、リザーブタンク19の圧力センサ24の検出信号を入力して、その値と排気通路12へのNHの供給量の値とから、電磁弁V1の開度を演算して、その開度となるように、電磁弁V1に駆動指令信号を出力する。その結果、電磁弁V1が適切な開度で開き、噴射ノズル20から排気通路12へ必要な量のNHが供給されて、排気ガスがSCR触媒13を通過する間に、SCR触媒13により排気ガス中のNOxが還元処理される。即ち、ディーゼルエンジン11の負荷に応じて適切な量のNHが排気通路12に放出されてNOxの還元処理が効率良く行われる。 When the exhaust gas purification system 10 is in an operable state, the control device 25 opens the solenoid valve V2 and supplies NH 3 until the pressure in the reserve tank 19 reaches a preset upper limit pressure. When the pressure is reached, the solenoid valve V2 is closed. When the diesel engine 11 is driven, the control device 25 inputs the detection signal of the NOx sensor 21 and calculates the supply amount of NH 3 to the exhaust passage 12 based on the detection signal of the NOx sensor 21. Further, the control device 25 inputs the detection signal of the pressure sensor 24 of the reserve tank 19 and calculates the opening degree of the electromagnetic valve V1 from the value and the value of the supply amount of NH 3 to the exhaust passage 12. The drive command signal is output to the electromagnetic valve V1 so that the opening degree is obtained. As a result, the electromagnetic valve V1 opens at an appropriate opening, and a necessary amount of NH 3 is supplied from the injection nozzle 20 to the exhaust passage 12, and exhaust gas is exhausted by the SCR catalyst 13 while the exhaust gas passes through the SCR catalyst 13. NOx in the gas is reduced. That is, an appropriate amount of NH 3 is released into the exhaust passage 12 in accordance with the load of the diesel engine 11, and NOx reduction processing is performed efficiently.

制御装置25は、圧力センサ24の検出信号を入力し、リザーブタンク19内の圧力が所定の下限圧力まで低下すると、電磁弁V2を開いてリザーブタンク19内の圧力が予め設定された上限圧力になるまでNHを供給する。 The control device 25 inputs the detection signal of the pressure sensor 24, and when the pressure in the reserve tank 19 decreases to a predetermined lower limit pressure, the control device 25 opens the electromagnetic valve V2 so that the pressure in the reserve tank 19 becomes a preset upper limit pressure. NH 3 is supplied until

また、制御装置25は、圧力センサ22及び温度センサ23の検出信号を入力し、それらの信号に基づいてアンモニア供給タンク16内の残存NH量が予め設定された量以下になると、ディーゼルエンジン11を停止して、アンモニア供給タンク16にNHを導入する。 Further, the control device 25 inputs detection signals of the pressure sensor 22 and the temperature sensor 23, and when the remaining NH 3 amount in the ammonia supply tank 16 becomes equal to or less than a preset amount based on these signals, the diesel engine 11 And NH 3 is introduced into the ammonia supply tank 16.

アンモニア吸蔵放出材料15としてLiClが使用されている。そして、LiClの1mol当たりのNHの吸蔵量は、前述したように、0℃かつNH圧力0.42MPaで4mol、20℃かつNH圧力0.6MPaで4.6mol、40℃かつNH圧力0.6MPaで4mol、50℃かつNH圧力0.6MPaで4.5molである。したがって、20℃においてNH圧力0.6MPaでNHの充填を行えば、吸蔵体の体積当たりの放出量は、CaClに比べて1.6倍となり、吸蔵体の重量当たりの放出量も、1.6倍となる。また、1mol当たりNHを4mol吸蔵した場合、吸蔵体の体積当たりの放出量は、CaClに比べて、1.5倍となり、吸蔵体の重量当たりの放出量も、1.5倍となる。即ち、アンモニア吸蔵放出材料15としてCaClを使用した場合に比べて重量当たり及び体積当たりのNHの吸蔵量及び放出量を大幅に増大させることができる。 LiCl is used as the ammonia storage / release material 15. As described above, the storage amount of NH 3 per 1 mol of LiCl is 4 mol at 0 ° C. and an NH 3 pressure of 0.42 MPa, 4.6 mol at 20 ° C. and an NH 3 pressure of 0.6 MPa, 40 ° C. and NH 3 The pressure is 4 mol at 0.6 MPa and 4.5 mol at 50 ° C. and the NH 3 pressure 0.6 MPa. Therefore, if NH 3 is filled at 20 ° C. with an NH 3 pressure of 0.6 MPa, the release amount per volume of the occlusion body is 1.6 times that of CaCl 2 , and the release amount per weight of the occlusion body is also increased. 1.6 times. Further, when 4 mol of NH 3 is occluded per mol, the released amount per volume of the occluded body is 1.5 times that of CaCl 2 and the released amount per weight of the occluded body is also 1.5 times. . That is, as compared with the case where CaCl 2 is used as the ammonia storage / release material 15, the storage amount and release amount of NH 3 per weight and per volume can be greatly increased.

