JP2015069076A - Structural color filter - Google Patents

Structural color filter Download PDF

Info

Publication number
JP2015069076A
JP2015069076A JP2013204459A JP2013204459A JP2015069076A JP 2015069076 A JP2015069076 A JP 2015069076A JP 2013204459 A JP2013204459 A JP 2013204459A JP 2013204459 A JP2013204459 A JP 2013204459A JP 2015069076 A JP2015069076 A JP 2015069076A
Authority
JP
Japan
Prior art keywords
color filter
structural color
incident
diffraction grating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013204459A
Other languages
Japanese (ja)
Other versions
JP6237060B2 (en
Inventor
松尾 正
Tadashi Matsuo
正 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013204459A priority Critical patent/JP6237060B2/en
Publication of JP2015069076A publication Critical patent/JP2015069076A/en
Application granted granted Critical
Publication of JP6237060B2 publication Critical patent/JP6237060B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve a conventional problem in a structural color filter that utilizes light interference or diffraction by a thin film or a grid structure with thickness or dimension of light wavelength or the like, the problem being what is called large incident angle dependency (visual field angle dependency) that is a change in color characteristics depending on an incident angle or an observation direction of incident light.SOLUTION: A structural color filter has: a diffraction grating pattern formed by a polymeric resin on a substrate; and a metal thin film existing in all gaps in the diffraction grating pattern. A material of the metal thin film is preferably Al or Ag, and TE polarization is used as incident light.

Description

本発明は、構造色を利用したカラーフィルターに関する。特に、ナノインプリント技術で作製した高分子樹脂による回折格子パターンと、回折格子パターンの間隙に金属膜を形成した構造によって生じる色特性を利用するカラーフィルターに関する。   The present invention relates to a color filter using structural colors. In particular, the present invention relates to a color filter using a diffraction grating pattern made of a polymer resin produced by a nanoimprint technique and color characteristics generated by a structure in which a metal film is formed in the gap between the diffraction grating patterns.

カラーフィルターは、ディスプレイ、イメージセンサー、各種光学機器、分析機器などで、色を表現または識別する素子として、様々な用途で利用され、一般的には色素を添加した高分子材料がカラーフィルターの色材として使用されている。   Color filters are used in displays, image sensors, various optical instruments, analytical instruments, etc. as elements that express or identify colors, and are used in various applications. Used as a material.

一方、構造色は、光の波長程度のスケール(厚さ、寸法)の薄膜や回折格子構造によって発生する光の干渉や回折の結果として発現する色であり、構造色を用いたカラーフィルター(以下、構造色フィルターと記す)は、色素合成プロセスを必要とせず、構造パラメータの最適化により多様な色特性を、同一基板上に一括形成できる、等の特長を有する。   On the other hand, the structural color is a color that appears as a result of interference or diffraction of light generated by a thin film or a diffraction grating structure with a scale (thickness, dimension) of the order of the wavelength of light. The structural color filter does not require a dye synthesizing process, and has a feature that various color characteristics can be collectively formed on the same substrate by optimizing structural parameters.

光の波長程度のスケールの構造やパターンを形成する方法としては、従来、電子線描画などの半導体微細加工技術が必要とされ、構造色フィルターの製造コストを高める要因となっていたが、近年、より量産に適したナノインプリント技術が進展しつつあり、構造色フィルターの製造への適用が期待されている。(非特許文献1参照)。   As a method of forming a scale structure and pattern of the order of the wavelength of light, conventionally, semiconductor microfabrication technology such as electron beam drawing has been required, which has been a factor in increasing the manufacturing cost of structural color filters. Nanoimprint technology suitable for mass production is progressing, and application to the production of structural color filters is expected. (Refer nonpatent literature 1).

特許第5023324号公報Japanese Patent No. 5023324

金森義明、月刊ディスプレイ、2009年、3月号、p.32Yoshiaki Kanamori, Monthly Display, March 2009, p. 32 渋谷、大木、回折と結像の光学、朝倉書店(2005年、初版)、p.207Shibuya, Oki, Optics of diffraction and imaging, Asakura Shoten (2005, first edition), p. 207 “マイクロリソグラフィのための薄膜の光学特性(Optical Properties of Thin Films for DUV and VUV Microlithography)”、[online]、ロチェスター工科大学(Rochester Institute of Technology)、インターネット<URL:http://www.rit.edu/kgcoe/microsystems/lithography/thinfilms/thinfilms/thinfilms>“Optical Properties of Thin Films for DUV and VUV Microlithography”, [online], Rochester Institute of Technology, Internet <URL: http: //www.rit. edu / kgcoe / microsystems / lithography / thinfilms / thinfilms / thinfilms>

構造色フィルターは、前述のように、光の干渉、回折を利用することから、波長帯域(発色要因となる、反射率や透過率のスペクトルのピーク若しくはボトムの半値幅)が狭くなり、彩度の高い色を生じることが多い反面、入射光の入射角や観察方向に依存して色特性が変化する、いわゆる入射角依存性(視野角依存性)が大きい、という欠点を有していた。   As described above, the structural color filter uses light interference and diffraction, so the wavelength band (the peak or bottom half-value width of the reflectance or transmittance spectrum, which is a color development factor) is narrowed, and the saturation is reduced. However, the color characteristics change depending on the incident angle of the incident light and the observation direction, and so-called incident angle dependency (viewing angle dependency) is large.

図10は、石英基板上1に、ナノインプリントにより高分子樹脂2(以下、適宜ポリマーと記す)の回折格子を形成した構造色フィルターの断面模式図であるが、図10において、d1は作製した回折格子部の厚さ(深さ)、d2はナノインプリント後の残膜部の厚さであり、P、wはそれぞれ回折格子の周期、線幅を表わしている。また、4、5、6はそれぞれ入射光、反射光、透過光であり、θは入射光の入射角を表わしている。   FIG. 10 is a schematic cross-sectional view of a structural color filter in which a diffraction grating of a polymer resin 2 (hereinafter referred to as a polymer as appropriate) is formed on a quartz substrate 1 by nanoimprinting. In FIG. The thickness (depth) of the grating part, d2 is the thickness of the remaining film part after nanoimprinting, and P and w represent the period and line width of the diffraction grating, respectively. Reference numerals 4, 5, and 6 denote incident light, reflected light, and transmitted light, respectively, and θ represents an incident angle of the incident light.

