JP2015069771A - Planar light emitting body - Google Patents

Planar light emitting body Download PDF

Info

Publication number
JP2015069771A
JP2015069771A JP2013201823A JP2013201823A JP2015069771A JP 2015069771 A JP2015069771 A JP 2015069771A JP 2013201823 A JP2013201823 A JP 2013201823A JP 2013201823 A JP2013201823 A JP 2013201823A JP 2015069771 A JP2015069771 A JP 2015069771A
Authority
JP
Japan
Prior art keywords
light
guide plate
light guide
luminance
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201823A
Other languages
Japanese (ja)
Inventor
達也 植田
Tatsuya Ueda
達也 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2013201823A priority Critical patent/JP2015069771A/en
Publication of JP2015069771A publication Critical patent/JP2015069771A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a planar light emitting body that has high light utilization efficiency and high uniformity of luminance distribution by arranging a light source so as to face toward the center of a light guide plate, even in the light guide plate in which light scattering elements with high productivity are made uniform.SOLUTION: A planar light emitting body 1 includes a light guide plate 2 and a plurality of light sources 3. The light guide plate 2 has a light emitting surface, and an end surface made vertical to the light emitting surface, and a luminance attenuation coefficient represents E (/m). The light sources 3 are arranged on a circumference surrounding the end surface of the light guide plate 2 and having a radius R so as to irradiate the end surface and irradiate the center of the circumference. Further, the light guide plate 2 satisfies the inequation (1).

Description

本発明は、面状発光体に関する。   The present invention relates to a planar light emitter.

従来から、液晶表示装置のバックライト装置として、導光板と、導光板の端部に設けた光源とを備える面状発光体が用いられている。導光板は、透明基材と、光源から入射した光を拡散させるための光拡散要素とからなり、主面の一方を発光面、他方の主面を反対面、主面と反対面とを接続する面を端面と称する。端面の少なくとも一部に対向して光源が配置され、該光源が対向して設けられた端面は入射面とも称する。
光拡散要素の構成例として、例えば、透明基材の主面の少なくとも一方に、光拡散要素を設ける構成が知られている。光拡散要素を設ける方法としては、凹凸を彫刻したり、光拡散ドットを印刷したりする等の方法が挙げられる。この構成では、発光面内の輝度分布の均一性を高めるために、端部に設ける光源からの距離が遠くなるに従い、拡散機能を高めるように光拡散要素(グラデーション光拡散要素)を設ける(例えば、特許文献1参照)。
また、光拡散要素の別の構成例として、透明基材中に該透明基材と屈折率の異なる光拡散材を内添する構成が知られている。透明基材中に光拡散材を内添する方法は、例えば透明樹脂に光拡散材を混合した樹脂組成物を板状に押出成形する方法が挙げられる(例えば、特許文献2参照)。
Conventionally, a planar light emitter including a light guide plate and a light source provided at an end of the light guide plate has been used as a backlight device of a liquid crystal display device. The light guide plate consists of a transparent base material and a light diffusing element for diffusing the light incident from the light source, and connects one of the main surfaces to the light emitting surface, the other main surface to the opposite surface, and the main surface to the opposite surface. The surface to be called is called an end surface. A light source is disposed so as to face at least a part of the end face, and the end face provided with the light source facing is also referred to as an incident face.
As a configuration example of the light diffusing element, for example, a structure in which a light diffusing element is provided on at least one of the main surfaces of a transparent substrate is known. Examples of the method of providing the light diffusing element include a method of engraving irregularities or printing a light diffusing dot. In this configuration, in order to improve the uniformity of the luminance distribution in the light emitting surface, a light diffusing element (gradation light diffusing element) is provided so as to enhance the diffusion function as the distance from the light source provided at the end increases (for example, , See Patent Document 1).
As another configuration example of the light diffusing element, a configuration in which a light diffusing material having a refractive index different from that of the transparent substrate is internally added to the transparent substrate. Examples of the method of internally adding a light diffusing material in a transparent substrate include a method of extruding a resin composition in which a light diffusing material is mixed into a transparent resin into a plate shape (see, for example, Patent Document 2).

しかしながら、特許文献1のようにグラデーション光拡散要素を、透明基材の主面の少なくとも一方に設ける構成では、1枚ごとに透明基材と拡散パターンの位置合わせを行いながら彫刻や印刷を行う必要があるため、生産性が悪かった。
また、特許文献2のように透明基材中に光拡散材を内添する構成では、発光面内の輝度分布の均一性を高めるためには、光拡散材を低濃度で用いる必要があり、光利用効率が低下する傾向があった。
However, in the configuration in which the gradation light diffusing element is provided on at least one of the main surfaces of the transparent substrate as in Patent Document 1, engraving and printing are required while aligning the transparent substrate and the diffusion pattern for each sheet. Productivity was poor because of
Further, in the configuration in which the light diffusing material is internally added in the transparent base material as in Patent Document 2, in order to increase the uniformity of the luminance distribution in the light emitting surface, it is necessary to use the light diffusing material at a low concentration. There was a tendency for light utilization efficiency to decrease.

特開昭57−128383号公報JP-A-57-128383 国際公開第94/12898号公報International Publication No. 94/12898

そこで本発明は、生産性の高い光散乱要素が均一に処方されている導光板でも、光源が板の中心に向かうよう配置することで、光利用効率が高く且つ輝度分布の均一性が高い面状発光体を実現することを目的とする。   Therefore, the present invention provides a light guide plate in which highly productive light scattering elements are uniformly prescribed, and the light source is arranged so as to face the center of the plate, so that the light use efficiency is high and the luminance distribution is highly uniform. An object is to realize a light emitter.

本発明に係る面状発光体が備える導光板の輝度減衰係数E(/m)は、複数の光源が該導光板の端面を囲んで配置される円周の半径をR(m)とすると、式(1)を満たす。   The luminance attenuation coefficient E (/ m) of the light guide plate included in the planar light emitter according to the present invention is defined as R (m), where R (m) is a radius of the circumference where a plurality of light sources are disposed surrounding the end surface of the light guide plate. Equation (1) is satisfied.

より好ましくは、式(2)を満たす。
More preferably, Formula (2) is satisfy | filled.

ここで輝度減衰係数Eは本発明の面状発光体が備える導光板から主面が正方形の直方体を切り出したものを用いて測定、算出する。前記直方体を導光板とし、その一端面の中央に配置した光源によって、該端面に光を入光させた場合の、前記直方体導光板の発光面における光源からの距離と輝度の関係から算出する値であり、その詳細は後述する。   Here, the luminance attenuation coefficient E is measured and calculated by using a rectangular parallelepiped whose main surface is cut out from the light guide plate provided in the planar light emitter of the present invention. A value calculated from the relationship between the distance from the light source on the light emitting surface of the rectangular parallelepiped light guide plate and the luminance when the rectangular parallelepiped is the light guide plate and light is incident on the end surface by the light source arranged at the center of one end surface thereof. The details will be described later.

また、本発明に係る面状発光体の一態様において、前記複数の光源は、同様の発光強度を有し、かつ、半径Rの円周上に等間隔で配置されることが好ましい。このことにより、発光面全体の輝度分布の均一性が高まる。さらに、前記導光板は、前記端面が円柱の側面であることが好ましい。例えば、前記導光板の発光面が半径Rの円形であることがより好ましい。   Moreover, one aspect | mode of the planar light-emitting body which concerns on this invention WHEREIN: It is preferable that these light sources have the same light emission intensity | strength, and are arrange | positioned on the circumference of the radius R at equal intervals. This increases the uniformity of the luminance distribution over the entire light emitting surface. Further, the light guide plate preferably has a cylindrical side surface at the end face. For example, the light emitting surface of the light guide plate is more preferably circular with a radius R.

導光板の輝度減衰係数が、式(1)を満たすことにより、導光板の中心と周辺との輝度の差が小さくなるので、輝度分布の均一性が高い。かかる導光板は、その全面で輝度減衰係数が一定値である。すなわち、導光板に設ける光拡散要素は、光源からの距離に依存することなく、均一に配置することができるので、従来のグラデーション光拡散要素を設けた導光板に比べて生産性が高い。
特に、透明基材に光拡散材を内添する構成においては、押出しにより容易に作製することが出来るため生産性が高い。
When the luminance attenuation coefficient of the light guide plate satisfies the expression (1), the difference in luminance between the center and the periphery of the light guide plate is reduced, and the uniformity of the luminance distribution is high. Such a light guide plate has a constant luminance attenuation coefficient over the entire surface. That is, since the light diffusing element provided on the light guide plate can be arranged uniformly without depending on the distance from the light source, the productivity is higher than that of the conventional light guide plate provided with the gradation light diffusing element.
In particular, in a configuration in which a light diffusing material is internally added to a transparent substrate, productivity is high because it can be easily produced by extrusion.

本発明によれば、生産性の高い光散乱要素が均一に処方されている導光板でも、光源が板の中心に向かうよう配置することで、光利用効率が高く且つ輝度分布の均一性が高い面状発光体を提供することが可能となる。   According to the present invention, even in a light guide plate in which highly productive light scattering elements are uniformly prescribed, by arranging the light source toward the center of the plate, the light use efficiency is high and the luminance distribution is uniform. A planar light emitter can be provided.

本発明の実施形態1にかかる面状発光体の構成例を示す図である。It is a figure which shows the structural example of the planar light-emitting body concerning Embodiment 1 of this invention. 半値角θhの測定方法を説明する図である。It is a figure explaining the measuring method of half-value angle (theta) h . 図2における半径100mmの半円の線上の輝度分布を示すグラフである。It is a graph which shows the luminance distribution on the line | wire of the semicircle of a radius of 100 mm in FIG. 輝度を測定する方法を示す図である。It is a figure which shows the method to measure a brightness | luminance. 光源からの光の広がりを説明する図である。It is a figure explaining the breadth of the light from a light source. 円板状の導光板の位置座標を説明する図である。It is a figure explaining the position coordinate of a disk-shaped light-guide plate. 近光源の説明図である。It is explanatory drawing of a near light source. 遠光源の説明図である。It is explanatory drawing of a far light source. 輝度分布の計算結果の一例を示す図である。It is a figure which shows an example of the calculation result of luminance distribution. 輝度分布の計算結果の別の例を示す図である。It is a figure which shows another example of the calculation result of luminance distribution. 輝度分布の計算結果の別の例を示す図である。It is a figure which shows another example of the calculation result of luminance distribution. 実施例1の輝度分布を示す図である。FIG. 6 is a diagram showing a luminance distribution of Example 1. 比較例1の輝度分布を示す図である。It is a figure which shows the luminance distribution of the comparative example 1. 比較例2の輝度分布を示す図である。It is a figure which shows the luminance distribution of the comparative example 2. 実施例の規格化輝度と実施形態での規格化輝度計算例との対比を示すグラフである。It is a graph which shows contrast with the normalization brightness | luminance of an Example, and the normalization brightness | luminance calculation example in embodiment.

以下、実施形態について、図面を参照しながら説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。   Hereinafter, embodiments will be described with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate.

(実施形態1)
以下、本発明の実施形態1について説明する。図1は、本発明の実施形態1にかかる面状発光体の一例の正面図である。面状発光体1は、円形の発光面を有する導光板2と複数の光源3とを備える。
導光板2は、発光面(主面)と、該発光面と垂直をなす端面を有し、光拡散要素が一様に配置される。光拡散要素を配置する方法は問わないが、例えば透明基材の主面の少なくとも一方に均一な彫刻や印刷を行う方法や、透明基材中に光拡散材を混入する方法を採用できる。透明基材の成形と光拡散材の添加を同時に行える、という点で透明基材中に光拡散材を混入する方法が好ましい。
複数の光源3は、導光板2の端面(入射面)に対向、近接して設けられる。具体的には、複数の光源3は、導光板2の端面を囲むように半径Rの円周上に、端面を照射し、かつ円周の中心を照射するように配置される。
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described. FIG. 1 is a front view of an example of a planar light emitter according to the first embodiment of the present invention. The planar light emitter 1 includes a light guide plate 2 having a circular light emitting surface and a plurality of light sources 3.
The light guide plate 2 has a light emitting surface (main surface) and an end surface perpendicular to the light emitting surface, and the light diffusing elements are uniformly arranged. There is no limitation on the method of arranging the light diffusing element. For example, a method of performing uniform engraving or printing on at least one of the main surfaces of the transparent substrate, or a method of mixing a light diffusing material in the transparent substrate can be employed. A method of mixing the light diffusing material into the transparent substrate is preferable in that the molding of the transparent substrate and the addition of the light diffusing material can be performed simultaneously.
The plurality of light sources 3 are provided facing and close to the end surface (incident surface) of the light guide plate 2. Specifically, the plurality of light sources 3 are arranged on the circumference of the radius R so as to surround the end face of the light guide plate 2 so as to irradiate the end face and irradiate the center of the circumference.

光源3は光拡がり半値角θで光が広がる。本発明において光拡がり半値角θ(以降適宜、「光拡がり半値角」を「半値角」とも記載する)は、光源3から導光板へ供給され、主面の輝度の拡がり方を示す指標である。主面の光の輝度を、光源の位置(点Oとする)から等距離にある扇形の弧上で比較すると、光源の正面方向の1点(点Aとする)において最も高く、該点Aから離れるにしたがって、対称形に低くなる。光拡がり半値角θは、光源から等距離にある扇形の弧上において、以下に示す測定によって決定する点Aの輝度の半分の輝度を示す点(点Bとする)、並びに、点Oおよび点Aによって形成される角度AOBをいう。なお、上述したように、扇形の弧上において、点Aから離れるにしたがって、対称形に低くなるので、点Bは2点決定できるが、いずれの角度も等しい。 The light source 3 has the light spreads in the light divergence half angle theta h. In the present invention, the light spread half-value angle θ h (hereinafter, “light spread half-value angle” is also referred to as “half-value angle” as appropriate) is an index that is supplied from the light source 3 to the light guide plate and indicates how the luminance of the main surface is spread. is there. When the brightness of the light on the main surface is compared on a fan-shaped arc that is equidistant from the position of the light source (referred to as point O), it is the highest at one point (referred to as point A) in the front direction of the light source. The lower it is, the lower it becomes symmetrical. The light divergence half-value angle θ h is a point (referred to as point B) indicating half the luminance of point A determined by the following measurement on a fan-shaped arc equidistant from the light source, and points O and The angle AOB formed by the point A is referred to. Note that, as described above, the point B is symmetrically lowered on the fan-shaped arc as the distance from the point A increases, so that two points B can be determined, but all the angles are equal.

<光源3の光拡がり半値角θの測定方法>
半値角θの具体的な測定方法は以下の通りである。
導光板を300mm四方の正方形に切り出し、その一辺の端面の中央に接して1つの光源3を設置した様子が図2に示されている。光源3を点灯し、光源3が接した端面(点O)を中心とした半径100mmの半円上の発光面の輝度を測定する。図2では半径100mmの半円がR100と示されている。
光源3を通り、端面に垂直な線と半径100mmの線とが交わる点(点A)における輝度を1としたとき、半径100mmの線上の輝度が0.5となる点(点B:輝度半減点)を求める。図3に半径100mmの線上の輝度分布を示す。輝度半減点は端面に垂直な線の左右2箇所に存在する。図2に示すように、一方の輝度半減点を点Bとし、他方を点Bとする。角度AOB、または角度AOBが光拡がり半値角θ(radian)である。
<Measurement method of the optical divergence half angle theta h of the light source 3>
A specific method for measuring the half-value angle θ h is as follows.
FIG. 2 shows a state in which the light guide plate is cut into a 300 mm square and one light source 3 is installed in contact with the center of the end face of one side. The light source 3 is turned on, and the luminance of the light emitting surface on a semicircle having a radius of 100 mm with the end surface (point O) in contact with the light source 3 as the center is measured. In FIG. 2, a semicircle with a radius of 100 mm is indicated as R100.
When the luminance at the point where the line perpendicular to the end face passes through the light source 3 and the line with a radius of 100 mm (point A) is 1, the point where the luminance on the line with a radius of 100 mm becomes 0.5 (point B: luminance half) Point). FIG. 3 shows a luminance distribution on a line having a radius of 100 mm. Luminance half-points exist at two places on the left and right of a line perpendicular to the end face. As shown in FIG. 2, one luminance half point is a point B 1 and the other is a point B 2 . The angle AOB 1 or the angle AOB 2 is the light spreading half-value angle θ h (radian).