この実施形態によれば、以下に示す効果を得ることができる。
(1)アンモニア吸蔵放出装置14は、アンモニア供給タンク16と、アンモニア供給タンク16内に貯蔵されたアンモニア吸蔵放出材料15としてのLiClと、アンモニア導入配管17と、アンモニア放出配管としての供給管18と、供給管18から放出されるNHの量を調整する調整手段とを備えている。アンモニア導入配管17は、アンモニア供給タンク16内に加圧状態のNHの導入及びアンモニア供給タンク16内のNHの放出に使用され、途中にバルブ17aを備えている。したがって、室温あるいは数十度以下の温度においてNHの吸蔵及び放出を圧力調整により行うことができ、1g当たりのNHの吸蔵量がCaClより多く、同量のNHを吸蔵した状態で体格を小さくできる。
According to this embodiment, the following effects can be obtained.
(1) The ammonia storage / release device 14 includes an ammonia supply tank 16, LiCl as the ammonia storage / release material 15 stored in the ammonia supply tank 16, an ammonia introduction pipe 17, and a supply pipe 18 as an ammonia release pipe. And adjusting means for adjusting the amount of NH 3 released from the supply pipe 18. The ammonia introduction pipe 17 is used for introducing NH 3 in a pressurized state into the ammonia supply tank 16 and discharging NH 3 in the ammonia supply tank 16, and is provided with a valve 17 a in the middle. Therefore, it is possible to perform the pressure regulation occluding and releasing NH 3 at room temperature or several tens of degrees below the temperature in the state storage amount of the NH 3 per 1g is more than CaCl 2, occluding and NH 3 in the same amount The physique can be made smaller.

(2)NHの放出量を調整する調整手段は、供給管18の途中に設けられたリザーブタンク19と、リザーブタンク19内の圧力を検知する圧力センサ24とを備えている。調整手段は、供給管18の途中に設けられ、リザーブタンク19より下流側に設けられた第1の調整バルブ(電磁弁V1)と、リザーブタンク19よりアンモニア供給タンク16側に設けられた第2の調整バルブ(電磁弁V2)と、電磁弁V1,V2の開度を制御する制御手段(制御装置25)とを備えている。そして、アンモニア吸蔵放出材料15が貯蔵されたアンモニア供給タンク16からNHを直接、目的とする箇所に目的の圧力で放出(供給)するのではなく、リザーブタンク19に貯留した後、目的とする箇所に目的の圧力で放出(供給)する。したがって、放出するNHの圧力調整を精度良く行うことが容易になる。 (2) The adjusting means for adjusting the release amount of NH 3 includes a reserve tank 19 provided in the middle of the supply pipe 18 and a pressure sensor 24 for detecting the pressure in the reserve tank 19. The adjusting means is provided in the middle of the supply pipe 18 and is provided with a first adjusting valve (solenoid valve V1) provided on the downstream side from the reserve tank 19 and a second adjustment valve provided on the ammonia supply tank 16 side from the reserve tank 19. Adjustment valve (solenoid valve V2) and control means (control device 25) for controlling the opening degree of the solenoid valves V1, V2. Then, NH 3 is not directly discharged (supplied) from the ammonia supply tank 16 in which the ammonia storage / release material 15 is stored to the target location at the target pressure, but is stored in the reserve tank 19 and then the target. Discharge (supply) at the desired pressure. Therefore, it becomes easy to accurately adjust the pressure of NH 3 to be released.

(3)排気ガス浄化システム10は、内燃機関(ディーゼルエンジン11)から排出された排気ガスが流通する排気通路12と、排気通路12に設けられた選択還元触媒(SCR触媒13)と、NHを吸蔵するとともに排気通路12に管路を介してNHを放出するアンモニア吸蔵放出装置14と、制御装置25とを備えている。アンモニア吸蔵放出装置14は、アンモニア供給タンク16内に貯蔵されたアンモニア吸蔵放出材料15と、アンモニア供給タンク16内に加圧状態のNHの導入及びアンモニア供給タンク16内のNHの放出の少なくとも一方に使用され、途中にバルブを備えた配管と、アンモニア供給タンク16内のNHを放出するアンモニア放出配管(供給管18)と、アンモニア放出配管から放出されるNHの量を調整する調整手段とを備えている。アンモニア吸蔵放出材料15はLiClである。したがって、排気通路12に設けられたSCR触媒13に供給するNHの量、即ちアンモニア吸蔵放出装置14から排気通路12へのNHの放出量が、制御装置25により制御されるため、排気通路12内の排気ガスがSCR触媒13を通過する際に、NOxが適切に還元処理される。 (3) The exhaust gas purification system 10 includes an exhaust passage 12 through which exhaust gas discharged from the internal combustion engine (diesel engine 11) flows, a selective reduction catalyst (SCR catalyst 13) provided in the exhaust passage 12, NH 3 And an ammonia storage / release device 14 that stores NH 3 in the exhaust passage 12 via a pipe line, and a control device 25. The ammonia storage / release device 14 includes at least an ammonia storage / release material 15 stored in the ammonia supply tank 16, introduction of NH 3 in a pressurized state into the ammonia supply tank 16, and release of NH 3 in the ammonia supply tank 16. Adjustment that adjusts the amount of NH 3 released from the ammonia discharge pipe (supply pipe 18) that is used on one side and that is provided with a valve in the middle, ammonia discharge pipe (supply pipe 18) that discharges NH 3 in the ammonia supply tank 16 Means. The ammonia storage / release material 15 is LiCl. Therefore, the amount of NH 3 supplied to the SCR catalyst 13 provided in the exhaust passage 12, that is, the amount of released NH 3 of ammonia absorbing and releasing device 14 to the exhaust passage 12 is controlled by the control unit 25, an exhaust passage When the exhaust gas in 12 passes through the SCR catalyst 13, NOx is appropriately reduced.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ アンモニア吸蔵放出装置14は、リザーブタンク19及び電磁弁V2を備えず、電磁弁V1の開閉制御でアンモニア供給タンク16内のNHを排気通路12へ供給するようにしてもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The ammonia storage / release device 14 may not include the reserve tank 19 and the electromagnetic valve V2, and may supply NH 3 in the ammonia supply tank 16 to the exhaust passage 12 by opening / closing control of the electromagnetic valve V1.

○ 排気通路12へのNHの供給量を制御する場合、電磁弁V1,V2の開度を制御する代わりに、電磁弁V1,V2として開度調整可能な弁ではなく、オン・オフ弁を使用し、開時間の調整で供給量を制御してもよい。 ○ When controlling the supply amount of NH 3 to the exhaust passage 12, instead of controlling the opening degree of the solenoid valves V1 and V2, the on / off valve is not an adjustable valve as the solenoid valves V1 and V2. It may be used and the supply amount may be controlled by adjusting the opening time.