図10の構造において、d1=250nm、d2=100nm、F(回折格子の線幅/周期)=w/P=0.45とし(Fは通常Filling Factorと呼ばれる)、TE偏光を、上面(回折格子側)から垂直入射(入射角θ=0)したときの分光反射率(反射率スペクトル)を計算すると、例えば図11(a)のようになる。ここで、ポリマーとしては、波長400nmから700nmにおける平均屈折率が1.70程度のもの(以下、これをポリマーAと記す)を用いている。計算には、コンピュータを用いた電磁界解析法の一種である、厳密結合波解析(RCWA:Rigorous Coupled Wave Analysis)法を使用した(非特許文献2参照)。   In the structure of FIG. 10, d1 = 250 nm, d2 = 100 nm, F (line width / period of diffraction grating) = w / P = 0.45 (F is usually referred to as Filling Factor), and TE polarized light is reflected on the upper surface (diffraction). When the spectral reflectance (reflectance spectrum) at normal incidence (incidence angle θ = 0) from the grating side is calculated, for example, as shown in FIG. Here, a polymer having an average refractive index of about 1.70 at a wavelength of 400 nm to 700 nm (hereinafter referred to as polymer A) is used. For the calculation, a rigorous coupled wave analysis (RCWA) method, which is a kind of electromagnetic field analysis method using a computer, was used (see Non-Patent Document 2).

ヒトの眼の分光感度特性によると、青色(B)と感じる光強度のピーク波長は約450nm、同じく緑色(G)、赤色(R)と感じる光強度のピーク波長はそれぞれ、約550nm、610nmである。図11(a)によると、回折格子の周期:P=300nm、375nm、415nmとしたときに、それぞれ波長=450nm、550nm、610nm付近にピークが出来ており、これらの周期で作製することで、加法混色用のB、G、Rの構造色フィルターとなることが分かる。   According to the spectral sensitivity characteristics of the human eye, the peak wavelength of the light intensity felt as blue (B) is about 450 nm, and the peak wavelengths of the light intensity felt as green (G) and red (R) are about 550 nm and 610 nm, respectively. is there. According to FIG. 11 (a), when the period of the diffraction grating is P = 300 nm, 375 nm, and 415 nm, peaks are formed in the vicinity of the wavelengths = 450 nm, 550 nm, and 610 nm, respectively. It turns out that it becomes a B, G, R structural color filter for additive color mixing.

図11(b)は、図10の構造色フィルターに対して、TE(Transverse Electric Wave)偏光を上面(回折格子側)から入射角θ=5degで入射したときの分光反射率を計算したものである。図11(b)では、図11(a)のB、G、Rのピークに、B1、B2、G1、G2、R1、R2と分離が発生している。このように、入射角をわずかに変化させただけで、分光反射率は変化し、図10の構造色フィルターの視野角は狭いことが分かる。   FIG. 11B shows the spectral reflectance when TE (Transverse Electric Wave) polarized light is incident at an incident angle θ = 5 deg from the upper surface (diffraction grating side) with respect to the structural color filter of FIG. is there. In FIG. 11B, separation occurs from B1, B2, G1, G2, R1, and R2 at the B, G, and R peaks in FIG. Thus, it can be seen that the spectral reflectance changes only by slightly changing the incident angle, and the viewing angle of the structural color filter of FIG. 10 is narrow.

また、図12(a)は、同じく図10の構造において、TM(Transverse Magnetic Wave)偏光を、上面(回折格子側)から垂直入射(入射角θ=0deg)したときの分光反射率(反射率スペクトル)を計算したものである。図12(a)によると、回折格子の周期=300nm、371nm、416nmとしたときに、TE偏光の場合よりも半値幅は狭いものの、それぞれ波長=450nm、550nm、610nm付近にピークが出来ており、これらの周期で作製することで、加法混色用のB、G、Rの構造色フィルターとなることが分かる。   Further, FIG. 12A shows the spectral reflectance (reflectance) when TM (Transverse Magnetic Wave) polarized light is perpendicularly incident (incident angle θ = 0 deg) from the upper surface (diffraction grating side) in the structure of FIG. Spectrum). According to FIG. 12A, when the diffraction grating period is set to 300 nm, 371 nm, and 416 nm, the half-value width is narrower than that in the case of TE polarized light, but peaks are formed around wavelengths = 450 nm, 550 nm, and 610 nm, respectively. Thus, it can be seen that the structural color filters for additive color mixture of B, G, and R can be obtained by manufacturing with these periods.

図12(b)は、図10の構造色フィルターに対して、TM偏光を上面(回折格子側)から入射角θ=5degで入射したときの分光反射率を計算したものである。図12(b)によると、TE偏光の場合と同様、図12(a)のB、G、Rのピークに、B1、B2、G1、G2、R1、R2と分離が発生しており、TM偏光入射においても、入射角のわずかな変化で分光反射率が変化し、図10の構造色フィルターは視野角が狭いことが分かる。   FIG. 12B shows the calculated spectral reflectance when TM polarized light is incident from the upper surface (diffraction grating side) at an incident angle θ = 5 deg with respect to the structural color filter of FIG. According to FIG. 12B, as in the case of TE polarized light, the B, G, and R peaks in FIG. 12A are separated from B1, B2, G1, G2, R1, and R2, and TM Even with polarized light incidence, the spectral reflectance changes with a slight change in the incident angle, and it can be seen that the structural color filter of FIG. 10 has a narrow viewing angle.