次に、輝度減衰係数Eについて説明する。輝度減衰係数Eは、導光板内での光の減衰を示す指標である。
図1の面状発光体1において、各光源3から導光板2の端面を通して導光板の内部に光を供給すると、光は、光源3から遠ざかる方向(導光方向)に導光されながら、光の一部は導光板2の厚さ方向に拡散され、発光面から出射する。
図4は、輝度減衰係数Eを測定する方法を示す図である。図4に示す導光板2は、本発明の面状発光体が備える導光板を成す組成物から作成した直方体の導光板である。
図4において導光板2の上面を発光面、下面を反対面、左方に示される一方の端面を入射面と称する。該入射面に対向し近接して光源3が配置されている。また、光源3の周囲には光を効率よく利用するための反射カバー6が配置されている。
なお、導光板2は、上述したものに限られることはない。例えば、導光板2は、発光面の形状が正方形であってもよい。また、光拡散要素は、例えば、光拡散粒子を均一に内添する構成であってもよいし、均一な拡散パターン印刷を発光面および反対面に有する構成であってもよい。
図4において導光板2の上方に示される発光面の中心に対向するように、輝度を評価するための輝度計(CCDカメラ)7が配置されている。導光板2の発光面側及び反対面側に示す扇形群は、導光板2の発光面および反対面から光が出射する様子を模式的に示したものである。光源3から導光板2の内部へ入射した光(導光光)は、導光方向へ向かって導光される。導光板2内で導光される間に、該光の一部は光拡散要素によって拡散され、導光板2の発光面及び反対面から導光板2の外部へ出射される。
また図4中、導光板2の入射面から遠ざかる方向に示された矢印は導光方向を示している。
Next, the luminance attenuation coefficient E will be described. The luminance attenuation coefficient E is an index indicating the attenuation of light within the light guide plate.
In the planar light emitter 1 of FIG. 1, when light is supplied from each light source 3 to the inside of the light guide plate through the end face of the light guide plate 2, the light is guided in a direction away from the light source 3 (light guide direction). Is diffused in the thickness direction of the light guide plate 2 and emitted from the light emitting surface.
FIG. 4 is a diagram illustrating a method of measuring the luminance attenuation coefficient E. The light guide plate 2 shown in FIG. 4 is a rectangular parallelepiped light guide plate made from a composition constituting the light guide plate provided in the planar light emitter of the present invention.
In FIG. 4, the upper surface of the light guide plate 2 is referred to as a light emitting surface, the lower surface is referred to as an opposite surface, and one end surface shown on the left side is referred to as an incident surface. A light source 3 is disposed so as to face and be close to the incident surface. In addition, a reflection cover 6 for efficiently using light is disposed around the light source 3.
In addition, the light-guide plate 2 is not restricted to what was mentioned above. For example, the light guide plate 2 may have a square light emitting surface. In addition, the light diffusing element may have a configuration in which light diffusing particles are internally added uniformly, or may have a configuration in which a uniform diffusion pattern print is provided on the light emitting surface and the opposite surface.
In FIG. 4, a luminance meter (CCD camera) 7 for evaluating luminance is arranged so as to face the center of the light emitting surface shown above the light guide plate 2. The fan-shaped groups shown on the light emitting surface side and the opposite surface side of the light guide plate 2 schematically show how light is emitted from the light emitting surface and the opposite surface of the light guide plate 2. Light (light guide light) incident from the light source 3 into the light guide plate 2 is guided in the light guide direction. While being guided in the light guide plate 2, part of the light is diffused by the light diffusing element and emitted from the light emitting surface and the opposite surface of the light guide plate 2 to the outside of the light guide plate 2.
In FIG. 4, an arrow shown in a direction away from the incident surface of the light guide plate 2 indicates the light guide direction.

輝度減衰係数の算出方法は次の通りである。
導光光は導光方向に進みながら光拡散要素によって主面から光を出射する。長方形の導光板の一辺の端面を入射面として光源を設けた場合、その発光面の輝度は入射面から対向する端面へ向かうに従って指数関数的に減衰していく。そのため、入射面からの距離L(m)における主面の輝度U(L)は理論上次に示す式(3)に従う。
式中、Uは距離L=0における輝度である。
したがって、発光面からの距離L(m)(m:メートル)おける発光面の輝度U(L)を測定することで、式(2)における定数Eを算出できる。
The calculation method of the luminance attenuation coefficient is as follows.
The light guide light is emitted from the main surface by the light diffusing element while proceeding in the light guide direction. When a light source is provided with an end face on one side of a rectangular light guide plate as an incident surface, the luminance of the light emitting surface attenuates exponentially as it goes from the incident surface to the opposite end surface. For this reason, the luminance U (L) of the main surface at a distance L (m) from the incident surface theoretically follows equation (3) shown below.
In the equation, U 0 is the luminance at the distance L = 0.
Therefore, the constant E in the equation (2) can be calculated by measuring the luminance U (L) of the light emitting surface at a distance L (m) (m: meter) from the light emitting surface.

先に述べたように一般的な直方体の導光板2において、発光面の輝度は入射面から対向する端面へ向かうに従って指数関数的に減衰していくので、通常発光面内の輝度は均一でない。   As described above, in the general rectangular parallelepiped light guide plate 2, the luminance of the light emitting surface attenuates exponentially as it goes from the incident surface to the opposite end surface, and thus the luminance in the normal light emitting surface is not uniform.

本発明の面状発光体は、以下の理由によって発光面の輝度が均一となる。
図1は、円形の導光板2とその周囲に光源3が多数配置された面状発光体1を示している。また、光源3の内、3つの光源について、それぞれの光の導光方向を3種類の点線を用いて示している。
1つの光源3から供給された光による主面の輝度は、光源から離れるにしたがって減衰するものの、隣接する光源3の光は円の中央に近づくほど集まるため、発光面内の輝度分布を均一にできる。
The planar light-emitting body of the present invention has uniform luminance on the light-emitting surface for the following reasons.
FIG. 1 shows a planar light emitter 1 in which a large number of light sources 3 are arranged around a circular light guide plate 2. Moreover, the light guide direction of each of three light sources among the light sources 3 is shown using three types of dotted lines.
Although the luminance of the main surface due to the light supplied from one light source 3 attenuates as it moves away from the light source, the light from the adjacent light sources 3 gathers as it approaches the center of the circle, so the luminance distribution in the light emitting surface is made uniform. it can.

導光板として、円盤状の導光板を用いたと仮定して、本発明について詳細に計算した結果を以下に説明する。
導光板の半径をR(m)とする。光源は半径R(m)より大きい半径上に配置されるが、説明を簡単にする為、光源は半径R(m)上にあるとする。
円盤状の導光板において、入射面から導光方向にL(m)だけ離れた位置の軌跡は半径Rから距離Lを差し引いた長さ(m)(R−L(m))の円である。この円上の円周1m当たりの光束量をP(L)(lumen/m)と表す。
ここで、光束の単位であるlumen(ルーメン)は、光度の単位cd(カンデラ)と立体角の単位sr(ステラジアン)との積である。本明細書では、光束量P(L)は光源の配置密度や出力に比例する量であり、光束(lumen)を長さ(m)で割ったものとする。
Assuming that a disc-shaped light guide plate is used as the light guide plate, the results of calculating the present invention in detail will be described below.
Let R (m) be the radius of the light guide plate. Although the light source is disposed on a radius larger than the radius R (m), it is assumed that the light source is on the radius R (m) for the sake of simplicity.
In the disc-shaped light guide plate, the locus at a position away from the incident surface by L (m) in the light guide direction is a circle having a length (m) (RL (m)) obtained by subtracting the distance L from the radius R. . The amount of light flux per 1 m circumference on this circle is expressed as P (L) (lumen / m).
Here, lumen (lumen) which is a unit of luminous flux is a product of a unit of light intensity cd (candela) and a unit of solid angle sr (steradian). In this specification, the light flux P (L) is an amount proportional to the arrangement density and output of the light sources, and the light flux (lumen) is divided by the length (m).

入射面から導光方向に距離L(m)だけ離れた位置における発光面の照度をB(L)(lumen/m)とする。1lumen/mは1cd・sr/mと等しい。また導光光は光拡散要素により拡散されながら発光面から出射するため、導光光の減少分が発光面から出射される光の量に相当する。このようにして導光光は導光方向へ進むに従って指数関数的に減衰していく。そのため、発光面の照度B(L)は光束量P(L)をLで微分した量の正負を反転したものに等しい。
入射面から導光方向に距離L(m)だけ離れた位置における発光面の輝度をU(L)(cd/m)とする。発光面の照度B(L)は完全拡散面では輝度U(L)と立体角π(sr)との積に等しい。
光束量P(L)、照度B(L)、及び輝度U(L)の関係を表1に示す。
The illuminance of the light emitting surface at a position away from the incident surface in the light guide direction by a distance L (m) is B (L) (lumen / m 2 ). 1 lumen / m 2 is equal to 1 cd · sr / m 2 . Further, since the light guide light is emitted from the light emitting surface while being diffused by the light diffusing element, the reduced amount of the light guide light corresponds to the amount of light emitted from the light emitting surface. In this way, the light guide light attenuates exponentially as it advances in the light guide direction. For this reason, the illuminance B (L) of the light emitting surface is equal to a value obtained by reversing the amount of light flux P (L) differentiated by L.
The luminance of the light emitting surface at a position away from the incident surface by a distance L (m) in the light guide direction is U (L) (cd / m 2 ). The illuminance B (L) on the light emitting surface is equal to the product of the luminance U (L) and the solid angle π (sr) on the complete diffusion surface.
Table 1 shows the relationship among the luminous flux P (L), the illuminance B (L), and the luminance U (L).

半径R(m)の導光板2の端面に接して複数の光源3が配置される。複数の光源3は同一のものを用いる。光源は計算上では点光源とし、導光板2の端面に接して配置されているとする。このとき、発光面の中心と光源を配置する円周の中心を一致させる。   A plurality of light sources 3 are arranged in contact with the end face of the light guide plate 2 having a radius R (m). The same light source 3 is used. It is assumed that the light source is a point light source in calculation and is disposed in contact with the end surface of the light guide plate 2. At this time, the center of the light emitting surface is matched with the center of the circumference where the light source is arranged.

以下の近似条件に従い、円周1m当たりの光束量P(L)(lumen/m)を計算する。
各光源3から入力された光は、光源から導光板2の中心に向かう線に対称に拡がるものとする。光源から一定の距離だけ離れた円周上の主面の輝度は、光源から導光板2の中心に向かう線上が最大値となる。その最大値の半値になる位置が対称線を挟んで2箇所存在し、その一方の点と光源と他方の点とのなす角度の1/2を光拡がり半値角θ(radian)とする。以降の計算においては、簡単にするため、光拡がり半値角θ(radian)以内に広がる光は一定値であるとし、光拡がり半値角θより外側へ広がる光は無視するものとする。
The amount of light flux P (L) (lumen / m) per 1 m circumference is calculated according to the following approximate conditions.
The light input from each light source 3 spreads symmetrically on a line from the light source toward the center of the light guide plate 2. The luminance of the principal surface on the circumference separated from the light source by a certain distance has a maximum value on a line from the light source toward the center of the light guide plate 2. There are two positions where the half value of the maximum value is located across the symmetry line, and ½ of the angle formed by one point, the light source, and the other point is defined as the light spreading half value angle θ h (radian). In the following calculations, for the sake of simplicity, it is assumed that light spreading within the light spreading half-value angle θ h (radian) is a constant value, and light spreading outside the light spreading half-value angle θ h is ignored.

なお、ここで計算を簡略化するため、入射面と対向する端面に到達したり、導光過程で吸収されたり、導光光の後方散乱したりすることによる光のロスは考慮しない。   Here, in order to simplify the calculation, light loss due to reaching the end face facing the incident surface, absorbed in the light guide process, or backscattered of the light guide light is not considered.

入射面における光源からの光束量をP(lumen/m)とする。光源から入射面に入射した直後の光は点状であるが、光拡がり半値角θ(radian)の範囲に広がりながら進む。このため、光源からの光は図5のように光源3を中心とし、中心角θ×2の扇状に広がっている。したがって、光源を中心とする距離L(m)の円弧上の各点での光束量P(L)(lumen/m)は(2θ・L)に反比例する。
また、光源から距離L(m)進むことで導光光はe−ELに比例して減衰するので、光束量P(L)(lumen/m)はL=0(m)およびその近傍を除く範囲で(4)式で近似できる。
Let P 0 (lumen / m) be the amount of light flux from the light source on the incident surface. The light immediately after entering the incident surface from the light source is point-like, but proceeds while spreading in the range of the light spreading half-value angle θ h (radian). Therefore, the light from the light source spreads in a fan shape with the central angle θ h × 2 centered on the light source 3 as shown in FIG. Therefore, the light flux P (L) (lumen / m) at each point on the arc of the distance L (m) centered on the light source is inversely proportional to (2θ h · L).
Further, since the guided light is attenuated in proportion to e- EL by traveling the distance L (m) from the light source, the light flux P (L) (lumen / m) excludes L = 0 (m) and its vicinity. The range can be approximated by equation (4).

次に、距離Lにおける主面の照度をB(L)(lumen/m)とする。導光光が光拡散剤により拡散され減衰した光が照度B(L)に相当することから、光束量P(L)の変化量が照度B(L)に相当する。したがって照度B(L)は光束量P(L)を距離Lで微分し、正負の記号を逆転したものであり、
となる。
Next, the illuminance of the main surface at the distance L is defined as B (L) (lumen / m 2 ). Since the light that has been diffused and attenuated by the light diffusing agent corresponds to the illuminance B (L), the amount of change in the light flux P (L) corresponds to the illuminance B (L). Accordingly, the illuminance B (L) is obtained by differentiating the light flux P (L) with the distance L and reversing the positive and negative signs.
It becomes.

(5)式に(4)式を代入して計算すると、
となる。
ここで、第2項は負の値となるが、これは導光板から出射せずに導光板内部を照射する光の照度(導光板内へ戻る光)を表している。そのため、主面の照度を論ずる場合には第2項は無視すべきである。
Substituting (4) into (5) and calculating,
It becomes.
Here, the second term is a negative value, which represents the illuminance of light that irradiates the inside of the light guide plate without exiting from the light guide plate (light returning into the light guide plate). Therefore, the second term should be ignored when discussing the illuminance of the main surface.

従って、照度B(L)は(7)式となる。
Therefore, the illuminance B (L) is expressed by equation (7).

式(7)で算出した照度B(L)は一つの光源3からの光束量P(L)からの照度であることから、全円周の光源3から得られる照度を求めるには、(7)式を円周上で積分すれば得られる。ここで、計算を簡単にするために極座標を用いて積分を行う。
図6に発光面上の座標を示す。導光板2の任意の位置を、円の中心を0(ゼロ)とする極座標で表し、複素数Z=Xejφを用いる。ここで、X(m)は導光板主面の中心からの距離である。φは0〜2π(radian)の角度座標である。これに従うと、光源が位置する円周の半径をRとした場合、入射端面の位置は複素数Zを用いて、Z=Rejφと表せる。
照度B(L)を極座標で表すと、B(Z)になる。全円周の光源3から得られる照度は(7)式を円周上のφ=0から2πで積分すれば得られる。光源は全て同一のものであるため、積分結果は回転対称となる。よって円周の中心を通る1線上についてのみ積分すれば任意地点zの照度B(z)が求まる。
Since the illuminance B (L) calculated by the equation (7) is the illuminance from the light flux P (L) from one light source 3, in order to obtain the illuminance obtained from the light source 3 of the entire circumference, (7 ) Is obtained by integrating the equation on the circumference. Here, in order to simplify the calculation, integration is performed using polar coordinates.
FIG. 6 shows coordinates on the light emitting surface. An arbitrary position of the light guide plate 2 is represented by polar coordinates with the center of the circle being 0 (zero), and a complex number Z = Xe is used. Here, X (m) is a distance from the center of the light guide plate main surface. φ is an angle coordinate of 0 to 2π (radian). According to this, when the radius of the circumference where the light source is located is R, the position of the incident end face can be expressed as Z = Re using the complex number Z.
When the illuminance B (L) is expressed in polar coordinates, B (Z) is obtained. The illuminance obtained from the light source 3 on the entire circumference can be obtained by integrating Equation (7) from φ = 0 to 2π on the circumference. Since all the light sources are the same, the integration result is rotationally symmetric. Therefore, if integration is performed only on one line passing through the center of the circumference, the illuminance B (z) at an arbitrary point z can be obtained.

上記線上の位置Lは、図6のようにL、R、Xをベクトルと考えると、L=|Rejφ−Xej0|となる。この式において、角度φは距離X方向の直線に対してなす角とする。これを式(6)に代入して円周に沿ってRφで積分を行うと、照度BはXのみの関数となるためB(X)で表され、式(8)となる。
The position L on the line is L = | Re jφ− Xe j0 |, where L, R, and X are considered as vectors as shown in FIG. In this equation, the angle φ is an angle formed with respect to a straight line in the distance X direction. When this is substituted into the equation (6) and integration is performed with Rφ along the circumference, the illuminance B becomes a function of only X, and is represented by B (X) and is expressed by equation (8).

ついで導光板面内の照度均一性を評価するため、入射面付近の照度と、光源から最も離れた円板中央の照度との比を(8)式に基づいて求める。
円板の中央X=0での照度B(0)は、(8)式にX=0を代入し、さらに距離Lと半径Rとは同じ長さ(L=R)であることを考慮してL=|Rejφ−X|=Rを代入して、(9)式となる。
Next, in order to evaluate the illuminance uniformity within the light guide plate surface, a ratio between the illuminance near the incident surface and the illuminance at the center of the disc farthest from the light source is obtained based on the equation (8).
The illuminance B (0) at the center X = 0 of the disk is calculated by substituting X = 0 into the equation (8) and considering that the distance L and the radius R are the same length (L = R). Substituting L = | Re −X | = R, the equation (9) is obtained.

次に、入射面周辺X=R−ε(ただしε<<R)での照度B(X)は同様に式(8)にX=R−εを代入して(10)式となる。
Next, the illuminance B (X) around the incident surface X = R−ε (where ε << R) is similarly given by Equation (10) by substituting X = R−ε into Equation (8).

ここで(10)式を計算するに当たり、φ=0から2πの範囲を3分割して計算する。すなわち考慮すべき光源を円周上の位置に応じて3分割して計算する。
入射面周辺X=R−ε(ただしε<<R)に近い位置にある光源(以下、「近光源」と記載する)、入射面周辺X=R−ε(ただしε<<R)から最も離れた位置にある光源(以下、「遠光源」と記載する)、それ以外の光源(以下、「中光源」と記載する)に3分割する。
近光源は、極座標のφでは、φ=0から0より少し大きい値間での範囲、および2πより少し小さい値から2πまでの範囲に相当し、これをφ=0〜φとφ=(2π−φ)〜2πとする。図7において、近光源を黒丸で図示した。
Here, in calculating the equation (10), the range from φ = 0 to 2π is divided into three. That is, the light source to be considered is calculated by dividing into three according to the position on the circumference.
The light source (hereinafter referred to as “near light source”) near the entrance surface periphery X = R−ε (where ε << R) and the entrance surface periphery X = R−ε (where ε << R) are the most. The light source is divided into three light sources (hereinafter referred to as “far light source”) and remote light sources (hereinafter referred to as “medium light source”).
Near the light source, the polar coordinates of phi, ranging from phi = 0 between slightly greater than 0, and corresponds to a range of up to 2 [pi from slightly less than 2 [pi, which φ = 0~φ 1 and phi = ( 2π−φ 1 ) to 2π. In FIG. 7, the near light source is indicated by a black circle.

次に遠光源は、極座標のφでは、光源の光拡がり半値角を考慮すると、φ=(π−2θ)〜(π+2θ)の範囲に相当する。図8において、遠光源を黒丸で図示した。
φがそれ以外の範囲の光すなわち中光源は、光拡がり半値角を考慮すると位置X=R−ε(ただしε<<R)に達しないと考える事ができる。したがって中光源に相当するφの範囲では上式の積分値を0と近似する事ができる。
従って(9)式は、φ=0から2π(radian)の範囲の積分を、φ=0〜φとφ=(2π−φ)〜2πの範囲(近光源)と、φ=(π−2θ)〜(π+2θ)の範囲(遠光源)と、それ以外の範囲(中光源)とに分割して近似計算することができる。
Next, the far light source corresponds to a range of φ = (π−2θ h ) to (π + 2θ h ) in consideration of the light spread half-value angle of the polar coordinate φ. In FIG. 8, the far light source is illustrated by a black circle.
It can be considered that light in which φ is in other ranges, that is, the intermediate light source, does not reach the position X = R−ε (where ε << R) in consideration of the light spreading half-value angle. Therefore, in the range of φ corresponding to the medium light source, the integrated value of the above equation can be approximated to zero.
Therefore Equation (9), and the integral in the range of phi = 0 2 [pi of (radian), φ = 0~φ 1 and φ = (2π-φ 1) ~2π range (near the light source), phi = ([pi The approximate calculation can be performed by dividing into a range of -2θ h ) to (π + 2θ h ) (far light source) and another range (medium light source).

ここで近光源からXまでの距離Lは、
と近似できる。
Here, the distance L from the near light source to X is
Can be approximated.

次に、遠光源からXまでの距離Lは、
と近似できる。
Next, the distance L from the far light source to X is
Can be approximated.

式(11)および式(12)を考慮し、式(10)を計算すると下記式(13)となる。
The following equation (13) is obtained when equation (10) is calculated in consideration of equations (11) and (12).

ここで、式(13)の近似について説明する。近光源から出射された光から得られる照度は、長方形の導光板での照度と近似することが出来る。
長方形の導光板の場合、導光光は式(14)で表すことができる。円形導光板の場合は、光源が円の中心を向くよう配置されているので、導光光は光源の光拡がり半値角θや光源を中心とする距離L(m)に依存するが、長方形の導光板の場合は、光源は同じ向きに配置されていることからそれらを考慮に入れる必要がない。従って長方形導光板の導光光は式(14)となる。Pは入射面における光源からの光束量、Yは導光距離である。
Here, the approximation of Expression (13) will be described. The illuminance obtained from the light emitted from the near light source can be approximated to the illuminance at the rectangular light guide plate.
In the case of a rectangular light guide plate, the light guide light can be expressed by Expression (14). For circular light guide plate, since the light source is arranged to face the center of the circle, the light guide light is dependent on the distance L (m) around the optical divergence half angle theta h and the light sources of a rectangular In the case of the light guide plate, since the light sources are arranged in the same direction, it is not necessary to take them into consideration. Therefore, the light guide light of the rectangular light guide plate is expressed by equation (14). P 0 is the amount of light flux from the light source on the incident surface, and Y is the light guide distance.

導光光と発光面の照度は式(5)で表されることから、これを計算して式(15)を得る。
Since the light guide light and the illuminance of the light emitting surface are expressed by the equation (5), this is calculated to obtain the equation (15).

近光源ではY≒0のため、式(16)となり、
式(17)の近似が成り立つ。
In the near light source, since Y≈0, Equation (16) is obtained.
An approximation of equation (17) holds.

また、遠光源から出射される光も同様に考えて、式(18)となることから、

式(19)の近似が成り立つ。
従って、式(13)の近似が成り立つ。
Further, considering the light emitted from the far light source in the same manner, the equation (18) is obtained.

The approximation of equation (19) holds.
Therefore, the approximation of Expression (13) is established.

従って中央と周辺との照度の比(周辺/中央の照度比)は、式(13)と式(9)比である式(20)で表される。
Therefore, the ratio of the illuminance between the center and the periphery (periphery / center illuminance ratio) is expressed by Expression (20) which is the ratio of Expression (13) and Expression (9).

式(20)において、円板の周辺/中央の照度比が1の場合は式(21)となる。
In Expression (20), when the illuminance ratio at the periphery / center of the disk is 1, Expression (21) is obtained.

式(20)の、θ×(e−ER+eER)/πの値が1に近いほど、周辺中央照度比が1に近いことを意味する。従って、θ×(e−ER+eER)/πの値が所定の範囲内であれば、導光板2の照度分布が均一であると判断できる。
θ×(e−ER+eER)/πの値が1.4、1.2となる場合の照度分布の計算結果を図9に示す。同様に前記値が1.0、0.8となる場合の照度分布の計算結果を図10に示し、前記値が0.6となる場合の照度分布の計算結果を図11に示す。
θ×(e−ER+eER)/πの値が0.6、0.8、1.0、1.2、1.4のとき、主面内の照度の最大値に対する照度の最小値の比は、それぞれ0.73、0.9、0.86、0.75、0.66である。このことから、θ×(e−ER+eER)/πの値が0.8から1.2の範囲にあると主面内の照度比が75%以上という均一な照度分布が得られることが分かる。また、図9から図11に示す照度から算出した結果に加え、実験結果から、θ×(e−ER+eER)/πの値が0.96から1.04の範囲である場合に、光がより一様に出射することが確認され、より好ましい範囲であることが判明した。
The closer the value of θ h × (e −ER + e ER ) / π in Equation (20) is to 1, the closer the peripheral central illumination ratio is to 1. Therefore, if the value of θ h × (e −ER + e ER ) / π is within a predetermined range, it can be determined that the illuminance distribution of the light guide plate 2 is uniform.
FIG. 9 shows the calculation result of the illuminance distribution when the values of θ h × (e −ER + e ER ) / π are 1.4 and 1.2. Similarly, FIG. 10 shows the calculation results of the illuminance distribution when the values are 1.0 and 0.8, and FIG. 11 shows the calculation results of the illuminance distribution when the values are 0.6.
When the value of θ h × (e −ER + e ER ) / π is 0.6, 0.8, 1.0, 1.2, 1.4, the minimum value of illuminance with respect to the maximum value of illuminance within the main surface The ratios are 0.73, 0.9, 0.86, 0.75, and 0.66, respectively. From this, when the value of θ h × (e −ER + e ER ) / π is in the range of 0.8 to 1.2, a uniform illuminance distribution with an illuminance ratio in the main surface of 75% or more can be obtained. I understand. Further, in addition to the results calculated from the illuminance shown in FIG. 9 to FIG. 11, from the experimental results, when the value of θ h × (e −ER + e ER ) / π is in the range of 0.96 to 1.04, It was confirmed that the light was emitted more uniformly, and it was found that this is a more preferable range.

光拡がり半値角θの値は、使用する光源や媒質中の屈折率にもよるが、凡そ0.6radから0.8radの値となる。θが0.6radで、θ×(e−ER+eER)/πの値が0.8から1.2の範囲にあるとき、ERは1.4≦ER≦1.8の範囲にあることになる。θが0.7radで、θ×(e−ER+eER)/πの値が0.8から1.2の範囲にあるときは1.2≦ER≦1.6、θが0.8radで、θ×(e−ER+eER)/πの値が0.8から1.2の範囲にあるときは1.0≦ER≦1.5となる。θが0.6radから0.8radの範囲を考えた場合、ERの範囲は、式(1)となる。 The value of the light divergence half angle theta h, depending on the refractive index of the light source and medium to be used, consisting of approximately 0.6rad the value of 0.8Rad. When θ h is 0.6 rad and θ h × (e −ER + e ER ) / π is in the range of 0.8 to 1.2, ER is in the range of 1.4 ≦ ER ≦ 1.8. There will be. When θ h is 0.7 rad and θ h × (e −ER + e ER ) / π is in the range of 0.8 to 1.2, 1.2 ≦ ER ≦ 1.6 and θ h is 0 When .8 rad and θ h × (e −ER + e ER ) / π are in the range of 0.8 to 1.2, 1.0 ≦ ER ≦ 1.5. When θ h is in the range of 0.6 rad to 0.8 rad, the range of ER is expressed by Equation (1).

より好ましい範囲はθが0.7radの場合で、ERの範囲は、式(2)となる。
If more preferred range theta h is 0.7Rad, range ER becomes Equation (2).

従って、ER(輝度減衰係数Eと半径Rとの積)がこの範囲内にある導光板を用いれば、生産性の高い光散乱要素が均一に処方されている導光板でも、光源が板の中心に向かうよう配置することで、光利用効率が高く且つ輝度分布の均一性が高い面状発光体を実現することができる。   Therefore, if a light guide plate having an ER (product of luminance attenuation coefficient E and radius R) within this range is used, the light source is the center of the plate even in a light guide plate in which highly productive light scattering elements are uniformly prescribed. By arranging so as to face the surface, it is possible to realize a planar light emitter having high light utilization efficiency and high uniformity of luminance distribution.

(実施形態2)
実施形態1では、導光板2の発光面が円形である場合を一例として説明したが、これに限られることはない。
例えば、導光板2は、複数の光源3を配置する端面の領域が半径Rの円周上の位置であれば、端面が曲面と平面のいずれか、または曲面と平面との組合せにより形成されていてもよい。
導光板2は、本発明の趣旨に反しない範囲で、例えば正六角形またはこれより多辺の正多角形とすることができる。この場合、正多角形は、発光面が半径Rの円に内接するものであればよい。さらに、端面を曲面と平面とのいずれか、あるいは曲面と平面との組合せにより形成する場合にも、導光板2の形状は、半径Rの円に内接するものであることが好ましい。
光源が半径Rの円周上に、導光板の端面を該円周の中心を照射するように配置されていれば、導光板の形状に制限はないが、発光面の形状は正多角形や円形であることが好ましく、円形であることがより好ましい。
(Embodiment 2)
In the first embodiment, the case where the light emitting surface of the light guide plate 2 is circular has been described as an example, but the present invention is not limited to this.
For example, the light guide plate 2 is formed by either a curved surface or a flat surface or a combination of a curved surface and a flat surface if the region of the end surface where the plurality of light sources 3 are arranged is a position on the circumference of the radius R. May be.
The light guide plate 2 can be, for example, a regular hexagon or a regular polygon having more sides than the scope of the present invention. In this case, the regular polygon may be any shape in which the light emitting surface is inscribed in a circle having a radius R. Furthermore, when the end surface is formed by either a curved surface or a plane, or a combination of a curved surface and a plane, the shape of the light guide plate 2 is preferably inscribed in a circle having a radius R.
If the light source is arranged on the circumference of radius R so as to irradiate the end face of the light guide plate to the center of the circumference, the shape of the light guide plate is not limited, but the shape of the light emitting surface is a regular polygon or A circular shape is preferable, and a circular shape is more preferable.

光源3を配置する端面の領域を半径Rの円周上にすることにより、導光板2の中心と各光源3までの距離を均一にすることが可能となり、上述した式(1)を満たす導光板2を作製することが可能になる。また、複数の光源は、同様の発光強度を有し、かつ、半径Rの円周上に等間隔で配置されることが好ましい。このことにより、発光面全体の輝度分布の均一性が高まる。加えて、導光板の主面の重心と光源が配置された円周の中心とが一致することが好ましい。このような構成によって輝度分布の均一性が高い面状発光体を提供することが可能となる。
端面の形状を柔軟にすることにより、導光板2の発光面の形状を、用途に応じて変更することが可能になる。例えば、デザイン性が要求される場合には、多様な形状の発光面を実現することが可能となる。
加えて、実施形態1では導光板2内で均一に光拡散材を混入する場合を説明したが、主面およびまたは反対面に均一なパターンで彫刻または印刷された拡散パターンであっても良い。
By making the region of the end face where the light source 3 is arranged on the circumference of the radius R, the distance from the center of the light guide plate 2 to each light source 3 can be made uniform, and the guide satisfying the above formula (1) can be obtained. The optical plate 2 can be manufactured. Further, it is preferable that the plurality of light sources have the same emission intensity and are arranged at equal intervals on the circumference of the radius R. This increases the uniformity of the luminance distribution over the entire light emitting surface. In addition, it is preferable that the center of gravity of the main surface of the light guide plate coincides with the center of the circumference where the light source is arranged. With such a configuration, it is possible to provide a planar light emitter with high uniformity of luminance distribution.
By making the shape of the end face flexible, the shape of the light emitting surface of the light guide plate 2 can be changed according to the application. For example, when design is required, various shapes of light emitting surfaces can be realized.
In addition, although the case where the light diffusing material is mixed uniformly in the light guide plate 2 has been described in the first embodiment, a diffusion pattern engraved or printed with a uniform pattern on the main surface and / or the opposite surface may be used.

[実施例と比較例]
導光板2として、実施例では円形、比較例では長方形を用いた。まず、実施例及び比較例において使用する測定方法について説明する。
<輝度測定方法>
照度を測定することは難しいため、照度と比例する輝度を測定することにする。輝度Uと照度BはB=π×Uの関係にある。輝度の測定では、図4に示す装置の構成を用いる。導光板2の主面の正面の、主面から2m離れた位置に、輝度計7として、コニカミノルタ株式会社製輝度計「CA2000」を置き、主面の各位置における輝度(cd/m)を測定する。輝度は各導光板2について、その最大値を1として規格化する。
<輝度減衰係数E(/m)の算出法>
後述する比較例1の条件において、導光板2の光源3を配置した端面の中央を通り、主面に平行な線に沿う主面の輝度(cd/m)を測定する。測定した輝度値の対数と、該端面からの距離とをプロットして輝度特性を表した場合の勾配(/m)を求める。
実施例の導光板2についても、比較例1と同じ形状の導光板2を作製し、輝度を測定した。
[Examples and Comparative Examples]
As the light guide plate 2, a circular shape was used in the examples, and a rectangular shape was used in the comparative examples. First, the measurement method used in an Example and a comparative example is demonstrated.
<Luminance measurement method>
Since it is difficult to measure the illuminance, the luminance proportional to the illuminance is measured. Luminance U and illuminance B have a relationship of B = π × U. In the luminance measurement, the configuration of the apparatus shown in FIG. 4 is used. A luminance meter “CA2000” manufactured by Konica Minolta Co., Ltd. is placed as a luminance meter 7 at a position 2 m away from the main surface in front of the main surface of the light guide plate 2, and the luminance (cd / m 2 ) at each position on the main surface. Measure. The luminance is normalized with the maximum value being 1 for each light guide plate 2.
<Calculation method of luminance attenuation coefficient E (/ m)>
Under the conditions of Comparative Example 1 described later, the luminance (cd / m 2 ) of the main surface passing through the center of the end surface where the light source 3 of the light guide plate 2 is disposed and along a line parallel to the main surface is measured. The logarithm of the measured luminance value and the distance from the end face are plotted to determine the gradient (/ m) when the luminance characteristic is expressed.
For the light guide plate 2 of the example, a light guide plate 2 having the same shape as that of Comparative Example 1 was produced, and the luminance was measured.

以下に実施例および比較例を示す。
[実施例1]
以下に記す樹脂組成物を使用し、押出機を用いて光学板を作製した。板の厚さは10mmとした。
<樹脂組成物>
・ベース樹脂:PMMA(株式会社クラレ製「パラペット」)、屈折率:1.494(nD)
・光拡散材:酸化チタン(株式会社テイカ製「JR−1000」)、屈折率:2.72(nD)、平均粒径:1μm
・光拡散剤添加濃度:0.00075%
製造した光学板の断面、及び表面を顕微鏡で観察した結果、光拡散材は光学板に均一に添加されていた。
製造した光学板を、直径286mmの円形に切り出し、導光板2を作製した。次いで、以下に記す光源3を導光板2の端面に透明接着剤により固定し、面状発光体を作製した。光源3は導光板2の周囲に均等に25mm間隔で配置した。
Examples and comparative examples are shown below.
[Example 1]
Using the resin composition described below, an optical plate was produced using an extruder. The thickness of the plate was 10 mm.
<Resin composition>
Base resin: PMMA (“Parapet” manufactured by Kuraray Co., Ltd.), Refractive index: 1.494 (nD)
Light diffusing material: Titanium oxide (“JR-1000” manufactured by Teika Co., Ltd.), refractive index: 2.72 (nD), average particle size: 1 μm
-Light diffusing agent addition concentration: 0.00075%
As a result of observing the cross section and surface of the manufactured optical plate with a microscope, the light diffusing material was uniformly added to the optical plate.
The manufactured optical plate was cut into a circular shape with a diameter of 286 mm, and the light guide plate 2 was produced. Next, a light source 3 described below was fixed to the end face of the light guide plate 2 with a transparent adhesive, and a planar light emitter was produced. The light sources 3 were evenly arranged around the light guide plate 2 at intervals of 25 mm.

<光源3>
使用光源3:株式会社ニュージャパンヨット製「KD−11013」
LED配置間隔:25mm
印加電圧:DC12V
<Light source 3>
Light source 3 used: “KD-11013” manufactured by New Japan Yacht Co., Ltd.
LED spacing: 25mm
Applied voltage: DC12V

[比較例1]
光学板を300mm四方の正方形に切り出した以外は実施例1と同様にして導光板2を作製した。次いで、実施例1と同じ光源3を導光板2の端面に透明接着剤により固定し、面状発光体を作製した。光源3は導光板2の1辺の端面に均等に25mm間隔で配置した。
[Comparative Example 1]
A light guide plate 2 was prepared in the same manner as in Example 1 except that the optical plate was cut into a 300 mm square. Next, the same light source 3 as in Example 1 was fixed to the end face of the light guide plate 2 with a transparent adhesive, and a planar light emitter was produced. The light sources 3 were evenly arranged at 25 mm intervals on the end surface of one side of the light guide plate 2.

[比較例2]
比較例1と同様な正方形の光学板を製造し、次いで、実施例1と同じ光源3を導光板2の端面に透明接着剤により固定し、面状発光体を作製した。光源3は導光板2の4辺の端面に均等に25mm間隔で配置した。
[Comparative Example 2]
A square optical plate similar to Comparative Example 1 was manufactured, and then the same light source 3 as that of Example 1 was fixed to the end surface of the light guide plate 2 with a transparent adhesive to produce a planar light emitter. The light sources 3 were evenly arranged at 25 mm intervals on the end faces of the four sides of the light guide plate 2.

実施例および比較例の導光板2の形状、寸法および光源3の配置を表2にまとめて示す。
Table 2 summarizes the shapes and dimensions of the light guide plate 2 and the arrangement of the light sources 3 in the examples and comparative examples.

実施例1および比較例1,2の導光板2について光源3を点灯し、導光板2の主面の輝度分布を測定した。その結果をそれぞれ図12〜図14に示す。
図12から分かるように、導光板2が円形である実施例1では規格化した輝度が0.75以上となる主面の面積の割合は80%であり、面内の輝度は均一となった。
図13から分かるように、導光板2が四角形である比較例1では、光源3から離れるほど輝度が小さくなった。比較例1では規格化した輝度が0.75以上となる主面の面積の割合は3%であった。
図14から分かるように、導光板2が四角形である比較例2ではいずれの光源からも離れた導光板の中央部ほど輝度が小さくなった。規格化した輝度が0.75以上となる主面の面積の割合は47%程度であった。
The light source 3 was turned on for the light guide plate 2 of Example 1 and Comparative Examples 1 and 2, and the luminance distribution of the main surface of the light guide plate 2 was measured. The results are shown in FIGS.
As can be seen from FIG. 12, in Example 1 in which the light guide plate 2 is circular, the ratio of the area of the main surface where the normalized luminance is 0.75 or more is 80%, and the in-plane luminance is uniform. .
As can be seen from FIG. 13, in Comparative Example 1 in which the light guide plate 2 is a square, the luminance decreases as the distance from the light source 3 increases. In Comparative Example 1, the ratio of the area of the main surface where the normalized luminance was 0.75 or more was 3%.
As can be seen from FIG. 14, in Comparative Example 2 in which the light guide plate 2 has a quadrangular shape, the luminance decreases as the central portion of the light guide plate is distant from any light source. The ratio of the area of the main surface where the normalized luminance is 0.75 or more was about 47%.

実施例の実測結果と実施形態で計算された計算結果との比較を図15に示す。Y方向は板の中央(Y=146mm)で一定で、X方向が0m〜0.3mにおける輝度を表示、比較している。両者は傾向が良く一致し、実施の形態に示した通りの理論で均一な光拡散要素を付与すれば、輝度分布が面内で均一である導光板2を実現することが可能であると分かる。
光源の数は輝度計算上では、点光源が無数にあるとしているが、実施例との比較結果より有限の個数でも輝度分布を面内で均一にできることがわかる。光源の数を減らしていくと、周辺部の輝度が低くなっていくが、好ましくは8個以上(45度毎以上)少なくとも4個以上(90度毎以上)配置しておけば輝度分布を面内で均一にできる。
FIG. 15 shows a comparison between the actual measurement result of the example and the calculation result calculated in the embodiment. The Y direction is constant at the center of the plate (Y = 146 mm), and the luminance in the X direction from 0 m to 0.3 m is displayed and compared. Both tendencies agree well, and it can be understood that the light guide plate 2 having a uniform luminance distribution in the plane can be realized by applying a uniform light diffusing element according to the theory shown in the embodiment. .
The number of light sources is assumed to be innumerable in the luminance calculation, but it can be seen from the comparison result with the embodiment that the luminance distribution can be made uniform in a plane even with a finite number. As the number of light sources is reduced, the brightness of the surrounding area decreases. However, it is preferable to place at least 8 (at least 45 degrees) and at least 4 (at least 90 degrees) to display the brightness distribution. Can be made uniform within.

以上のように導光板2の主面の形状を円形とし、円の半径R、光源3の輝度減衰係数Eおよび光源3の光拡がり半値角θからなる式が特定の範囲を満たすと拡散材が板に均一に添加されている導光板2においても均一な輝度が得られた。 Above to the shape of the main surface of the light guide plate 2 is circular, the radius R of the circle, an expression that consists of light divergence half angle theta h luminance attenuation coefficient E and the light source 3 of the light source 3 satisfy specific ranges diffusing material Uniform luminance was also obtained in the light guide plate 2 in which is uniformly added to the plate.

なお、本発明は上記に示す実施形態に限定されるものではない。本発明の範囲において、上記実施形態の各要素を、当業者であれば容易に考えうる内容に変更、追加、変換することが可能である。   In addition, this invention is not limited to embodiment shown above. Within the scope of the present invention, it is possible to change, add, or convert each element of the above-described embodiment to a content that can be easily considered by those skilled in the art.

1 面状発光体
2 導光板
3 光源
6 反射カバー
7 輝度計
DESCRIPTION OF SYMBOLS 1 Planar light-emitting body 2 Light-guide plate 3 Light source 6 Reflective cover 7 Luminance meter

Claims (5)

発光面と、該発光面と垂直をなす端面を有する、輝度減衰係数がE(/m)である導光板と、
前記導光板の端面を囲む半径R(m)の円周上に、前記端面を照射し、かつ前記円周の中心を照射するように配置される複数の光源を備え、
前記導光板が式(1)を満たす面状発光体。
A light guide plate having a light emission surface and an end surface perpendicular to the light emission surface, the luminance attenuation coefficient being E (/ m);
A plurality of light sources arranged on the circumference of a radius R (m) surrounding the end face of the light guide plate so as to irradiate the end face and irradiate the center of the circumference;
A planar light-emitting body in which the light guide plate satisfies the formula (1).
発光面と、該発光面と垂直をなす端面を有する、輝度減衰係数がE(/m)である導光板と、
前記導光板の端面を囲む半径R(m)の円周上に、前記端面を照射し、かつ前記円周の中心を照射するように配置される複数の光源を備え、
前記導光板が式(2)を満たす面状発光体。
A light guide plate having a light emission surface and an end surface perpendicular to the light emission surface, the luminance attenuation coefficient being E (/ m);
A plurality of light sources arranged on the circumference of a radius R (m) surrounding the end face of the light guide plate so as to irradiate the end face and irradiate the center of the circumference;
A planar light-emitting body in which the light guide plate satisfies the formula (2).
前記複数の光源は、前記導光板の端面に等間隔で配置されることを特徴とする請求項1または2記載の面状発光体。   The planar light-emitting body according to claim 1, wherein the plurality of light sources are arranged at equal intervals on an end surface of the light guide plate. 前記導光板は、前記端面が円柱の側面であることを特徴とする請求項1乃至3のいずれか一項に記載の面状発光体。   The planar light-emitting body according to any one of claims 1 to 3, wherein the end face of the light guide plate is a cylindrical side face. 前記導光板の発光面が半径Rの円形であることを特徴とする請求項4記載の面状発光体。   The planar light-emitting body according to claim 4, wherein the light-emitting surface of the light guide plate is circular with a radius R.
JP2013201823A 2013-09-27 2013-09-27 Planar light emitting body Pending JP2015069771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201823A JP2015069771A (en) 2013-09-27 2013-09-27 Planar light emitting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201823A JP2015069771A (en) 2013-09-27 2013-09-27 Planar light emitting body

Publications (1)

Publication Number Publication Date
JP2015069771A true JP2015069771A (en) 2015-04-13

Family

ID=52836258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201823A Pending JP2015069771A (en) 2013-09-27 2013-09-27 Planar light emitting body

Country Status (1)

Country Link
JP (1) JP2015069771A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199971A (en) * 2008-02-25 2009-09-03 Nippon Seiki Co Ltd Lighting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199971A (en) * 2008-02-25 2009-09-03 Nippon Seiki Co Ltd Lighting device

Similar Documents

Publication Publication Date Title
JP6289433B2 (en) Lighting module
EP2876469B1 (en) Diffusion plate, backlight module and display device
WO2012081187A1 (en) Backlight device and liquid-crystal display device
WO2015081692A1 (en) Light guide plate, backlight source and liquid crystal display apparatus
WO2013135054A1 (en) Color deviation balance thin film, side-type backlight module and liquid crystal display device
CN104698530A (en) Light guide plate, front-arranged light source module, display module and display device
CN101936489A (en) Backlight module and optical assembly thereof
WO2012081184A1 (en) Backlight device, liquid-crystal display device, and lens
CN104536202A (en) Display panel and display device
WO2012081186A1 (en) Backlight device, liquid-crystal display device, and lens
US20220099867A1 (en) Lighting device and optical member
WO2020244120A1 (en) Backlight assembly, display panel assembly, and backlight control method
JP2010218693A (en) Light guide plate for point-like light source
TWI687722B (en) Light diffusing component having texture gradient for uniform light output from a transparent backlight
TWM521195U (en) Light guiding plate, backlight module, and display device
WO2012081185A1 (en) Backlight device and liquid-crystal display device
JP2015069771A (en) Planar light emitting body
JP2010157464A (en) Surface light source device and display device using the same
CN108107640A (en) Reflective type display apparatus
JP2014002968A (en) Luminaire
JP2015213051A (en) Manufacturing method of surface light source and surface light source
JP2014038697A (en) Backlight device and liquid crystal display
TWI465778B (en) A light control panel, a surface light source device, and a transmission type image display device
US9400348B2 (en) Display backlight unit having reflecting structure for reducing hotspots
KR20130035118A (en) Diffusion sheet to enhance brightness and liquid crystal display device having thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509