○ 排気通路12へのNHの供給量を制御する構成として、排気ガス中のNOxの量(濃度)をNOxセンサ21で検出する代わりに、ディーゼルエンジン11の負荷と、必要なNHの供給量との関係をマップ又は関係式として制御装置のメモリに記憶させておき、負荷によってNHの供給量を調整してもよい。ディーゼルエンジン11の負荷に相当するものとして、例えばアクセルの操作量を使用してもよい。 As a configuration for controlling the supply amount of NH 3 to the exhaust passage 12, instead of detecting the NOx amount (concentration) in the exhaust gas by the NOx sensor 21, the load of the diesel engine 11 and the necessary supply of NH 3 The relationship with the amount may be stored in the memory of the control device as a map or a relational expression, and the supply amount of NH 3 may be adjusted by the load. For example, an operation amount of an accelerator may be used as a load corresponding to the load of the diesel engine 11.

○ 排気ガス浄化システム10は、ディーゼルエンジン11に限らず、排気ガス中に除去すべきNOxが存在する内燃機関、例えば、ガソリンエンジンの希薄燃焼エンジンの排気ガスの処理に適用してもよい。   The exhaust gas purification system 10 may be applied not only to the diesel engine 11 but also to exhaust gas treatment of an internal combustion engine in which NOx to be removed exists, for example, a lean combustion engine of a gasoline engine.

○ 排気ガス浄化システム10は、除去すべき量のNOxが含まれている排気ガスの浄化に適用され、車両や船舶等の移動体に搭載されて使用される内燃機関に限らず、工場などで使用されるボイラー等の排気ガスの浄化に使用してもよい。   ○ The exhaust gas purification system 10 is applied to the purification of exhaust gas containing an amount of NOx to be removed, and is not limited to an internal combustion engine used in a moving body such as a vehicle or a ship, but in a factory or the like. You may use for purification | cleaning of exhaust gas, such as a boiler used.

○ アンモニア吸蔵放出材料15が吸蔵していたNHの放出が進み、再びアンモニア吸蔵放出材料15にNHを吸蔵させる必要が有る場合、アンモニア供給タンク16内のアンモニア吸蔵放出材料15を取り出して、既にNHが吸蔵されたアンモニア吸蔵放出材料15と交換する構成としてもよい。この場合、アンモニア供給タンク16の大きさによっては、NHを吸蔵させるより短時間でアンモニア吸蔵放出装置14の使用が可能になる。取り出されたアンモニア吸蔵放出材料15は、別の場所でNHの吸蔵が行われた後、再使用される。 ○ emission of NH 3 for ammonia absorbing and releasing material 15 has been occluded progresses, if there is a need to absorb NH 3 ammonia absorbing and releasing material 15 again, remove the ammonia absorbing and releasing material 15 in the ammonia supply tank 16, already NH 3 may be configured to exchange with the ammonia absorbing and releasing material 15 which is occluded. In this case, depending on the size of the ammonia supply tank 16, the ammonia storage / release device 14 can be used in a shorter time than storing NH 3 . The extracted ammonia occlusion / release material 15 is reused after NH 3 is occluded in another place.

○ アンモニア供給タンク16内の材料を交換する代わりに、アンモニア供給タンク16自体を交換可能としてもよい。この場合、アンモニア供給タンク16にはアンモニア導入専用のアンモニア導入配管17を設けずに、加圧状態のNHの導入及びアンモニア供給タンク16内のNHの放出の両方に使用され、途中にバルブを備えた配管を設けてもよい。そして、この配管が図1における供給管18の電磁弁V2とリザーブタンク19との中間部までを構成する構成にする。そして、この配管をパイプ継ぎ手を介してリザーブタンク19から突出する供給管18に接続してもよい。この実施形態では、タンク(アンモニア供給タンク16)内に加圧状態のNHの導入及びタンク内のNHの放出の両方に使用され、途中にバルブを備えた配管がタンク内のNHを放出するアンモニア放出配管を兼用する構成になる。そして、予めアンモニア供給タンク16内のアンモニア吸蔵放出材料15に所定量のNHが吸蔵された状態で、交換すべきアンモニア供給タンク16と交換される。なお、アンモニア供給タンク16自体を交換可能とする構成においても、NHの導入専用のアンモニア導入配管17を設けてもよい。 O Instead of exchanging the material in the ammonia supply tank 16, the ammonia supply tank 16 itself may be exchangeable. In this case, the ammonia supply tank 16 is not provided with the ammonia introduction pipe 17 dedicated to ammonia introduction, but is used for both the introduction of NH 3 in a pressurized state and the release of NH 3 in the ammonia supply tank 16. You may provide piping provided with. And this piping is set as the structure which comprises to the intermediate part of the solenoid valve V2 and the reserve tank 19 of the supply pipe | tube 18 in FIG. Then, this pipe may be connected to a supply pipe 18 protruding from the reserve tank 19 through a pipe joint. In this embodiment, the tank (ammonia supply tank 16) is used for both the introduction of NH 3 in a pressurized state and the release of NH 3 in the tank, and a pipe provided with a valve on the way removes the NH 3 in the tank. It becomes the structure which serves as the ammonia discharge piping to discharge | release. Then, the ammonia storage / release material 15 in the ammonia supply tank 16 is replaced with the ammonia supply tank 16 to be replaced in a state where a predetermined amount of NH 3 is stored in advance. Even in a configuration in which the ammonia supply tank 16 itself can be replaced, an ammonia introduction pipe 17 dedicated to the introduction of NH 3 may be provided.

