JP2015068597A - Exhaust gas boiler with denitrification device - Google Patents

Exhaust gas boiler with denitrification device Download PDF

Info

Publication number
JP2015068597A
JP2015068597A JP2013204958A JP2013204958A JP2015068597A JP 2015068597 A JP2015068597 A JP 2015068597A JP 2013204958 A JP2013204958 A JP 2013204958A JP 2013204958 A JP2013204958 A JP 2013204958A JP 2015068597 A JP2015068597 A JP 2015068597A
Authority
JP
Japan
Prior art keywords
concentration
target
nitrogen oxide
exhaust gas
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013204958A
Other languages
Japanese (ja)
Other versions
JP6173152B2 (en
Inventor
忠由 阿部
Tadayoshi Abe
忠由 阿部
信行 石▲崎▼
Nobuyuki Ishizaki
信行 石▲崎▼
琢也 前澤
Takuya Maezawa
琢也 前澤
大作 金子
Daisaku Kaneko
大作 金子
丞 後藤
Susumu Goto
丞 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Miura Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Tokyo Gas Co Ltd filed Critical Miura Co Ltd
Priority to JP2013204958A priority Critical patent/JP6173152B2/en
Publication of JP2015068597A publication Critical patent/JP2015068597A/en
Application granted granted Critical
Publication of JP6173152B2 publication Critical patent/JP6173152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent overshooting a target concentration in increasing a concentration of nitrogen oxide to the target concentration in an exhaust gas boiler with a denitrification device.SOLUTION: A reducing agent injection amount by a reducing agent injector is controlled to keep a concentration of nitrogen oxide by a nitrogen oxide measuring device to a set concentration. In increasing the set concentration from a second target concentration B to a first target concentration A, the set concentration is changed to be increased with a lapse of time so that the concentration reaches the first target concentration A by a set return time Y. For example, the set return time Y when the set concentration is stepwisely increased from the second target concentration B to the first target concentration A, is the time Z or more necessary for the nitrogen oxide concentration by the nitrogen oxide measuring device to exceed the first target concentration A first, and then return to the first target concentration A.

Description

本発明は、窒素酸化物(NOx)を低減するための脱硝装置を備えた排ガスボイラに関するものである。   The present invention relates to an exhaust gas boiler equipped with a denitration device for reducing nitrogen oxide (NOx).

従来、下記特許文献1に開示されるように、燃焼機器からの排ガス中に窒素酸化物の還元剤を注入し、脱硝触媒に通すことで、窒素酸化物濃度を低減する脱硝装置が知られている。この脱硝装置では、脱硝触媒を通過後の排ガスの窒素酸化物濃度を窒素酸化物測定装置により監視し、窒素酸化物濃度を設定濃度に維持するように還元剤注入量が調整される。   Conventionally, as disclosed in Patent Document 1 below, a denitration device that reduces the nitrogen oxide concentration by injecting a nitrogen oxide reducing agent into exhaust gas from combustion equipment and passing it through a denitration catalyst is known. Yes. In this denitration device, the nitrogen oxide concentration of the exhaust gas after passing through the denitration catalyst is monitored by the nitrogen oxide measuring device, and the reducing agent injection amount is adjusted so as to maintain the nitrogen oxide concentration at the set concentration.

この調整の目標値となる前記設定濃度は、所望により変更可能であるのが好ましい。たとえば、自治体によっては、オキシダント警報発令時に窒素酸化物濃度を通常時からさらに40%低減した運転に切り替えることが要求されるので、オキシダント警報発令時には前記設定濃度を下げる必要が生じる。そして、オキシダント警報解除時には前記設定濃度を元に戻す必要が生じる。   It is preferable that the set density serving as the adjustment target value can be changed as desired. For example, depending on the local government, it is required to switch to an operation in which the nitrogen oxide concentration is further reduced by 40% from the normal time when the oxidant alarm is issued. Therefore, it is necessary to lower the set concentration when the oxidant alarm is issued. When the oxidant alarm is canceled, the set concentration needs to be restored.

特開2007−330835号公報(請求項1、請求項2)JP 2007-330835 A (Claim 1, Claim 2)

しかしながら、前記設定濃度を上げる方向に切り替える際、単純にステップ状に切り替えたのでは、窒素酸化物濃度が目標濃度をオーバーシュートしてしまうことになる。   However, when switching in the direction of increasing the set concentration, simply switching to a step shape results in the nitrogen oxide concentration overshooting the target concentration.

そこで、本発明が解決しようとする課題は、窒素酸化物濃度を目標濃度まで上げる際、目標濃度をオーバーシュートすることを抑制できる脱硝装置付き排ガスボイラを提供することにある。   Therefore, the problem to be solved by the present invention is to provide an exhaust gas boiler with a denitration device that can suppress overshooting of the target concentration when the nitrogen oxide concentration is raised to the target concentration.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、排ガスを熱源とするボイラと、排ガス中に窒素酸化物の還元剤を注入する還元剤注入器と、前記還元剤が注入された排ガスが通され、排ガス中の窒素酸化物の還元を図る脱硝触媒と、この脱硝触媒を通過後の排ガスの窒素酸化物濃度を検出する窒素酸化物測定装置と、この窒素酸化物測定装置による窒素酸化物濃度を設定濃度に維持するように、前記還元剤注入器による還元剤注入量を制御する制御手段とを備え、前記設定濃度を上げる際、前記設定濃度が経時的に上がるよう変更することを特徴とする脱硝装置付き排ガスボイラである。   The present invention has been made to solve the above problems, and the invention according to claim 1 is directed to a boiler using exhaust gas as a heat source, and a reducing agent injector for injecting a nitrogen oxide reducing agent into the exhaust gas. A denitration catalyst for reducing the nitrogen oxides in the exhaust gas through which the exhaust gas into which the reducing agent has been injected is passed; a nitrogen oxide measuring device for detecting the nitrogen oxide concentration of the exhaust gas after passing through the denitration catalyst; Control means for controlling the reducing agent injection amount by the reducing agent injector so as to maintain the nitrogen oxide concentration by the nitrogen oxide measuring device at a set concentration, and when the set concentration is increased, the set concentration is An exhaust gas boiler with a denitration device, which is changed so as to rise with time.

請求項1に記載の発明によれば、窒素酸化物測定装置による窒素酸化物濃度を設定濃度に維持するように還元剤注入量を調整するが、前記設定濃度を上げる際、設定濃度が経時的に上がるよう変更することで、窒素酸化物濃度が目標濃度をオーバーシュートすることを抑制することができる。   According to the first aspect of the present invention, the reducing agent injection amount is adjusted so that the nitrogen oxide concentration measured by the nitrogen oxide measuring device is maintained at the set concentration. By changing the value so that the nitrogen oxide concentration increases, the nitrogen oxide concentration can be prevented from overshooting the target concentration.

請求項2に記載の発明は、前記設定濃度を第二目標濃度から第一目標濃度へ上げる際、設定戻し時間で第一目標濃度に到達するように、前記設定濃度が経時的に上がるよう変更し、前記設定戻し時間は、前記設定濃度を第二目標濃度から第一目標濃度へステップ状に上げた場合に、その時点から、前記窒素酸化物測定装置による窒素酸化物濃度が第一目標濃度を最初に超えて第一目標濃度に戻るまでの時間以上、または、前記窒素酸化物測定装置による窒素酸化物濃度が第一目標濃度±許容値の範囲内に収まるまでの時間以上であることを特徴とする請求項1に記載の脱硝装置付き排ガスボイラである。   According to a second aspect of the present invention, when the set density is increased from the second target density to the first target density, the set density is changed so as to increase with time so that the first target density is reached in the set return time. When the set concentration is raised from the second target concentration to the first target concentration stepwise, the nitrogen oxide concentration measured by the nitrogen oxide measuring device is changed from the time point to the first target concentration. More than the time until it first returns to the first target concentration, or more than the time until the nitrogen oxide concentration by the nitrogen oxide measuring device falls within the range of the first target concentration ± tolerance. It is an exhaust gas boiler with a denitration device according to claim 1 characterized by things.

請求項2に記載の発明によれば、前記設定濃度を第二目標濃度から第一目標濃度へ上げる際、設定戻し時間で第一目標濃度に到達するように制御することができる。しかも、設定戻し時間は、設定濃度を第二目標濃度から第一目標濃度へステップ状に上げた場合に、その時点から、第一目標濃度をオーバーシュートして第一目標濃度に戻るまでの時間、または第一目標濃度で安定するまでの時間か、それらよりも長くすることで、窒素酸化物濃度が第一目標濃度をオーバーシュートすることを抑制することが容易となる。   According to the second aspect of the present invention, when the set density is raised from the second target density to the first target density, it can be controlled to reach the first target density in the set return time. In addition, when the set concentration is increased from the second target concentration to the first target concentration in steps, the set return time is the time from that point until the first target concentration overshoots and returns to the first target concentration. Alternatively, it is easy to suppress the nitrogen oxide concentration from overshooting the first target concentration by setting the time until stabilization at the first target concentration or longer.

請求項3に記載の発明は、前記設定濃度を第二目標濃度から第一目標濃度へ上げる際、設定戻し時間で第一目標濃度に到達するように、次式で設定される変化率で前記設定濃度を変更することを特徴とする請求項1または請求項2に記載の脱硝装置付き排ガスボイラである。
変化率=(第一目標濃度−第二目標濃度)/設定戻し時間
According to a third aspect of the present invention, when the set density is raised from the second target density to the first target density, the change rate set by the following equation is used so as to reach the first target density in a set return time. The exhaust gas boiler with a denitration device according to claim 1 or 2, wherein the set concentration is changed.
Rate of change = (first target concentration-second target concentration) / setting return time

請求項3に記載の発明によれば、前記設定濃度を第二目標濃度から第一目標濃度へ上げる際、設定戻し時間で第一目標濃度に到達するように制御することができる。しかも、前記設定濃度を比例的に変更することで、窒素酸化物濃度が第一目標濃度をオーバーシュートすることを抑制することができる。   According to the third aspect of the present invention, when the set density is increased from the second target density to the first target density, it can be controlled to reach the first target density within the set return time. In addition, the nitrogen oxide concentration can be prevented from overshooting the first target concentration by proportionally changing the set concentration.

請求項4に記載の発明は、オキシダント警報の発令に基づき、前記設定濃度は、第一目標濃度から40%低減した第二目標濃度に切り替えられ、オキシダント警報の解除に基づき、前記設定濃度は、第二目標濃度から第一目標濃度に設定戻し時間をかけて戻されるよう徐々に変更されることを特徴とする請求項2または請求項3に記載の脱硝装置付き排ガスボイラである。   In the invention according to claim 4, the set concentration is switched to the second target concentration reduced by 40% from the first target concentration based on the issuance of the oxidant alarm, and based on the release of the oxidant alarm, the set concentration is The exhaust gas boiler with a denitration device according to claim 2 or 3, wherein the exhaust gas boiler is gradually changed so as to be returned from the second target concentration to the first target concentration over a set return time.

請求項4に記載の発明によれば、オキシダント警報の発令に基づき、窒素酸化物濃度を通常時からさらに40%低減した運転に切り替えることができ、オキシダント警報の解除に基づき、通常運転に戻すことができる。しかも、その際、設定戻し時間をかけて徐々に戻されることで、窒素酸化物濃度が目標濃度をオーバーシュートすることを抑制することができる。   According to invention of Claim 4, based on the issuing of an oxidant warning, it can switch to the driving | running which reduced the nitrogen oxide density | concentration further 40% from normal time, and it returns to a normal driving | operation based on cancellation | release of an oxidant warning Can do. In addition, in that case, the nitrogen oxide concentration can be prevented from overshooting the target concentration by gradually returning over a set return time.

請求項5に記載の発明は、前記設定濃度を上げている途中で、前記変化率を変更することを特徴とする請求項1〜4のいずれか1項に記載の脱硝装置付き排ガスボイラである。   The invention according to claim 5 is the exhaust gas boiler with a denitration device according to any one of claims 1 to 4, wherein the rate of change is changed while the set concentration is being increased. .

請求項5に記載の発明によれば、前記設定濃度を上げている途中で、その変化率を変更することができる。そのため、状況に応じた変化率で、窒素酸化物濃度を目標濃度まで上げることができる。   According to the fifth aspect of the present invention, the rate of change can be changed while the set concentration is being increased. Therefore, the nitrogen oxide concentration can be raised to the target concentration at a change rate according to the situation.

さらに、請求項6に記載の発明は、前記設定濃度を上げている途中で、前記窒素酸化物測定装置により窒素酸化物濃度の実際の変化率を求め、この変化率に合わせた勾配で前記設定濃度を変更することを特徴とする請求項5に記載の脱硝装置付き排ガスボイラである。   Furthermore, the invention according to claim 6 determines the actual change rate of the nitrogen oxide concentration by the nitrogen oxide measuring device while raising the set concentration, and sets the set value with a gradient according to the change rate. The exhaust gas boiler with a denitration device according to claim 5, wherein the concentration is changed.

請求項6に記載の発明によれば、窒素酸化物濃度の実際の変化率に合わせた勾配で前記設定濃度を変更することで、実際の窒素酸化物濃度が目標濃度をオーバーシュートすることを確実に防止することができる。   According to the sixth aspect of the present invention, it is ensured that the actual nitrogen oxide concentration overshoots the target concentration by changing the set concentration with a gradient that matches the actual change rate of the nitrogen oxide concentration. Can be prevented.

本発明によれば、脱硝装置付き排ガスボイラにおいて、窒素酸化物濃度を目標濃度まで上げる際、目標濃度をオーバーシュートすることを抑制することができる。   According to the present invention, when the nitrogen oxide concentration is raised to the target concentration in the exhaust gas boiler with a denitration device, overshooting of the target concentration can be suppressed.

本発明の脱硝装置付き排ガスボイラの一実施例を示す概略図である。It is the schematic which shows one Example of the exhaust gas boiler with a denitration apparatus of this invention. オキシダント警報の発令に基づき、設定濃度を第一目標濃度Aから第二目標濃度Bへ切り替える際の状態を示す概略図であり、還元剤注入量および窒素酸化物濃度と、経過時間との関係を示している。It is the schematic which shows the state at the time of switching a setting density | concentration from the 1st target density | concentration A to the 2nd target density | concentration B based on the announcement of an oxidant warning, and shows the relationship between reducing agent injection amount and nitrogen oxide density | concentration, and elapsed time. Show. 通常運転から高脱硝運転への切替制御の試験結果の一例を示す図である。It is a figure which shows an example of the test result of switching control from normal driving | operation to high denitration driving | operation. オキシダント警報の解除に基づき、設定濃度を第二目標濃度Bから第一目標濃度Aへ切り替える際の状態を示す概略図であり、目標濃度およびNOx濃度と、経過時間との関係を示している。It is the schematic which shows the state at the time of switching a setting density | concentration from the 2nd target density | concentration B to the 1st target density | concentration A based on cancellation | release of an oxidant warning, and has shown the relationship between target density | concentration and NOx density | concentration, and elapsed time. 高脱硝運転から通常運転への切替制御の試験結果の一例を示す図である。It is a figure which shows an example of the test result of the switching control from high denitration operation to normal operation.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の脱硝装置付き排ガスボイラ1の一実施例を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of an exhaust gas boiler 1 with a denitration apparatus of the present invention.

本実施例の排ガスボイラ1は、ボイラ2、還元剤注入器3および脱硝触媒4を備え、さらに所望によりエコノマイザ5を備える。還元剤注入器3と脱硝触媒4とにより、脱硝装置が構成される。   The exhaust gas boiler 1 of the present embodiment includes a boiler 2, a reducing agent injector 3, and a denitration catalyst 4, and further includes an economizer 5 as desired. The reducing agent injector 3 and the denitration catalyst 4 constitute a denitration device.

還元剤注入器3は、脱硝触媒4よりも排ガス流上流において、排ガス中に窒素酸化物の還元剤を注入する。一方、エコノマイザ5は、ボイラ2よりも排ガス流下流に設けられ、ボイラ2への給水を予熱する。   The reducing agent injector 3 injects a nitrogen oxide reducing agent into the exhaust gas upstream of the denitration catalyst 4. On the other hand, the economizer 5 is provided downstream of the exhaust gas flow from the boiler 2 and preheats the water supplied to the boiler 2.

「還元剤注入器3および脱硝触媒4」と「ボイラ2およびエコノマイザ5」との配置関係は、特に問わないが、図示例では、燃焼機器からの排ガス路6に、ボイラ2、脱硝触媒4およびエコノマイザ5が順に設置され、燃焼機器からの排ガスは、ボイラ2、脱硝触媒4およびエコノマイザ5に順に通される。そして、脱硝触媒4より上流(図示例ではボイラ2より上流)に設置された還元剤注入器3により、排ガス中に窒素酸化物の還元剤が注入される。なお、燃焼機器からの排ガスとして、たとえば、発電機のガスエンジンからの排ガスを用いることができる。   The arrangement relationship between the “reducing agent injector 3 and the denitration catalyst 4” and the “boiler 2 and the economizer 5” is not particularly limited, but in the illustrated example, the boiler 2, the denitration catalyst 4 and the exhaust gas passage 6 from the combustion equipment are connected to the exhaust gas passage 6. The economizer 5 is installed in order, and the exhaust gas from the combustion equipment is passed through the boiler 2, the denitration catalyst 4 and the economizer 5 in order. Then, a reducing agent injector 3 installed upstream of the denitration catalyst 4 (upstream of the boiler 2 in the illustrated example) injects a nitrogen oxide reducing agent into the exhaust gas. In addition, as exhaust gas from a combustion apparatus, the exhaust gas from the gas engine of a generator can be used, for example.

ボイラ2は、排ガスを熱源とするボイラである。より具体的には、本実施例では、給水を加熱して蒸気化する蒸気ボイラである。ボイラ2からの蒸気は、各種の蒸気使用設備へ送られる。   The boiler 2 is a boiler that uses exhaust gas as a heat source. More specifically, in this embodiment, it is a steam boiler that heats feed water and vaporizes it. The steam from the boiler 2 is sent to various steam-using facilities.

還元剤注入器3は、排ガス路6内(言い換えれば排ガス中)に窒素酸化物の還元剤を注入する。還元剤注入器3は、本実施例では、ポンプ(図示省略)と噴霧ノズル7とを備え、ポンプを制御することで、排ガス路6内への還元剤の注入量(流量)を調整することができる。なお、還元剤として、従来公知の各種のものを用いることができ、たとえばアンモニア水でもよいが、本実施例では尿素水が用いられる。排ガス中に噴霧された尿素水は、排ガスの熱により分解され、アンモニア(NH)となる。 The reducing agent injector 3 injects a nitrogen oxide reducing agent into the exhaust gas passage 6 (in other words, in the exhaust gas). In this embodiment, the reducing agent injector 3 includes a pump (not shown) and a spray nozzle 7, and controls the pump to adjust the injection amount (flow rate) of the reducing agent into the exhaust gas passage 6. Can do. In addition, various conventionally well-known things can be used as a reducing agent, For example, although ammonia water may be used, urea water is used in a present Example. The urea water sprayed in the exhaust gas is decomposed by the heat of the exhaust gas and becomes ammonia (NH 3 ).

脱硝触媒4は、還元剤注入器3により還元剤が注入された排ガスが通され、排ガス中の窒素酸化物の還元を図る。本実施例では、アンモニアが混合された排ガスは、脱硝触媒4を通過する際、脱硝触媒4により、アンモニアによる窒素酸化物の還元反応が促進され、窒素酸化物が窒素と水とに分解され、排ガス中の窒素酸化物の低減が図られる。   The denitration catalyst 4 is passed through the exhaust gas into which the reducing agent has been injected by the reducing agent injector 3 to reduce the nitrogen oxides in the exhaust gas. In this embodiment, when the exhaust gas mixed with ammonia passes through the denitration catalyst 4, the denitration catalyst 4 promotes the reduction reaction of nitrogen oxides by ammonia, and the nitrogen oxides are decomposed into nitrogen and water. Reduction of nitrogen oxides in exhaust gas is achieved.

エコノマイザ5は、ボイラ2を通過後の排ガスの残熱を用いて、ボイラ2への給水を予熱する。但し、場合により、エコノマイザ5の設置を省略することもできる。   The economizer 5 preheats the water supplied to the boiler 2 using the residual heat of the exhaust gas after passing through the boiler 2. However, installation of the economizer 5 can be omitted depending on circumstances.

排ガス路6には、脱硝触媒4よりも排ガス流下流(図示例ではエコノマイザ5よりも排ガス流下流)に、排ガス中の窒素酸化物濃度を検出する窒素酸化物測定装置8が設けられる。この窒素酸化物測定装置8により、脱硝後の窒素酸化物濃度を監視することができる。   The exhaust gas passage 6 is provided with a nitrogen oxide measuring device 8 for detecting the nitrogen oxide concentration in the exhaust gas downstream of the exhaust gas flow from the denitration catalyst 4 (in the illustrated example, downstream of the exhaust gas flow from the economizer 5). This nitrogen oxide measuring device 8 can monitor the nitrogen oxide concentration after denitration.

排ガスボイラ1は、さらに制御手段(図示省略)を備える。この制御手段は、還元剤注入器3と窒素酸化物測定装置8とに接続された制御器である。制御器は、窒素酸化物測定装置8による窒素酸化物濃度を設定濃度に維持するように、還元剤注入器3(より具体的には前記ポンプ)を制御して、還元剤注入器3による還元剤注入量を制御する。   The exhaust gas boiler 1 further includes control means (not shown). This control means is a controller connected to the reducing agent injector 3 and the nitrogen oxide measuring device 8. The controller controls the reducing agent injector 3 (more specifically, the pump) so as to maintain the nitrogen oxide concentration by the nitrogen oxide measuring device 8 at a set concentration, and the reducing agent injector 3 performs the reduction. Control the dose of agent.

窒素酸化物濃度の目標値である前記設定濃度は、変更可能とされる。ここでは、オキシダント警報の発令や解除により、前記設定濃度が変更される場合について説明するが、本発明は、オキシダント警報の発停とは無関係に、所望のタイミングで設定濃度を変更する際にも同様に適用可能である。   The set concentration, which is the target value of the nitrogen oxide concentration, can be changed. Here, the case where the set concentration is changed by issuing or canceling the oxidant alarm will be described, but the present invention is also applicable when the set concentration is changed at a desired timing regardless of whether the oxidant alarm is started or stopped. The same applies.

オキシダント警報が発令されていない通常時、前記設定濃度は、第一目標濃度(たとえば150ppm)とされる。そして、オキシダント警報が発令されると、窒素酸化物濃度を通常時からさらに所定割合(ここでは40%)低減した運転に切り替える。つまり、オキシダント警報の発令時、前記設定濃度は、第一目標濃度から40%低減された第二目標濃度(たとえば90ppm)に切り替えられる。その後、オキシダント警報が解除されると、前記設定濃度は、第二目標濃度から第一目標濃度へ戻される。   In normal times when the oxidant alarm is not issued, the set concentration is set to the first target concentration (for example, 150 ppm). When the oxidant alarm is issued, the operation is switched to the operation in which the nitrogen oxide concentration is further reduced by a predetermined rate (40% here) from the normal time. That is, when the oxidant alarm is issued, the set concentration is switched to the second target concentration (for example, 90 ppm) reduced by 40% from the first target concentration. Thereafter, when the oxidant alarm is canceled, the set concentration is returned from the second target concentration to the first target concentration.

制御器には、前記設定濃度の切替信号が入力される。たとえば、第一目標濃度と第二目標濃度との切替スイッチが設けられており、オキシダント警報の発停に基づき、この切替スイッチにより切り替えられる。あるいは、オキシダント警報やその解除に関する情報を受信し、それに基づき前記設定濃度を切り替えてもよい。なお、前記各目標濃度は、設定器により変更可能であってもよい。   The controller receives the set density switching signal. For example, a changeover switch between a first target concentration and a second target concentration is provided, and is switched by this changeover switch based on the on / off of an oxidant alarm. Or the information regarding an oxidant alarm and the cancellation | release may be received and the said setting density | concentration may be switched based on it. Each target density may be changeable by a setting device.

図2は、オキシダント警報の発令に基づき、設定濃度を第一目標濃度Aから第二目標濃度Bへ切り替える際の状態を示す概略図であり、還元剤注入量および窒素酸化物濃度と、経過時間との関係を示している。つまり、図中、注入量とは、還元剤注入器3による還元剤の注入量を示し、NOx濃度とは、窒素酸化物測定装置8により検出される窒素酸化物濃度を示す。   FIG. 2 is a schematic diagram showing a state when the set concentration is switched from the first target concentration A to the second target concentration B based on the issuance of the oxidant alarm. The reducing agent injection amount, the nitrogen oxide concentration, and the elapsed time Shows the relationship. That is, in the figure, the injection amount indicates the injection amount of the reducing agent by the reducing agent injector 3, and the NOx concentration indicates the nitrogen oxide concentration detected by the nitrogen oxide measuring device 8.

いま、時間t1において、設定濃度を第一目標濃度Aから第二目標濃度Bに切り替える。前述したとおり、第二目標濃度Bは、第一目標濃度Aよりも低い。また、第二目標濃度Bで要求される理論注入量は、既知である。つまり、理論的にあるいは実験により、第二目標濃度Bで要求される理論注入量は、事前に把握されている。   Now, at time t1, the set density is switched from the first target density A to the second target density B. As described above, the second target concentration B is lower than the first target concentration A. The theoretical injection amount required for the second target concentration B is already known. That is, the theoretical injection amount required for the second target concentration B is known in advance theoretically or experimentally.

仮に、二点鎖線で示すように、還元剤注入量を、第一目標濃度Aで要求される注入量Cから、第二目標濃度Bで要求される理論注入量Dに増加しただけとする。そして、その後、窒素酸化物測定装置8による窒素酸化物濃度を第二目標濃度Bに維持するように、還元剤注入量を制御したとする。この場合、窒素酸化物濃度が第二目標濃度Bに下がるまで、比較的時間を要することになる。   Suppose that the reducing agent injection amount is merely increased from the injection amount C required for the first target concentration A to the theoretical injection amount D required for the second target concentration B, as indicated by a two-dot chain line. After that, it is assumed that the reducing agent injection amount is controlled so that the nitrogen oxide concentration by the nitrogen oxide measuring device 8 is maintained at the second target concentration B. In this case, it takes a relatively long time until the nitrogen oxide concentration falls to the second target concentration B.

そこで、本実施例では、実線で示すように、第二目標濃度Bで要求される理論注入量Dよりも多い還元剤を設定時間Xだけ過剰注入し、その後、窒素酸化物測定装置8による窒素酸化物濃度を第二目標濃度Bに維持するように、還元剤注入量を制御する。   Therefore, in this embodiment, as shown by the solid line, a reducing agent that is larger than the theoretical injection amount D required for the second target concentration B is excessively injected for a set time X, and then nitrogen is measured by the nitrogen oxide measuring device 8. The reducing agent injection amount is controlled so as to maintain the oxide concentration at the second target concentration B.

過剰注入は、第二目標濃度Bで要求される理論注入量Dの2倍以上の注入量Eで、リークアンモニア(脱硝触媒4よりも下流への還元剤漏れ)の許容限界値(たとえば8ppm)を超えない設定時間で行うのがよい。第二目標濃度Bで要求される理論注入量Dの2倍以上の注入量Eで還元剤を注入することで、窒素酸化物濃度を第二目標濃度Bまで迅速に下げることができる。また、そのような過剰注入をリークアンモニア濃度が許容限界値を超えない設定時間だけ行うことで、排ガスボイラ1外へのリークアンモニアを抑制することができる。   Excess injection is an injection amount E that is twice or more the theoretical injection amount D required for the second target concentration B, and an allowable limit value (for example, 8 ppm) of leaked ammonia (reducing agent leakage downstream from the denitration catalyst 4). It is better to perform the set time that does not exceed. By injecting the reducing agent with an injection amount E that is twice or more the theoretical injection amount D required for the second target concentration B, the nitrogen oxide concentration can be quickly lowered to the second target concentration B. Moreover, leak ammonia outside the exhaust gas boiler 1 can be suppressed by performing such excessive injection for a set time during which the leak ammonia concentration does not exceed the allowable limit value.

たとえば、過剰注入は、第二目標濃度Bで要求される理論注入量Dの2〜3倍の注入量で、第二目標濃度Bへの到達目標時間の半分以下の時間で行う。過剰注入量があまりに多いと、排ガスボイラ1外へのリークアンモニアが生じる一方、過剰注入量があまりに少ないと、窒素酸化物濃度を下げるのに時間を要するからである。なお、到達目標時間は、短い方が好ましいが、実際的には10分以内を目標とする。そして、到達目標時間の半分以下の時間で過剰注入を行うことで、第二目標濃度Bへの到達目標時間の少なくとも後半は、窒素酸化物測定装置8による窒素酸化物濃度を第二目標濃度Bに維持するように還元剤注入量を制御することになるので、到達目標時間内に窒素酸化物濃度を第二目標濃度Bまで確実に下げることができる。   For example, the excessive injection is performed at an injection amount that is two to three times the theoretical injection amount D required for the second target concentration B, and in a time that is half or less of the target time for reaching the second target concentration B. This is because if the excessive injection amount is too large, leaked ammonia is generated outside the exhaust gas boiler 1, while if the excessive injection amount is too small, it takes time to lower the nitrogen oxide concentration. Although it is preferable that the target arrival time is short, the target is actually within 10 minutes. Then, by performing excess injection in a time that is half or less of the target arrival time, the nitrogen oxide concentration by the nitrogen oxide measuring device 8 is set to the second target concentration B at least in the second half of the target arrival time to the second target concentration B. Therefore, the amount of the reducing agent injected is controlled so as to maintain the nitrogen oxide concentration, so that the nitrogen oxide concentration can be reliably lowered to the second target concentration B within the target time.

図3は、通常運転から高脱硝運転への切替制御の試験結果の一例を示す図である。つまり、窒素酸化物濃度を150ppmから90ppmに下げる試験結果を示している。図中、一点鎖線は、1分過剰噴霧した場合、二点鎖線は、2分過剰噴霧した場合、破線および実線は、3分過剰噴霧した場合で、破線が試験1回目、実線が試験2回目の結果を示す。また、図中、上半分の各曲線は、窒素酸化物濃度(左縦軸)を示し、下半分の各曲線は、アンモニア濃度(右縦軸)を示す。   FIG. 3 is a diagram illustrating an example of a test result of switching control from normal operation to high denitration operation. That is, the test results for reducing the nitrogen oxide concentration from 150 ppm to 90 ppm are shown. In the figure, the alternate long and short dash line indicates a one-minute excess spray, the two-dot chain line indicates a two-minute excessive spray, the broken line and the solid line indicate a three-minute excessive spray, the broken line is the first test, and the solid line is the second test The results are shown. In the figure, each curve in the upper half indicates the nitrogen oxide concentration (left vertical axis), and each curve in the lower half indicates the ammonia concentration (right vertical axis).

過剰噴霧量は、還元剤注入器3のポンプのストローク数を360spm(注入量46ml/minであり理論注入量の3倍)で固定した。そして、過剰噴霧時間を変えて、適正時間の把握を行った。過剰噴霧後は、出口NOx値(窒素酸化物測定装置8による窒素酸化物濃度)を90ppm目標値としてPID制御を行った。なお、NOx値が150ppmに安定したところ(時間0)で試験を開始した。また、NOx値は、O=0%換算値である。 The excessive spray amount was fixed at 360 spm (the injection amount was 46 ml / min, three times the theoretical injection amount) of the pump of the reducing agent injector 3. And the overspray time was changed and the proper time was grasped. After excessive spraying, PID control was performed using the outlet NOx value (nitrogen oxide concentration by the nitrogen oxide measuring device 8) as a 90 ppm target value. The test was started when the NOx value was stabilized at 150 ppm (time 0). The NOx value is an O 2 = 0% conversion value.

図から分かるように、高脱硝運転への切替後、約1分後、計測器に変化が見られた。いずれの試験結果も同様のカーブを描き、出口NOx値が低下した。しかし、過剰噴霧時間の違いにより、下限値に差が現れた。1分過剰噴霧では90ppmに到達せず、2分過剰噴霧では一旦90ppmに到達するも再度上昇した。3分過剰噴霧では、4〜6分で90ppmに到達し、脱硝率は54%から74%に上昇した。3分噴霧の1回目と2回目で90ppm到達時間に差が現れたのは、脱硝触媒入口温度の上昇が反応を促進したためと考えられる。リークNHは、3分過剰噴霧の時で最大7.8ppmの値をとり、5〜6ppmで安定した。なお、1、2分過剰噴霧の時が3分過剰噴霧の時に比べNHの値が高いのは、その間に校正を行ったことによると考えられる。 As can be seen from the figure, a change was observed in the measuring instrument about one minute after switching to the high denitration operation. All the test results drew a similar curve, and the outlet NOx value decreased. However, a difference appeared in the lower limit due to the difference in the overspray time. In the case of 1 minute excess spraying, 90 ppm was not reached, and in the case of 2 minute excess spraying, once it reached 90 ppm, it rose again. In the case of overspraying for 3 minutes, 90 ppm was reached in 4 to 6 minutes, and the denitration rate increased from 54% to 74%. The difference in the arrival time of 90 ppm between the first and second three-minute sprays is thought to be due to the increase in the denitration catalyst inlet temperature promoting the reaction. The leak NH 3 took a value of 7.8 ppm at the maximum when sprayed for 3 minutes, and stabilized at 5 to 6 ppm. In addition, it is thought that the value of NH 3 is higher in the case of 1-minute overspraying than in the case of 3-minute overspraying because calibration was performed during that time.

本試験結果から、第二目標濃度Bで要求される理論注入量の3倍の注入量で、3分過剰噴霧することがよいことが分かる。これにより、第一目標濃度150ppmから第二目標濃度90ppmまで、10分以内に切り替えることができる。この種の試験により、過剰注入量と噴霧時間とが設定される。   From this test result, it can be seen that it is better to overspray for 3 minutes with an injection amount three times the theoretical injection amount required for the second target concentration B. Thereby, it is possible to switch from the first target concentration 150 ppm to the second target concentration 90 ppm within 10 minutes. This type of test sets the overfill volume and spray time.

図4は、オキシダント警報の解除に基づき、設定濃度を第二目標濃度Bから第一目標濃度Aへ切り替える際の状態を示す概略図であり、目標濃度およびNOx濃度と、経過時間との関係を示している。つまり、図中、目標濃度とは、制御器による制御目標濃度としての前記設定濃度を示し、NOx濃度とは、窒素酸化物測定装置8により検出される実際の窒素酸化物濃度を示す。   FIG. 4 is a schematic diagram showing a state when the set concentration is switched from the second target concentration B to the first target concentration A based on the cancellation of the oxidant alarm, and shows the relationship between the target concentration and NOx concentration and the elapsed time. Show. That is, in the figure, the target concentration indicates the set concentration as the control target concentration by the controller, and the NOx concentration indicates the actual nitrogen oxide concentration detected by the nitrogen oxide measuring device 8.

いま、時間t2において、設定濃度を第二目標濃度Bから第一目標濃度Aに切り替える。但し、後述するとおり、本発明では、時間t2において、設定濃度を第二目標濃度Bから第一目標濃度Aに一気に変更するのではなく、厳密には、設定濃度の変更を開始するといえる。なお、前述したとおり、第一目標濃度Aは、第二目標濃度Bよりも高い。   Now, at time t2, the set density is switched from the second target density B to the first target density A. However, as will be described later, in the present invention, it can be said that, at the time t2, the set density is not changed from the second target density B to the first target density A all at once, but strictly, the set density is changed. As described above, the first target concentration A is higher than the second target concentration B.

仮に、二点鎖線で示すように、目標濃度を第二目標濃度Bから第一目標濃度Aへと、ステップ状に切り替えるだけでは、窒素酸化物濃度がオーバーシュートすることになる。   As shown by a two-dot chain line, if the target concentration is switched from the second target concentration B to the first target concentration A stepwise, the nitrogen oxide concentration will overshoot.

そこで、本実施例では、実線で示すように、前記設定濃度を上げる際、前記設定濃度が経時的に上がるよう変更する。より具体的には、前記設定濃度を第二目標濃度Bから第一目標濃度Aへ上げる際、設定戻し時間Yで第一目標濃度Aに到達するように、設定濃度が経時的に上がるよう変更する。   Therefore, in this embodiment, as shown by the solid line, when the set density is increased, the set density is changed with time. More specifically, when the set density is increased from the second target density B to the first target density A, the set density is changed so as to increase with time so as to reach the first target density A in the set return time Y. To do.

ここで、設定戻し時間は、設定濃度を第二目標濃度Bから第一目標濃度Aへステップ状に上げた場合に、その時点から、窒素酸化物測定装置8による窒素酸化物濃度が第一目標濃度Aを最初に超えて第一目標濃度Aに戻るまでの時間Z以上、または、前記窒素酸化物測定装置8による窒素酸化物濃度が第一目標濃度A±許容値の範囲内に収まるまでの時間以上に設定される。言い換えれば、設定戻し時間Yは、設定濃度を第二目標濃度Bから第一目標濃度Aへステップ状に上げた場合に、その上げた瞬間を始点に、窒素酸化物測定装置8による窒素酸化物濃度が第一目標濃度Aをオーバーシュートして第一目標濃度Aに戻るまでの時間Zか、さらに時間が経過して窒素酸化物測定装置8による窒素酸化物濃度が第一目標濃度Aで安定するまでの時間か、またはこれらよりも長い時間に設定される。   Here, when the set concentration is raised in steps from the second target concentration B to the first target concentration A, the nitrogen oxide concentration by the nitrogen oxide measuring device 8 is the first target when the set concentration is raised from the second target concentration B to the first target concentration A. More than the time Z until the concentration A first exceeds the first target concentration A or until the nitrogen oxide concentration by the nitrogen oxide measuring device 8 falls within the range of the first target concentration A ± allowable value. Set over time. In other words, when the set concentration is raised from the second target concentration B to the first target concentration A in a stepped manner, the set return time Y starts from the instant when the set concentration is raised to the first target concentration A. The time Z until the concentration overshoots the first target concentration A and returns to the first target concentration A, or the nitrogen oxide concentration by the nitrogen oxide measuring device 8 is stable at the first target concentration A after a further time has passed. It is set to the time until or longer than these.

いずれにしても、仮に設定濃度を第二目標濃度Bから第一目標濃度Aへステップ状に上げたとした場合に、オーバーシュート後に第一目標濃度Aに到達するまでの時間Zか、あるいは第一目標濃度Aで安定するまでの時間を最低限確保して、徐々に設定濃度を変更することで、窒素酸化物濃度が第一目標濃度Aをオーバーシュートすることを抑制することが容易となる。つまり、ステップ応答時におけるオーバーシュート(最大行き過ぎ)を終えるまでの時間Z以上か、第一設定濃度Aで安定するまでの時間以上をかけて、設定濃度を上げることで、オーバーシュートを抑制することが容易となる。   In any case, if the set density is stepped up from the second target density B to the first target density A, the time Z until the first target density A is reached after overshooting or the first By securing a minimum time until stabilization at the target concentration A and gradually changing the set concentration, it becomes easy to suppress the nitrogen oxide concentration from overshooting the first target concentration A. In other words, the overshoot can be suppressed by increasing the set concentration over the time Z until the overshoot (maximum overshoot) at the time of the step response is completed or more than the time until the first set concentration A is stabilized. Becomes easy.

ところで、前記設定濃度を第二目標濃度Bから第一目標濃度Aへ上げる際、設定戻し時間Yで第一目標濃度Aに到達するように、次式で設定される変化率で前記設定濃度を変更してもよい。これにより、前記設定濃度は、第二目標濃度Bから第一目標濃度Aに設定戻し時間Yをかけて戻されるよう徐々に変更される。設定戻し時間Yは、短すぎては前記ステップ状の制御と差がでないため、上述したステップ応答時の特性から設定され、たとえば60分以上(90〜150分)で設定される。   By the way, when the set density is increased from the second target density B to the first target density A, the set density is set at a change rate set by the following equation so that the first target density A is reached in the set return time Y. It may be changed. As a result, the set density is gradually changed from the second target density B to the first target density A over the set return time Y. Since the setting return time Y is not too different from the step-like control if it is too short, it is set from the characteristics at the time of the step response described above, for example, 60 minutes or longer (90 to 150 minutes).

変化率=(第一目標濃度A−第二目標濃度B)/設定戻し時間Y   Rate of change = (first target density A−second target density B) / setting return time Y

また、前記設定濃度を上げている途中で、前記変化率を変更してもよい。この場合、状況に応じた変化率で、窒素酸化物濃度を目標濃度まで上げることができる。   Further, the rate of change may be changed while the set concentration is being increased. In this case, the nitrogen oxide concentration can be raised to the target concentration at a change rate according to the situation.

さらに、前記設定濃度を上げている途中(所定周期などの設定タイミング)で、窒素酸化物測定装置8により窒素酸化物濃度の実際の変化率を求め、この変化率に合わせた勾配で前記設定濃度を変更してもよい。窒素酸化物濃度の実際の変化率に合わせた勾配で前記設定濃度を変更することで、実際の窒素酸化物濃度が目標濃度をオーバーシュートすることを確実に防止することができる。   Further, while the set concentration is being increased (set timing such as a predetermined cycle), the nitrogen oxide measuring device 8 obtains the actual change rate of the nitrogen oxide concentration, and the set concentration is set to a gradient according to the change rate. May be changed. By changing the set concentration with a gradient that matches the actual change rate of the nitrogen oxide concentration, it is possible to reliably prevent the actual nitrogen oxide concentration from overshooting the target concentration.

図5は、高脱硝運転から通常運転への切替制御の試験結果の一例を示す図である。つまり、窒素酸化物濃度を90ppmから150ppmに上げる試験結果を示している。図中、一点鎖線および破線は、設定濃度をステップ状に切り替えた場合を示し、二点鎖線および実線は、上述の理論および数式に沿って比例的な時間勾配で設定濃度を切り替えた場合を示している。なお、一点鎖線および二点鎖線は、NOx目標値、破線および実線は、NOx実測値を示している。   FIG. 5 is a diagram illustrating an example of a test result of switching control from high denitration operation to normal operation. That is, the test results for increasing the nitrogen oxide concentration from 90 ppm to 150 ppm are shown. In the figure, the alternate long and short dash line and the broken line indicate the case where the set concentration is switched in a step shape, and the alternate long and two short dashes line and the solid line indicate the case where the set concentration is switched with a proportional time gradient according to the above theory and formula. ing. Note that the alternate long and short dash line indicates the NOx target value, and the broken and solid lines indicate the actual measured NOx value.

一点鎖線で示すように、NOx目標値を90ppmから150ppmにステップ状に切り替えた場合、破線で示すように、約13分で150ppmに到達したが、175ppmまでオーバーシュートした。これは、NOx値と目標値との偏差が大きいことにより、還元剤注入器3のポンプのストローク数のPID制御が過剰に反応したためと考えられる。その後、PID制御での調整により150ppmに安定するまで1時間程度を要した。   As indicated by the alternate long and short dash line, when the NOx target value was switched in steps from 90 ppm to 150 ppm, it reached 150 ppm in about 13 minutes as shown by the broken line, but overshooted to 175 ppm. This is presumably because PID control of the number of strokes of the pump of the reducing agent injector 3 reacted excessively due to a large deviation between the NOx value and the target value. After that, it took about 1 hour to stabilize at 150 ppm by adjustment by PID control.

一方、オーバーシュート対策として、二点鎖線で示すように、NOx目標値を90ppmから150ppmへ60ppm/120minの時間勾配で切り替えを行った。結果、実線で示すように、NOx値と目標値の偏差が減少したことで、NOx値が150ppmを大きく上回ることはなくなった。なお、高脱硝運転から通常運転への切替えのため、つまりNOx濃度は高まる方向への制御のため、150ppmまでの到達時間が多少長くなっても、高脱硝側の時間が長くなるだけのため、環境への問題はない。   On the other hand, as a measure against overshoot, the NOx target value was switched from 90 ppm to 150 ppm with a time gradient of 60 ppm / 120 min as indicated by a two-dot chain line. As a result, as indicated by the solid line, the NOx value does not greatly exceed 150 ppm because the deviation between the NOx value and the target value has decreased. For switching from high denitration operation to normal operation, that is, for controlling the NOx concentration to increase, even if the arrival time up to 150 ppm is somewhat longer, only the time on the high denitration side is longer, There are no environmental problems.

本試験結果から、第二目標濃度Bから第一目標濃度Aへ戻す際、目標NOx値を60ppm/120minの時間勾配で切り替えることで、オーバーシュートを防止することができるのが分かる。この種の試験により、目標NOx値の変化率が設定される。   From this test result, it can be seen that when returning from the second target concentration B to the first target concentration A, overshoot can be prevented by switching the target NOx value with a time gradient of 60 ppm / 120 min. This type of test sets the rate of change of the target NOx value.

本実施例の脱硝装置付き排ガスボイラ1によれば、窒素酸化物濃度を第一目標濃度Aから第二目標濃度Bへ下げる際、第二目標濃度Bで要求される理論注入量よりも多い還元剤を注入することで、窒素酸化物濃度を第二目標濃度Bまで迅速に下げることができる。また、そのような過剰注入を設定時間Xだけ行うことで、リークアンモニアを抑制することができる。   According to the exhaust gas boiler 1 with the denitration device of the present embodiment, when the nitrogen oxide concentration is lowered from the first target concentration A to the second target concentration B, the reduction is larger than the theoretical injection amount required for the second target concentration B. By injecting the agent, the nitrogen oxide concentration can be rapidly lowered to the second target concentration B. Moreover, leak ammonia can be suppressed by performing such excessive injection only for the set time X.

一方、窒素酸化物濃度を第二目標濃度Bから第一目標濃度Aへ上げる際、設定戻し時間Yで第一目標濃度Aに到達するように、設定濃度を徐々に上げることで、窒素酸化物濃度が第一目標濃度Aをオーバーシュートすることを抑制することができる。   On the other hand, when the nitrogen oxide concentration is increased from the second target concentration B to the first target concentration A, the set concentration is gradually increased so as to reach the first target concentration A in the set return time Y. It is possible to suppress the concentration from overshooting the first target concentration A.

本発明の脱硝装置付き排ガスボイラ1は、前記実施例の構成に限らず適宜変更可能である。特に、窒素酸化物測定装置8による窒素酸化物濃度を設定濃度に維持するように、還元剤注入器3による還元剤注入量を制御する脱硝装置付き排ガスボイラ1において、設定濃度を上げる際、設定濃度が経時的に上がるよう変更するのであれば、その他の構成は、適宜に変更可能である。   The exhaust gas boiler 1 with a denitration device of the present invention is not limited to the configuration of the above embodiment, and can be changed as appropriate. In particular, when the set concentration is increased in the exhaust gas boiler 1 with a denitration device that controls the reducing agent injection amount by the reducing agent injector 3 so as to maintain the nitrogen oxide concentration by the nitrogen oxide measuring device 8 at the set concentration, If the concentration is changed so as to increase with time, other configurations can be appropriately changed.

1 脱硝装置付き排ガスボイラ
2 ボイラ
3 還元剤注入器
4 脱硝触媒
5 エコノマイザ
6 排ガス路
7 噴霧ノズル
8 窒素酸化物測定装置
t1 設定濃度を第一目標濃度Aから第二目標濃度Bに切り替えるタイミング
t2 設定濃度を第二目標濃度Bから第一目標濃度Aに切り替えるタイミング
A 第一目標濃度
B 第二目標濃度
C 第一目標濃度の注入量
D 第二目標濃度の注入量
E 過剰注入量
X 設定時間(過剰注入時間)
Y 設定戻し時間
Z 設定濃度をステップ状に上げた場合に、その時点から、窒素酸化物測定装置による窒素酸化物濃度が第一目標濃度を最初に超えて第一目標濃度に戻るまでの時間
DESCRIPTION OF SYMBOLS 1 Exhaust gas boiler with a denitration apparatus 2 Boiler 3 Reductant injector 4 Denitration catalyst 5 Economizer 6 Exhaust gas path 7 Spray nozzle 8 Nitrogen oxide measuring device t1 Timing to switch the set concentration from the first target concentration A to the second target concentration B t2 setting Timing for switching the concentration from the second target concentration B to the first target concentration A A First target concentration B Second target concentration C Injection amount of the first target concentration D Injection amount of the second target concentration E Excess injection amount X Setting time ( Excess injection time)
Y Set return time Z When the set concentration is raised in steps, the time from when the nitrogen oxide concentration by the nitrogen oxide measuring device first exceeds the first target concentration to return to the first target concentration

Claims (6)

排ガスを熱源とするボイラと、
排ガス中に窒素酸化物の還元剤を注入する還元剤注入器と、
前記還元剤が注入された排ガスが通され、排ガス中の窒素酸化物の還元を図る脱硝触媒と、
この脱硝触媒を通過後の排ガスの窒素酸化物濃度を検出する窒素酸化物測定装置と、
この窒素酸化物測定装置による窒素酸化物濃度を設定濃度に維持するように、前記還元剤注入器による還元剤注入量を制御する制御手段とを備え、
前記設定濃度を上げる際、前記設定濃度が経時的に上がるよう変更する
ことを特徴とする脱硝装置付き排ガスボイラ。
A boiler using exhaust gas as a heat source;
A reducing agent injector for injecting a nitrogen oxide reducing agent into the exhaust gas;
A denitration catalyst for reducing the nitrogen oxides in the exhaust gas through which the exhaust gas into which the reducing agent has been injected is passed;
A nitrogen oxide measuring device for detecting the nitrogen oxide concentration of the exhaust gas after passing through the denitration catalyst,
Control means for controlling the reducing agent injection amount by the reducing agent injector so as to maintain the nitrogen oxide concentration by the nitrogen oxide measuring device at a set concentration;
An exhaust gas boiler with a denitration device, wherein when the set concentration is increased, the set concentration is changed over time.
前記設定濃度を第二目標濃度から第一目標濃度へ上げる際、設定戻し時間で第一目標濃度に到達するように、前記設定濃度が経時的に上がるよう変更し、
前記設定戻し時間は、前記設定濃度を第二目標濃度から第一目標濃度へステップ状に上げた場合に、その時点から、前記窒素酸化物測定装置による窒素酸化物濃度が第一目標濃度を最初に超えて第一目標濃度に戻るまでの時間以上、または、前記窒素酸化物測定装置による窒素酸化物濃度が第一目標濃度±許容値の範囲内に収まるまでの時間以上である
ことを特徴とする請求項1に記載の脱硝装置付き排ガスボイラ。
When the set concentration is increased from the second target concentration to the first target concentration, the set concentration is changed so as to increase with time so as to reach the first target concentration with a set return time.
When the set concentration is raised in steps from the second target concentration to the first target concentration, the nitrogen oxide concentration measured by the nitrogen oxide measuring device starts with the first target concentration. More than the time until it returns to the first target concentration, or more than the time until the nitrogen oxide concentration by the nitrogen oxide measuring device falls within the range of the first target concentration ± allowable value. The exhaust gas boiler with a denitration device according to claim 1.
前記設定濃度を第二目標濃度から第一目標濃度へ上げる際、設定戻し時間で第一目標濃度に到達するように、次式で設定される変化率で前記設定濃度を変更する
ことを特徴とする請求項1または請求項2に記載の脱硝装置付き排ガスボイラ。
変化率=(第一目標濃度−第二目標濃度)/設定戻し時間
When the set density is increased from the second target density to the first target density, the set density is changed at a change rate set by the following equation so that the first target density is reached with a set return time. An exhaust gas boiler with a denitration device according to claim 1 or 2.
Rate of change = (first target concentration-second target concentration) / setting return time
オキシダント警報の発令に基づき、前記設定濃度は、第一目標濃度から40%低減した第二目標濃度に切り替えられ、
オキシダント警報の解除に基づき、前記設定濃度は、第二目標濃度から第一目標濃度に設定戻し時間をかけて戻されるよう徐々に変更される
ことを特徴とする請求項2または請求項3に記載の脱硝装置付き排ガスボイラ。
Based on the announcement of the oxidant warning, the set concentration is switched to the second target concentration reduced by 40% from the first target concentration,
The said set density | concentration is gradually changed so that a setting return time may be returned from a 2nd target density | concentration over time based on cancellation | release of an oxidant warning. Exhaust gas boiler with denitration equipment.
前記設定濃度を上げている途中で、前記変化率を変更する
ことを特徴とする請求項1〜4のいずれか1項に記載の脱硝装置付き排ガスボイラ。
The exhaust gas boiler with a denitration device according to any one of claims 1 to 4, wherein the rate of change is changed while the set concentration is being increased.
前記設定濃度を上げている途中で、前記窒素酸化物測定装置により窒素酸化物濃度の実際の変化率を求め、この変化率に合わせた勾配で前記設定濃度を変更する
ことを特徴とする請求項5に記載の脱硝装置付き排ガスボイラ。
In the middle of raising the set concentration, an actual change rate of the nitrogen oxide concentration is obtained by the nitrogen oxide measuring device, and the set concentration is changed with a gradient according to the change rate. 5. An exhaust gas boiler with a denitration device according to 5.
JP2013204958A 2013-09-30 2013-09-30 Exhaust gas boiler with denitration equipment Active JP6173152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204958A JP6173152B2 (en) 2013-09-30 2013-09-30 Exhaust gas boiler with denitration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204958A JP6173152B2 (en) 2013-09-30 2013-09-30 Exhaust gas boiler with denitration equipment

Publications (2)

Publication Number Publication Date
JP2015068597A true JP2015068597A (en) 2015-04-13
JP6173152B2 JP6173152B2 (en) 2017-08-02

Family

ID=52835433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204958A Active JP6173152B2 (en) 2013-09-30 2013-09-30 Exhaust gas boiler with denitration equipment

Country Status (1)

Country Link
JP (1) JP6173152B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343103A (en) * 2000-03-30 2001-12-14 Miura Co Ltd Method for controlling denitration device in boiler
JP2002177741A (en) * 2000-12-18 2002-06-25 Miura Co Ltd Method of controlling denitration apparatus in boiler
WO2007102269A1 (en) * 2006-03-08 2007-09-13 Hitachi, Ltd. Plant controlling device and method, thermal power plant, and its control method
JP2007330835A (en) * 2006-06-12 2007-12-27 Miura Co Ltd Denitration device of combustor
JP2012120992A (en) * 2010-12-09 2012-06-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitrification apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343103A (en) * 2000-03-30 2001-12-14 Miura Co Ltd Method for controlling denitration device in boiler
JP2002177741A (en) * 2000-12-18 2002-06-25 Miura Co Ltd Method of controlling denitration apparatus in boiler
WO2007102269A1 (en) * 2006-03-08 2007-09-13 Hitachi, Ltd. Plant controlling device and method, thermal power plant, and its control method
JP2007330835A (en) * 2006-06-12 2007-12-27 Miura Co Ltd Denitration device of combustor
JP2012120992A (en) * 2010-12-09 2012-06-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitrification apparatus

Also Published As

Publication number Publication date
JP6173152B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
KR101707199B1 (en) Exhaust purification device
KR101560050B1 (en) Reductant supply system
KR101489794B1 (en) A Reducing Agent Supply Device for SCR System and Method thereof
JP2011247134A (en) Scr system
WO2011148809A1 (en) Selective catalytic reduction apparatus
JP2016094937A (en) System and method for emissions control in gas turbine systems
KR101497828B1 (en) System for selective catalytic reuction and method for selective catalytic reuction
US20100205937A1 (en) Method and system for injecting a liquid
JP2010133354A (en) Reducing agent injection control device, control method of reducing agent injection device and exhaust emission control device of internal combustion engine
JP7254724B2 (en) Temperature-based control of reagent distribution
US20150167524A1 (en) Urea solution injection nozzle
JP2008038728A (en) Reducing agent supply device and control method of reducing agent supply device
JP2011038521A (en) Urea injection control system
CN105899771A (en) Techniques for control of an SCR aftertreatment system in response to an ammonia slip condition
JP2017115887A (en) Dosing module
JP6173152B2 (en) Exhaust gas boiler with denitration equipment
CN102345487B (en) Method for metering a reagent into an exhaust gas duct and device for carrying out the method
JP6204137B2 (en) Exhaust gas boiler with denitration equipment
JP2010203268A (en) Nox removal device
JPH09150038A (en) Aqueous urea spraying device for exhaust gas denitrification apparatus
JP2006242155A (en) Exhaust emission control device for internal combustion engine
JP7254010B2 (en) Hydrolysis system, denitrification equipment, and control method for hydrolysis system
JP2015075003A (en) Exhaust emission control device for internal combustion engine
KR20180076684A (en) Reductant supply system and method for supplying reductant
KR20110063137A (en) Selective catalyst reduction device for exhaust system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6173152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250