JP2015066532A - Composite membrane having zeolite thin film and production method of the same - Google Patents

Composite membrane having zeolite thin film and production method of the same Download PDF

Info

Publication number
JP2015066532A
JP2015066532A JP2013205622A JP2013205622A JP2015066532A JP 2015066532 A JP2015066532 A JP 2015066532A JP 2013205622 A JP2013205622 A JP 2013205622A JP 2013205622 A JP2013205622 A JP 2013205622A JP 2015066532 A JP2015066532 A JP 2015066532A
Authority
JP
Japan
Prior art keywords
zeolite
porous ceramic
ceramic tube
type zeolite
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013205622A
Other languages
Japanese (ja)
Other versions
JP6785483B2 (en
Inventor
長谷川 泰久
Yasuhisa Hasegawa
泰久 長谷川
嘉道 清住
Yoshimichi Kiyozumi
嘉道 清住
庸治 佐野
Yoji Sano
庸治 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hiroshima University NUC
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hiroshima University NUC
Priority to JP2013205622A priority Critical patent/JP6785483B2/en
Publication of JP2015066532A publication Critical patent/JP2015066532A/en
Application granted granted Critical
Publication of JP6785483B2 publication Critical patent/JP6785483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a composite membrane where a zeolite thin film is formed on a porous ceramic tube and both permeability and separability are achieved at a high level and which can be prepared in shorter time.SOLUTION: In a composite membrane having a porous ceramic tube and a polycrystalline thin film consisting of a chabazite-type zeolite layer having a thickness of less than 10 μm and being formed on the porous ceramic tube, an intensity ratio (B/A) of a maximum peak intensity B of the zeolite layer to a maximum peak intensity A of the porous ceramic tube measured by X-ray diffraction is 0.10 or more and less than 1.0.

Description

本発明は、多孔質支持体上にゼオライト膜が形成されてなる複合膜およびその製造方法に関する。   The present invention relates to a composite membrane in which a zeolite membrane is formed on a porous support and a method for producing the same.

膜分離は、次世代を担う省エネルギー分離技術である。この膜分離技術は、例えば、複数成分からなる混合溶液、混合ガス、混合蒸気等の均質混合物から特定の物質を分離・精製したり、不均一溶液を精密ろ過(MF:Microfiltration、分離対象物サイズ:0.1〜10μm)、限外ろ過(UF:Ultrafiltration、分離対象物サイズ:2〜100nm)、ナノろ過(NF:Nanofiltarion、分離対象物サイズ:2nm未満)等により固液分離又は濃縮したり、化学反応と分離操作を一体化した膜反応に利用されたりしている。   Membrane separation is an energy-saving separation technology that will be the next generation. This membrane separation technology, for example, separates and purifies a specific substance from a homogeneous mixture such as a mixed solution, mixed gas, mixed vapor, etc. composed of multiple components, or microfilters a heterogeneous solution (MF: Microfiltration, separation object size) : 0.1 to 10 μm), ultrafiltration (UF: Ultrafiltration, separation object size: 2 to 100 nm), solid-liquid separation or concentration by nanofiltration (NF: Nanofiltarion, separation object size: less than 2 nm), etc. It is used in membrane reactions that integrate chemical reactions and separation operations.

上記MFおよびUFでは、物質移動の駆動力は主に圧力差であり、この圧力差により溶液成分が分離膜の孔内を拡散・移動することで、不均一溶液を固液分離したり濃縮したりすることができる。一方、NF膜のように、孔径が分子サイズにまで近くなると、分子と膜素材との相互作用が強くなる。この相互作用を利用することで、均質混合溶液や均質混合気体中から特定の成分を選択的に分離することも可能となる。   In the above MF and UF, the driving force for mass transfer is mainly a pressure difference, and the solution component diffuses and moves in the pores of the separation membrane due to this pressure difference, so that the heterogeneous solution is solid-liquid separated or concentrated. Can be. On the other hand, when the pore size is close to the molecular size as in the NF membrane, the interaction between the molecule and the membrane material becomes strong. By utilizing this interaction, it is also possible to selectively separate specific components from a homogeneous mixed solution or a homogeneous mixed gas.

このような分離膜の素材として、従来から安価で成形性のよい高分子が用いられてきたが、高分子膜は有機溶媒に対する耐性や耐熱性には限界がある。一方、無機素材は有機溶媒や熱に対する耐性に優れるものが多く、なかでも、ゼオライトの分離膜素材としての利用が注目されている。   As a material for such a separation membrane, an inexpensive polymer having good moldability has been conventionally used. However, the polymer membrane has limitations in resistance to organic solvents and heat resistance. On the other hand, many inorganic materials have excellent resistance to organic solvents and heat, and in particular, the use of zeolite as a separation membrane material has attracted attention.

ゼオライトの骨格は、Si、AlおよびOから構成され、さらに、SiとAlの酸化数の差を補充するための陽イオンを含んでなる。ゼオライトはこれらの元素が規則的に結合した結晶性化合物であり、これまでに結晶構造の異なる約200種類のゼオライトの存在が報告されている。また、ゼオライトは1nm未満の細孔構造を有していることから、分子をその大きさによって分離する分子ふるいとして利用することができる。すなわち、複数成分の混合物中から特定の成分を選択的に透過・除去するための分離膜素材として用いることができる。   The skeleton of the zeolite is composed of Si, Al, and O, and further includes a cation for replenishing the difference in oxidation number between Si and Al. Zeolite is a crystalline compound in which these elements are regularly bonded, and the presence of about 200 types of zeolites having different crystal structures has been reported so far. Moreover, since zeolite has a pore structure of less than 1 nm, it can be used as a molecular sieve for separating molecules according to their sizes. That is, it can be used as a separation membrane material for selectively permeating and removing a specific component from a mixture of a plurality of components.

これまでに、MFI(細孔10員環)、LTA(細孔8員環)、FAU(細孔12員環)、DDR(細孔8員環)、CHA(細孔8員環)等のゼオライト種を用いたゼオライト膜が開発されており、炭化水素ガスの分離、炭酸ガスの除去、脱水等への利用が検討されてきた。特に、骨格内のアルミニウム含有量を低減したCHA型ゼオライトを用いた分離膜は、耐酸性、透過性および分離性が高いとされ、脱水用分離膜としての実用化が期待されている。
例えば、Kalipcilarらは、Si源としてコロイダルシリカ、Al源として水酸化アルミニウム、アルカリ源として水酸化ナトリウム、構造規定剤としてN,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMAda)を使用し、無配向な高シリカCHA型ゼオライト膜を多孔質アルミナ基材上に形成している(非特許文献1)。また、特許文献1には、Si源としてコロイダルシリカ、Al源として水酸化アルミニウム、アルカリ源として水酸化ナトリウムおよび水酸化カリウム、構造規定剤としてN,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシドを使用し、b軸配向した高シリカCHA型ゼオライト膜を多孔質セラミックス基材上に形成することが記載され、この膜が水を含有する各種有機溶剤に対して高い水選択透過性を示すことが記載されている。
さらに、特許文献2には、Si源およびAl源として硫酸処理したY型ゼオライト粉末、構造規定材としてベンジルトリメチルアンモニウムヒドロキシド(BTMA)、およびアルカリ塩を使用し、高シリカCHA型ゼオライト膜からなる無配向膜を作製したことが記載されている。
To date, MFI (10-membered ring of pore), LTA (8-membered ring of pore), FAU (12-membered ring of pore), DDR (8-membered ring of pore), CHA (8-membered ring of pore), etc. A zeolite membrane using a zeolite species has been developed, and its use for separation of hydrocarbon gas, removal of carbon dioxide gas, dehydration and the like has been studied. In particular, a separation membrane using CHA zeolite with a reduced aluminum content in the skeleton is considered to have high acid resistance, permeability and separation properties, and is expected to be put to practical use as a separation membrane for dehydration.
For example, Kalipcilar et al. Used colloidal silica as the Si source, aluminum hydroxide as the Al source, sodium hydroxide as the alkali source, and N, N, N-trimethyl-1-adamantanammonium hydroxide (TMAda) as the structure directing agent. A non-oriented high silica CHA type zeolite membrane is formed on a porous alumina substrate (Non-patent Document 1). Patent Document 1 discloses colloidal silica as an Si source, aluminum hydroxide as an Al source, sodium hydroxide and potassium hydroxide as an alkali source, and N, N, N-trimethyl-1-adamantanammonium hydroxide as a structure-directing agent. Is used to form a b-axis oriented high silica CHA-type zeolite membrane on a porous ceramic substrate, and the membrane exhibits high water selective permeability to various organic solvents containing water. Is described.
Further, Patent Document 2 uses a high-silica CHA-type zeolite membrane using Y-type zeolite powder treated with sulfuric acid as the Si source and Al source, benzyltrimethylammonium hydroxide (BTMA) and an alkali salt as the structure-directing material. It describes that a non-oriented film was produced.

特開2011−121040号公報JP 2011-121040 A 特開2013−126649号公報JP2013-126649A

Chemistry Materials 14巻,3458-3464頁,2002年Chemistry Materials, 14, 3458-3464, 2002

しかし、非特許文献1に記載のゼオライト膜は、その表面に粒子が緻密に堆積した構造であるが、膜厚は約50μmもあり、透過性と分離性が低く、分子ふるいとしての性能に劣るものである。また、ゼオライト膜の形成には長時間を要する。
また、特許文献1に記載の分離膜もゼオライト層の厚みが約15μmと厚い。さらに、この分離膜は耐酸性が十分でなく、その使用環境には制約がある。
また、特許文献2に記載の分離膜は、ゼオライト層の厚みは3μm程度と非常に薄く形成されているが、ゼオライト層の形成には1週間以上もの時間をかけた水熱処理が必要である。さらに、特許文献2に記載の分離膜はゼオライトの結晶度が低く、透過性や分離性が十分とはいえない。
このように、これまでに開発された高シリカCHA型ゼオライト膜は、透過性および分離性といった分離膜としての性能や耐久性が未だ十分とはいえず、その製法も工業的に実施の観点から、効率的でない長時間を要するものであった。
However, although the zeolite membrane described in Non-Patent Document 1 has a structure in which particles are densely deposited on the surface, the film thickness is about 50 μm, and the permeability and separation are low, and the performance as a molecular sieve is inferior. Is. Moreover, it takes a long time to form the zeolite membrane.
Also, the separation membrane described in Patent Document 1 has a thick zeolite layer of about 15 μm. Furthermore, this separation membrane has insufficient acid resistance, and its usage environment is limited.
Further, the separation membrane described in Patent Document 2 has a very thin zeolite layer of about 3 μm, but formation of the zeolite layer requires a hydrothermal treatment that takes a week or more. Furthermore, the separation membrane described in Patent Document 2 has low crystallinity of zeolite, and cannot be said to have sufficient permeability and separation.
Thus, the high-silica CHA-type zeolite membranes developed so far are not yet satisfactory in terms of performance and durability as separation membranes such as permeability and separation properties, and the production method is also from the viewpoint of industrial implementation. It took a long time which was not efficient.

本発明は、多孔質セラミックス管上にゼオライトを薄膜に形成してなる複合膜であって、幅広い分離対象物に対して透過性と分離性をより高いレベルで両立し、且つ耐久性にも優れ、しかもより短時間に調製可能な複合膜を提供することを課題とする。   The present invention is a composite membrane in which a zeolite is formed into a thin film on a porous ceramic tube, which is compatible with a wide range of separation objects at a higher level and has excellent durability. Furthermore, an object is to provide a composite membrane that can be prepared in a shorter time.

上記課題は以下の手段により解決された。
〔1〕多孔質セラミックス管と、該多孔質セラミックス管上に形成された厚さ10μm未満のチャバザイト型ゼオライト層からなる多結晶薄膜とを有する複合膜であって、X線回析による前記多孔質セラミックス管の最大ピーク強度Aに対するゼオライト層の最大ピーク強度Bの強度比(B/A)が0.10以上1.0未満である、複合膜。
〔2〕前記チャバザイト型ゼオライト層からなる多結晶薄膜が無配向多結晶薄膜である、〔1〕に記載の複合膜。
〔3〕前記チャバザイト型ゼオライトの骨格構造を構成するSiとAlの比(Si/Al)が5以上100以下である、〔1〕又は〔2〕に記載に複合膜。
〔4〕前記多孔質セラミックス管の材質がアルミナ又はムライトである、〔1〕〜〔3〕のいずれか1項に記載の複合膜。
〔5〕チャバザイト型ゼオライト粉末を表面に付着させた多孔質セラミックス管と、ゼオライト粉末、N,N,N−トリ低級アルキル−1−アダマンタンアンモニウム、アルカリ塩もしくはアルカリの水酸化物、および水を含有するスラリー溶液とを、圧力容器内に共存させて100〜200℃で3〜48時間加熱し、前記多孔質セラミックス管の表面にチャバザイト型ゼオライトの結晶を成長させてゼオライト多結晶相を形成する工程、並びに
ゼオライト多結晶層が形成された多孔質セラミックス管を空気中で焼成してN,N,N−トリ低級アルキル−1−アダマンタンアンモニウムを除去する工程
を含む、〔1〕〜〔4〕のいずれか1項に記載の複合膜の製造方法。
〔6〕前記スラリー溶液中のゼオライト粉末が、Y型ゼオライト粉末である、〔5〕に記載の製造方法。
The above problems have been solved by the following means.
[1] A composite film having a porous ceramic tube and a polycrystalline thin film comprising a chabazite-type zeolite layer having a thickness of less than 10 μm formed on the porous ceramic tube, the porous film formed by X-ray diffraction A composite film in which the intensity ratio (B / A) of the maximum peak intensity B of the zeolite layer to the maximum peak intensity A of the ceramic tube is 0.10 or more and less than 1.0.
[2] The composite film according to [1], wherein the polycrystalline thin film composed of the chabazite-type zeolite layer is a non-oriented polycrystalline thin film.
[3] The composite film according to [1] or [2], wherein a ratio of Si to Al (Si / Al) constituting the framework structure of the chabazite-type zeolite is 5 or more and 100 or less.
[4] The composite film according to any one of [1] to [3], wherein the material of the porous ceramic tube is alumina or mullite.
[5] Contains a porous ceramic tube having a chabazite-type zeolite powder adhered to the surface, zeolite powder, N, N, N-tri-lower alkyl-1-adamantanammonium, alkali salt or alkali hydroxide, and water And a slurry solution to be coexisted in a pressure vessel and heated at 100 to 200 ° C. for 3 to 48 hours to grow chabazite-type zeolite crystals on the surface of the porous ceramic tube to form a zeolite polycrystalline phase. And a step of removing the N, N, N-tri-lower alkyl-1-adamantanammonium by firing the porous ceramic tube formed with the zeolite polycrystalline layer in the air, according to [1] to [4] The manufacturing method of the composite film of any one of Claims 1.
[6] The production method according to [5], wherein the zeolite powder in the slurry solution is a Y-type zeolite powder.

本発明におけるチャバザイト(CHA)型ゼオライトとは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードでCHA構造のものを示す。すなわち、天然に産出するチャバザイトと同等の結晶構造を有するゼオライトである。
本明細書において、組成を表す成分比率は、特に断わりのない限りモル比である。また、ゼオライト骨格のSi/Alの比は原子数の比である。
The chabazite (CHA) type zeolite in the present invention is a code that defines the structure of zeolite defined by the International Zeolite Association (IZA) and indicates a CHA structure. That is, it is a zeolite having a crystal structure equivalent to that of naturally occurring chabazite.
In the present specification, the component ratio representing the composition is a molar ratio unless otherwise specified. The ratio of Si / Al in the zeolite framework is the ratio of the number of atoms.

本発明の複合膜は、多孔質セラミックス管の表面に、多結晶で且つ結晶度の高いゼオライトからなる層がより薄膜状に形成されてなり、複数成分からなる液体やガス中から特定の成分を選択的に分離・精製するプロセスに用いる分離膜として優れた性能を示す。特に、水を含む均質混合溶液から水を選択的に透過させる分離膜として好適に用いることができる。   In the composite membrane of the present invention, a layer made of zeolite with high crystallinity is formed in a thin film on the surface of a porous ceramic tube, and a specific component from a liquid or gas composed of a plurality of components. Excellent performance as a separation membrane for selective separation and purification processes. In particular, it can be suitably used as a separation membrane that selectively permeates water from a homogeneous mixed solution containing water.

実施例1における(a)ゼオライト粉末、(b)多孔質アルミナ管、(c)複合膜のX線回析パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of (a) zeolite powder in Example 1, (b) porous alumina tube, and (c) composite membrane. 実施例1で得られた複合膜の破断面(セラミックス管の軸線方向に垂直な断面)の電子顕微鏡写真である。2 is an electron micrograph of a fracture surface (cross section perpendicular to the axial direction of a ceramic tube) of the composite film obtained in Example 1. FIG. 比較例2および3における(d)多孔質ムライト管、(e)ゼオライト粉末、(f)比較例2の複合膜、(g)比較例3の複合膜のX線回析パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of (d) porous mullite tube in the comparative examples 2 and 3, (e) zeolite powder, (f) the composite film of the comparative example 2, and (g) the composite film of the comparative example 3. .

[多孔質セラミックス管]
本発明に用いる多孔質セラミックス管の材質としては、アルミナ、ジルコニア、ムライト、炭化ケイ素、窒化ケイ素等のセラミックスを用いることができるが、好ましくはアルミナ、ムライト、もしくはその混合体である。また、多孔質セラミックス管の細孔径に特に制限はないが、0.01μm以上100μm以下であることが好ましく、より好ましくは0.05μm以上10μm以下であり、さらに好ましくは0.1μm以上2μm以下である。さらに、多孔質セラミックス管の空隙率も特に制限はないが、10%以上90%以下であることが好ましく、より好ましくは30%以上で70%以下である。なお、この空隙率は管内を除いた部分における空隙率である。
本発明に用いる多孔質セラミックス管の形状に制限はなく、目的に応じて種々の形状の多孔質セラミックス管を用いることができる。例えば、多孔質セラミックス管の管路の軸線方向に垂直な断面の形状は、円形、楕円形でもよいし、三角形、正方形、矩形、6角形等の多角形状であってもよい。また、多孔質セラミックス管はハニカム構造のように複数の管路を有していてもよい。また多孔質セラミックス管は、多層構造や、細孔径の異なる非対称な構造を有していてもよい。
[Porous ceramic tube]
As the material for the porous ceramic tube used in the present invention, ceramics such as alumina, zirconia, mullite, silicon carbide, and silicon nitride can be used, but alumina, mullite, or a mixture thereof is preferable. The pore diameter of the porous ceramic tube is not particularly limited, but is preferably 0.01 μm or more and 100 μm or less, more preferably 0.05 μm or more and 10 μm or less, and further preferably 0.1 μm or more and 2 μm or less. is there. Further, the porosity of the porous ceramic tube is not particularly limited, but is preferably 10% or more and 90% or less, more preferably 30% or more and 70% or less. In addition, this porosity is a porosity in the part except the inside of a pipe | tube.
There is no restriction | limiting in the shape of the porous ceramic tube used for this invention, The porous ceramic tube of various shapes can be used according to the objective. For example, the shape of the cross section perpendicular to the axial direction of the pipe line of the porous ceramic tube may be a circle, an ellipse, or a polygon such as a triangle, a square, a rectangle, or a hexagon. Further, the porous ceramic tube may have a plurality of pipelines like a honeycomb structure. The porous ceramic tube may have a multilayer structure or an asymmetric structure with different pore diameters.

[CHA型ゼオライト層]
本発明において、多孔質セラミックス管上(すなわち多孔質セラミックス管の外側表面および/又は管路内表面)に形成されるCHA型ゼオライト層の厚さは10μm未満であり、0.5μm以上10μm未満であることが好ましく、1〜8μmであることがより好ましい。
本発明におけるCHA型ゼオライト層の形成方法としては、多孔質セラミックス管の表面にCHA型ゼオライト粉末を種結晶として付着させ、これを結晶成長の核として利用することが好ましい。
[CHA-type zeolite layer]
In the present invention, the thickness of the CHA-type zeolite layer formed on the porous ceramic tube (that is, the outer surface of the porous ceramic tube and / or the inner surface of the conduit) is less than 10 μm, and is 0.5 μm or more and less than 10 μm. It is preferably 1 to 8 μm.
As a method for forming a CHA-type zeolite layer in the present invention, it is preferable to attach a CHA-type zeolite powder as a seed crystal to the surface of a porous ceramic tube and use this as a nucleus for crystal growth.

(CHA型ゼオライト層の形成)
上記種結晶は、骨格構造がCHA型ゼオライトであれば、組成、形状等に特に制限はなく、例えば、構造転換法(例えば、H.Robson編,Verified Synthesis of Zeolitic Materials,2nd Edition,Elsevier,123-124頁; Chemistry Letters 37巻,908頁,2008年; Microporous Mesoporous Mater.,144巻,91-96頁,2011年を参照)や、アルミノシリケート水溶液の水熱処理(例えば、H.Robson編,Verified Synthesis of Zeolitic Materials,2nd Edition,Elsevier,126-127頁; 米国特許第4,544,538号を参照)によって製造した結晶粉末を利用することができる。
(Formation of CHA-type zeolite layer)
The seed crystal is not particularly limited in composition, shape, etc., as long as the framework structure is a CHA-type zeolite. For example, a structure conversion method (for example, H. Robson, Verified Synthesis of Zeolitic Materials, 2nd Edition, Elsevier, 123 -124; Chemistry Letters 37, 908, 2008; see Microporous Mesoporous Mater., 144, 91-96, 2011) and hydrothermal treatment of aqueous aluminosilicate solutions (eg, edited by H. Robson, Verified Crystalline powder produced by Synthesis of Zeolitic Materials, 2nd Edition, Elsevier, pages 126-127; see US Pat. No. 4,544,538) can be used.

多孔質セラミックス管表面への種結晶の付着形態に特に制限はなく、多孔質セラミックス管の表面に種結晶が付着していればよい。例えば、種結晶を多孔質セラミックス管表面に擦り込んだり、種結晶の分散液に多孔質セラミックス管を浸漬させた後に多孔質セラミックス管を乾燥させたりすることで、多孔質セラミックス管表面(すなわち多孔質セラミックス管の外側表面および/又は管路内表面)に種結晶を付着させることができる。   There is no particular limitation on the form of the seed crystal attached to the surface of the porous ceramic tube, as long as the seed crystal is attached to the surface of the porous ceramic tube. For example, by rubbing the seed crystal on the surface of the porous ceramic tube, or by immersing the porous ceramic tube in the seed crystal dispersion and then drying the porous ceramic tube, Seed crystal can be adhered to the outer surface of the porous ceramic tube and / or the inner surface of the pipe.

種結晶が付着した多孔質セラミックス管を、後述する結晶成長液と共に圧力容器(耐圧容器)に入れて加熱することで、多孔質セラミックス管上の種結晶が成長してCHA型ゼオライト層を形成することができる。   The porous ceramic tube to which the seed crystal is attached is placed in a pressure vessel (pressure vessel) together with a crystal growth liquid described later and heated, so that the seed crystal on the porous ceramic tube grows to form a CHA-type zeolite layer. be able to.

−結晶成長液−
結晶成長液は、Si源、Al源、アルカリ源、構造規定剤(SDA:Structure−directing agent)、および水を含む溶液あるいはスラリー溶液である。
Al源としては、アルミニウム、アルミナ、ベーマイト、アルミン酸ナトリウム、水酸化アルミニウム、硝酸アルミニウム、塩化アルミニウム、硫酸アルミニウム等のAlを含む単体もしくは化合物を用いることができる。また、Si源としては、シリコン、シリカ粉末、ケイ酸ナトリウム水溶液(水ガラス)、コロイダルシリカ、メタケイ酸ナトリウム等を用いることができる。結晶の成長速度の観点から、Si源およびAl源として、SiとAlを含むゼオライトを使用することが好ましく、なかでもFAUもしくはNaPを使用することが好適であり、経済性、汎用性等の観点から特にFAUを用いるのが好ましい。
アルカリ源は、水溶液の液性をアルカリ性にするために加えるものであり、水に溶解して電離し、水酸化物イオンを生ずる化合物であればよく、例えば、アルカリ塩、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属の水酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム等のアルカリ土類金属の水酸化物のほか、水酸化アルミニウムや、液性がアルカリ性となるような分散安定化剤を含むコロイダルシリカ等で代用することもできる。
SDAとしては、水熱合成により、CHA構造を形成する化合物であれば特に制限はなく、N,N,N−トリ低級アルキル−1−アダマンタンアンモニウム、ベンジルトリ低級アルキルアンモニウム等を利用することができ、熱安定性、経済性、結晶成長速度等の観点からN,N,N−トリ低級アルキル−1−アダマンタンアンモニウムであることが特に好ましい。上記「低級アルキル」とは、炭素数1〜3、好ましくは炭素数1又は2のアルキル基をいう。
-Crystal growth solution-
The crystal growth liquid is a solution or slurry solution containing a Si source, an Al source, an alkali source, a structure-directing agent (SDA), and water.
As the Al source, a simple substance or a compound containing Al such as aluminum, alumina, boehmite, sodium aluminate, aluminum hydroxide, aluminum nitrate, aluminum chloride, and aluminum sulfate can be used. As the Si source, silicon, silica powder, sodium silicate aqueous solution (water glass), colloidal silica, sodium metasilicate, or the like can be used. From the viewpoint of crystal growth rate, it is preferable to use a zeolite containing Si and Al as the Si source and the Al source, and it is particularly preferable to use FAU or NaP. From the viewpoints of economy, versatility, etc. In particular, it is preferable to use FAU.
The alkali source is added to make the aqueous solution alkaline, and may be any compound that dissolves in water and ionizes to generate hydroxide ions. For example, an alkali salt, sodium hydroxide, hydroxide In addition to alkali metal hydroxides such as potassium, rubidium hydroxide and cesium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, strontium hydroxide and barium hydroxide, aluminum hydroxide and Alternatively, colloidal silica containing a dispersion stabilizer that makes the liquid property alkaline can be substituted.
SDA is not particularly limited as long as it is a compound that forms a CHA structure by hydrothermal synthesis, and N, N, N-tri-lower alkyl-1-adamantanammonium, benzyltri-lower alkylammonium, and the like can be used. N, N, N-tri-lower alkyl-1-adamantanammonium is particularly preferred from the viewpoints of thermal stability, economy, crystal growth rate, and the like. The “lower alkyl” refers to an alkyl group having 1 to 3 carbon atoms, preferably 1 or 2 carbon atoms.

結晶成長液は、Si源およびAl源としてY型ゼオライト粉末、アルカリ源、構造規定剤、および水を含むスラリー溶液であることが好ましい。このとき、結晶成長液の組成は、SiO/Al=20〜200、HO/SiO=40〜400、HO/アルカリ源=300〜2000、SiO/構造規定剤<0.1とするのが好ましい。この成長液と種結晶が付着した多孔質セラミックス管を圧力容器に入れて加熱することで、無定形化されたY型ゼオライト粉末が、構造規定剤の作用によってCHA型ゼオライトのナノパーツを形成し、結晶粒子間の空隙がCHA型ゼオライトの細孔径(0.4ナノメートル)未満になるように種結晶を成長させ、多孔質セラミックス管上にCHA型ゼオライトの多結晶層が形成される。形成されるゼオライト層の厚さを10μm未満とするために、加熱温度は100〜200℃、加熱時間を3〜48時間とすることが好ましい。この加熱処理は110〜190℃で5〜40時間行うことが好ましく、120〜180℃で7〜30時間で行うことがさらに好ましい。さらに、上記加熱処理時間は25時間以内とすることも好ましく、さらに20時間以内とすることも好ましい。より短い結晶成長時間でも、ピンホールのないゼオライト薄膜を形成することができる。加熱処理はオートクレーブを用いて行うのが好ましい。 The crystal growth liquid is preferably a slurry solution containing a Y-type zeolite powder, an alkali source, a structure-directing agent, and water as a Si source and an Al source. At this time, the composition of the crystal growth liquid is SiO 2 / Al 2 O 3 = 20 to 200, H 2 O / SiO 2 = 40 to 400, H 2 O / alkali source = 300 to 2000, SiO 2 / structure directing agent. <0.1 is preferable. The porous ceramic tube with the growth liquid and seed crystals attached is placed in a pressure vessel and heated, so that the amorphous Y-type zeolite powder forms CHA-type zeolite nanoparts by the action of the structure-directing agent. The seed crystal is grown so that the space between the crystal particles is less than the pore diameter (0.4 nanometer) of the CHA-type zeolite, and a polycrystalline layer of the CHA-type zeolite is formed on the porous ceramic tube. In order to make the thickness of the formed zeolite layer less than 10 μm, it is preferable that the heating temperature is 100 to 200 ° C. and the heating time is 3 to 48 hours. This heat treatment is preferably performed at 110 to 190 ° C. for 5 to 40 hours, and more preferably at 120 to 180 ° C. for 7 to 30 hours. Further, the heat treatment time is preferably 25 hours or less, and more preferably 20 hours or less. A zeolite thin film without a pinhole can be formed even with a shorter crystal growth time. The heat treatment is preferably performed using an autoclave.

[複合膜]
上記でCHA型ゼオライトの多結晶層が形成された多孔質セラミックス管を圧力容器から取り出し、洗浄水で洗浄し、室温で乾燥させた後、ゼオライトの細孔内に鋳型として存在する構造規定剤を除去することで本発明の複合膜を得ることができる。構造規定剤の除去方法としては、空気中で焼成する方法と、過酸化水素等の酸化剤を使用する方法がある。空気焼成では、350〜600℃で5時間以上焼成することで構造規定剤を充分に除去できる。このとき、昇温および冷却速度は0.1〜10℃/minとすることが好ましい。
[Composite membrane]
The porous ceramic tube on which the polycrystalline layer of CHA-type zeolite is formed is taken out of the pressure vessel, washed with washing water, dried at room temperature, and then the structure-directing agent present as a template in the zeolite pores. By removing, the composite membrane of the present invention can be obtained. As a method for removing the structure-directing agent, there are a method of baking in air and a method of using an oxidizing agent such as hydrogen peroxide. In air baking, the structure-directing agent can be sufficiently removed by baking at 350 to 600 ° C. for 5 hours or more. At this time, it is preferable that the temperature rise and cooling rate be 0.1 to 10 ° C./min.

本発明の複合膜は、X線回析による多孔質セラミックス管の最大ピーク強度Aに対するCHA型ゼオライト層の最大ピーク強度Bの比(B/A)が0.1以上1.0未満であり、より好ましくは0.15以上0.9未満であり、さらに好ましくは0.2以上0.85未満である。本明細書において、X線回析による「ピーク強度」はピーク高さを意味する。
このX線回析には、粉末X線回折装置(例えば、リガク社製SmartLab)を用いる。複合膜のX線回析は、複合膜を1〜10mmに破砕し、これをガラス製試料台のX線照射部分に隙間なく並べ、試料台を回転させながら測定して行われる。X線出力は40kVで30mA、走査範囲は5〜50°、走査ステップは0.02°とする。
X線回折では、X線の複合試料内への侵入深さは、試料のX線吸収係数に依存し、出力等への依存性は小さい。すなわち、本発明のような多層複合膜では、多孔質セラミックス管のX線回析におけるピーク強度は、ゼオライトのX線吸収係数とゼオライト薄膜の厚みに依存するので、ゼオライト薄膜の厚みが同じであれば、多孔質セラミックス管とゼオライトのピーク強度比によってゼオライト薄膜の結晶度の良否を判断できる。より具体的には、ゼオライト薄膜の厚みが同じであれば、多孔質セラミックス管のX線回析ピークのうち強度が最大のもの(最大ピーク強度A)と、ゼオライト薄膜のX線回析ピークのうち強度が最大のもの(最大ピーク強度B)の比(B/A)が大きい程、ゼオライトの結晶度が高いといえる。
結晶度が低すぎると十分な透過性と分離性が得られない。
In the composite membrane of the present invention, the ratio (B / A) of the maximum peak intensity B of the CHA-type zeolite layer to the maximum peak intensity A of the porous ceramic tube by X-ray diffraction is 0.1 or more and less than 1.0, More preferably, it is 0.15 or more and less than 0.9, More preferably, it is 0.2 or more and less than 0.85. In the present specification, “peak intensity” by X-ray diffraction means peak height.
For this X-ray diffraction, a powder X-ray diffractometer (for example, SmartLab manufactured by Rigaku Corporation) is used. X-ray diffraction of the composite film is performed by crushing the composite film to 1 to 10 mm 2 , arranging the composite film on the X-ray irradiation portion of the glass sample table without any gap, and measuring the sample table while rotating it. The X-ray output is 30 mA at 40 kV, the scanning range is 5 to 50 °, and the scanning step is 0.02 °.
In X-ray diffraction, the penetration depth of X-rays into a composite sample depends on the X-ray absorption coefficient of the sample and is less dependent on the output. That is, in the multilayer composite membrane as in the present invention, the peak intensity in the X-ray diffraction of the porous ceramic tube depends on the X-ray absorption coefficient of the zeolite and the thickness of the zeolite thin film. For example, the quality of the zeolite thin film can be judged by the peak intensity ratio between the porous ceramic tube and the zeolite. More specifically, if the thickness of the zeolite thin film is the same, the X-ray diffraction peak of the porous ceramic tube has the highest intensity (maximum peak intensity A) and the X-ray diffraction peak of the zeolite thin film. It can be said that the higher the ratio (B / A) of the highest strength (maximum peak strength B), the higher the crystallinity of the zeolite.
If the crystallinity is too low, sufficient permeability and separation cannot be obtained.

本発明の複合膜において、CHA型ゼオライト層からなる多結晶薄膜は無配向多結晶薄膜である。無配向多結晶薄膜であれば、薄膜形成の際に配向結晶層を形成するための薬剤が不要であり、工業的実施の観点で有利である。   In the composite film of the present invention, the polycrystalline thin film comprising the CHA-type zeolite layer is a non-oriented polycrystalline thin film. If it is a non-oriented polycrystalline thin film, the chemical | medical agent for forming an oriented crystalline layer is unnecessary in the case of thin film formation, and it is advantageous from a viewpoint of industrial implementation.

本発明のCHA型ゼオライト層は、ゼオライト層の骨格構造を構成するSiとAlの比(Si/Al)が5以上100以下であることが好ましく、7以上40以下であることがより好ましい。この範囲内とすることで、耐酸性と親水性を高いレベルで両立することができる。   In the CHA-type zeolite layer of the present invention, the ratio of Si and Al (Si / Al) constituting the framework structure of the zeolite layer is preferably 5 or more and 100 or less, and more preferably 7 or more and 40 or less. By setting it within this range, both acid resistance and hydrophilicity can be achieved at a high level.

[複合膜の用途]
本発明の複合膜を用いて、パーベーパレーションにより脱水処理を行うことができる。脱水を行う際は、ゼオライト膜に脱水する有機溶媒を直接接触させた上、ゼオライト膜表面と内部の間に化学ポテンシャルの勾配を生じさせて、有機物と水の混合物から水を選択的に透過させる処理を行うことができる。ここで、化学ポテンシャルの勾配を生じさせる方法として、例えば膜構造体内部を減圧する方法、スイープガスを流す方法などが挙げられる。また、分離手法にとらわれることなく、蒸気中から選択的に脱水する、ベーパーパーミエイションによって目的生成物を分離・濃縮することも可能である。
[Use of composite membrane]
The composite membrane of the present invention can be used for dehydration by pervaporation. When performing dehydration, the organic solvent to be dehydrated is brought into direct contact with the zeolite membrane, and a gradient of chemical potential is created between the surface and inside of the zeolite membrane to selectively permeate water from a mixture of organic matter and water. Processing can be performed. Here, as a method of generating a gradient of chemical potential, for example, a method of depressurizing the inside of the film structure, a method of flowing a sweep gas, and the like can be cited. In addition, it is possible to separate and concentrate the target product by vapor permeation, which is selectively dehydrated from the steam, without being bound by the separation method.

本発明の複合膜を用いて脱水処理する有機溶媒は、アルコール類、酢酸に代表されるカルボン酸類、酢酸エステルなどのエステル類などが挙げられる。   Examples of the organic solvent to be dehydrated using the composite membrane of the present invention include alcohols, carboxylic acids typified by acetic acid, and esters such as acetate.

次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明の範囲は、以下の実施例により何ら制約されるものではない。   EXAMPLES Next, although this invention is demonstrated further in detail based on an Example, the scope of the present invention is not restrict | limited at all by the following Examples.

[観察・分析方法]
性状の観察には、走査型電子顕微鏡(日立ハイテク社製ミニスコープTM1000)を使用し、複合膜の破断面(セラミックス管の軸線方向に垂直な断面)を、無蒸着で観察した。加速電圧は15kV、観察倍率は5k倍とした。
また、ゼオライトの組成はエネルギー分散X線(EDX)分析装置(堀場社製Emax)により分析した。
[Observation / Analysis Method]
For observation of properties, a scanning electron microscope (Hitachi High-Tech Miniscope TM1000) was used, and the fracture surface of the composite film (cross section perpendicular to the axial direction of the ceramic tube) was observed without vapor deposition. The acceleration voltage was 15 kV and the observation magnification was 5 k times.
The composition of the zeolite was analyzed with an energy dispersive X-ray (EDX) analyzer (Emax manufactured by Horiba).

[実施例1]
(種結晶の調製)
水酸化ナトリウム、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(以下、ROHと略記)、2種類のY型ゼオライト粉末(東ソー、HSZ−360HUAおよびHSZ−390HUA)およびイオン交換水を、SiO:Al:NaO:ROH:HO=40:1:4:8:1760となるように混合し、室温で10分間撹拌した後、圧力容器に移し、160℃で4日間加熱した。圧力容器を室温まで冷却した後、容器内の粉末をろ過および水洗し、最後に120℃で3時間乾燥させ、高シリカ型CHA型ゼオライトの種結晶粉末を得た。
この種結晶の組成を熱重量分析(TG−DTA、リガク社製Thermo Plus)およびエネルギー分散X線分析(EDX、堀場社製Emax)に付した結果、その組成はSiO:Al:NaO:RO:HO=27:1:0.40:2.3:2.7だった。
次に、種結晶粉末を550℃の空気中で10時間焼成して構造規定剤を除去し、結晶構造をX線回折(XRD、リガク社製Smart Lab)により測定したところ、図1(a)のようなXRDパターンを得た。焼成粉末のXRDパターンは、高シリカ型CHA型ゼオライトのXRDパターンと同一であった(Microporous Mesoporous Materials 112巻 153−161頁、2008年)。
[Example 1]
(Preparation of seed crystal)
Sodium hydroxide, N, N, N-trimethyl-1-adamantanammonium hydroxide (hereinafter abbreviated as ROH), two types of Y-type zeolite powder (Tosoh, HSZ-360HUA and HSZ-390HUA) and ion-exchanged water, SiO 2 : Al 2 O 3 : Na 2 O: ROH: H 2 O = 40: 1: 4: 8: 1760 The mixture was stirred for 10 minutes at room temperature, then transferred to a pressure vessel at 160 ° C. Heated for 4 days. After cooling the pressure vessel to room temperature, the powder in the vessel was filtered and washed with water, and finally dried at 120 ° C. for 3 hours to obtain a seed crystal powder of high silica type CHA type zeolite.
The composition of the seed crystal was subjected to thermogravimetric analysis (TG-DTA, Thermo Plus manufactured by Rigaku Corporation) and energy dispersive X-ray analysis (EDX, Emax manufactured by Horiba). As a result, the composition was SiO 2 : Al 2 O 3 : Na 2 O: R 2 O: H 2 O = 27: 1: 0.40: 2.3: was 2.7.
Next, the seed crystal powder was fired in air at 550 ° C. for 10 hours to remove the structure-directing agent, and the crystal structure was measured by X-ray diffraction (XRD, Smart Lab manufactured by Rigaku Corporation). An XRD pattern like that was obtained. The XRD pattern of the calcined powder was the same as that of the high silica type CHA type zeolite (Microporous Mesoporous Materials 112, 153-161, 2008).

(薄膜形成)
種結晶の調製と同様の方法で、濃度比がSiO:Al:NaO:ROH:HO=46:1:4.5:3.4:4600となるように水酸化アルミニウム、ROH、Y型ゼオライト粉末およびイオン交換水を混合し、室温で1時間撹拌してスラリー溶液(結晶成長液)を得た。多孔質アルミナ管(内径1.5mm、外径2mm、長さ20cm、平均細孔径0.31μm、空隙率55%)を支持体とし、その外表面全体に上記合成で得たCHA型ゼオライト種結晶粉末を擦り込んだ後、スラリー溶液とともに圧力容器(耐圧容器)に入れて、160℃のオーブン内で15時間加熱して、多孔質アルミナ管上にゼオライトの多結晶層を形成した。圧力容器を室温まで冷却した後、アルミナ管を取り出し、十分に水洗し、室温で一晩乾燥させた。さらに、500℃の空気中で10時間焼成して、構造規定剤を除去した。
得られたアルミナ管の破断面を走査型電子顕微鏡(SEM、日立ハイテク製Miniscope)で観察したところ、図2のように、アルミナ管上に粒子サイズが3〜4μmの立方体結晶が緻密に連結した多結晶の薄膜が形成されていた。また、EDXでその組成を分析したところ、Si/Al=18だった。
(Thin film formation)
Hydroxylation so that the concentration ratio is SiO 2 : Al 2 O 3 : Na 2 O: ROH: H 2 O = 46: 1: 4.5: 3.4: 4600 in the same manner as the preparation of the seed crystal. Aluminum, ROH, Y-type zeolite powder and ion-exchanged water were mixed and stirred at room temperature for 1 hour to obtain a slurry solution (crystal growth solution). A porous alumina tube (inner diameter 1.5 mm, outer diameter 2 mm, length 20 cm, average pore diameter 0.31 μm, porosity 55%) is used as a support, and the CHA-type zeolite seed crystal obtained by the above synthesis on the entire outer surface After rubbing the powder, it was placed in a pressure vessel (pressure vessel) together with the slurry solution and heated in an oven at 160 ° C. for 15 hours to form a polycrystalline layer of zeolite on the porous alumina tube. After cooling the pressure vessel to room temperature, the alumina tube was taken out, washed thoroughly with water, and dried overnight at room temperature. Further, the structure directing agent was removed by baking in air at 500 ° C. for 10 hours.
When the fracture surface of the obtained alumina tube was observed with a scanning electron microscope (SEM, Hitachi High-Tech Miniscope), cubic crystals having a particle size of 3 to 4 μm were densely connected on the alumina tube as shown in FIG. A polycrystalline thin film was formed. Moreover, when the composition was analyzed by EDX, it was Si / Al = 18.

この複合膜のX線回折パターンを測定したところ、図1(c)のように、多孔質アルミナ管のXRDピークと、CHA型ゼオライトのXRDピークが見られたことから、多孔質アルミナ管上に形成された薄膜がCHA型ゼオライトの多結晶薄膜であることが分かった。このうち、多孔質アルミナ管およびCHA型ゼオライトの最大ピークは、それぞれ2θ=43.42°および9.66°に現れ、アルミナ管の最大ピーク強度Aに対するCHA型ゼオライトの最大ピーク強度Bの比(B/A)は0.52だった。   When the X-ray diffraction pattern of this composite film was measured, as shown in FIG. 1 (c), the XRD peak of the porous alumina tube and the XRD peak of the CHA-type zeolite were observed. It was found that the formed thin film was a CHA-type zeolite polycrystalline thin film. Among these, the maximum peaks of the porous alumina tube and the CHA zeolite appear at 2θ = 43.42 ° and 9.66 °, respectively, and the ratio of the maximum peak intensity B of the CHA zeolite to the maximum peak intensity A of the alumina tube ( B / A) was 0.52.

また、以下に空気焼成した種結晶粉末と複合膜の回折角度と回折強度を示すが、複合膜の回折強度は、種結晶粉末の回折強度と概ね一致しており、多孔質アルミナ管上に形成されたCHA型ゼオライト層は、特定の結晶面に配向成長していない無配向結晶層であることがわかった。なお、複合膜では、多孔質アルミナ管のピークおよびアルミナ管と重複する2θ=25.3°付近のゼオライトのピークは割愛した。

2θ(°) 粉末(%) 複合膜(%)
9.7 100 100
13.1 33 40
16.3 30 35
18.0 17 30
20.9 57 66
25.3 17 −
31.0 24 30
The diffraction angle and diffraction intensity of air-fired seed crystal powder and composite film are shown below. The diffraction intensity of the composite film is almost the same as that of seed crystal powder, and is formed on the porous alumina tube. It was found that the formed CHA-type zeolite layer was a non-oriented crystal layer that was not oriented and grown on a specific crystal plane. In the composite membrane, the peak of the porous alumina tube and the peak of zeolite around 2θ = 25.3 ° overlapping with the alumina tube were omitted.

2θ (°) Powder (%) Composite film (%)
9.7 100 100
13.1 33 40
16.3 30 35
18.0 17 30
20.9 57 66
25.3 17 −
31.0 24 30

なお、実施例1において、焼成前の複合膜を使用し、40℃のエタノール溶液(含水率28%)を試験溶液として、後述の透過分離特性を評価したところ、透過流束は0.01kg/m/h未満で、この複合膜は物質が透過できないバリア性を有していることを確認した。一方、焼成後の複合膜ではこのバリア性は認められなかった。 In Example 1, the composite membrane before firing was used, and the permeation separation characteristics described later were evaluated using an ethanol solution at 40 ° C. (water content 28%) as a test solution. The permeation flux was 0.01 kg / It was confirmed that the composite film had a barrier property that the substance cannot permeate at less than m 2 / h. On the other hand, this barrier property was not recognized in the composite film after firing.

[実施例2]
材質がムライトである多孔質セラミックス管(ニッカトー社製、内径2mm、外径3mm、長さ20cm、平均細孔径1.9μm、空隙率35%)を使用したこと以外は、実施例1と同じ方法で複合膜を調製した。
SEMで複合膜の破断面を観察したところ、表面性状は図2とほとんど変わりなく、多孔質セラミックス管上に形成されたゼオライト薄膜の厚さも3〜4μmで、EDX分析の結果、このゼオライト層のSi/Alは17だった。
次に、X線回析をしたところ、複合膜のXRDパターンは、多孔質ムライト管とCHA型ゼオライトの両方のXRDピークを含んでおり、多孔質ムライト管の最大ピーク強度A(2θ=26.54°)に対するCHA型ゼオライトの最大ピーク強度B(2θ=9.62°)のピーク強度比(B/A)は、0.76だった。また、複合膜のゼオライト層は実施例1と同様に無配向結晶層であった。
[Example 2]
The same method as in Example 1, except that a porous ceramic tube made of mullite (made by Nikkato Co., Ltd., inner diameter 2 mm, outer diameter 3 mm, length 20 cm, average pore diameter 1.9 μm, porosity 35%) was used. A composite membrane was prepared.
When the fracture surface of the composite membrane was observed by SEM, the surface properties were almost the same as in FIG. 2, and the thickness of the zeolite thin film formed on the porous ceramic tube was 3 to 4 μm. Si / Al was 17.
Next, when X-ray diffraction was performed, the XRD pattern of the composite membrane contained XRD peaks of both the porous mullite tube and the CHA-type zeolite, and the maximum peak intensity A (2θ = 26.26) of the porous mullite tube. The peak intensity ratio (B / A) of the maximum peak intensity B (2θ = 9.62 °) of the CHA-type zeolite relative to 54 ° was 0.76. The zeolite layer of the composite membrane was a non-oriented crystal layer as in Example 1.

[実施例3]
Y型ゼオライト粉末(東ソー製HSZ−360HUA)10gを10%硫酸水溶液40gに加え、室温で3時間撹拌して脱アルミニウム処理し、イオン交換水で洗浄した後、100℃で一晩乾燥させて、Si/Al=20のY型ゼオライト粉末を得た。この硫酸処理Y型ゼオライト粉末を使用し、結晶成長液の組成をSiO:Al:NaO:ROH:HO=40:1:4:3:4000としたこと、および、多孔質アルミナ管として内径1.5mm、外径2mm、長さ20cm、平均細孔径0.14μm、空隙率35%のものを用いたことを除けば、実施例1と同じ方法で複合膜を調製した。
SEMで複合膜の破断面を観察したところ、表面性状は図2とほとんど変わりなく、支持基材上に形成されたゼオライト薄膜の厚さも3〜4μmで、EDX分析の結果、このゼオライト層のSi/Alは13だった。
次に、XRD測定をしたところ、複合膜のXRDパターンは、多孔質アルミナ管とCHA型ゼオライトの両方のXRDピークを含んでおり、多孔質アルミナ管の最大ピーク強度A(2θ=43.34°)に対するCHA型ゼオライトの最大ピーク強度B(2θ=9.66°)のピーク強度比(B/A)は、0.30だった。また、複合膜のゼオライト層は実施例1と同様に無配向結晶層であった。
[Example 3]
10 g of Y-type zeolite powder (HSZ-360HUA made by Tosoh) was added to 40 g of 10% sulfuric acid aqueous solution, stirred for 3 hours at room temperature, dealuminated, washed with ion-exchanged water, dried at 100 ° C. overnight, A Y-type zeolite powder with Si / Al = 20 was obtained. Using this sulfuric acid-treated Y-type zeolite powder, the composition of the crystal growth solution was SiO 2 : Al 2 O 3 : Na 2 O: ROH: H 2 O = 40: 1: 4: 3: 4000, and A composite membrane was prepared in the same manner as in Example 1 except that a porous alumina tube having an inner diameter of 1.5 mm, an outer diameter of 2 mm, a length of 20 cm, an average pore diameter of 0.14 μm, and a porosity of 35% was used. did.
When the fracture surface of the composite membrane was observed with an SEM, the surface properties were almost the same as in FIG. 2, and the thickness of the zeolite thin film formed on the support substrate was 3 to 4 μm. / Al was 13.
Next, when XRD measurement was performed, the XRD pattern of the composite membrane contained XRD peaks of both the porous alumina tube and the CHA type zeolite, and the maximum peak intensity A (2θ = 43.34 °) of the porous alumina tube. ), The peak intensity ratio (B / A) of the maximum peak intensity B (2θ = 9.66 °) of the CHA-type zeolite was 0.30. The zeolite layer of the composite membrane was a non-oriented crystal layer as in Example 1.

[実施例4]
Y型ゼオライト粉末の混合比を調整し、結晶成長液の組成をSiO:Al:NaO:ROH:HO=110:1:11:8.2:11000としたこと、および、多孔質アルミナ管として内径1.5mm、外径2mm、長さ20cm、平均細孔径0.14μm、空隙率35%のものを用いたことを除けば、実施例1と同様の同じ方法で複合膜を調製した。
SEMで複合膜の破断面を観察したところ、表面性状は図2とほとんど変わりなく、支持基材上に形成されたゼオライト薄膜の厚さも2〜3μmで、EDX分析の結果、このゼオライト層のSi/Alは35だった。
次に、XRD測定をしたところ、複合膜のXRDパターンは、多孔質アルミナ管とCHA型ゼオライトの両方のXRDピークを含んでおり、多孔質アルミナ管の最大ピーク強度A(2θ=43.44°)に対するCHA型ゼオライトの最大ピーク強度B(2θ=9.68°)のピーク強度比(B/A)は、0.24だった。また、複合膜のゼオライト層は実施例1と同様に無配向結晶層であった。
[Example 4]
The mixing ratio of the Y-type zeolite powder was adjusted, and the composition of the crystal growth solution was SiO 2 : Al 2 O 3 : Na 2 O: ROH: H 2 O = 110: 1: 11: 8.2: 11000, The same method as in Example 1 was used except that a porous alumina tube having an inner diameter of 1.5 mm, an outer diameter of 2 mm, a length of 20 cm, an average pore diameter of 0.14 μm, and a porosity of 35% was used. A composite membrane was prepared.
When the fracture surface of the composite membrane was observed with an SEM, the surface properties were almost the same as in FIG. 2, and the thickness of the zeolite thin film formed on the support substrate was 2 to 3 μm. / Al was 35.
Next, when XRD measurement was performed, the XRD pattern of the composite membrane contained XRD peaks of both the porous alumina tube and the CHA-type zeolite, and the maximum peak intensity A (2θ = 43.44 ° of the porous alumina tube). ), The peak intensity ratio (B / A) of the maximum peak intensity B (2θ = 9.68 °) of the CHA-type zeolite was 0.24. The zeolite layer of the composite membrane was a non-oriented crystal layer as in Example 1.

[実施例5]
Y型ゼオライト粉末の混合比を調整し、結晶成長液の組成をSiO:Al:NaO:ROH:HO=24:1:2.4:1.8:2400としたこと、および、多孔質アルミナ管として内径1.5mm、外径2mm、長さ20cm、平均細孔径0.14μm、空隙率35%のものを用いたことを除けば、実施例1と同じ方法で複合膜を調製した。
SEMで複合膜の破断面を観察したところ、表面性状は図2とほとんど変わりなく、支持基材上に形成されたゼオライト薄膜の厚さも2〜3μmで、EDX分析の結果、このゼオライト層のSi/Alは7.9だった。
次に、XRD測定をしたところ、複合膜のXRDパターンは、多孔質アルミナ管とCHA型ゼオライトの両方のXRDピークを含んでおり、多孔質アルミナ管の最大ピーク強度A(2θ=43.42°)に対するCHA型ゼオライトの最大ピーク強度B(2θ=9.70°)のピーク強度比(B/A)は、0.64だった。また、複合膜のゼオライト層は実施例1と同様に無配向結晶層であった。
[Example 5]
The mixing ratio of the Y-type zeolite powder was adjusted, and the composition of the crystal growth solution was SiO 2 : Al 2 O 3 : Na 2 O: ROH: H 2 O = 24: 1: 2.4: 1.8: 2400 And the same method as in Example 1 except that a porous alumina tube having an inner diameter of 1.5 mm, an outer diameter of 2 mm, a length of 20 cm, an average pore diameter of 0.14 μm, and a porosity of 35% was used. A composite membrane was prepared.
When the fracture surface of the composite membrane was observed with an SEM, the surface properties were almost the same as in FIG. 2, and the thickness of the zeolite thin film formed on the support substrate was 2 to 3 μm. / Al was 7.9.
Next, when XRD measurement was performed, the XRD pattern of the composite membrane contained XRD peaks of both the porous alumina tube and the CHA-type zeolite, and the maximum peak intensity A (2θ = 43.42 ° of the porous alumina tube). ), The peak intensity ratio (B / A) of the maximum peak intensity B (2θ = 9.70 °) of the CHA-type zeolite was 0.64. The zeolite layer of the composite membrane was a non-oriented crystal layer as in Example 1.

[比較例1]
特開2013−126649号公報の実施例1に記載のゼオライト膜の形成方法において、二次成長時間(11日)を3日に変更して、多孔質アルミナ管(内径1.5mm、外径2mm、長さ20cm、平均細孔径0.31μm、空隙率55%)を支持体として、その外表面に高シリカ型CHA型ゼオライト膜を成膜した。
得られた複合膜の表面および破断面をSEMで観察したところ、多孔質アルミナ管の外表面のごく一部にゼオライトの粒子が付着しているだけでゼオライト膜は形成されていなかった。
次に、この複合膜のXRDパターンを測定したところ、CHA型ゼオライトの回折ピークは全く検出できなかった。すなわち、多孔質アルミナ管の最大ピーク強度Aに対するCHA型ゼオライトの最大ピーク強度Bのピーク強度比(B/A)は0となった。
[Comparative Example 1]
In the method for forming a zeolite membrane described in Example 1 of JP2013-126649A, the secondary growth time (11 days) was changed to 3 days to obtain a porous alumina tube (inner diameter 1.5 mm, outer diameter 2 mm). A high silica type CHA type zeolite membrane was formed on the outer surface of the support as a support having a length of 20 cm, an average pore diameter of 0.31 μm, and a porosity of 55%.
When the surface and fracture surface of the obtained composite membrane were observed with an SEM, only zeolite particles adhered to a small part of the outer surface of the porous alumina tube, and no zeolite membrane was formed.
Next, when the XRD pattern of this composite membrane was measured, no diffraction peak of CHA-type zeolite could be detected. That is, the peak intensity ratio (B / A) of the maximum peak intensity B of the CHA-type zeolite to the maximum peak intensity A of the porous alumina tube was 0.

[比較例2]
特開2011−121040号公報に記載の実施例2に記載の方法で、多孔質ムライト管(ニッカトー社製、内径2mm、外径3mm、長さ10cm、平均細孔径1.9μm、空隙率35%)を支持体として、その外表面に高シリカ型CHA型ゼオライト膜を調製した。ただし、合成時間は15時間とした。
まず、空気焼成前の複合膜の内表面に圧縮空気を0.1MPaで導入しながら、外表面を蒸留水に浸したところ、外表面全体から小さな気泡が発生することが確認できた。これは、焼成前の複合膜に貫通ピンホールが数多く存在していることを示している。
次に、500℃で10時間焼成した複合膜の破断面をSEMで観察したところ、その表面は、図2と比べ角の円い結晶粒子で覆われていたが、部分的に1μm程度の粒子間空隙(ピンホール)が見られた。ゼオライトの多結晶層は、多孔質ムライト管上に約4μm、多孔質ムライト管の空孔内に2〜5μmの厚さで形成されていた。なお、ゼオライト層のSi/Al=7.5だった。
また、この複合膜のXRDパターンを測定したところ、図3(f)に示すように、ムライト管の最大ピーク強度A(2θ=26.48°)に対するCHA型ゼオライトの最大ピーク強度B(2θ=9.80°)のピーク強度比(B/A)は1.0で、2θ=21°付近のピークに対する2θ=18°付近のピークの強度比は0.70、2θ=21°付近のピークに対する2θ=10°付近のピークの強度比は1.6だった。
[Comparative Example 2]
Porous mullite tube (manufactured by Nikkato Co., Ltd., inner diameter 2 mm, outer diameter 3 mm, length 10 cm, average pore diameter 1.9 μm, porosity 35% by the method described in JP 2011-121040 A ) As a support, a high silica type CHA type zeolite membrane was prepared on the outer surface thereof. However, the synthesis time was 15 hours.
First, when the outer surface was immersed in distilled water while introducing compressed air to the inner surface of the composite membrane before air firing at 0.1 MPa, it was confirmed that small bubbles were generated from the entire outer surface. This indicates that there are many through-pinholes in the composite film before firing.
Next, when the fracture surface of the composite film fired at 500 ° C. for 10 hours was observed with an SEM, the surface was covered with crystal grains having rounded corners as compared with FIG. An interstitial space (pinhole) was observed. The polycrystalline layer of zeolite was formed to a thickness of about 4 μm on the porous mullite tube and 2 to 5 μm in the pores of the porous mullite tube. The zeolite layer had Si / Al = 7.5.
Further, when the XRD pattern of this composite membrane was measured, as shown in FIG. 3 (f), the maximum peak intensity B (2θ = 2) of the CHA-type zeolite with respect to the maximum peak intensity A (2θ = 26.48 °) of the mullite tube. The peak intensity ratio (B / A) of 9.80 ° is 1.0, and the peak intensity ratio of 2θ = 18 ° to the peak near 2θ = 21 ° is 0.70, and the peak near 2θ = 21 °. The intensity ratio of the peak around 2θ = 10 ° to 1.6 was 1.6.

[比較例3]
合成時間を48時間としたことを除けば、比較例2と同じ方法で複合膜を調製した。
この複合膜の表面は、ピラミッド状の多結晶で覆われており、その膜厚は10〜15μmだった。XRD測定によると、図3(g)に示すように、ムライト管の最大ピーク強度A(2θ=26.52°)に対するCHA型ゼオライトの最大ピーク強度B(2θ=18.04°)のピーク強度比(B/A)は2.3で、2θ=21°付近のピークに対する2θ=18°付近のピークの強度比は3.5、2θ=21°付近のピークに対する2θ=10°付近のピークの強度比は1.8だった。
[Comparative Example 3]
A composite membrane was prepared in the same manner as in Comparative Example 2 except that the synthesis time was 48 hours.
The surface of this composite film was covered with pyramidal polycrystals, and the film thickness was 10 to 15 μm. According to the XRD measurement, as shown in FIG. 3 (g), the peak intensity of the maximum peak intensity B (2θ = 18.04 °) of the CHA-type zeolite with respect to the maximum peak intensity A (2θ = 26.52 °) of the mullite tube. The ratio (B / A) is 2.3, the intensity ratio of the peak near 2θ = 18 ° to the peak near 2θ = 21 ° is 3.5, and the peak near 2θ = 10 ° with respect to the peak near 2θ = 21 ° The intensity ratio was 1.8.

上記実施例1〜5、比較例1〜3の複合膜の性状を下記表1にまとめて記載する。   The properties of the composite membranes of Examples 1-5 and Comparative Examples 1-3 are summarized in Table 1 below.

比較例1〜3は、XRDピーク強度比が本発明で規定する範囲外にある例である。さらに比較例3はゼオライト層の膜厚が本発明で規定するよりも厚い例である。   Comparative Examples 1 to 3 are examples in which the XRD peak intensity ratio is outside the range defined in the present invention. Further, Comparative Example 3 is an example in which the thickness of the zeolite layer is thicker than specified in the present invention.

[試験例1] 透過分離特性(水溶性有機溶媒の脱水)
複合膜の透過分離特性を、水溶性有機溶媒からの脱水能を指標にして浸透気化法により調べた。評価には、特許第5239308号に記載の装置および方法を採用した。具体的な試験条件と結果を下記表2に示す。
[Test Example 1] Permeation separation characteristics (dehydration of water-soluble organic solvent)
The permeation separation characteristics of the composite membrane were investigated by the pervaporation method using the dehydration ability from the water-soluble organic solvent as an index. For the evaluation, the apparatus and method described in Japanese Patent No. 5239308 were adopted. Specific test conditions and results are shown in Table 2 below.

上記表2に示されるように、ゼオライト層が形成されていない比較例1では、有機溶媒に対する水選択除去能力をほとんど示さない。
また、特開2011−121040号公報に記載の方法でゼオライト層を薄膜に形成した比較例2の複合膜では、前述のようにゼオライト薄膜にピンホールが発生し、有機溶媒の脱水において分離係数に劣る結果となった。特開2011−121040号公報に記載の方法により完全なゼオライト膜を形成するには、48時間もの長時間、ゼオライト結晶を成長させなければならなかった(比較例3)。
これに対し実施例1〜5の複合膜は、有機溶媒の脱水において透過流束と分離係数のいずれも良好な値を示し、透過物中の有機溶媒濃度も十分に低く、脱水能に優れることが示された。すなわち、実施例1〜5の複合膜は、ゼオライトの結晶成長にかけた時間がわずか15時間であるにもかかわらず、ピンホールのない完全な薄膜を有し、優れた分離性能を示すことがわかった。
As shown in Table 2 above, Comparative Example 1 in which the zeolite layer is not formed shows little water selective removal ability with respect to the organic solvent.
Further, in the composite membrane of Comparative Example 2 in which the zeolite layer is formed into a thin film by the method described in JP2011-112040A, pinholes are generated in the zeolite thin film as described above, and the separation factor is reduced in the dehydration of the organic solvent. The result was inferior. In order to form a complete zeolite membrane by the method described in JP 2011-112040 A, zeolite crystals had to be grown for a long time of 48 hours (Comparative Example 3).
In contrast, the composite membranes of Examples 1 to 5 show good values for both the permeation flux and the separation factor in the dehydration of the organic solvent, the organic solvent concentration in the permeate is sufficiently low, and the dehydration performance is excellent It has been shown. That is, it can be seen that the composite membranes of Examples 1 to 5 have a complete thin film without pinholes and exhibit excellent separation performance, even though the time taken for crystal growth of zeolite is only 15 hours. It was.

[試験例2] 透過分離特性(硫酸水溶液の脱水)
複合膜の透過分離特性を、硫酸水溶液の脱水能を指標にして浸透気化法により調べた。評価には、特許第5239308号に記載の装置および方法を採用した。透過物のpHは、凝縮器を液体窒素温度に冷却して回収した透過物のpHを、pHメーターで測定した値である。詳細な試験条件と結果を下記表3に示す。
[Test Example 2] Permeation separation characteristics (dehydration of sulfuric acid aqueous solution)
The permeation and separation characteristics of the composite membrane were investigated by the pervaporation method using the dehydrating ability of sulfuric acid aqueous solution as an index. For the evaluation, the apparatus and method described in Japanese Patent No. 5239308 were adopted. The pH of the permeate is a value obtained by measuring the pH of the permeate collected by cooling the condenser to the liquid nitrogen temperature with a pH meter. Detailed test conditions and results are shown in Table 3 below.

表3に示されるように、本発明の複合膜を用いて硫酸水溶液を脱水すると、硫酸濃度によらず、透過物中のpHは中性付近となり、硫酸水溶液から水を選択的に透過・分離できることが示された。   As shown in Table 3, when the aqueous sulfuric acid solution is dehydrated using the composite membrane of the present invention, the pH in the permeate becomes near neutral regardless of the sulfuric acid concentration, and water is selectively permeated and separated from the aqueous sulfuric acid solution. It was shown that it can be done.

[試験例3] 耐酸性試験
複合膜を、20%硫酸水溶液中に、室温で下記表4に示す時間浸漬した後、蒸留水で洗浄し、試験例1と同様の方法で透過分離特性を調べた。結果を下記表4に示す。
[Test Example 3] Acid resistance test The composite membrane was immersed in a 20% aqueous sulfuric acid solution at room temperature for the time shown in Table 4 below, washed with distilled water, and the permeation separation characteristics were examined in the same manner as in Test Example 1. It was. The results are shown in Table 4 below.

表4に示されるように、比較例3の複合膜では、20%硫酸水溶液に7日間浸漬させると有機溶媒の脱水能をほとんど失っていた。
20%硫酸水溶液に7日間浸漬させた比較例3の複合膜をX線回析で分析したところ、多孔質ムライト管の最大ピーク強度A(2θ=26.56°)に対するCHA型ゼオライトの最大ピーク強度(2θ=18.08°)の比(B/A)は1.5まで低下していた(浸漬処理前のB/Aは2.3)。つまり、硫酸水溶液への浸漬処理によって、チャバザイトの結晶が破壊され、結晶度が低下していた。
As shown in Table 4, the composite membrane of Comparative Example 3 almost lost the dehydrating ability of the organic solvent when immersed in a 20% sulfuric acid aqueous solution for 7 days.
When the composite membrane of Comparative Example 3 immersed in a 20% sulfuric acid aqueous solution for 7 days was analyzed by X-ray diffraction, the maximum peak of the CHA zeolite with respect to the maximum peak intensity A (2θ = 26.56 °) of the porous mullite tube. The ratio of strength (2θ = 18.08 °) (B / A) was reduced to 1.5 (B / A before immersion treatment was 2.3). In other words, the chabazite crystals were destroyed by the immersion treatment in the sulfuric acid aqueous solution, and the crystallinity was lowered.

これに対し、本発明の複合膜は、20%硫酸水溶液に21日もの間浸漬させても脱水能を維持できることがわかった。
また、20%硫酸水溶液に21日間浸漬させた実施例1の複合膜をX線回析で分析したところ、多孔質アルミナ管の最大ピーク強度A(2θ=43.44°)に対するCHA型ゼオライトの最大ピーク強度(2θ=9.68°)の比(B/A)は0.6であり、浸漬処理前とほとんど変わらなかった。つまり、本発明の複合膜は、硫酸水溶液に長時間浸漬処理しても、チャバザイトの結晶が破壊されずに維持されることもわかった。
On the other hand, it was found that the composite membrane of the present invention can maintain the dehydrating ability even when immersed in a 20% aqueous sulfuric acid solution for 21 days.
Further, when the composite membrane of Example 1 immersed in a 20% sulfuric acid aqueous solution for 21 days was analyzed by X-ray diffraction, the CHA-type zeolite with respect to the maximum peak intensity A (2θ = 43.44 °) of the porous alumina tube was analyzed. The ratio (B / A) of the maximum peak intensity (2θ = 9.68 °) was 0.6, which was almost the same as that before the immersion treatment. That is, it was also found that the composite membrane of the present invention maintained the chabazite crystals without being destroyed even when immersed in a sulfuric acid aqueous solution for a long time.

Claims (6)

多孔質セラミックス管と、該多孔質セラミックス管上に形成された厚さ10μm未満のチャバザイト型ゼオライト層からなる多結晶薄膜とを有する複合膜であって、X線回析による前記多孔質セラミックス管の最大ピーク強度Aに対するゼオライト層の最大ピーク強度Bの強度比(B/A)が0.10以上1.0未満である、複合膜。   A composite film having a porous ceramic tube and a polycrystalline thin film made of a chabazite-type zeolite layer having a thickness of less than 10 μm formed on the porous ceramic tube, wherein the porous ceramic tube is formed by X-ray diffraction. A composite film having a ratio of the maximum peak intensity B of the zeolite layer to the maximum peak intensity A (B / A) of 0.10 or more and less than 1.0. 前記チャバザイト型ゼオライト層からなる多結晶薄膜が無配向多結晶薄膜である、請求項1に記載の複合膜。   The composite film according to claim 1, wherein the polycrystalline thin film comprising the chabazite-type zeolite layer is a non-oriented polycrystalline thin film. 前記チャバザイト型ゼオライトの骨格構造を構成するSiとAlの比(Si/Al)が5以上100以下である、請求項1又は2に記載に複合膜。   The composite film according to claim 1 or 2, wherein a ratio of Si and Al (Si / Al) constituting the framework structure of the chabazite-type zeolite is 5 or more and 100 or less. 前記多孔質セラミックス管の材質がアルミナ又はムライトである、請求項1〜3のいずれか1項に記載の複合膜。   The composite film according to any one of claims 1 to 3, wherein a material of the porous ceramic tube is alumina or mullite. チャバザイト型ゼオライト粉末を表面に付着させた多孔質セラミックス管と、ゼオライト粉末、N,N,N−トリ低級アルキル−1−アダマンタンアンモニウム、アルカリ塩もしくはアルカリの水酸化物、および水を含有するスラリー溶液とを、圧力容器内に共存させて100〜200℃で3〜48時間加熱し、前記多孔質セラミックス管の表面にチャバザイト型ゼオライトの結晶を成長させてゼオライト多結晶相を形成する工程、並びに
ゼオライト多結晶層が形成された多孔質セラミックス管を空気中で焼成してN,N,N−トリ低級アルキル−1−アダマンタンアンモニウムを除去する工程
を含む、請求項1〜4のいずれか1項に記載の複合膜の製造方法。
A porous ceramic tube having a chabazite-type zeolite powder adhered to the surface, a slurry solution containing zeolite powder, N, N, N-tri-lower alkyl-1-adamantanammonium, alkali salt or alkali hydroxide, and water In a pressure vessel and heated at 100 to 200 ° C. for 3 to 48 hours to grow a chabazite-type zeolite crystal on the surface of the porous ceramic tube to form a zeolite polycrystalline phase, and zeolite 5. The method according to claim 1, further comprising a step of removing N, N, N-tri-lower alkyl-1-adamantanammonium by firing the porous ceramic tube formed with the polycrystalline layer in the air. The manufacturing method of the composite film as described.
前記スラリー溶液中のゼオライト粉末が、Y型ゼオライト粉末である、請求項5に記載の製造方法。   The manufacturing method according to claim 5, wherein the zeolite powder in the slurry solution is a Y-type zeolite powder.
JP2013205622A 2013-09-30 2013-09-30 Composite membrane with zeolite thin film and its manufacturing method Active JP6785483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013205622A JP6785483B2 (en) 2013-09-30 2013-09-30 Composite membrane with zeolite thin film and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013205622A JP6785483B2 (en) 2013-09-30 2013-09-30 Composite membrane with zeolite thin film and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2015066532A true JP2015066532A (en) 2015-04-13
JP6785483B2 JP6785483B2 (en) 2020-11-18

Family

ID=52833843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013205622A Active JP6785483B2 (en) 2013-09-30 2013-09-30 Composite membrane with zeolite thin film and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6785483B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101743760B1 (en) * 2015-12-30 2017-06-07 한국화학연구원 Method for manufacturing of SSZ-13 zeolite catalyst and the SSZ-13 zeolite catalyst thereby
JP2018538230A (en) * 2015-12-09 2018-12-27 シェブロン ユー.エス.エー. インコーポレイテッド Synthesis of molecular sieve SSZ-105
JP2020151694A (en) * 2019-03-22 2020-09-24 東ソー株式会社 Zeolite separation membrane, and separation method using the same
WO2022045158A1 (en) * 2020-08-28 2022-03-03 東ソー株式会社 Cha-type zeolite and method for producing same
US11708277B2 (en) * 2020-08-03 2023-07-25 Chevron U.S.A. Inc. Low pressure synthesis of zeolite SSZ-13

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074040A1 (en) * 2008-12-22 2010-07-01 東ソー株式会社 Chabazite-type zeolite and process for production of same
JP2011121040A (en) * 2009-02-27 2011-06-23 Mitsubishi Chemicals Corp Inorganic porous support/zeolite membrane composite, method of producing the same, and separation method employing the same
WO2012046545A1 (en) * 2010-10-06 2012-04-12 日立造船株式会社 Composite zeolite film and process for production thereof
JP2013126649A (en) * 2011-11-17 2013-06-27 National Institute Of Advanced Industrial Science & Technology Zeolite membrane and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010074040A1 (en) * 2008-12-22 2010-07-01 東ソー株式会社 Chabazite-type zeolite and process for production of same
JP2011121040A (en) * 2009-02-27 2011-06-23 Mitsubishi Chemicals Corp Inorganic porous support/zeolite membrane composite, method of producing the same, and separation method employing the same
US20120024777A1 (en) * 2009-02-27 2012-02-02 Mitsubishi Chemical Corporation Inorganic porous support-zeolite membrane composite, production method thereof, and separation method using the composite
WO2012046545A1 (en) * 2010-10-06 2012-04-12 日立造船株式会社 Composite zeolite film and process for production thereof
JP2013126649A (en) * 2011-11-17 2013-06-27 National Institute Of Advanced Industrial Science & Technology Zeolite membrane and method for manufacturing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Improving SAPO-34 membrane synthesis", JOURNAL OF MEMBRANE SCIENCE, JPN6017007148, 28 May 2013 (2013-05-28), pages 384 - 393, ISSN: 0003658086 *
NAOKI YAMANAKA: "Effect of Structure-Directing Agents on FAU-CHA Interzeolite Conversion and Preparation of High Perv", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 86, no. 11, JPN6017038446, 7 September 2013 (2013-09-07), pages 1333 - 1340, XP009515139, ISSN: 0003658085, DOI: 10.1246/bcsj.20130189 *
RONGFEI ZHOU ET AL.: "Improving SAPO-34 membrane synthesis", JOURNAL OF MEMBRANE SCIENCE, vol. 444, JPN6018013266, 1 June 2013 (2013-06-01), pages 384 - 393, ISSN: 0003777148 *
SHIGUANG LI ET AL.: "SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio", MICROPOROUS AND MESOPOROUS MATERIALS, vol. vol.110 issues.2-3, JPN6018013268, 15 April 2008 (2008-04-15), pages 310 - 317, ISSN: 0003777149 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538230A (en) * 2015-12-09 2018-12-27 シェブロン ユー.エス.エー. インコーポレイテッド Synthesis of molecular sieve SSZ-105
KR101743760B1 (en) * 2015-12-30 2017-06-07 한국화학연구원 Method for manufacturing of SSZ-13 zeolite catalyst and the SSZ-13 zeolite catalyst thereby
JP2020151694A (en) * 2019-03-22 2020-09-24 東ソー株式会社 Zeolite separation membrane, and separation method using the same
JP7243356B2 (en) 2019-03-22 2023-03-22 東ソー株式会社 Zeolite separation membrane and separation method using the same
US11708277B2 (en) * 2020-08-03 2023-07-25 Chevron U.S.A. Inc. Low pressure synthesis of zeolite SSZ-13
WO2022045158A1 (en) * 2020-08-28 2022-03-03 東ソー株式会社 Cha-type zeolite and method for producing same

Also Published As

Publication number Publication date
JP6785483B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
JP7060042B2 (en) Method for Producing Porous Support-Zeolite Membrane Complex and Porous Support-Zeolite Membrane Complex
JP6373381B2 (en) Zeolite membrane, method for producing the same, and separation method using the same
JP5324067B2 (en) Method for producing zeolite membrane
Caro et al. Zeolite membranes–Recent developments and progress
JP6172239B2 (en) Method for recovering alcohol from alcohol-water mixture
JP5569901B2 (en) Zeolite membrane, separation membrane module and manufacturing method thereof
Kazemimoghadam New nanopore zeolite membranes for water treatment
US11666867B2 (en) Zeolite separation membrane and production method therefor
JP6171151B2 (en) Zeolite membrane and method for producing the same
JP6158437B2 (en) High-strength hollow fiber type molecular sieve membrane and method for producing the same
JP5533438B2 (en) Dehydrated concentration equipment for hydrous organic compounds
JP6785483B2 (en) Composite membrane with zeolite thin film and its manufacturing method
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
JP5857533B2 (en) Method for recovering organic solvent from organic solvent-acid-water mixture
JP5810750B2 (en) Method for recovering acid from acid-water mixture
JP2006247599A (en) Manufacturing method of zsm-5 type zeolite membrane
JPWO2012128218A1 (en) Porous body and honeycomb-shaped ceramic separation membrane structure
JP5734196B2 (en) Method for producing DDR type zeolite
Wang et al. Preparation of MFI zeolite membranes on coarse macropore stainless steel hollow fibers for the recovery of bioalcohols
WO2021230820A1 (en) Ceramic membrane technology for molecule-range separation
JP7118960B2 (en) Dehydration method, dehydration device and membrane structure
JP6476021B2 (en) Zeolite membrane and method for producing zeolite powder
JP2011115691A (en) Method for manufacturing zeolite separation membrane
Kazemimoghadam Preparation of nanopore HS zeolite membranes for reverse osmosis processes
JP2023090368A (en) Manufacturing method of porous support body and manufacturing method of porous support body/zeolite membrane composite body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170428

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190820

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190827

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190903

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191004

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191015

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200728

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200825

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200929

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6785483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250