○ アンモニア供給タンク16にNHを貯蔵する場合、アンモニア導入専用のアンモニア導入配管17を介さず、供給管18を利用してNHを貯蔵するようにしてもよい。その場合、電磁弁V2とアンモニア供給タンク16との間にバルブ17aを配置し、電磁弁V2とバルブ17aとの間において供給管18を分岐可能とする。もしくは、同位置にアンモニアボンベを接続可能な接続口を設け、NHをアンモニア供給タンク16に導入可能となるように電磁弁V2とバルブ17aとを制御する。また、この場合、アンモニア供給タンク16からリザーブタンク19へNHを供給する時には電磁弁V2とバルブ17aと同じ挙動となるように制御する。 When the storage of NH 3 in the ○ ammonia supply tank 16, not through the ammonia introduction dedicated ammonia inlet pipe 17, may be store NH 3 by using the supply tube 18. In this case, a valve 17a is disposed between the electromagnetic valve V2 and the ammonia supply tank 16, and the supply pipe 18 can be branched between the electromagnetic valve V2 and the valve 17a. Alternatively, a connection port to which an ammonia cylinder can be connected is provided at the same position, and the solenoid valve V2 and the valve 17a are controlled so that NH 3 can be introduced into the ammonia supply tank 16. In this case, when NH 3 is supplied from the ammonia supply tank 16 to the reserve tank 19, control is performed so that the electromagnetic valve V2 and the valve 17a have the same behavior.

○ アンモニア供給タンク16を加熱可能としてもよい。アンモニア吸蔵放出材料15に吸蔵されているNHの量が少なくなった場合、加熱することにより放出し易くなり、吸蔵されたNHを無駄なく使用ことができる。但し、加熱温度は、従来のアンモニア吸蔵放出材料と異なり数十度以下とすることにより、加熱に電気ヒーターを使用しても消費電力は少なくなる。 ○ The ammonia supply tank 16 may be heated. When the amount of NH 3 occluded in the ammonia occlusion / release material 15 decreases, it becomes easier to release by heating, and the occluded NH 3 can be used without waste. However, when the heating temperature is set to several tens of degrees or less unlike the conventional ammonia occlusion / release material, power consumption is reduced even if an electric heater is used for heating.

○ アンモニア吸蔵放出材料15にNHを吸蔵させる際の圧力の上限は0.6MPaに限らず、タンクの耐圧によって変更される。ただし、NHは0.9MPa以上では液化(液体アンモニア)する。NHを液体アンモニアにて貯蔵することに対して、本発明のアンモニア吸蔵放出材料の優位点は、液体アンモニアよりも低い圧力で、高い吸蔵量を得ることと、万一のタンク損傷時には、液体アンモニアは一気にアンモニアが蒸散するが、本発明の吸蔵放出材料を用いた場合は、蒸散がゆっくりで比較的安全であるといえることが挙げられる。 ○ The upper limit of pressure when the ammonia absorbing and releasing material 15 to absorb NH 3 is not limited to 0.6 MPa, is modified by the breakdown voltage of the tank. However, NH 3 liquefies (liquid ammonia) at 0.9 MPa or more. Compared to storing NH 3 in liquid ammonia, the advantage of the ammonia storage / release material of the present invention is that it has a higher storage capacity at a pressure lower than that of liquid ammonia, and in the unlikely event of tank damage, Ammonia evaporates all at once, but when the occlusion / release material of the present invention is used, it can be said that transpiration is slow and relatively safe.

○ 調整手段は、リザーブタンク19、圧力センサ24、電磁弁V1,V2、制御装置25からなる構成に限らない。例えば、リザーブタンク19、電磁弁V1(又はV2)及び圧力センサ24を省略して、アンモニア供給タンク16内の圧力センサ22により電磁弁V2(又はV1)の開度を制御するようにしてもよい。   The adjusting means is not limited to the configuration including the reserve tank 19, the pressure sensor 24, the electromagnetic valves V 1 and V 2, and the control device 25. For example, the reserve tank 19, the electromagnetic valve V1 (or V2), and the pressure sensor 24 may be omitted, and the opening degree of the electromagnetic valve V2 (or V1) may be controlled by the pressure sensor 22 in the ammonia supply tank 16. .

12…排気通路、14…アンモニア吸蔵放出装置、15…アンモニア吸蔵放出材料、17a,34,35…バルブ、19…リザーブタンク、22,24…圧力センサ、25…制御装置、33,36…配管。   DESCRIPTION OF SYMBOLS 12 ... Exhaust passage, 14 ... Ammonia storage-release apparatus, 15 ... Ammonia storage-release material, 17a, 34, 35 ... Valve, 19 ... Reserve tank, 22, 24 ... Pressure sensor, 25 ... Control apparatus, 33, 36 ... Piping.

Claims (3)

アンモニア吸蔵放出材料を貯蔵するタンクと、
前記タンク内に貯蔵されたアンモニア吸蔵放出材料と、
前記タンク内に加圧状態のNHの導入及び前記タンク内のNHの放出の少なくとも一方に使用され、途中にバルブを備えた配管と、
前記タンク内のNHを放出するアンモニア放出配管と、
前記アンモニア放出配管から放出されるNHの量を調整する調整手段と
を備え、
前記アンモニア吸蔵放出材料はLiClであることを特徴とするアンモニア吸蔵放出装置。
A tank for storing ammonia storage / release material;
Ammonia storage / release material stored in the tank;
A pipe which is used for at least one of introduction of NH 3 in a pressurized state and release of NH 3 in the tank, and a valve provided in the middle;
An ammonia release pipe for releasing NH 3 in the tank;
Adjusting means for adjusting the amount of NH 3 released from the ammonia releasing pipe,
The ammonia storage / release device, wherein the ammonia storage / release material is LiCl.
前記調整手段は、前記アンモニア放出配管の途中に設けられたリザーブタンクと、前記リザーブタンク内の圧力を検知する圧力センサと、前記アンモニア放出配管の途中に設けられ、前記リザーブタンクより下流側に設けられた第1の調整バルブと、前記リザーブタンクより前記タンク側に設けられた第2の調整バルブと、前記第1の調整バルブ及び前記第2の調整バルブの開度を制御する制御手段とを備えている請求項1に記載のアンモニア吸蔵放出装置。   The adjusting means includes a reserve tank provided in the middle of the ammonia discharge pipe, a pressure sensor for detecting the pressure in the reserve tank, and provided in the middle of the ammonia discharge pipe and provided downstream of the reserve tank. A first adjustment valve that is provided, a second adjustment valve that is provided closer to the tank than the reserve tank, and a control means that controls the opening of the first adjustment valve and the second adjustment valve. The ammonia storage-release apparatus of Claim 1 provided. 内燃機関から排出された排気ガスが流通する排気通路と、
前記排気通路に設けられた選択還元触媒(SCR)と、
NHを吸蔵するとともに前記排気通路に管路を介してNHを放出するアンモニア吸蔵放出装置と、
前記排気通路内のNOx量に対応して前記アンモニア吸蔵放出装置から前記排気通路へのNHの放出量を制御する制御装置と
を備え、
前記アンモニア吸蔵放出装置として請求項1又は請求項2に記載のアンモニア吸蔵放出装置を備えていることを特徴とする排気ガス浄化システム。
An exhaust passage through which exhaust gas discharged from the internal combustion engine flows;
A selective reduction catalyst (SCR) provided in the exhaust passage;
And ammonia absorbing and releasing device that releases NH 3 and NH 3 via line to the exhaust passage as well as storage,
A control device that controls the amount of NH 3 released from the ammonia storage / release device into the exhaust passage in response to the amount of NOx in the exhaust passage;
An exhaust gas purification system comprising the ammonia storage / release device according to claim 1 or 2 as the ammonia storage / release device.
JP2013208830A 2013-10-04 2013-10-04 Ammonia occlusion and release device and exhaust gas purification system Pending JP2015071989A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013208830A JP2015071989A (en) 2013-10-04 2013-10-04 Ammonia occlusion and release device and exhaust gas purification system
PCT/JP2014/075722 WO2015050065A1 (en) 2013-10-04 2014-09-26 Ammonia storing/releasing device and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208830A JP2015071989A (en) 2013-10-04 2013-10-04 Ammonia occlusion and release device and exhaust gas purification system

Publications (1)

Publication Number Publication Date
JP2015071989A true JP2015071989A (en) 2015-04-16

Family

ID=52778655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208830A Pending JP2015071989A (en) 2013-10-04 2013-10-04 Ammonia occlusion and release device and exhaust gas purification system

Country Status (2)

Country Link
JP (1) JP2015071989A (en)
WO (1) WO2015050065A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007010728D1 (en) * 2007-03-30 2011-01-05 Amminex As A system for storing ammonia in and out of a storage material and method for storing and dispensing ammonia
JP5944620B2 (en) * 2011-02-21 2016-07-05 株式会社豊田中央研究所 Chemical heat storage heat transport device and heat exchange reactor
JP5630411B2 (en) * 2011-09-26 2014-11-26 株式会社豊田中央研究所 Heat recovery type heating device
JP2013108480A (en) * 2011-11-24 2013-06-06 Toyota Industries Corp Exhaust gas cleaning apparatus

Also Published As

Publication number Publication date
WO2015050065A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
KR101829477B1 (en) Method and device for controlled dosing of a gas with fluctuating supply pressure
JP2012504539A (en) Release of stored ammonia at start-up
US8551219B2 (en) Method for storing and delivering ammonia from solid storage materials using a vacuum pump
US8931259B2 (en) Reductant delivery apparatus with purging means
WO2006054632A1 (en) Exhaust purification apparatus
US20140286829A1 (en) Ammonia Generating and Delivery Apparatus
JP4447142B2 (en) Exhaust gas purification device for internal combustion engine
KR20180135419A (en) Storage and gas supply device and associated assembly
JP2016524064A (en) Ammonia storage structures and related systems
US11149608B2 (en) Method for selective catalytic reduction with desorption of ammonia from a cartridge in an exhaust line
CN108625955A (en) For controlling tool, there are two the methods of the SCR system of metering valve
JP2010248944A (en) Urea tank structure
US9400064B2 (en) Method and device for ammonia storage and delivery using in-situ re-saturation of a delivery unit
JP2015071989A (en) Ammonia occlusion and release device and exhaust gas purification system
JP5882165B2 (en) Ammonia storage / release material, ammonia storage / release device, and exhaust gas purification system
US20160185611A1 (en) Ammonia storage structure and associated systems
ES2340933T3 (en) HYDROGEN CLOSED CYCLE STRENGTH UNIT.
US10067045B2 (en) Ammonia estimation method
GB2541399A (en) Electricity generating apparatus
CN113804830B (en) Solid hydrogen generation test platform
JP2015221741A (en) Ammonia storage and release device
JP2020033903A (en) Control device
JP2014015874A (en) Exhaust gas purifying device
JP2014070627A (en) Reducing agent supply device, exhaust gas purification device mounted with the same and method for estimating remaining amount of reducing agent
JPH11182794A (en) Natural gas storage delivery device for moving body