JP2015064953A - Method and apparatus for manufacturing electrode - Google Patents

Method and apparatus for manufacturing electrode Download PDF

Info

Publication number
JP2015064953A
JP2015064953A JP2013196887A JP2013196887A JP2015064953A JP 2015064953 A JP2015064953 A JP 2015064953A JP 2013196887 A JP2013196887 A JP 2013196887A JP 2013196887 A JP2013196887 A JP 2013196887A JP 2015064953 A JP2015064953 A JP 2015064953A
Authority
JP
Japan
Prior art keywords
electrode
stage
air
electrodes
suction pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013196887A
Other languages
Japanese (ja)
Other versions
JP6075256B2 (en
Inventor
栄克 河端
Yoshikatsu Kawabata
栄克 河端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013196887A priority Critical patent/JP6075256B2/en
Publication of JP2015064953A publication Critical patent/JP2015064953A/en
Application granted granted Critical
Publication of JP6075256B2 publication Critical patent/JP6075256B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Pile Receivers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing an electrode, enabling deviation of electrodes when being laminated to be suppressed.SOLUTION: The method for manufacturing an electrode is provided in which a suction pad 13 conveys an electrode P onto a stage 12, air is supplied to the electrode P when the suction pad 13 releases the electrode P, so that the electrode P is abuts on a positioning part 14 to be thereby positioned. Unlike a method of superposing and pressurizing the electrodes P, which causes laminated electrodes P to deviate by repulsion generated when the electrodes are pressurized, the method can suppress the deviation of the electrode P when being laminated. The method is also suitably applied to the cases in which the electrode P is curved or has a smooth surface. Further, the method for manufacturing the electrode requires no gauging of the electrode P before being laminated, thereby reducing man-hours and also avoiding damage to an electrode edge in the gauging process.

Description

本発明は、電極の製造方法及び電極の製造装置に関する。   The present invention relates to an electrode manufacturing method and an electrode manufacturing apparatus.

蓄電装置などに用いる電極の製造装置では、電極を所定の順序で積層する積層工程が実施される。積層の際の電極の位置合わせを行うための技術としては、例えば特許文献1に記載の薄膜状ワークの積載装置がある。この従来の装置では、正極及び負極を吸着パッドで交互に搬送して重ね合わせ、プレート等で加圧を行うことで電極の積層体を形成している。   In an electrode manufacturing apparatus used for a power storage device or the like, a stacking process for stacking electrodes in a predetermined order is performed. As a technique for aligning the electrodes at the time of stacking, for example, there is a thin film workpiece loading device described in Patent Document 1. In this conventional apparatus, a positive electrode and a negative electrode are alternately conveyed by a suction pad and overlapped, and a laminate of electrodes is formed by pressurizing with a plate or the like.

特開2010−1146号公報JP 2010-1146 A

しかしながら、上述のような従来の手法では、電極の積層体を加圧したときの反発によって重ね合された電極がずれてしまうことがあった。このような電極のずれは、電極が湾曲している場合や、電極の表面が滑らかな場合に特に生じやすい。そのため、積層時の電極のずれを抑制できる技術が望まれている。   However, in the conventional method as described above, the electrodes overlapped may be displaced due to repulsion when the electrode laminate is pressurized. Such electrode displacement is particularly likely to occur when the electrode is curved or when the surface of the electrode is smooth. Therefore, there is a demand for a technique that can suppress the displacement of electrodes during stacking.

本発明は、上記課題の解決のためになされたものであり、積層時の電極のずれを抑制できる電極の製造方法及び電極の製造装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrode manufacturing method and an electrode manufacturing apparatus that can suppress the displacement of electrodes during stacking.

上記課題の解決のため、本発明に係る電極の製造方法は、正極及び負極を含む電極を交互に積層して積層体を形成する積層工程を含む電極の製造方法であって、積層工程は、吸着パッドを用いて位置決め部が配置されたステージ上に電極を搬送する搬送工程と、吸着パッドがステージ上で電極を離したときに電極に向けてエアを供給し、電極を位置決め部に突き当てる位置決め工程と、を備えていることを特徴としている。   In order to solve the above-described problem, an electrode manufacturing method according to the present invention is an electrode manufacturing method including a stacking process in which electrodes including positive electrodes and negative electrodes are alternately stacked to form a stacked body. A transport process for transporting the electrode onto the stage where the positioning part is arranged using the suction pad, and air is supplied to the electrode when the suction pad releases the electrode on the stage, and the electrode hits the positioning part And a positioning step.

この電極の製造方法では、吸着パッドがステージ上に電極を搬送し、電極を離したときに電極に向けてエアを供給し、電極を位置決め部に突き当てることによって位置決めを行う。この方法によれば、電極を重ねあわせて加圧する方法とは異なり、重ね合された電極が加圧時の反発によってずれてしまうことがなく、積層時の電極のずれを抑制できる。また、電極が湾曲している場合や電極の表面が滑らかな場合にも好適に適用可能である。さらに、この電極の製造方法では、積層前の電極のゲージングも不要であり、工数を削減できると共にゲージングの際の電極エッジへのダメージの発生も回避できる。   In this electrode manufacturing method, the suction pad transports the electrode onto the stage, supplies air toward the electrode when the electrode is released, and performs positioning by abutting the electrode against the positioning portion. According to this method, unlike the method in which the electrodes are overlapped and pressed, the overlapped electrodes are not displaced due to repulsion during pressurization, and the displacement of the electrodes during lamination can be suppressed. Also, the present invention can be suitably applied when the electrode is curved or when the surface of the electrode is smooth. Further, in this electrode manufacturing method, it is not necessary to gauge the electrode before lamination, so that the number of steps can be reduced and the occurrence of damage to the electrode edge during gauging can be avoided.

また、位置決め部は、エアが通り抜け可能となっていることが好ましい。この場合、位置決め部によってエアの流れが乱れることを防止でき、電極を位置決め部に精度良く突き当てることが可能となる。また、位置決め部によるエアの戻りで電極がずれてしまうことを防止できる。   Moreover, it is preferable that air can pass through the positioning portion. In this case, it is possible to prevent the air flow from being disturbed by the positioning portion, and it is possible to abut the electrode with the positioning portion with high accuracy. Further, it is possible to prevent the electrodes from being displaced due to the return of air by the positioning portion.

また、エアの供給開始の後、吸着パッドがステージ上で次の電極を離すまでにエアの供給を停止することが好ましい。吸着パッドが位置決め部に突き当てられた後もエアの供給を継続することで、電極のずれをより確実に抑制できる。   Moreover, it is preferable to stop the air supply after the start of the air supply until the suction pad releases the next electrode on the stage. By continuing the supply of air even after the suction pad is abutted against the positioning portion, it is possible to more reliably suppress the displacement of the electrodes.

また、ステージ上での電極の積層数に応じてエアの流量を増加させることが好ましい。この場合、既にステージ上に積層された電極にずれが生じることを好適に抑制できる。   Further, it is preferable to increase the air flow rate in accordance with the number of stacked electrodes on the stage. In this case, it is possible to suitably suppress the occurrence of deviation in the electrodes already stacked on the stage.

また、本発明に係る電極の製造装置は、正極及び負極を含む電極を交互に積層して積層体を形成する積層装置を備えた電極の製造装置であって、積層装置は、ステージと、ステージ上に配置された位置決め部と、ステージ上に電極を搬送する吸着パッドと、吸着パッドによってステージ上に搬送された電極に向けてエアを供給するエア供給部と、吸着パッドがステージ上で電極を離したときにエア供給部によるエアの供給を実行させるエア供給制御部と、を備えたことを特徴としている。   An electrode manufacturing apparatus according to the present invention is an electrode manufacturing apparatus including a stacking apparatus that alternately stacks electrodes including positive electrodes and negative electrodes to form a stacked body. The stacking apparatus includes a stage, a stage, and a stage. A positioning part disposed above, a suction pad for transporting the electrode on the stage, an air supply part for supplying air toward the electrode transported on the stage by the suction pad, and the suction pad for placing the electrode on the stage And an air supply control unit that executes supply of air by the air supply unit when released.

この電極の製造装置では、吸着パッドがステージ上に電極を搬送し、電極を離したときに電極に向けてエアを供給し、電極を位置決め部に突き当てることによって位置決めが行われる。これにより、電極を重ねあわせて加圧する場合とは異なり、重ね合された電極が加圧時の反発によってずれてしまうことがなく、積層時の電極のずれを抑制できる。また、電極が湾曲している場合や電極の表面が滑らかな場合にも好適に適用可能である。さらに、この電極の製造装置では、積層前の電極のゲージングも不要であり、工数を削減できると共にゲージングの際の電極エッジへのダメージの発生も回避できる。   In this electrode manufacturing apparatus, the suction pad transports the electrode onto the stage, supplies air toward the electrode when the electrode is released, and positioning is performed by abutting the electrode against the positioning portion. Thereby, unlike the case where the electrodes are overlapped and pressed, the overlapped electrodes are not displaced due to repulsion during pressurization, and the displacement of the electrodes during lamination can be suppressed. Also, the present invention can be suitably applied when the electrode is curved or when the surface of the electrode is smooth. Furthermore, this electrode manufacturing apparatus does not require gauging of the electrode before lamination, thereby reducing man-hours and avoiding damage to the electrode edge during gauging.

また、位置決め部は、エアが通り抜け可能となっていることが好ましい。この場合、位置決め部によってエアの流れが乱れることを防止でき、電極を位置決め部に精度良く突き当てることが可能となる。また、位置決め部によるエアの戻りで電極がずれてしまうことを防止できる。   Moreover, it is preferable that air can pass through the positioning portion. In this case, it is possible to prevent the air flow from being disturbed by the positioning portion, and it is possible to abut the electrode with the positioning portion with high accuracy. Further, it is possible to prevent the electrodes from being displaced due to the return of air by the positioning portion.

また、エア供給制御部は、エアの供給開始の後、吸着パッドがステージ上で次の電極を離すまでにエア供給部によるエアの供給を停止させることが好ましい。吸着パッドが位置決め部に突き当てられた後もエアの供給を継続することで、電極のずれをより確実に抑制できる。   Moreover, it is preferable that an air supply control part stops the air supply by an air supply part after an air supply start until a suction pad releases | separates the next electrode on a stage. By continuing the supply of air even after the suction pad is abutted against the positioning portion, it is possible to more reliably suppress the displacement of the electrodes.

また、エア供給制御部は、ステージ上での電極の積層数に応じてエアの流量を増加させることが好ましい。この場合、既にステージ上に積層された電極にずれが生じることを好適に抑制できる。   The air supply controller preferably increases the air flow rate according to the number of electrodes stacked on the stage. In this case, it is possible to suitably suppress the occurrence of deviation in the electrodes already stacked on the stage.

本発明によれば、積層時の電極のずれを好適に抑制できる。   According to the present invention, it is possible to suitably suppress the displacement of the electrodes during lamination.

本発明に係る電極の製造方法を実施する電極の製造装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the manufacturing apparatus of the electrode which enforces the manufacturing method of the electrode which concerns on this invention. 図1に示した電極の製造装置のステージ周りの構成を示す概略平面図である。It is a schematic plan view which shows the structure around the stage of the manufacturing apparatus of the electrode shown in FIG.

以下、図面を参照しながら、本発明に係る電極の製造方法及び電極の製造装置の好適な実施形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an electrode manufacturing method and an electrode manufacturing apparatus according to the present invention will be described in detail with reference to the drawings.

図1には、本発明に係る電極の製造方法を実施する電極の製造装置の一実施形態を示す概略図である。また、図2は、図1に示した電極の製造装置のステージ周りの構成を示す概略平面図である。図1に示す電極の製造装置1は、例えばリチウムイオン二次電池等の非水電界質二次電池に用いられる電極を製造する装置である。この製造装置1は、電極の製造ラインに組み込まれ、金属箔に電極ペーストを塗工する塗工工程、金属箔に塗布された電極ペーストを乾燥させる乾燥工程等を経て作製された電極Pを所定の順序で積層する積層装置2を含んで構成されている。   FIG. 1 is a schematic view showing an embodiment of an electrode manufacturing apparatus for carrying out an electrode manufacturing method according to the present invention. 2 is a schematic plan view showing the configuration around the stage of the electrode manufacturing apparatus shown in FIG. An electrode manufacturing apparatus 1 shown in FIG. 1 is an apparatus that manufactures an electrode used for a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery. The manufacturing apparatus 1 is provided with an electrode P that is incorporated in an electrode manufacturing line, and that is manufactured through a coating process for applying an electrode paste to a metal foil, a drying process for drying the electrode paste applied to the metal foil, and the like. It is comprised including the laminating apparatus 2 which laminates | stacks in this order.

積層装置2は、図1に示すように、複数の電極Pが載置された載置部11と、電極Pの積層位置V1と所定の搬送位置V2との間で移動可能なステージ12と、載置部11と積層位置V1との間で移動可能な吸着パッド13とを備えている。また、積層位置V1には、ステージ12上での電極Pの位置決めを行う位置決め部14と、ステージ12上の電極Pに向けてエアを供給するエア供給部15と、エア供給部15によるエア供給を制御するエア供給制御部16とが配置されている。   As shown in FIG. 1, the stacking apparatus 2 includes a mounting unit 11 on which a plurality of electrodes P are mounted, a stage 12 that can move between a stacking position V1 of the electrodes P and a predetermined transport position V2, A suction pad 13 that is movable between the mounting portion 11 and the stacking position V1 is provided. Further, at the stacking position V1, a positioning unit 14 that positions the electrode P on the stage 12, an air supply unit 15 that supplies air toward the electrode P on the stage 12, and an air supply by the air supply unit 15 And an air supply control unit 16 for controlling the operation.

載置部11には、電極Pとして、例えば正極21と負極22とが交互に積み重ねられている。正極21は、例えばアルミニウム箔からなる金属箔と、金属箔の両面に形成された正極活物質層とを有し、例えば平面視で矩形状に形成されている。正極活物質層は、正極活物質とバインダとを含んで形成されている。正極活物質としては、例えば複合酸化物、金属リチウム、硫黄等が挙げられる。複合酸化物には、例えばマンガン、ニッケル、コバルト及びアルミニウムの少なくとも1つと、リチウムとが含まれる。また、正極21の一縁部には、矩形のタブ21aが形成されている(図2参照)。タブ21aは、正極21の一縁部から所定の長さで外方に向かって延びている。   For example, positive electrodes 21 and negative electrodes 22 are alternately stacked on the mounting portion 11 as electrodes P. The positive electrode 21 includes, for example, a metal foil made of an aluminum foil and a positive electrode active material layer formed on both surfaces of the metal foil, and is formed in a rectangular shape, for example, in plan view. The positive electrode active material layer is formed including a positive electrode active material and a binder. Examples of the positive electrode active material include composite oxide, metallic lithium, and sulfur. The composite oxide includes, for example, at least one of manganese, nickel, cobalt, and aluminum and lithium. A rectangular tab 21a is formed on one edge of the positive electrode 21 (see FIG. 2). The tab 21a extends outward from the one edge of the positive electrode 21 with a predetermined length.

本実施形態では、正極21は、負極22に比べて一回り小さい寸法となっており、タブ21aが外部に突出するように負極22と略同寸法の袋状のセパレータ内に収容されている。セパレータの形成材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。なお、セパレータは、袋状に限られず、シート状のものを用いてもよい。   In the present embodiment, the positive electrode 21 has a size slightly smaller than that of the negative electrode 22 and is accommodated in a bag-like separator having substantially the same dimensions as the negative electrode 22 so that the tab 21a protrudes to the outside. Examples of the material for forming the separator include a porous film made of a polyolefin resin such as polyethylene (PE) and polypropylene (PP), a woven fabric or a non-woven fabric made of polypropylene, polyethylene terephthalate (PET), methylcellulose and the like. In addition, a separator is not restricted to a bag shape, You may use a sheet-like thing.

一方、負極22は、例えば銅箔からなる金属箔と、金属箔の両面に形成された負極活物質層とを有し、平面視で矩形状に形成されている。負極活物質層は、負極活物質とバインダとを含んで形成されている。負極活物質としては、例えば黒鉛、高配向性グラファイト、メソカーボンマイクロビーズ、ハードカーボン、ソフトカーボン等のカーボン、リチウム、ナトリウム等のアルカリ金属、金属化合物、SiOx(0.5≦x≦1.5)等の金属酸化物、ホウ素添加炭素等が挙げられる。また、負極22の一縁部には、正極21のタブ21aと重ならない位置に矩形のタブ22aが形成されている(図2参照)。タブ22aは、負極22の一縁部からタブ21aと同じ長さで外方に向かって延びている。   On the other hand, the negative electrode 22 has, for example, a metal foil made of copper foil and a negative electrode active material layer formed on both surfaces of the metal foil, and is formed in a rectangular shape in plan view. The negative electrode active material layer is formed including a negative electrode active material and a binder. Examples of the negative electrode active material include carbon such as graphite, highly oriented graphite, mesocarbon microbeads, hard carbon, and soft carbon, alkali metals such as lithium and sodium, metal compounds, SiOx (0.5 ≦ x ≦ 1.5 ) And the like, and boron-added carbon. In addition, a rectangular tab 22a is formed on one edge of the negative electrode 22 at a position that does not overlap with the tab 21a of the positive electrode 21 (see FIG. 2). The tab 22a extends outward from one edge of the negative electrode 22 with the same length as the tab 21a.

ステージ12は、図2に示すように、平面視で電極Pの寸法に対して十分大きい矩形状をなしている。ステージ12は、電極Pの積層を実行する際、不図示の制御部からの制御を受けて搬送位置V2から積層位置V1に移動し、位置決め部14の下部に突き当たった状態となる。また、ステージ12には、互いに対向する2辺の略中央部分に矩形状の切込部12a,12aがそれぞれ形成されている。これらの切込部12a,12aにより、積層された電極Pをステージ12から取り出す際の作業性を良好に確保できる。   As shown in FIG. 2, the stage 12 has a rectangular shape that is sufficiently large with respect to the dimension of the electrode P in plan view. When performing the stacking of the electrodes P, the stage 12 moves from the transport position V2 to the stacking position V1 under the control of a control unit (not shown), and comes into contact with the lower portion of the positioning unit 14. Further, the stage 12 is formed with rectangular cut portions 12a and 12a at substantially central portions of two sides facing each other. With these notches 12a and 12a, it is possible to ensure good workability when the stacked electrodes P are taken out from the stage 12.

吸着パッド13は、載置部11からステージ12に電極Pを搬送する装置である。吸着パッド13は、不図示の制御部からの制御を受けて載置部11に載置されている電極Pをステージ12上に順次搬送する。   The suction pad 13 is a device that transports the electrode P from the placement unit 11 to the stage 12. The suction pad 13 sequentially conveys the electrodes P placed on the placement unit 11 onto the stage 12 under the control of a control unit (not shown).

位置決め部14は、ステージ12とは別体に設けられ、図2に示すように、互いに直交する2つの壁部14a,14bにより、例えば平面視でL字状をなしている(図1では、説明の便宜上、位置決め部14におけるステージ手前側部分を省略している)。位置決め部14の高さは、予め想定された電極Pの積層体の高さに対して十分大きくなっており、位置決め部14の幅は、電極Pの辺に対して十分大きくなっている。この位置決め部14は、エア供給部15から供給されるエアが通り抜け可能となるように構成されている。より具体的には、位置決め部14は、一又は複数の通気孔を有していてもよく、メッシュ状となっていてもよい。また、位置決め部14は、櫛歯状となっていてもよい。   The positioning portion 14 is provided separately from the stage 12, and as shown in FIG. 2, the two wall portions 14a and 14b orthogonal to each other form, for example, an L shape in plan view (in FIG. 1, For convenience of explanation, the stage front side portion of the positioning portion 14 is omitted). The height of the positioning portion 14 is sufficiently large with respect to the height of the stacked body of the electrodes P assumed in advance, and the width of the positioning portion 14 is sufficiently large with respect to the side of the electrode P. The positioning unit 14 is configured such that air supplied from the air supply unit 15 can pass through. More specifically, the positioning part 14 may have one or a plurality of air holes, and may be in a mesh shape. Moreover, the positioning part 14 may be a comb-tooth shape.

エア供給部15は、位置決め部14の壁部14a,14bにそれぞれ対向するように、ステージ12の外側にそれぞれ配置されている。エア供給部15は、エア供給制御部16からの制御を受け、吸着パッド13がステージ12上で電極Pを離したときに電極Pに向けてエアを供給する。エアの供給は、供給開始から吸着パッド13がステージ12上で次の電極Pを離すまでの間に停止されればよい。例えばエアの供給開始から所定時間経過後にエアの供給を停止してもよく、吸着パッド13がステージ12から載置部11に戻るタイミングでエアの供給を停止してもよい。   The air supply part 15 is arrange | positioned on the outer side of the stage 12, respectively so that wall part 14a, 14b of the positioning part 14 may be opposed, respectively. The air supply unit 15 receives control from the air supply control unit 16 and supplies air toward the electrode P when the suction pad 13 releases the electrode P on the stage 12. The supply of air may be stopped from the start of supply until the suction pad 13 releases the next electrode P on the stage 12. For example, the supply of air may be stopped after a predetermined time has elapsed from the start of the supply of air, or the supply of air may be stopped when the suction pad 13 returns from the stage 12 to the placement unit 11.

また、エア供給制御部16は、エア供給部15からのエアの供給量を制御する。本実施形態では、エア供給制御部16は、例えば吸着パッド13による電極Pの搬送回数をカウントし、ステージ12上での電極Pの積層数に応じてエアの流量を増加させる。   The air supply control unit 16 controls the amount of air supplied from the air supply unit 15. In the present embodiment, the air supply control unit 16 counts the number of times the electrode P is conveyed by the suction pad 13, for example, and increases the air flow rate according to the number of stacked electrodes P on the stage 12.

なお、エア供給部15は、ステージ12上に電極Pが載置された際に、正極21のタブ21a及び負極22のタブ22aと正対しないように配置されていることが好ましい。また、正極21のタブ21aと負極22のタブ22aとは互いに重ならないため、エア供給部15をステージ12の縁部に沿って移動可能に構成し、正極21が載置される場合と負極22が載置される場合とで、エア供給部15の位置を移動させるようにしてもよい。   The air supply unit 15 is preferably arranged so as not to face the tab 21 a of the positive electrode 21 and the tab 22 a of the negative electrode 22 when the electrode P is placed on the stage 12. Further, since the tab 21a of the positive electrode 21 and the tab 22a of the negative electrode 22 do not overlap each other, the air supply unit 15 is configured to be movable along the edge of the stage 12, and the negative electrode 22 and the case where the positive electrode 21 is placed. The position of the air supply unit 15 may be moved in the case where the air supply unit 15 is placed.

積層装置2によって積層工程が実施される場合、まず、ステージ12が搬送位置V2から積層位置V1に移動し、ステージ12が位置決め部14に突き当てられる。次に、吸着パッド13が載置部11の電極Pを把持し、ステージ12上に搬送する(搬送工程)。吸着パッド13が電極Pを離すと、エア供給部15によるエアの供給が開始される。これにより、吸着パッド13を離れた電極Pは、自重でステージ12側に載置されると共に、エアによって2つの辺が全長にわたって位置決め部14の壁部14a,14bに突き当てられ、ステージ12上で電極Pの位置が位置決めされる(位置決め工程)。以降、搬送工程と位置決め工程とを繰り返し実行し、所定数の正極21及び負極22を交互に積層することにより、電極Pの積層体が得られる。   When the stacking process is performed by the stacking apparatus 2, first, the stage 12 moves from the transport position V <b> 2 to the stacking position V <b> 1, and the stage 12 is abutted against the positioning unit 14. Next, the suction pad 13 grips the electrode P of the placement unit 11 and conveys it onto the stage 12 (conveying step). When the suction pad 13 releases the electrode P, air supply by the air supply unit 15 is started. As a result, the electrode P that has left the suction pad 13 is placed on the stage 12 side by its own weight, and the two sides are abutted against the walls 14a and 14b of the positioning portion 14 over the entire length by the air. Thus, the position of the electrode P is positioned (positioning step). Thereafter, the transport process and the positioning process are repeatedly performed, and a predetermined number of positive electrodes 21 and negative electrodes 22 are alternately stacked, whereby a stacked body of electrodes P is obtained.

以上のような手法によれば、電極Pを重ねあわせて加圧する場合とは異なり、重ね合された電極Pが加圧時の反発によってずれてしまうことがなく、積層時の電極Pのずれを抑制できる。また、電極Pが湾曲している場合や電極Pの表面が滑らかな場合にも好適に適用可能である。さらに、この手法によれば、積層前の電極Pのゲージングも不要であり、工数を削減できると共にゲージングの際の電極エッジへのダメージの発生も回避できる。   According to the above-described method, unlike the case where the electrodes P are stacked and pressed, the stacked electrodes P are not shifted due to repulsion during pressing, and the displacement of the electrodes P during stacking is prevented. Can be suppressed. Further, the present invention can be suitably applied when the electrode P is curved or when the surface of the electrode P is smooth. Furthermore, according to this method, the gauging of the electrode P before lamination is not necessary, so that the number of steps can be reduced and the occurrence of damage to the electrode edge during gauging can be avoided.

本実施形態では、エアの供給開始の後、吸着パッド13がステージ12上で次の電極Pを離すまでにエアの供給を停止する。このように、吸着パッド13が位置決め部14に突き当てられた後もエアの供給を継続することで、電極Pのずれをより確実に抑制できる。また、本実施形態では、ステージ12上での電極Pの積層数に応じてエアの流量を増加させている。これにより、既にステージ12上に積層された電極Pにずれが生じることを好適に抑制できる。   In this embodiment, after the supply of air is started, the supply of air is stopped until the suction pad 13 releases the next electrode P on the stage 12. Thus, the displacement of the electrode P can be more reliably suppressed by continuing the supply of air even after the suction pad 13 is abutted against the positioning portion 14. In the present embodiment, the air flow rate is increased in accordance with the number of stacked electrodes P on the stage 12. Thereby, it can suppress suitably that a shift | offset | difference arises in the electrode P already laminated | stacked on the stage 12. FIG.

また、本実施形態では、位置決め部14をエアが通り抜け可能となっている。これにより、位置決め部14によってエアの流れが乱れることを防止でき、電極Pを位置決め部14に精度良く突き当てることが可能となる。また、位置決め部14によるエアの戻りで既にステージ12上に積層された電極Pがずれてしまうことを防止できる。   In the present embodiment, air can pass through the positioning portion 14. Thereby, it is possible to prevent the air flow from being disturbed by the positioning unit 14, and the electrode P can be abutted against the positioning unit 14 with high accuracy. Moreover, it can prevent that the electrode P already laminated | stacked on the stage 12 by the return of the air by the positioning part 14 shift | deviates.

1…電極の製造装置、2…積層装置、12…ステージ、13…吸着パッド、14…位置決め部、15…エア供給部、16…エア供給制御部、21…正極、22…負極、P…電極。   DESCRIPTION OF SYMBOLS 1 ... Electrode manufacturing apparatus, 2 ... Laminating apparatus, 12 ... Stage, 13 ... Suction pad, 14 ... Positioning part, 15 ... Air supply part, 16 ... Air supply control part, 21 ... Positive electrode, 22 ... Negative electrode, P ... Electrode .

Claims (8)

正極及び負極を含む電極を交互に積層して積層体を形成する積層工程を含む電極の製造方法であって、
前記積層工程は、
吸着パッドを用いて位置決め部が配置されたステージ上に前記電極を搬送する搬送工程と、
前記吸着パッドが前記ステージ上で前記電極を離したときに前記電極に向けてエアを供給し、前記電極を前記位置決め部に突き当てる位置決め工程と、を備えていることを特徴とする電極の製造方法。
A method for producing an electrode comprising a lamination step of alternately laminating electrodes including a positive electrode and a negative electrode to form a laminate,
The laminating step includes
A transporting step of transporting the electrode onto a stage on which a positioning part is arranged using a suction pad;
And a positioning step of supplying air toward the electrode when the suction pad separates the electrode on the stage, and abutting the electrode against the positioning portion. Method.
前記位置決め部は、前記エアが通り抜け可能となっていることを特徴とする請求項1記載の電極の製造方法。   The method for manufacturing an electrode according to claim 1, wherein the air can pass through the positioning portion. 前記エアの供給開始の後、前記吸着パッドが前記ステージ上で次の電極を離すまでに前記エアの供給を停止することを特徴とする請求項1又は2記載の電極の製造方法。   3. The electrode manufacturing method according to claim 1, wherein, after the air supply is started, the air supply is stopped until the suction pad releases the next electrode on the stage. 4. 前記ステージ上での前記電極の積層数に応じて前記エアの流量を増加させることを特徴とする請求項1〜3のいずれか一項記載の電極の製造方法。   The method for manufacturing an electrode according to claim 1, wherein the flow rate of the air is increased according to the number of stacked electrodes on the stage. 正極及び負極を含む電極を交互に積層して積層体を形成する積層装置を備えた電極の製造装置であって、
前記積層装置は、
ステージと、
前記ステージ上に配置された位置決め部と、
前記ステージ上に前記電極を搬送する吸着パッドと、
前記吸着パッドによって前記ステージ上に搬送された前記電極に向けてエアを供給するエア供給部と、
前記吸着パッドが前記ステージ上で前記電極を離したときに前記エア供給部による前記エアの供給を実行させるエア供給制御部と、を備えたことを特徴とする電極の製造装置。
An electrode manufacturing apparatus comprising a laminating apparatus for alternately laminating electrodes including a positive electrode and a negative electrode to form a laminate,
The laminating apparatus comprises:
Stage,
A positioning portion disposed on the stage;
A suction pad for transporting the electrode on the stage;
An air supply unit for supplying air toward the electrode conveyed on the stage by the suction pad;
An apparatus for manufacturing an electrode, comprising: an air supply control unit configured to execute supply of the air by the air supply unit when the suction pad releases the electrode on the stage.
前記位置決め部は、前記エアが通り抜け可能となっていることを特徴とする請求項5記載の電極の製造装置。   The electrode positioning apparatus according to claim 5, wherein the air can pass through the positioning portion. 前記エア供給制御部は、前記エアの供給開始の後、前記吸着パッドが前記ステージ上で次の電極を離すまでに前記エア供給部による前記エアの供給を停止させることを特徴とする請求項5又は6記載の電極の製造装置。   The said air supply control part stops the supply of the said air by the said air supply part until the said suction pad releases | separates the next electrode on the said stage after the supply of the said air is started. Or the manufacturing apparatus of the electrode of 6. 前記エア供給制御部は、前記ステージ上での前記電極の積層数に応じて前記エアの流量を増加させることを特徴とする請求項5〜7のいずれか一項記載の電極の製造装置。   8. The electrode manufacturing apparatus according to claim 5, wherein the air supply control unit increases the flow rate of the air in accordance with the number of stacked electrodes on the stage. 9.
JP2013196887A 2013-09-24 2013-09-24 Electrode manufacturing method and electrode manufacturing apparatus Expired - Fee Related JP6075256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013196887A JP6075256B2 (en) 2013-09-24 2013-09-24 Electrode manufacturing method and electrode manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013196887A JP6075256B2 (en) 2013-09-24 2013-09-24 Electrode manufacturing method and electrode manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2015064953A true JP2015064953A (en) 2015-04-09
JP6075256B2 JP6075256B2 (en) 2017-02-08

Family

ID=52832707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196887A Expired - Fee Related JP6075256B2 (en) 2013-09-24 2013-09-24 Electrode manufacturing method and electrode manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6075256B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081699A (en) * 2015-10-28 2017-05-18 株式会社豊田自動織機 Lamination device and electrode lamination method
CN110212154A (en) * 2019-06-28 2019-09-06 东莞市超鸿自动化设备有限公司 Cut folding integrated machine
JP2020152484A (en) * 2019-03-19 2020-09-24 株式会社東芝 Sheet laminating device and sheet laminating method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024147592A1 (en) * 2023-01-03 2024-07-11 주식회사 엘지에너지솔루션 Electrode supply device, electrode assembly manufacturing device using same, electrode supply method, and electrode assembly manufacturing method using same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132400A (en) * 1977-06-29 1979-01-02 Xerox Corporation Apparatus for aligning a stack of sheets
JP2010001146A (en) * 2008-06-23 2010-01-07 Nissan Motor Co Ltd Loading method and loading device for lamellar workpiece

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132400A (en) * 1977-06-29 1979-01-02 Xerox Corporation Apparatus for aligning a stack of sheets
JP2010001146A (en) * 2008-06-23 2010-01-07 Nissan Motor Co Ltd Loading method and loading device for lamellar workpiece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017081699A (en) * 2015-10-28 2017-05-18 株式会社豊田自動織機 Lamination device and electrode lamination method
JP2020152484A (en) * 2019-03-19 2020-09-24 株式会社東芝 Sheet laminating device and sheet laminating method
JP7085509B2 (en) 2019-03-19 2022-06-16 株式会社東芝 Sheet laminating device and sheet laminating method
CN110212154A (en) * 2019-06-28 2019-09-06 东莞市超鸿自动化设备有限公司 Cut folding integrated machine

Also Published As

Publication number Publication date
JP6075256B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
CN112310423B (en) Laminated cell production system and laminated cell forming method
JP6524841B2 (en) Device for manufacturing electrode plate package
JP6077522B2 (en) Laminating system
JP6354869B2 (en) Sheet laminating apparatus and sheet laminating method
JP6154469B2 (en) Method for manufacturing electrode laminate
JP6075256B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP6210352B2 (en) Lamination device including electrode guide
KR101161147B1 (en) Device for Attachment of Electrode Tape
JP6481258B2 (en) Electric device separator bonding method, electric device separator bonding apparatus, and electric device
JP2012129098A (en) Manufacturing method and manufacturing apparatus of secondary battery
JP2015072834A (en) Cutting device and cutting method
JP2011129255A (en) Device of laminating battery electrode plate
JP2015159072A (en) Stacking method of electrode
JP6575118B2 (en) Electrode laminator
JP6097331B2 (en) Single wafer stacked lithium ion battery manufacturing apparatus and single wafer stacked lithium ion battery manufacturing method
JP2019102196A (en) Manufacturing method of battery
CN109841907B (en) Method for manufacturing wound electrode assembly
JP2017142939A (en) Electrode layering device and electrode layering method
JP2018014181A (en) Lamination device
KR20220058249A (en) Plasma generating apparatus for secondary battery and lamination system include the same
JP5668607B2 (en) Battery and apparatus for manufacturing the same
JP6528595B2 (en) Electrode lamination method
JP2016162547A (en) Manufacturing device and manufacturing method for electrode with separator
JP2020102353A (en) Laminated electrode manufacturing device, and laminate manufacturing device
JP2014161968A (en) Cutting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161226

R151 Written notification of patent or utility model registration

Ref document number: 6075256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees