JP2007330835A - Denitration device of combustor - Google Patents

Denitration device of combustor Download PDF

Info

Publication number
JP2007330835A
JP2007330835A JP2006162138A JP2006162138A JP2007330835A JP 2007330835 A JP2007330835 A JP 2007330835A JP 2006162138 A JP2006162138 A JP 2006162138A JP 2006162138 A JP2006162138 A JP 2006162138A JP 2007330835 A JP2007330835 A JP 2007330835A
Authority
JP
Japan
Prior art keywords
reducing agent
injection amount
denitration
exhaust gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162138A
Other languages
Japanese (ja)
Other versions
JP4732964B2 (en
Inventor
Nobuyuki Ishizaki
信行 石崎
Shigeki Ochi
重喜 越智
Hidetaka Yamamoto
英貴 山本
Kimiharu Ozaki
公治 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Tokyo Gas Co Ltd
Miura Protec Co Ltd
Original Assignee
Miura Co Ltd
Tokyo Gas Co Ltd
Miura Protec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Tokyo Gas Co Ltd, Miura Protec Co Ltd filed Critical Miura Co Ltd
Priority to JP2006162138A priority Critical patent/JP4732964B2/en
Publication of JP2007330835A publication Critical patent/JP2007330835A/en
Application granted granted Critical
Publication of JP4732964B2 publication Critical patent/JP4732964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a denitration device of a combustor controlling an amount of a reducing agent with preferable responsiveness to the variation of an operation state of the combustor, stabilizing a denitration rate and preventing leakage of ammonia. <P>SOLUTION: This denitration device is provided with a reducing agent injector 4 injecting the reducing agent of nitrogen oxides into exhaust gas from the combustor; a denitration reactor 3 through which the exhaust gas with the reducing agent injected by the reducing agent injector 4 passes and which has a denitration catalyst for reducing nitrogen oxides in the exhaust gas; and a control means 5 controlling the injection amount of the reducing agent by the reducing agent injector 4, based on the operation state of the combustor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば発電用の燃焼機器に適用され、アンモニアまたは尿素を還元剤として用いつつ、排ガス中の窒素酸化物の還元を図る脱硝装置に関するものである。   The present invention relates to a denitration apparatus which is applied to, for example, a combustion device for power generation, and reduces nitrogen oxides in exhaust gas while using ammonia or urea as a reducing agent.

下記特許文献1に開示されるように、発電機の発電量に応じて定められる還元剤注入量を、排ガスの窒素酸化物濃度または排ガス流量にて補正するコジェネレーションシステムが提案されている。
特開2005−133628号公報
As disclosed in Patent Document 1 below, there has been proposed a cogeneration system that corrects the reducing agent injection amount determined according to the power generation amount of the generator by the nitrogen oxide concentration or the exhaust gas flow rate of the exhaust gas.
JP 2005-133628 A

燃焼機器(エンジン)の出力を変動させると、窒素酸化物の排出量が変動するため、これに応じて還元剤の注入量を迅速に変化させる必要がある。ところが、従来の構成では、エンジンの出力変動に対する還元剤の注入量制御に応答遅れが生じ、所望の脱硝率を確保できないおそれがあった。具体的には、エンジン出力を増加させると、静定時に要求される還元剤量よりも多い量が必要となり、過渡的に脱硝率が低下する。逆に、エンジン出力を減少させると、静定時に要求される還元剤量よりも少ない量しか必要でないため、過渡的に還元剤が多くなり、リークアンモニアの増加を招くおそれがあった。   When the output of the combustion device (engine) is changed, the emission amount of nitrogen oxides is changed, and accordingly, the reducing agent injection amount needs to be changed quickly. However, in the conventional configuration, there is a possibility that a delay in response occurs in the control of the reducing agent injection amount with respect to the engine output fluctuation, and a desired denitration rate cannot be secured. Specifically, when the engine output is increased, an amount larger than the amount of reducing agent required at the time of stabilization is required, and the denitration rate decreases transiently. Conversely, if the engine output is decreased, only a smaller amount than the amount of reducing agent required at the time of stabilization is required, so that the amount of reducing agent increases transiently and there is a risk of increasing leaked ammonia.

本発明が解決しようとする課題は、燃焼機器(エンジン)の出力変化に対し、応答性よく還元剤量を制御し、脱硝率の安定とリークアンモニアの防止を図ることにある。   The problem to be solved by the present invention is to control the amount of reducing agent with high responsiveness to changes in the output of the combustion equipment (engine) to stabilize the denitration rate and prevent leaked ammonia.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、燃焼機器からの排ガスに、窒素酸化物の還元剤を注入する還元剤注入器と、この還元剤注入器により還元剤が注入された排ガスが通され、その排ガス中の窒素酸化物の還元を図る脱硝触媒を有する脱硝反応器と、前記燃焼機器の運転状態に基づき、前記還元剤注入器による還元剤の注入量を制御する制御手段とを備えることを特徴とする燃焼機器の脱硝装置である。   The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is directed to a reducing agent injector for injecting a nitrogen oxide reducing agent into exhaust gas from a combustion device, and the reducing agent. A denitration reactor having a denitration catalyst for reducing the nitrogen oxides in the exhaust gas is passed through the exhaust gas into which the reducing agent is injected by the injector, and the reduction by the reducing agent injector based on the operating state of the combustion equipment. It is a denitration device for combustion equipment, characterized by comprising control means for controlling the injection amount of the agent.

請求項1に記載の発明によれば、燃焼機器の運転状態を考慮することで、燃焼機器の出力変化に対し、応答性よく還元剤量を制御することができる。これにより、脱硝率を安定させることができ、またリークアンモニアが増加することもない。   According to the first aspect of the present invention, it is possible to control the amount of reducing agent with high responsiveness to changes in the output of the combustion equipment by considering the operating state of the combustion equipment. Thereby, the denitration rate can be stabilized and the leaked ammonia does not increase.

請求項2に記載の発明は、前記脱硝反応器を通過した排ガス中の窒素酸化物濃度を検出するNOxセンサをさらに備え、前記制御手段は、前記NOxセンサにより検出される窒素酸化物濃度に基づき、前記還元剤注入器による還元剤の前記注入量を調整することを特徴とする請求項1に記載の燃焼機器の脱硝装置である。   The invention according to claim 2 further includes a NOx sensor that detects a nitrogen oxide concentration in the exhaust gas that has passed through the denitration reactor, and the control means is based on the nitrogen oxide concentration detected by the NOx sensor. The denitration device for a combustion apparatus according to claim 1, wherein the amount of the reducing agent injected by the reducing agent injector is adjusted.

請求項2に記載の発明によれば、NOxセンサにより窒素酸化物濃度を監視して、その窒素酸化物濃度に基づき還元剤注入量を補正することで、適正で安定した脱硝率を確保することができる。   According to the second aspect of the present invention, the nitrogen oxide concentration is monitored by the NOx sensor and the reducing agent injection amount is corrected based on the nitrogen oxide concentration, thereby ensuring an appropriate and stable denitration rate. Can do.

さらに、請求項3に記載の発明は、前記燃焼機器の運転状態に基づき求められる注入量に粗補正係数を乗算して粗補正注入量を求め、この粗補正注入量に基づき前記還元剤注入器による還元剤の注入量を制御すると共に、前記NOxセンサにより検出される窒素酸化物濃度に基づき前記粗補正注入量を微調整する微調整係数を許容範囲内に収めるよう前記粗補正係数を修正する制御手段を備えることを特徴とする請求項2に記載の燃焼機器の脱硝装置である   Further, the invention according to claim 3 is to obtain a rough correction injection amount by multiplying an injection amount obtained based on an operating state of the combustion equipment by a rough correction coefficient, and based on the rough correction injection amount, the reducing agent injector. The amount of reducing agent injected by the control is controlled, and the coarse correction coefficient is corrected so that a fine adjustment coefficient for fine adjustment of the rough correction injection amount is within an allowable range based on the nitrogen oxide concentration detected by the NOx sensor. It is a denitration apparatus of the combustion equipment of Claim 2 provided with a control means.

燃焼機器の運転状態に対する還元剤注入量は、季節変動などにより変化するが、請求項3に記載の発明によれば、粗補正係数による粗補正注入量を、窒素酸化物濃度に基づき修正することで、一層安定した確実で適正な脱硝を図ることができる。   Although the reducing agent injection amount with respect to the operating state of the combustion equipment changes due to seasonal fluctuations, etc., according to the invention of claim 3, the coarse correction injection amount based on the rough correction coefficient is corrected based on the nitrogen oxide concentration. Therefore, more stable and reliable denitration can be achieved.

本発明にかかる燃焼機器の脱硝装置によれば、燃焼機器の運転状態の変化に対し、応答性よく還元剤量を制御し、脱硝率の安定とリークアンモニアの防止を図ることができる。   According to the denitration apparatus for combustion equipment according to the present invention, it is possible to control the amount of reducing agent with high responsiveness to changes in the operating state of the combustion equipment, thereby stabilizing the denitration rate and preventing leaked ammonia.

次に、本発明の実施の形態について説明する。
本実施形態の脱硝装置は、燃焼機器と、これから排出される排ガスに含まれる窒素酸化物を還元する還元剤の注入器と、この注入器により注入された還元剤を含む排ガスが通過し、この排ガス中の窒素酸化物を還元する脱硝触媒が装填された脱硝反応器と、前記燃焼機器の運転状態に基づき、前記還元剤注入器による還元剤の注入量を制御する制御手段とを有している。
Next, an embodiment of the present invention will be described.
In the denitration apparatus of the present embodiment, a combustion device, a reducing agent injector for reducing nitrogen oxides contained in exhaust gas discharged from the combustion device, and an exhaust gas containing the reducing agent injected by the injector pass. A denitration reactor loaded with a denitration catalyst for reducing nitrogen oxides in the exhaust gas, and a control means for controlling the amount of reducing agent injected by the reducing agent injector based on the operating state of the combustion device. Yes.

前記燃焼機器は、通常のボイラや、発生させた蒸気によりタービンを回して発電する発電機に装備されるものに適用される。特に、季節変動により排出されるNOx濃度変化が比較的大きいエンジンを燃焼機器として有するもの、例えばガスタービンやディーゼルエンジンなどの燃焼機器に好適に適用される。   The combustion device is applied to a normal boiler or a device equipped in a generator that generates power by turning a turbine with generated steam. In particular, the present invention is suitably applied to a combustion apparatus having an engine having a relatively large NOx concentration change due to seasonal variation as a combustion apparatus, such as a gas turbine or a diesel engine.

前記燃焼機器には、その排ガスを大気に放出するための配管が接続され、この配管の下流側に前記脱硝反応器が接続されるとともに、前記配管の途中に還元剤注入器が配置される。そして、前記燃焼機器から排出される排ガスに前記注入器から還元剤が注入され、この還元剤が前記脱硝反応器において排ガス中のNOxと反応し、NOxが窒素と水に分解されて無害化される。前記還元剤としては、例えば尿素水、アンモニア、重炭酸アンモニウムなどが好適に用いられる。また、前記脱硝反応器に装填される脱硝触媒としては、例えばバナジウム、タングステン系のものが好適に用いられる。この脱硝触媒は、前記還元剤と排ガス中のNOxとの反応を促進できる。   A pipe for releasing the exhaust gas to the atmosphere is connected to the combustion equipment, the denitration reactor is connected to the downstream side of the pipe, and a reducing agent injector is disposed in the middle of the pipe. Then, a reducing agent is injected from the injector into the exhaust gas discharged from the combustion equipment, and this reducing agent reacts with NOx in the exhaust gas in the denitration reactor, and NOx is decomposed into nitrogen and water and rendered harmless. The As the reducing agent, for example, urea water, ammonia, ammonium bicarbonate and the like are preferably used. Further, as the denitration catalyst loaded in the denitration reactor, for example, a vanadium or tungsten catalyst is preferably used. This denitration catalyst can promote the reaction between the reducing agent and NOx in the exhaust gas.

前記制御手段は、前記燃焼機器の運転状態に基づき、前記還元剤注入器による還元剤の注入量を制御する。例えば発電機に装備される燃焼機器の場合は、その発電機の発電量に応じて定められた注入量だけではなく、発電量の変化割合に基づいても還元剤の注入量を制御する。前記発電機で発生するNOx量は、発電機の発電量をパラメータとする所定の関数マップにより求められ、基本的には、この関数マップに基づき還元剤の基本注入量が決定される。また、発電機は、その出力変化によりNOxの排出量が変動するが、この実施形態では、前記制御手段において発電機の出力変化の割合が演算され、この演算の結果得られた補正値により前記発電機の発電量に応じて予め定められた前記マップの基本注入量が補正され、この補正されたものをフィードフォワード値として、これに基づく注入量が排ガスに注入される。つまり、発電機の負荷(出力)が増大すると、静定時に要求される還元剤量より多い量が必要となり、一方、負荷が減少すると、静定時に要求される還元剤量より少ない量しか必要としない。そこで、前記発電機の負荷(出力)の変化に応じて、前記マップの基本注入量を補正し、この補正された最適な注入量を排ガスに注入することにより、安定した所定の脱硝率を確保し、かつ、リークアンモニアを防止する。   The control means controls the amount of reducing agent injected by the reducing agent injector based on the operating state of the combustion device. For example, in the case of a combustion device equipped in a generator, the injection amount of the reducing agent is controlled not only based on the injection amount determined according to the power generation amount of the generator but also based on the rate of change in the power generation amount. The amount of NOx generated in the generator is obtained from a predetermined function map using the amount of power generated by the generator as a parameter. Basically, the basic injection amount of the reducing agent is determined based on this function map. Further, in the generator, the NOx emission amount fluctuates due to the output change. In this embodiment, the control means calculates the ratio of the output change of the generator, and the correction value obtained as a result of the calculation calculates the ratio. The basic injection amount of the map determined in advance according to the power generation amount of the generator is corrected, and the correction amount is used as a feedforward value, and the injection amount based on this is injected into the exhaust gas. In other words, when the load (output) of the generator increases, a larger amount than the amount of reducing agent required during settling is required, while when the load decreases, only a smaller amount than the amount of reducing agent required during settling is required. And not. Therefore, the basic injection amount of the map is corrected according to changes in the load (output) of the generator, and the corrected optimal injection amount is injected into the exhaust gas, thereby ensuring a stable predetermined denitration rate. And prevent leaked ammonia.

前記還元剤注入器としては、例えばストローク式のポンプが用いられ、このポンプの吐出側先端にノズルを取り付けて、このノズルから還元剤を前記排ガスに注入する。この還元剤の注入量の制御は、前記ポンプのストローク数を制御して行う。   As the reducing agent injector, for example, a stroke type pump is used, and a nozzle is attached to the discharge side tip of the pump, and the reducing agent is injected into the exhaust gas from the nozzle. Control of the injection amount of the reducing agent is performed by controlling the number of strokes of the pump.

また、本発明にかかる別の実施形態では、前記脱硝反応器の出口側に、これを通過した排ガス中の窒素酸化物を検出するNOxセンサを設ける。また、この実施形態においては、前記制御手段に、NOxセンサにより検出される窒素酸化物の濃度に基づいて粗補正係数を求め、この粗補正係数をフィードバック値として前記基本注入量つまりフィードフォワード値に乗算して、前記注入器による還元剤の注入量をさらに調整する機能を付加させる。つまり、前記発電機に吸入される空気の温,湿度が変化すると、発電機で発生するNOx量も変化する。このため、本実施形態では、前記NOxセンサで前記脱硝反応器から排出される実際のNOx量を検出し、その量の変化に対応した粗補正係数を求め、この粗補正係数に基づき前記マップの基本注入量を調整する。そして、後述の前記NOxセンサによるフィードバック制御を開始するまでは、前記粗補正係数で調整された注入量の還元剤を注入する。   In another embodiment of the present invention, a NOx sensor that detects nitrogen oxides in exhaust gas that has passed through the denitration reactor is provided on the outlet side of the denitration reactor. Further, in this embodiment, the control means obtains a rough correction coefficient based on the concentration of nitrogen oxides detected by the NOx sensor, and uses the rough correction coefficient as a feedback value as the basic injection amount, that is, the feedforward value. Multiplication is added to the function of further adjusting the amount of reducing agent injected by the injector. That is, when the temperature and humidity of the air sucked into the generator change, the amount of NOx generated by the generator also changes. For this reason, in the present embodiment, the NOx sensor detects the actual NOx amount discharged from the denitration reactor, obtains a coarse correction coefficient corresponding to the change in the amount, and based on this coarse correction coefficient, Adjust the basic injection volume. Then, until the feedback control by the NOx sensor described later is started, the injection amount of the reducing agent adjusted by the rough correction coefficient is injected.

また、別の実施形態では、前記制御手段に、前記NOxセンサに基づいて調整された調整量が所定の許容範囲を超えると、調整量が許容範囲内に収まるように、前記粗補正係数を修正する機能をさらに付加させる。つまり、前記粗補正係数を調整して還元剤の注入量制御を行っているとき、その調整量が所定の許容値を超えると、前記NOxセンサからのフィードバック信号で前記関数マップを増方向に、また、許容値以下になると関数マップを減方向に修正して、さらに安定した脱硝率を確保し、かつ、リークアンモニアを確実に防止する。   In another embodiment, when the adjustment amount adjusted based on the NOx sensor exceeds a predetermined allowable range, the rough correction coefficient is corrected so that the adjustment amount falls within the allowable range. The function to perform is added. That is, when adjusting the rough correction coefficient and controlling the injection amount of the reducing agent, if the adjustment amount exceeds a predetermined allowable value, the function map is increased by the feedback signal from the NOx sensor, Further, when the value is less than the allowable value, the function map is corrected in a decreasing direction to secure a more stable denitration rate and to surely prevent leaked ammonia.

以下、本発明にかかる脱硝装置の具体例を図面に基づいて説明する。図1は本発明の一実施形態にかかる脱硝装置の制御回路図である。この図の実施例では、NOxの排出源となる燃焼機器を備えた発電機1と、この発電機1から延びる配管2に接続され、内部に例えばバナジウム系の脱硝触媒が装填された脱硝反応器3と、配管2における発電機1の下流側に配置され、配管2内を通る排ガスに、これに含まれるNOxを還元する例えば尿素水(還元剤)を注入する噴霧ノズル41を備えたポンプからなる還元剤注入器4と、発電機1の発電量とその変化の割合とに基づき、還元剤注入器4による還元剤の注入量を制御する制御手段5とを備えている。   Hereinafter, a specific example of a denitration apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a control circuit diagram of a denitration apparatus according to an embodiment of the present invention. In the embodiment of this figure, a denitration reactor connected to a generator 1 having a combustion device as a NOx emission source and a pipe 2 extending from the generator 1 and loaded with, for example, a vanadium-based denitration catalyst. 3 and a pump provided with a spray nozzle 41 for injecting, for example, urea water (reducing agent) that reduces NOx contained in the exhaust gas that is disposed downstream of the generator 1 in the pipe 2 and passes through the pipe 2. And a control means 5 for controlling the amount of reducing agent injected by the reducing agent injector 4 based on the amount of power generated by the generator 1 and the rate of change thereof.

この図の実施形態において、制御手段5には、発電機1の出力部10からの信号を微分(dp/dt)して、このdp/dt値が規定値以上か以下かを判定して、その判定に基づき補正値K0を演算計出して出力する出力変化検出回路51と、その補正値K0を発電機1の発電量に応じて予め定められた関数マップMの基本注入量に加減算して補正する補正加算回路52が接続されている。   In the embodiment of this figure, the control means 5 differentiates the signal from the output unit 10 of the generator 1 (dp / dt) and determines whether this dp / dt value is greater than or equal to a specified value, Based on the determination, an output change detection circuit 51 that calculates and outputs a correction value K0, and the correction value K0 is added to or subtracted from the basic injection amount of the function map M determined in advance according to the power generation amount of the generator 1. A correction addition circuit 52 for correction is connected.

図2はさらに別の実施例にかかる脱硝装置の制御回路図である。この図の実施例では、配管2における脱硝反応器3の出口側に、この反応器3を通過した排ガス中に含まれるNOxを検出するNOxセンサ6を設けている。そして、制御手段5に、NOxセンサ6により検出されるNOxの濃度変化に基づき粗補正係数K1を演算して実際のNOx濃度に対応した注入量を計出する粗補正演算回路7を接続する。   FIG. 2 is a control circuit diagram of a denitration apparatus according to still another embodiment. In the embodiment of this figure, a NOx sensor 6 that detects NOx contained in the exhaust gas that has passed through the reactor 3 is provided on the outlet side of the denitration reactor 3 in the pipe 2. The control means 5 is connected to a coarse correction calculation circuit 7 for calculating a rough correction coefficient K1 based on the NOx concentration change detected by the NOx sensor 6 and calculating an injection amount corresponding to the actual NOx concentration.

また、制御手段5には、NOxセンサ6で検出されるNOx値をフィードバックして、粗補正演算回路7による注入量が許容範囲をこえたとき、注入量が許容範囲内に収まるように、粗補正係数K1を修正して新たな補正係数K2を演算して計出する修正演算回路8を接続し、この修正演算回路8で計出される新たな補正係数K2に基づく制御手段5からの出力によりPID制御運転を行う。   Further, the NOx value detected by the NOx sensor 6 is fed back to the control means 5 so that when the injection amount by the coarse correction calculation circuit 7 exceeds the allowable range, the rough injection amount falls within the allowable range. A correction arithmetic circuit 8 that corrects the correction coefficient K1 and calculates and calculates a new correction coefficient K2 is connected, and the output from the control means 5 is based on the new correction coefficient K2 calculated by the correction arithmetic circuit 8. PID control operation is performed.

以上の構成とした脱硝装置による脱硝作用を図3に示すフローチャート図に基づいて説明する。発電機1による発電時に基本的には、ステップST1において、横軸に発電機1の発電量を縦軸に還元剤の注入量xをとった関数マップMを用い、この関数マップMに基づき注入器として用いたストローク式ポンプが回転制御され、その回転制御によりノズル41からの還元剤の注入量が可変制御される(ステップST5)。ポンプの回転制御は、4〜20mAの電流値に変換された電気信号によりストローク数を比例制御して行う。また、ポンプは、オートAとマニュアルMに切換可能とされており、例えば設定変更時や試験点検時などにはマニュアル運転が、通常時にはオート運転が行われる。   The denitration action by the denitration apparatus having the above configuration will be described based on the flowchart shown in FIG. At the time of power generation by the generator 1, basically, in step ST1, a function map M is used in which the horizontal axis represents the power generation amount of the generator 1 and the vertical axis represents the injection amount x of the reducing agent. The stroke type pump used as a container is rotationally controlled, and the injection amount of the reducing agent from the nozzle 41 is variably controlled by the rotational control (step ST5). The rotation control of the pump is performed by proportionally controlling the number of strokes by an electric signal converted into a current value of 4 to 20 mA. The pump can be switched between Auto A and Manual M. For example, manual operation is performed at the time of setting change or test inspection, and automatic operation is performed at normal time.

また、発電時には、ステップST2において、発電機1の出力変化の割合(dp/dt)が検知され、その変化に基づき制御手段5で補正値K0が演算計出されて、この補正値K0により関数マップMの注入量xが補正され、この補正値K0をフィードフォワード値として、これに基づく注入量(=x+K0)がノズル41から注入される。   Further, at the time of power generation, in step ST2, the rate of change in output (dp / dt) of the generator 1 is detected, and based on the change, the control means 5 calculates the correction value K0, and the correction value K0 is used as a function. The injection amount x of the map M is corrected. The correction value K0 is used as a feedforward value, and the injection amount (= x + K0) based on the correction value K0 is injected from the nozzle 41.

さらに、ステップST3において、粗補正演算回路7でNOxセンサ6により検出されるNOx濃度に基づき粗補正係数K1が計出される。そして、制御手段5において粗補正係数K1が補正値K0による補正注入量(=x+K0)に乗算され、この乗算された注入量(=(x+K0)×K1)が注入される。   Further, in step ST3, a rough correction coefficient K1 is calculated based on the NOx concentration detected by the NOx sensor 6 in the rough correction calculation circuit 7. Then, the control unit 5 multiplies the correction injection amount (= x + K0) by the correction value K0 by the rough correction coefficient K1, and the injection amount (= (x + K0) × K1) thus multiplied is injected.

ステップST3での注入量制御は、発電機の負荷が一定以上になって負荷が安定するまで行われる。この後、ステップST4において、前記補正注入量(=(x十K0)×K1)に微調整演算回路8により計出される微調整係数K2が乗算されて、微調整係数K2に基づく制御手段5からの出力により注入制御が行われる。 The injection amount control in step ST3 is performed until the load on the generator becomes a certain level or more and the load is stabilized. Thereafter, in step ST4, the correction injection amount (= (x 10 K0) × K1) is multiplied by the fine adjustment coefficient K2 calculated by the fine adjustment calculation circuit 8, and the control means 5 based on the fine adjustment coefficient K2 The injection control is performed by the output of.

従来から、フィードフォワード制御とフィードバック制御とを組み合わせた制御が知られているが、関数マップMのような固定値によるフィードフォワード制御では、発電機の負荷変動に対応できるものの、季節や天候などの環境変化に対応できない。フィードバック制御では、環境変化に対応できるが、発電機の起動時から発電機の負荷変動がない一定以上の負荷になるまでの間は、適正なフィードバック値が得られなかった。すなわち、還元剤を注入してから還元剤によるNOxの低減効果がNOxセンサ6により検出されるまでに遅れ(応答遅れ)が生じるので、この応答遅れの間は、適正なフィードバック値が得られない。そこで、この実施例では、微調整係数K2(フィードバック値)が許容範囲から外れると、微調整係数K2を許容範囲内に収めるように粗補正係数K1を調整することで、前記応答遅れの間の粗補正係数K1を適正な値とし、前記応答遅れの間の環境変化に対応できる制御を実現させている。   Conventionally, control combining feedforward control and feedback control is known, but feedforward control with a fixed value such as the function map M can cope with load fluctuations of the generator, but the season and weather Unable to respond to environmental changes. The feedback control can cope with environmental changes, but an appropriate feedback value cannot be obtained from the time when the generator is started until the load exceeds a certain level where there is no load fluctuation of the generator. That is, a delay (response delay) occurs between the time when the reducing agent is injected and the NOx reduction effect by the reducing agent is detected by the NOx sensor 6, and thus an appropriate feedback value cannot be obtained during this response delay. . Therefore, in this embodiment, when the fine adjustment coefficient K2 (feedback value) is out of the allowable range, the coarse correction coefficient K1 is adjusted so that the fine adjustment coefficient K2 falls within the allowable range, thereby reducing the response delay. The rough correction coefficient K1 is set to an appropriate value, and control that can cope with an environmental change during the response delay is realized.

図4はNOxセンサ6による微調整係数K2により粗補正係数K1を調整するときの説明図である。この図では、微調整係数K2の上限を2.0、下限を0.0、基準規定値を1.0としたとき、微調整係数K2が0,95よりも小さい領域では、関数マップMを減方向に補正するように粗補正係数K1を調整し、また、微調整係数K2が1,05より大きい領域では、関数マップMを増方向に補正するように粗補正係数K1を調整する。すなわち、微調整係数K2が0.95から1,05の許容範囲内に収まるように粗補正係数K1の調整が行われる。ここで粗補正係数K1は、0.0から2,0の範囲の値であり、粗補正係数K1の調整に際しては、例えば0.002/分の割合で行う。   FIG. 4 is an explanatory diagram when the coarse correction coefficient K1 is adjusted by the fine adjustment coefficient K2 by the NOx sensor 6. In FIG. In this figure, when the upper limit of the fine adjustment coefficient K2 is 2.0, the lower limit is 0.0, and the reference specified value is 1.0, the function map M is expressed in an area where the fine adjustment coefficient K2 is smaller than 0,95. The coarse correction coefficient K1 is adjusted so as to correct in the decreasing direction, and the coarse correction coefficient K1 is adjusted so that the function map M is corrected in the increasing direction when the fine adjustment coefficient K2 is larger than 1,05. That is, the coarse correction coefficient K1 is adjusted so that the fine adjustment coefficient K2 falls within the allowable range of 0.95 to 1,05. Here, the coarse correction coefficient K1 is a value in the range of 0.0 to 2,0, and the coarse correction coefficient K1 is adjusted at a rate of, for example, 0.002 / min.

図5は修正演算回路8により注入量制御を行うときの説明図である。NOxセンサ6による検出値が修正演算回路8に入力され、ここで計出された微調整係数K2が制御手段5に入力されて、この微調整係数K2に基づく注入量がノズル41から排ガスに注入される。そして、注入開始から脱硝反応器3での脱硝反応が安定するX分間を経過するまでは基準規定値1.0に相当する値が出力され、X分を経過した後には修正演算回路8による微調整係数K2に基づく還元剤の注入が行われる。このとき、発電機1による発電負荷が規定値以上に変動したとき、または、保守点検を行っているような場合などNOxセンサ6による検出値がフィードバック制御を行うのに不適切となるときには、その直前のNOx値に基づく補正係数K2がホールド回路9により保持されて、このホールド回路9に保持された値に基づき注入量の制御が行われる。   FIG. 5 is an explanatory diagram when the injection amount control is performed by the correction arithmetic circuit 8. The detected value by the NOx sensor 6 is input to the correction arithmetic circuit 8, and the fine adjustment coefficient K2 calculated here is input to the control means 5, and the injection amount based on the fine adjustment coefficient K2 is injected into the exhaust gas from the nozzle 41. Is done. A value corresponding to the reference specified value 1.0 is output from the start of injection until X minutes when the denitration reaction in the denitration reactor 3 is stabilized. The reducing agent is injected based on the adjustment coefficient K2. At this time, when the power generation load by the generator 1 fluctuates beyond a specified value, or when the detected value by the NOx sensor 6 becomes inappropriate for performing feedback control, such as when performing maintenance inspection, The correction coefficient K2 based on the immediately preceding NOx value is held by the hold circuit 9, and the injection amount is controlled based on the value held in the hold circuit 9.

本発明にかかる脱硝装置の一つの実施例を示す制御回路図である。It is a control circuit diagram showing one embodiment of a denitration apparatus according to the present invention. 本発明の別の実施例を示す制御回路図である。It is a control circuit diagram which shows another Example of this invention. 本発明の脱硝装置による脱硝作用を説明するフローチャート図である。It is a flowchart figure explaining the denitration effect | action by the denitration apparatus of this invention. NOxセンサからのフィードバック値に基づき粗補正係数を調整するときの説明図である。It is explanatory drawing when adjusting a rough correction coefficient based on the feedback value from a NOx sensor. 修正演算回路により注入量制御を行うときの説明図である。It is explanatory drawing when performing injection amount control by a correction arithmetic circuit.

符号の説明Explanation of symbols

3 脱硝反応器
4 還元剤注入器
5 制御手段
6 NOxセンサ
K1 粗補正係数
3 Denitration reactor 4 Reductant injector 5 Control means 6 NOx sensor K1 Coarse correction factor

Claims (3)

燃焼機器からの排ガスに、窒素酸化物の還元剤を注入する還元剤注入器と、
この還元剤注入器により還元剤が注入された排ガスが通され、その排ガス中の窒素酸化物の還元を図る脱硝触媒を有する脱硝反応器と、
前記燃焼機器の運転状態に基づき、前記還元剤注入器による還元剤の注入量を制御する制御手段と
を備えることを特徴とする燃焼機器の脱硝装置。
A reducing agent injector for injecting a nitrogen oxide reducing agent into the exhaust gas from the combustion equipment;
A denitration reactor having a denitration catalyst through which the exhaust gas into which the reducing agent is injected is passed by the reducing agent injector and reducing nitrogen oxides in the exhaust gas;
A denitration apparatus for a combustion device, comprising: a control unit that controls an injection amount of the reducing agent by the reducing agent injector based on an operating state of the combustion device.
前記脱硝反応器を通過した排ガス中の窒素酸化物濃度を検出するNOxセンサをさらに備え、
前記制御手段は、前記NOxセンサにより検出される窒素酸化物濃度に基づき、前記還元剤注入器による還元剤の前記注入量を調整する
ことを特徴とする請求項1に記載の燃焼機器の脱硝装置。
Further comprising a NOx sensor for detecting a nitrogen oxide concentration in the exhaust gas that has passed through the denitration reactor,
2. The denitration device for a combustion apparatus according to claim 1, wherein the control unit adjusts the injection amount of the reducing agent by the reducing agent injector based on a nitrogen oxide concentration detected by the NOx sensor. .
前記燃焼機器の運転状態に基づき求められる注入量に粗補正係数を乗算して粗補正注入量を求め、この粗補正注入量に基づき前記還元剤注入器による還元剤の注入量を制御すると共に、前記NOxセンサにより検出される窒素酸化物濃度に基づき前記粗補正注入量を微調整する微調整係数を許容範囲内に収めるよう前記粗補正係数を修正する制御手段
を備えることを特徴とする請求項2に記載の燃焼機器の脱硝装置。
A rough correction coefficient is obtained by multiplying the injection amount determined based on the operating state of the combustion device to obtain a rough correction injection amount, and the injection amount of the reducing agent by the reducing agent injector is controlled based on the rough correction injection amount. The control means for correcting the coarse correction coefficient so that a fine adjustment coefficient for finely adjusting the rough correction injection amount based on a nitrogen oxide concentration detected by the NOx sensor is within an allowable range. 2. A denitration apparatus for combustion equipment according to 2.
JP2006162138A 2006-06-12 2006-06-12 Denitration equipment for combustion equipment Active JP4732964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162138A JP4732964B2 (en) 2006-06-12 2006-06-12 Denitration equipment for combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162138A JP4732964B2 (en) 2006-06-12 2006-06-12 Denitration equipment for combustion equipment

Publications (2)

Publication Number Publication Date
JP2007330835A true JP2007330835A (en) 2007-12-27
JP4732964B2 JP4732964B2 (en) 2011-07-27

Family

ID=38930819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162138A Active JP4732964B2 (en) 2006-06-12 2006-06-12 Denitration equipment for combustion equipment

Country Status (1)

Country Link
JP (1) JP4732964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055797A (en) * 2010-09-06 2012-03-22 Ihi Corp Mercury removal device
JP2015068597A (en) * 2013-09-30 2015-04-13 三浦工業株式会社 Exhaust gas boiler with denitrification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102113889B1 (en) * 2015-02-23 2020-05-21 현대중공업 주식회사 Apparatus for controlling supplying of reducing agent in selective catalytic reduction system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259223A (en) * 1989-03-31 1990-10-22 Babcock Hitachi Kk Denitration method for exhaust gas
JPH04176325A (en) * 1990-11-09 1992-06-24 Sumitomo Chem Eng Kk Denitration
JPH04200619A (en) * 1990-11-30 1992-07-21 Foster Wheeler Energy Corp Method and device for catalytic denitrification control of flue gas
JPH04243522A (en) * 1991-01-23 1992-08-31 Mitsubishi Heavy Ind Ltd Denitration ammonia control apparatus
JPH11319490A (en) * 1998-05-19 1999-11-24 Meidensha Corp Method for controlling denitrator
JP2005133628A (en) * 2003-10-30 2005-05-26 Miura Co Ltd Cogeneration system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259223A (en) * 1989-03-31 1990-10-22 Babcock Hitachi Kk Denitration method for exhaust gas
JPH04176325A (en) * 1990-11-09 1992-06-24 Sumitomo Chem Eng Kk Denitration
JPH04200619A (en) * 1990-11-30 1992-07-21 Foster Wheeler Energy Corp Method and device for catalytic denitrification control of flue gas
JPH04243522A (en) * 1991-01-23 1992-08-31 Mitsubishi Heavy Ind Ltd Denitration ammonia control apparatus
JPH11319490A (en) * 1998-05-19 1999-11-24 Meidensha Corp Method for controlling denitrator
JP2005133628A (en) * 2003-10-30 2005-05-26 Miura Co Ltd Cogeneration system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055797A (en) * 2010-09-06 2012-03-22 Ihi Corp Mercury removal device
JP2015068597A (en) * 2013-09-30 2015-04-13 三浦工業株式会社 Exhaust gas boiler with denitrification device

Also Published As

Publication number Publication date
JP4732964B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP2554836B2 (en) Denitration control device
US9631776B2 (en) Model-based controls for selective catalyst reduction systems
RU2595292C2 (en) Combustion device with pulse separation of fuel
US8584444B2 (en) Model-based controls for selective catalyst reduction system
US8826671B2 (en) Control system for a gas turbine power plant
JP4668852B2 (en) Denitration equipment for combustion equipment
US8783013B2 (en) Feedforward selective catalytic reduction system for turbine engines
JP4732964B2 (en) Denitration equipment for combustion equipment
RU2607139C1 (en) Turbine operation method for reduction of ammonia slip
US6868294B2 (en) Feedback control method in V-shaped characteristic system, and NH3 injection rate control method for NOx removal apparatus using the same
US20190316503A1 (en) An Improved Selective Catalytic Reduction System
JP3558737B2 (en) Exhaust gas denitration method and exhaust gas treatment method
JP2007330836A (en) Denitration device of combustor
US10400673B2 (en) Feedforward systems and methods for spray intercooling fluid flows
JP2006029162A (en) Control device and control method of gas turbine
JP2005169331A (en) Denitrification control method and program for the same
JP2018138771A (en) Denitration control device for gas turbine, gas turbine combined-cycle power generation facility, denitration control method for gas turbine and denitration control program for gas turbine
CN118142339A (en) Denitration control method, denitration control device, storage medium, electronic device and program product
JP4786632B2 (en) Control device and control method for denitration apparatus
JP5745640B2 (en) Control device for gas turbine power plant
JPH10263360A (en) Method and device controlling introduced quantity of nitrogen oxide removing medium
KR102483964B1 (en) NOx REDUCTION FACILITY CONTROL METHOD OF GAS TURBINE COMBINED CYCLE POWER PLANT USING NATURAL GAS
CN107589764B (en) Denitration control method and system
KR101143728B1 (en) Automatic control device for NOx concentration and method thereof
JP2001104755A (en) Method and apparatus for controlling ammonia injection amount to denitration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4732964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250