上述の課題を解決するために、請求項1に記載の本発明は、基板と、当該基板上に設けられ高分子樹脂から形成した回折格子パターンとを有する構造色フィルターであって、前記回折格子パターンの間隙全域に金属性の薄膜が存在することを特徴とする構造色フィルターである。   In order to solve the above-mentioned problem, the present invention according to claim 1 is a structural color filter comprising a substrate and a diffraction grating pattern formed on the substrate and formed from a polymer resin, wherein the diffraction grating The structural color filter is characterized in that a metallic thin film exists in the entire gap of the pattern.

請求項2に記載の本発明は、前記金属性の薄膜はAlであることを特徴とする請求項1に記載の構造色フィルターである。   The present invention according to claim 2 is the structural color filter according to claim 1, wherein the metallic thin film is Al.

請求項3に記載の本発明は、金属性の薄膜はAgであることを特徴とする請求項1に記載の構造色フィルターである。   According to a third aspect of the present invention, in the structural color filter according to the first aspect, the metallic thin film is Ag.

請求項4に記載の本発明は、入射光として、TE偏光を用いることを特徴とする請求項1乃至請求項3のいずれかに記載の構造色フィルターである。   The present invention described in claim 4 is the structural color filter according to any one of claims 1 to 3, wherein TE polarized light is used as incident light.

本発明は、ナノインプリント技術で作製した高分子樹脂による回折格子パターンと、回折格子パターンの間隙全域に金属性の薄膜(以下、空間膜と記す)が存在することによって発現する色特性を利用する構造色フィルターであり、空間膜材料として、Al、またはAgを用い、入射光としてTE偏光を用いることにより、従来問題であった構造色フィルターの入射角依存性、すなわち視野角依存性が大きい、という欠点を抑えることができる。また、量産に適したナノインプリント技術と、特に空間膜材料として安価で入手しやすいAlを使用することにより、製造コストを低減することができる。   The present invention is a structure that utilizes a diffraction grating pattern made of a polymer resin produced by nanoimprint technology and a color characteristic that is manifested by the presence of a metallic thin film (hereinafter referred to as a space film) over the entire gap of the diffraction grating pattern. By using Al or Ag as the space film material and using TE polarized light as the incident light, the incident color dependency of the structural color filter, which has been a problem in the past, that is, the viewing angle dependency is large. It is possible to suppress defects. In addition, the production cost can be reduced by using nanoimprint technology suitable for mass production, and in particular, Al which is inexpensive and easily available as a space membrane material.

本発明の構造色フィルターの断面模式図、および本発明の構造色フィルターに回折格子側から入射光を入射させる場合の概念図Schematic cross-sectional view of the structural color filter of the present invention, and conceptual diagram when incident light enters the structural color filter of the present invention from the diffraction grating side 本発明の構造色フィルターの断面模式図、および本発明の構造色フィルターに基板側から入射光を入射させる場合の概念図Schematic cross-sectional view of the structural color filter of the present invention, and conceptual diagram when incident light is incident on the structural color filter of the present invention from the substrate side 本発明の構造色フィルターを設計し、TE偏光である入射光を回折格子側から垂直入射する場合の分光反射率を計算した結果の例を示す特性図The characteristic diagram which shows the example of the result of having calculated the structural reflectance filter of this invention, and calculating the spectral reflectance when incident light which is TE polarized light is perpendicularly incident from the diffraction grating side 本発明の構造色フィルターに、TE偏光である入射光を回折格子側の斜め方向から入射する場合の分光反射率を計算した結果の例を示す特性図The characteristic view which shows the example of the result of having calculated the spectral reflectance when the incident light which is TE polarized light is incident on the structural color filter of the present invention from the oblique direction on the diffraction grating side 本発明の構造色フィルターを設計し、TE偏光である入射光を基板側から垂直入射する場合の分光反射率を計算した結果の例を示す特性図The characteristic diagram which shows the example of the result of having calculated the structural reflectance filter of this invention, and calculating the spectral reflectance when incident light which is TE polarized light is perpendicularly incident from the substrate side 本発明の構造色フィルターに、TE偏光である入射光を基板側の斜め方向から入射する場合の分光反射率を計算した結果の例を示す特性図The characteristic figure which shows the example of the result of having calculated the spectral reflectance in case the incident light which is TE polarized light enters into the structural color filter of this invention from the diagonal direction of a board | substrate side 本発明の構造色フィルターを設計し、TE偏光である入射光を基板側から垂直入射する場合の分光透過率を計算した結果の例を示す特性図The characteristic diagram which shows the example of the result of having calculated the structural transmittance | permeability when designing the structural color filter of this invention and making incident light which is TE polarized light perpendicularly incident from the board | substrate side 本発明の構造色フィルターに、TE偏光である入射光を基板側の斜め方向から入射する場合の分光透過率を計算した結果の例を示す特性図The characteristic figure which shows the example of the result of having calculated the spectral transmittance in case the incident light which is TE polarized light injects into the structural color filter of this invention from the diagonal direction of a board | substrate side 本発明の構造の構造色フィルターに、TM偏光である入射光を回折格子側の(a)垂直方向から、および(b)(c)斜め方向から入射する場合の分光反射率を計算した結果の例を示す特性図As a result of calculating the spectral reflectance when incident light that is TM polarized light is incident on the structural color filter of the present invention from (a) the vertical direction and (b) (c) from the oblique direction on the diffraction grating side. Example characteristic diagram 従来構造の構造色フィルターの断面模式図、および従来構造の構造色フィルターに回折格子側から入射光を入射させる場合の概念図Cross-sectional schematic diagram of a structural color filter with a conventional structure, and a conceptual diagram when incident light is incident on a structural color filter with a conventional structure from the diffraction grating side 従来構造の構造色フィルターに、入射光(TE偏光)を回折格子側から入射する場合の分光反射率を計算した結果の例を示す特性図であり、(a)は垂直方向、(b)は斜め方向から入射する場合を示す特性図It is a characteristic view which shows the example of the result of having calculated the spectral reflectance in case incident light (TE polarization | polarized-light) injects into the structural color filter of a conventional structure from the diffraction grating side, (a) is a perpendicular direction, (b) is a vertical direction. Characteristic diagram showing the incident from an oblique direction 従来構造の構造色フィルターに、入射光(TM偏光)を回折格子側から入射する場合の分光反射率を計算した結果の例を示す特性図であり、(a)は垂直方向、(b)は斜め方向から入射する場合を示す特性図It is a characteristic view which shows the example of the result of having calculated the spectral reflectance in case incident light (TM polarized light) injects into the structural color filter of a conventional structure from the diffraction grating side, (a) is a perpendicular direction, (b) is Characteristic diagram showing the incident from an oblique direction

図1、および図2に示すように、本発明の実施の形態に関わる構造色フィルターは、基板1(石英、アルミナなど透明性であることが好ましい)と、基板1上に高分子樹脂2から形成した回折格子パターン、および前記回折格子パターンの間隙全域に金属性の薄膜(空間膜)3を有している。   As shown in FIG. 1 and FIG. 2, the structural color filter according to the embodiment of the present invention includes a substrate 1 (preferably transparent such as quartz and alumina) and a polymer resin 2 on the substrate 1. The formed diffraction grating pattern and a metallic thin film (space film) 3 are provided in the entire gap between the diffraction grating patterns.

好ましくは、前記回折格子パターンの間隙全域に存在する空間膜3は、Al(アルミニウム)、若しくはAg(銀)である。   Preferably, the space film 3 existing over the entire gap of the diffraction grating pattern is Al (aluminum) or Ag (silver).

図1、および図2に示すように、本発明の実施形態においては、TE偏光である入射光(図1では符号4、図2では符号7)は回折格子側(図1)、若しくは基板側(図2)から入射させる。後述するが、それらの反射光(図1では符号5、図2では符号8)は、減法混色用の3原色である、Y(イエロー)、M(マゼンタ)、C(シアン)として利用することができる。また、透過光(図1では6、図2では9)は、Y、M、Cの補色であり、加法混色用の3原色である、B(青)、G(緑)、R(赤)として利用することができる。   As shown in FIGS. 1 and 2, in the embodiment of the present invention, incident light that is TE-polarized light (reference numeral 4 in FIG. 1 and reference numeral 7 in FIG. 2) is on the diffraction grating side (FIG. 1) or on the substrate side. Incident light is incident from (FIG. 2). As will be described later, the reflected light (reference numeral 5 in FIG. 1 and reference numeral 8 in FIG. 2) is used as Y (yellow), M (magenta), and C (cyan), which are the three primary colors for subtractive color mixing. Can do. Further, transmitted light (6 in FIG. 1 and 9 in FIG. 2) is a complementary color of Y, M, and C, and three primary colors for additive color mixing, B (blue), G (green), and R (red). Can be used as

以下、図3乃至図8に、本発明の構造色フィルターについて、波長400nmから700nmの可視光域におけるTE偏光入射の分光反射率、若しくは分光透過率を計算した結果を示す。計算方法は、図11、図12と同様、RCWA法であり、基板材料は石英、高分子樹脂としては、ポリマーA、ポリマーBの2種類、空間膜材料としては、AlまたはAgとした場合について示す。計算に必要な屈折率は、石英は1.46で一定とし、Al、Agについては、非特許文献3に掲載されている値を用いた。また、ポリマーAは波長400nmから700nmの領域における平均屈折率が約1.70の高屈折率ポリマーであり、分光エリプソメーターで実際に測定した数値を用いた。ポリマーBは平均屈折率が約1.50の一般的なポリマーである。   Hereinafter, FIGS. 3 to 8 show the results of calculating the spectral reflectance or the spectral transmittance of TE polarized light in the visible light wavelength range of 400 nm to 700 nm for the structural color filter of the present invention. 11 and 12, the calculation method is the RCWA method, the substrate material is quartz, the polymer resin is polymer A and polymer B, and the space film material is Al or Ag. Show. The refractive index required for the calculation was constant at 1.46 for quartz, and the values listed in Non-Patent Document 3 were used for Al and Ag. Polymer A is a high refractive index polymer having an average refractive index of about 1.70 in a wavelength range of 400 nm to 700 nm, and a value actually measured with a spectroscopic ellipsometer was used. Polymer B is a common polymer having an average refractive index of about 1.50.

図3乃至図8の計算結果は、図11、図12の場合と同様、ヒトの目の分光感度特性に即して、B(青):450nm、G(緑):550nm、R(赤):610nmにピーク、または、Y(イエロー):450nm、M(マゼンタ):550nm、C(シアン):610nmにボトムができるよう、構造パラメータである格子部膜厚:d1、残膜部膜厚:d2、周期:P、およびF=w/Pを調整して設計した結果を示している。それぞれの場合の具体的な材料、パラメータの数値は、図3乃至図8中に示している。   The calculation results of FIGS. 3 to 8 are in accordance with the spectral sensitivity characteristics of the human eye, as in FIGS. 11 and 12, B (blue): 450 nm, G (green): 550 nm, R (red). : Peak at 610 nm, or Y (yellow): 450 nm, M (magenta): 550 nm, C (cyan): Lattice film thickness: d1, structural film thickness, which is a structural parameter so that a bottom can be formed at 610 nm: The result of designing by adjusting d2, period: P, and F = w / P is shown. Specific materials and parameter values in each case are shown in FIGS.

(実施例1)
図3,4を参照しつつ、実施例1について説明する。図3は、本発明の構造色フィルターの構成と、当該構造色フィルターにTE偏光である入射光を回折格子側から垂直入射した場合の分光反射率を計算した結果とを示す特性図である。
実施例1では、図3、図4に基づき、本発明の構造色フィルターの有効性を説明する。図3(a)によると、格子部および残膜部材料がポリマーA、空間膜材料がAlの組み合わせで、格子部膜厚:d1=150nm、残膜部膜厚:d2=100nmとし、F=w/P=0.5の条件で、回折格子の周期:P=270nm、430nm、520nmとしたときに、それぞれ波長=450nm、550nm、610nm付近にボトムが出来ており、これらの周期で作製することで、減法混色用のY、M、Cの構造色フィルターとなることが分かる。同様に、図3(b)では同じ材料の組み合わせで、d1、d2、F、Pを図中に示した数値に最適化することで波長=450nm、550nm、610nm付近にボトムが出来ており、減法混色用のY、M、Cの構造色フィルターとなることが分かる。
Example 1
Embodiment 1 will be described with reference to FIGS. FIG. 3 is a characteristic diagram showing the structure of the structural color filter of the present invention and the result of calculating the spectral reflectance when incident light, which is TE polarized light, is vertically incident on the structural color filter from the diffraction grating side.
In Example 1, the effectiveness of the structural color filter of the present invention will be described with reference to FIGS. According to FIG. 3A, the lattice part and the remaining film part material are polymer A, and the space film material is Al, the lattice part film thickness: d1 = 150 nm, the remaining film part film thickness: d2 = 100 nm, and F = Under the condition of w / P = 0.5, when the diffraction grating period is P = 270 nm, 430 nm, and 520 nm, bottoms are formed in the vicinity of wavelengths = 450 nm, 550 nm, and 610 nm, respectively. Thus, it can be seen that the structural color filter of Y, M, and C for subtractive color mixing is obtained. Similarly, in FIG. 3B, the bottoms are formed around wavelengths = 450 nm, 550 nm, and 610 nm by optimizing d1, d2, F, and P to the numerical values shown in the figure with the same combination of materials. It turns out that it becomes a structural color filter of Y, M, and C for subtractive color mixing.

さらに、図3(c)では格子部および残膜部材料がポリマーB、空間膜材料がAlの組み合わせで、図3(d)では格子部および残膜部材料がポリマーA、空間膜材料がAgの組み合わせで、それぞれd1、d2、F、Pを図中に示した数値に最適化することで波長=450nm、550nm、610nm付近にボトムが出来ており、減法混色用のY、M、Cの構造色フィルターが得られることが分かる。   Further, in FIG. 3 (c), the lattice part and the remaining film part material are polymer B and the space film material is a combination of Al, and in FIG. 3 (d), the lattice part and the remaining film part material are the polymer A, and the space film material is Ag. By optimizing d1, d2, F, and P to the numerical values shown in the figure, bottoms are formed in the vicinity of wavelengths = 450 nm, 550 nm, and 610 nm, and Y, M, and C for subtractive color mixing are formed. It can be seen that a structural color filter is obtained.

図4(a)〜(c)は、図3(a)の構造色フィルターに対して、TE偏光を回折格子側から、それぞれ入射角θ=5、10、20degで斜め入射したときの分光反射率を計算したものである。図4から分かるように、図3(a)の構造色フィルターは、入射角を20度程度まで変化させてもY、M、Cのボトム形状に、大きな変化は見られない。また、図では省略しているが、図3(b)、図3(c)、図3(d)の構造色フィルターに対しても同様である。このように、本発明の構造色フィルターは、TE偏光の回折格子側からの斜め入射(入射角)に対する依存性が従来構造の構造色フィルターよりもはるかに小さく、視野角が広いことが分かる。   4A to 4C show spectral reflections when TE polarized light is obliquely incident on the structural color filter of FIG. 3A from the diffraction grating side at incident angles θ = 5, 10 and 20 degrees, respectively. The rate is calculated. As can be seen from FIG. 4, the structural color filter of FIG. 3A does not show a significant change in the bottom shapes of Y, M, and C even when the incident angle is changed to about 20 degrees. Although not shown in the figure, the same applies to the structural color filters of FIGS. 3B, 3C, and 3D. Thus, it can be seen that the structural color filter of the present invention has a much smaller dependency on the oblique incidence (incident angle) of TE-polarized light from the diffraction grating side than the conventional structural color filter and a wide viewing angle.

(実施例2)
図5,6を参照しつつ、実施例2について説明する。図5は、本発明の構造色フィルターの構成と、当該構造色フィルターにTE偏光である入射光を基板側から垂直入射した場合の分光反射率を計算した結果とを示す特性図である。
実施例2では、図5、図6に基づき、本発明の構造色フィルターの有効性を説明する。図5(a)によると、格子部、および残膜部材料がポリマーA、空間膜材料がAlの組み合わせで、格子部膜厚:d1=150nm、残膜部膜厚:d2=100nmとし、F=w/P=0.45の条件で、回折格子の周期:P=300nm、470nm、580nmとしたときに、それぞれ波長=450nm、550nm、610nm付近にボトムが出来ており、これらの周期で作製することで、減法混色用のY、M、Cの構造色フィルターとなることが分かる。図5(b)では、材料組み合わせと、d1、d2を図5(a)と同じとし、F=w/P=0.5の条件で、Pを図中に示した数値に最適化することで波長=450nm、550nm、610nm付近にボトムが出来ており、減法混色用のY、M、Cの構造色フィルターとなることが分かる。
(Example 2)
Example 2 will be described with reference to FIGS. FIG. 5 is a characteristic diagram showing the structure of the structural color filter of the present invention and the result of calculating the spectral reflectance when incident light, which is TE polarized light, is vertically incident on the structural color filter from the substrate side.
In Example 2, the effectiveness of the structural color filter of the present invention will be described with reference to FIGS. According to FIG. 5A, the lattice portion and the remaining film portion material are polymer A and the space film material is Al, the lattice portion film thickness: d1 = 150 nm, the remaining film portion film thickness: d2 = 100 nm, F = W / P = 0.45, and when the diffraction grating period is P = 300 nm, 470 nm, and 580 nm, bottoms are formed around wavelengths = 450 nm, 550 nm, and 610 nm, respectively. By doing so, it can be seen that a structural color filter of Y, M, and C for subtractive color mixing is obtained. In FIG. 5B, the material combination, d1 and d2 are the same as in FIG. 5A, and P is optimized to the numerical value shown in the figure under the condition of F = w / P = 0.5. Thus, it can be seen that bottoms are formed in the vicinity of wavelengths = 450 nm, 550 nm, and 610 nm, and that Y, M, and C structural color filters for subtractive color mixing are obtained.

さらに、図5(c)では格子部、および残膜部材料がポリマーB、空間膜材料がAlの組み合わせで、図5(d)では格子部、および残膜部材料がポリマーA、空間膜材料がAgの組み合わせで、それぞれd1、d2、F、Pを図中に示した数値に最適化することで波長=450nm、550nm、610nm付近にボトムが出来ており、減法混色用のY、M、Cの構造色フィルターが得られることが分かる。   Further, in FIG. 5 (c), the lattice portion and the remaining film portion material are a combination of polymer B and the space film material are Al, and in FIG. 5 (d), the lattice portion and the remaining film portion material are a polymer A and the space film material. Is a combination of Ag, and by optimizing d1, d2, F, and P to the numerical values shown in the figure, bottoms are formed around wavelengths = 450 nm, 550 nm, and 610 nm, and Y, M, It can be seen that a structural color filter of C is obtained.

図6(a)は、図5(a)の構造色フィルターに対して、TE偏光を基板側から入射角θ=10degで斜め入射したときの分光反射率を計算したものである。図6(b)、(c)は、図5(b)の構造色フィルターに対して、TE偏光を基板側から、それぞれ入射角θ=10、20degで斜め入射したときの分光反射率を計算したものである。図6から分かるように、図5(a)、(b)の構造色フィルターでは、入射角を20度程度まで変化させてもY、M、Cのボトム形状に、大きな変化は見られない。図では省略しているが、図5(c)、図5(d)の構造色フィルターに対しても同様である。このように、本発明の構造色フィルターは、TE偏光の基板側からの斜め入射(入射角)に対する依存性が従来構造の構造色フィルターよりもはるかに小さく、視野角が広いことが分かる。   FIG. 6A shows the calculated spectral reflectance when TE polarized light is obliquely incident on the structural color filter of FIG. 5A from the substrate side at an incident angle θ = 10 deg. FIGS. 6B and 6C calculate the spectral reflectance when TE polarized light is incident obliquely at an incident angle θ = 10 and 20 degrees from the substrate side, respectively, on the structural color filter of FIG. 5B. It is a thing. As can be seen from FIG. 6, in the structural color filters of FIGS. 5 (a) and 5 (b), there is no significant change in the bottom shapes of Y, M, and C even when the incident angle is changed to about 20 degrees. Although not shown in the figure, the same applies to the structural color filters of FIGS. 5C and 5D. Thus, it can be seen that the structural color filter of the present invention is much smaller in dependence on the oblique incidence (incident angle) of TE polarized light from the substrate side than the structural color filter of the conventional structure and has a wide viewing angle.

(実施例3)
図7,8を参照しつつ、実施例3について説明する。図7は、本発明の構造色フィルターの構成と、当該構造色フィルターにTE偏光である入射光を回折格子側から垂直入射した場合の分光反射率を計算した結果とを示す特性図である。
実施例3では、図7、図8に基づき、本発明の構造色フィルターの有効性を説明する。図7(a)、図7(b)、図7(c)によると、格子部、および残膜部材料がポリマーA、空間膜材料がAlの組み合わせで、それぞれ図中のd1、d2、F=w/Pの条件で、回折格子の周期:Pを図中に示した数値に最適化したときに、波長=450nm、550nm、610nm付近にピークが出来ており、これらの周期で作製することで、加法混色用のB、G、Rの構造色フィルターとなることが分かる。
(Example 3)
Embodiment 3 will be described with reference to FIGS. FIG. 7 is a characteristic diagram showing the structure of the structural color filter of the present invention and the result of calculating the spectral reflectance when incident light, which is TE polarized light, is vertically incident on the structural color filter from the diffraction grating side.
In Example 3, the effectiveness of the structural color filter of the present invention will be described with reference to FIGS. According to FIGS. 7A, 7B, and 7C, the lattice part and the remaining film part material are a combination of polymer A and the space film material is Al, and d1, d2, When the diffraction grating period: P is optimized to the numerical value shown in the figure under the condition of = w / P, peaks are formed in the vicinity of wavelengths = 450 nm, 550 nm, and 610 nm. Thus, B, G, and R structural color filters for additive color mixing are obtained.

さらに、図7(d)では格子部、および残膜部材料がポリマーB、空間膜材料がAlの組み合わせで、同様にd1、d2、F、Pを図中に示した数値に最適化することで波長=450nm、550nm、610nm付近にピークが出来ており、加法混色用のB、G、Rの構造色フィルターが得られることが分かる。   Furthermore, in FIG. 7 (d), the lattice part and the remaining film part material are polymers B and the space film material is Al, and d1, d2, F, and P are similarly optimized to the values shown in the figure. And peaks at wavelengths of about 450 nm, 550 nm, and 610 nm, and it can be seen that B, G, and R structural color filters for additive color mixing can be obtained.

図8(a)、(b)は、図7(c)の構造色フィルターに対して、TE偏光を基板側から、それぞれ入射角θ=10、15degで斜め入射したときの分光透過率を計算した結果を示すものである。さらに、図8(c)、(d)は、図7(d)の構造色フィルターに対して、TE偏光を基板側から、それぞれ入射角θ=20、30degで斜め入射したときの分光透過率を計算した結果を示すものである。図8(a)、(b)、(c)、(d)から分かるように、図7(c)、図7(d)の構造色フィルターは、入射角を20度程度まで変化させてもB、G、Rのピーク形状に、大きな変化は見られない。図では省略しているが、図7(a)、図7(b)の構造色フィルターに対しても同様である。このように、本発明の構造色フィルターは、TE偏光の基板側からの斜め入射(入射角)に対する依存性が従来構造の構造色フィルターよりもはるかに小さく、視野角が広いことが分かる。   8A and 8B calculate the spectral transmittance when TE polarized light is obliquely incident at the incident angles θ = 10 and 15 degrees from the substrate side, respectively, with respect to the structural color filter of FIG. 7C. The results are shown. Further, FIGS. 8C and 8D show spectral transmittances when TE polarized light is obliquely incident on the structural color filter of FIG. 7D from the substrate side at incident angles θ = 20 and 30 degrees, respectively. The result of calculating is shown. As can be seen from FIGS. 8 (a), (b), (c), and (d), the structural color filters of FIGS. 7 (c) and 7 (d) can change the incident angle to about 20 degrees. There is no significant change in the peak shapes of B, G, and R. Although not shown in the figure, the same applies to the structural color filters of FIGS. 7 (a) and 7 (b). Thus, it can be seen that the structural color filter of the present invention is much smaller in dependence on the oblique incidence (incident angle) of TE polarized light from the substrate side than the structural color filter of the conventional structure and has a wide viewing angle.

(比較例)
図9(a)では、本発明の構造色フィルターに、TM偏光である入射光を回折格子側から入射した場合の分光反射率の計算結果を示している。図9(a)によると、格子部、および残膜部材料がポリマーA、空間膜材料がAlの組み合わせで、格子部膜厚:d1=100nm、残膜部膜厚:d2=150nmとし、F=w/P=0.5の条件で、回折格子の周期:P=355nmとしたときに、それぞれ波長=550nm付近にピークが出来ており、Gの構造色フィルターとなることが分かる。尚、ここでは後述の斜め入射の場合の図を見やすくするために、Gの場合についてのみ図示したが、周期:Pを最適化することで、B、Rの構造色フィルターを得ることができる。
(Comparative example)
FIG. 9A shows the calculation result of the spectral reflectance when incident light, which is TM polarized light, is incident on the structural color filter of the present invention from the diffraction grating side. According to FIG. 9A, the lattice part and the remaining film part material are polymer A and the space film material is Al, and the lattice part film thickness is d1 = 100 nm and the remaining film part film thickness is d2 = 150 nm. Assuming that the diffraction grating period is P = 355 nm under the condition of = w / P = 0.5, peaks are formed in the vicinity of the wavelength = 550 nm, respectively, and it can be seen that the structure color filter of G is obtained. Here, in order to make it easy to see a diagram in the case of oblique incidence, which will be described later, only the case of G is illustrated, but by optimizing the period P, B and R structural color filters can be obtained.

図9(b)、(c)では、図9(a)の構造色フィルターに対して、TM偏光を回折格子側から、それぞれ入射角θ=5、10degで斜め入射したときの分光反射率を示している。図9(b)、(c)から分かるように、図9(a)のGのピークには、5degの斜め入射で既に分離が生じており、入射角とともに分離したピーク位置の間隔は大きくなっている。図9(b)、(c)ではGのピークについて示したが、B、Rのピークについても同様である。このように、本発明の構造色フィルターにおいては、TM偏光を入射光として使用することは好適ではない。   9B and 9C, the spectral reflectance when the TM polarized light is obliquely incident at the incident angle θ = 5 and 10 deg from the diffraction grating side to the structural color filter of FIG. 9A, respectively. Show. As can be seen from FIGS. 9B and 9C, the G peak in FIG. 9A has already been separated at an oblique incidence of 5 deg, and the interval between the separated peak positions increases with the incident angle. ing. 9B and 9C show the G peak, the same applies to the B and R peaks. Thus, in the structural color filter of the present invention, it is not preferable to use TM polarized light as incident light.

また、計算結果を使っての説明は省略するが、本発明の構造色フィルターにおいては、空間膜としての材料としては、Al、Ag以外の材料からは、良好なB、G、Rのピーク形状、若しくはY、M、Cのボトム形状は、現状得られていない。   Further, although explanations using calculation results are omitted, in the structural color filter of the present invention, as the material for the space film, materials other than Al and Ag have good B, G, and R peak shapes. Or, the bottom shapes of Y, M, and C are not obtained at present.

本発明は、色素を添加した高分子材料を使わず、透明材料からなる回折格子パターンと、金属性薄膜を使い、構造パラメータ(膜厚、周期、線幅)を最適化することにより、多様で、視野角の大きい色特性を、同一基板上に一括形成できるので、ディスプレイ、イメージセンサー、各種光学機器、分析機器などへの応用が期待される。   The present invention uses a diffraction grating pattern made of a transparent material and a metallic thin film without using a polymer material added with a dye, and optimizes structural parameters (film thickness, period, line width). Since color characteristics with a large viewing angle can be formed on the same substrate, application to displays, image sensors, various optical instruments, analytical instruments, etc. is expected.

1・・・基板
2・・・高分子樹脂
3・・・金属性薄膜(空間膜)
4、7・・・入射光
5、8・・・反射光
6、9・・・透過光
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Polymer resin 3 ... Metallic thin film (space film)
4, 7 ... Incident light 5, 8 ... Reflected light 6, 9 ... Transmitted light

Claims (4)

基板と、当該基板上に設けられ高分子樹脂から形成した回折格子パターンとを有する構造色フィルターであって、前記回折格子パターンの間隙全域に金属性の薄膜が存在することを特徴とする構造色フィルター。   A structural color filter having a substrate and a diffraction grating pattern formed from a polymer resin provided on the substrate, wherein a metallic thin film is present in the entire gap of the diffraction grating pattern filter. 金属性の薄膜はAlであることを特徴とする請求項1に記載の構造色フィルター。   The structural color filter according to claim 1, wherein the metallic thin film is Al. 金属性の薄膜はAgであることを特徴とする請求項1に記載の構造色フィルター。   The structural color filter according to claim 1, wherein the metallic thin film is Ag. 入射光として、TE偏光を用いることを特徴とする請求項1乃至請求項3のいずれかに記載の構造色フィルター。   The structural color filter according to any one of claims 1 to 3, wherein TE polarized light is used as incident light.
JP2013204459A 2013-09-30 2013-09-30 Structure color filter Expired - Fee Related JP6237060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204459A JP6237060B2 (en) 2013-09-30 2013-09-30 Structure color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204459A JP6237060B2 (en) 2013-09-30 2013-09-30 Structure color filter

Publications (2)

Publication Number Publication Date
JP2015069076A true JP2015069076A (en) 2015-04-13
JP6237060B2 JP6237060B2 (en) 2017-11-29

Family

ID=52835770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204459A Expired - Fee Related JP6237060B2 (en) 2013-09-30 2013-09-30 Structure color filter

Country Status (1)

Country Link
JP (1) JP6237060B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487153A (en) * 2015-12-23 2016-04-13 中国科学院重庆绿色智能技术研究院 High efficiency subtractive color optical filter based on composite ultrathin metal
CN108333832A (en) * 2018-03-05 2018-07-27 京东方科技集团股份有限公司 Color membrane substrates, liquid crystal display panel and display device
JP2018195908A (en) * 2017-05-15 2018-12-06 ソニーセミコンダクタソリューションズ株式会社 Image element, image element manufacturing method, electronic apparatus, and imaging module
US10649113B2 (en) 2017-09-29 2020-05-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154382A (en) * 2004-11-30 2006-06-15 Sumitomo Chemical Co Ltd Color filter having polarized light separation function and display device having the same
JP2007025692A (en) * 2005-07-19 2007-02-01 Samsung Electronics Co Ltd Polarizer, method of manufacturing the same and display device having the same
JP2009534700A (en) * 2006-04-19 2009-09-24 コミツサリア タ レネルジー アトミーク Micro-structure spectral filter and image sensor
JP2011123186A (en) * 2009-12-09 2011-06-23 Panasonic Corp Color development structure and product using color development structure
JP2011173379A (en) * 2010-02-25 2011-09-08 Toppan Printing Co Ltd Display and method of manufacturing the same
WO2012105555A1 (en) * 2011-02-01 2012-08-09 株式会社クラレ Wavelength selective filter element, method for manufacturing same, and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006154382A (en) * 2004-11-30 2006-06-15 Sumitomo Chemical Co Ltd Color filter having polarized light separation function and display device having the same
JP2007025692A (en) * 2005-07-19 2007-02-01 Samsung Electronics Co Ltd Polarizer, method of manufacturing the same and display device having the same
JP2009534700A (en) * 2006-04-19 2009-09-24 コミツサリア タ レネルジー アトミーク Micro-structure spectral filter and image sensor
JP2011123186A (en) * 2009-12-09 2011-06-23 Panasonic Corp Color development structure and product using color development structure
JP2011173379A (en) * 2010-02-25 2011-09-08 Toppan Printing Co Ltd Display and method of manufacturing the same
WO2012105555A1 (en) * 2011-02-01 2012-08-09 株式会社クラレ Wavelength selective filter element, method for manufacturing same, and image display device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487153A (en) * 2015-12-23 2016-04-13 中国科学院重庆绿色智能技术研究院 High efficiency subtractive color optical filter based on composite ultrathin metal
US11705473B2 (en) 2017-05-15 2023-07-18 Sony Semiconductor Solutions Corporation Optical filters and associated imaging devices
JP2018195908A (en) * 2017-05-15 2018-12-06 ソニーセミコンダクタソリューションズ株式会社 Image element, image element manufacturing method, electronic apparatus, and imaging module
US11264424B2 (en) 2017-05-15 2022-03-01 Sony Semiconductor Solutions Corporation Optical filters and associated imaging devices
US10928552B2 (en) 2017-09-29 2021-02-23 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11397283B2 (en) 2017-09-29 2022-07-26 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10732322B2 (en) 2017-09-29 2020-08-04 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10955588B2 (en) 2017-09-29 2021-03-23 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11112537B2 (en) 2017-09-29 2021-09-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11614563B2 (en) 2017-09-29 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11131791B2 (en) 2017-09-29 2021-09-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11609359B2 (en) 2017-09-29 2023-03-21 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10649113B2 (en) 2017-09-29 2020-05-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11385382B2 (en) 2017-09-29 2022-07-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11391867B2 (en) 2017-09-29 2022-07-19 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US10928553B2 (en) 2017-09-29 2021-02-23 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402546B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402545B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11402544B2 (en) 2017-09-29 2022-08-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
CN108333832A (en) * 2018-03-05 2018-07-27 京东方科技集团股份有限公司 Color membrane substrates, liquid crystal display panel and display device
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11840755B2 (en) 2019-06-26 2023-12-12 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11412817B2 (en) 2020-08-07 2022-08-16 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer

Also Published As

Publication number Publication date
JP6237060B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6237060B2 (en) Structure color filter
Wang et al. Full color generation using silver tandem nanodisks
Raj Shrestha et al. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array
KR101321079B1 (en) Wavelength filter based on a subwavelength metal grating
CN106574996A (en) Security element having subwavelength grating
US9910198B2 (en) Optical filter and optical apparatus
Shrestha et al. Non-iridescent transmissive structural color filter featuring highly efficient transmission and high excitation purity
US20150118124A1 (en) Structural colorimetric sensor
US7952804B2 (en) Optical filter element, optical filter, and method of manufacturing optical filter
TWI557449B (en) Optical elements and optical devices
Zhou et al. Transition from a spectrum filter to a polarizer in a metallic nano-slit array
CN105093380B (en) Inorganic polarizing plate and production method thereof
JP6413300B2 (en) Display body and manufacturing method of display body
JP2015028528A (en) Transmission diffractive optical element and measuring apparatus
CN103777264A (en) Ultrahigh transmittivity color subtraction filter applicable to any light and preparation method of ultrahigh transmittivity color subtraction filter
JP2005258053A (en) Transmission type diffraction grating
JP2015191230A (en) resonant element
US10379275B2 (en) Optical filter including plates for filtering light and optical measuring device employing optical filter
Wu et al. The relationship of selective surrounding response and the nanophotonic structures of Morpho butterfly scales
JP6337583B2 (en) Structural color filter and optical instrument using the same
Li et al. Tunable color filter with non-subwavelength grating at oblique incidence
JPWO2008105156A1 (en) Polarization imaging apparatus and differential interference microscope
JP2015166861A (en) Method for manufacturing optical device and optical device
KR101783428B1 (en) Polarization-tuned dynamic color filter based on nanowire array
JP2021113898A (en) Transmission type relief diffraction grating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees