JP2015064048A - In-wheel motor driving device - Google Patents

In-wheel motor driving device Download PDF

Info

Publication number
JP2015064048A
JP2015064048A JP2013198131A JP2013198131A JP2015064048A JP 2015064048 A JP2015064048 A JP 2015064048A JP 2013198131 A JP2013198131 A JP 2013198131A JP 2013198131 A JP2013198131 A JP 2013198131A JP 2015064048 A JP2015064048 A JP 2015064048A
Authority
JP
Japan
Prior art keywords
lubricating oil
motor
temperature sensor
speed reduction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013198131A
Other languages
Japanese (ja)
Other versions
JP6295049B2 (en
Inventor
雪島 良
Makoto Yukishima
良 雪島
鈴木 稔
Minoru Suzuki
稔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013198131A priority Critical patent/JP6295049B2/en
Priority to PCT/JP2014/072136 priority patent/WO2015045702A1/en
Publication of JP2015064048A publication Critical patent/JP2015064048A/en
Application granted granted Critical
Publication of JP6295049B2 publication Critical patent/JP6295049B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/06Limiting the traction current under mechanical overload conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H1/321Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear the orbital gear being nutating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Retarders (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an in-wheel motor driving device in which the temperature state of a deceleration part can be known more accurately than before.SOLUTION: An in-wheel motor driving device comprises: a motor part; a wheel hub bearing part; a deceleration part that decelerates the output rotation of the motor part and transmits it to the wheel hub bearing part; and a lubricating oil circuit that passes lubricating oil into the deceleration part. The lubricating oil circuit comprises: a lubricating oil tank 53; an oil supply passage that supplies the lubricating oil from the lubricating oil tank to the deceleration part; oil discharge passages 61 and 62 that discharge the lubricating oil from the deceleration part to the lubricating oil tank; and a temperature sensor 63 that is arranged in the oil discharge passages or the lubricating oil tank and detects the temperature of the lubricating oil.

Description

本発明は、インホイールモータ駆動装置に設けられた減速部の過負荷運転を防止する技術に関する。   The present invention relates to a technique for preventing an overload operation of a deceleration unit provided in an in-wheel motor drive device.

インホイールモータ駆動装置は、例えば特許第5072370号公報(特許文献1)に示すように、高回転型のモータ部と、1/10以上の大きな減速比が得られるサイクロイド減速機構からなる減速部と、車輪ハブ軸受部とを備え、駆動輪の内部に配置されるようコンパクトな形状にまとめられる。   An in-wheel motor drive device includes, for example, a high-rotation type motor unit and a speed reduction unit including a cycloid speed reduction mechanism capable of obtaining a large reduction ratio of 1/10 or more, as shown in Japanese Patent No. 5072370 (Patent Document 1). And a wheel hub bearing portion, and are combined into a compact shape so as to be disposed inside the drive wheel.

また特許文献1記載のインホイールモータ駆動装置は、温度対応モータ制御手段をさらに備える。温度対応モータ制御手段は温度センサで測定した温度に基づき、モータ部の発熱量を推定し、発熱量が規定値以上になるとモータ部の駆動電流を減少させるかまたはモータ部の速度指令を減少させる処理を行うというものである。   Moreover, the in-wheel motor drive device of patent document 1 is further provided with a temperature corresponding | compatible motor control means. The temperature-corresponding motor control means estimates the heat generation amount of the motor unit based on the temperature measured by the temperature sensor, and reduces the drive current of the motor unit or the speed command of the motor unit when the heat generation amount exceeds a specified value. It is to perform processing.

温度センサは、モータステータに設置されたり、あるいは減速部ケーシングに設置されたり、あるいはモータ部ケーシングを流れる冷却媒体流路に設置されて冷却媒体の温度を測定したりする。   The temperature sensor is installed in the motor stator, installed in the speed reduction unit casing, or installed in the cooling medium flow path flowing through the motor unit casing to measure the temperature of the cooling medium.

特許第5072370号公報Japanese Patent No. 5072370

しかし、上記従来のようなインホイールモータ駆動装置にあっては、さらに改善すべき点があることを本発明者は見いだした。まずモータステータや減速部ケーシングの温度を測定しても、減速部内部の温度を正確に求めることができない。減速部の回転要素(歯車、軸)、特に減速部入力軸、は高速回転することから、回転要素を支持する軸受および摺動部位が高温になる。そこで減速部の軸受および摺動部位の焼き付きを防止する必要がある。しかしながら回転要素は常に回転するため、温度センサを直接取り付けることは困難である。   However, the present inventor has found that there is a further improvement in the conventional in-wheel motor drive device. First, even if the temperature of the motor stator or the speed reduction part casing is measured, the temperature inside the speed reduction part cannot be obtained accurately. Since the rotating elements (gears and shafts) of the speed reducing unit, particularly the speed reducing unit input shaft, rotate at a high speed, the bearings and sliding parts that support the rotating elements become hot. Therefore, it is necessary to prevent seizure of the bearings and sliding parts of the speed reduction unit. However, since the rotating element always rotates, it is difficult to directly attach the temperature sensor.

本発明は、上述の実情に鑑み、減速部の温度状態を従来よりも正確に知ることができ、減速部の過負荷運転を防止することができるインホイールモータ駆動装置を提供することを目的とする。   An object of the present invention is to provide an in-wheel motor drive device that can know the temperature state of the speed reduction unit more accurately than before and can prevent the overload operation of the speed reduction unit in view of the above situation. To do.

この目的のため本発明によるインホイールモータ駆動装置は、モータ部と、車輪ハブ軸受部と、モータ部の出力回転を減速して車輪ハブ軸受部に伝達する減速部と、減速部内部に潤滑油を流す潤滑油回路とを備える。そして潤滑油回路は、潤滑油タンクと、潤滑油タンクから減速部に潤滑油を供給する供給油路と、減速部から潤滑油タンクに潤滑油を排出する排出油路と、排出油路または潤滑油タンクに配置されて潤滑油の温度を検出する温度センサとを有する。   For this purpose, an in-wheel motor drive device according to the present invention includes a motor unit, a wheel hub bearing unit, a speed reduction unit that decelerates the output rotation of the motor unit and transmits the output rotation to the wheel hub bearing unit, and a lubricating oil inside the speed reduction unit. A lubricating oil circuit. The lubricating oil circuit includes a lubricating oil tank, a supply oil passage that supplies the lubricating oil from the lubricating oil tank to the speed reducing portion, a discharge oil passage that discharges the lubricating oil from the speed reducing portion to the lubricating oil tank, and a discharged oil passage or lubrication. And a temperature sensor that is disposed in the oil tank and detects the temperature of the lubricating oil.

かかる本発明によれば、減速部の内部を流れる潤滑油の温度を測定することから、従来よりも正確に減速部の温度状態を知ることができる。したがって減速部の過負荷運転を防止することができる。   According to the present invention, since the temperature of the lubricating oil flowing inside the speed reduction portion is measured, the temperature state of the speed reduction portion can be known more accurately than before. Therefore, the overload operation of the deceleration unit can be prevented.

本発明の一実施形態として、潤滑油タンクは減速部の下方に設けられ、排出油路は、減速部と潤滑油タンクの境界壁を上下方向に貫通する貫通孔であり、温度センサは貫通孔または潤滑油タンクに配置される。かかる実施形態によれば、貫通孔を通って減速部から流下したばかり潤滑油の温度を検出することから、従来よりも正確に減速部の温度状態を知ることができる。   As one embodiment of the present invention, the lubricating oil tank is provided below the speed reducing portion, the drain oil passage is a through hole that vertically penetrates the boundary wall between the speed reducing portion and the lubricating oil tank, and the temperature sensor is a through hole. Or it is arranged in the lubricating oil tank. According to this embodiment, since the temperature of the lubricating oil is detected just after flowing down from the speed reduction part through the through hole, the temperature state of the speed reduction part can be known more accurately than in the past.

本発明の好ましい実施形態として、貫通孔には、下端側が上端側よりも小径になった開口形状の受口部と、受口部の下端側を横切って延びる横穴とを有し、横穴内に温度センサを収容する温度センサ支持部材が設けられるとよい。かかる実施形態によれば、上端側から下端側に向かって小径になった開口形状の受口部において、受口部の下端側に温度センサを設置することから、受口部を流下する潤滑油を、ムラなく温度センサに掛けることができ、より正確に減速部の温度状態を知ることができる。   As a preferred embodiment of the present invention, the through-hole has an opening-shaped receiving portion whose lower end side is smaller in diameter than the upper end side, and a horizontal hole that extends across the lower end side of the receiving portion. A temperature sensor support member that houses the temperature sensor may be provided. According to this embodiment, since the temperature sensor is installed at the lower end side of the receiving portion in the opening-shaped receiving portion whose diameter decreases from the upper end side toward the lower end side, the lubricating oil flowing down the receiving portion. Can be applied to the temperature sensor without any unevenness, and the temperature state of the deceleration unit can be known more accurately.

本発明の好ましい実施形態として、インホイールモータ駆動装置は、温度センサで検出した潤滑油温度が所定の規定値以上の場合に、モータ部の出力を制限する温度対応モータ制御手段をさらに備える。かかる実施形態によれば、運転者のアクセル操作にかかわらず、減速部の過負荷運転を自動で防止することができる。なおここでいう出力は、モータ部が減速部に出力する回転数および駆動トルクの少なくとも一方である。温度対応モータ制御手段は、インホイールモータ駆動装置の外方に設けられるが、インホイールモータ駆動装置の内部に設けられてもよい。他の実施形態として、インホイールモータ駆動装置の搭載車両の運転席に、温度センサで検出した潤滑油温度が所定の規定値以上の場合に減速部が過負荷運転であることを表示するとよい。   As a preferred embodiment of the present invention, the in-wheel motor drive device further includes a temperature-responsive motor control unit that limits the output of the motor unit when the lubricant temperature detected by the temperature sensor is equal to or higher than a predetermined specified value. According to this embodiment, regardless of the driver's accelerator operation, the overload operation of the deceleration unit can be automatically prevented. In addition, the output here is at least one of the rotation speed and drive torque which a motor part outputs to a deceleration part. The temperature-responsive motor control means is provided outside the in-wheel motor driving device, but may be provided inside the in-wheel motor driving device. As another embodiment, it may be displayed on the driver's seat of the vehicle equipped with the in-wheel motor drive device that the deceleration unit is in an overload operation when the lubricating oil temperature detected by the temperature sensor is equal to or higher than a predetermined specified value.

このように本発明によれば、減速部内部の温度状態を従来よりも正確に検出することができ、減速部を的確に保護することができる。   As described above, according to the present invention, the temperature state inside the speed reduction unit can be detected more accurately than before, and the speed reduction unit can be protected accurately.

本発明の一実施形態になるインホイールモータ駆動装置を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the in-wheel motor drive device which becomes one Embodiment of this invention. 同実施形態の減速部を示す横断面図である。It is a cross-sectional view which shows the deceleration part of the embodiment. 図1の二点鎖線で囲まれた部分を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the part enclosed with the dashed-two dotted line of FIG. 温度センサ支持部材を温度センサとともに示す斜視図である。It is a perspective view which shows a temperature sensor support member with a temperature sensor. 温度センサ支持部材を温度センサとともに示す平面図である。It is a top view which shows a temperature sensor support member with a temperature sensor. 温度センサ支持部材を温度センサとともに示す縦断面図である。It is a longitudinal cross-sectional view which shows a temperature sensor support member with a temperature sensor. 温度センサ支持部材を示す横断面図である。It is a cross-sectional view showing a temperature sensor support member. モータコントロールユニットで実行される制御を示すフローチャートである。It is a flowchart which shows the control performed with a motor control unit.

以下、本発明の実施の形態を、図面に基づき詳細に説明する。図1は本発明の一実施形態になるインホイールモータ駆動装置を示す概略縦断面図である。図2は、同実施形態の減速部を示す横断面図である。図3は、図1の二点鎖線で囲まれた部分を拡大して示す縦断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing an in-wheel motor driving apparatus according to an embodiment of the present invention. FIG. 2 is a transverse cross-sectional view showing the speed reduction portion of the same embodiment. 3 is an enlarged longitudinal sectional view showing a portion surrounded by a two-dot chain line in FIG.

インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を図示しない駆動輪に伝える車輪ハブ軸受部Cから構成される。そして、インホイールモータ駆動装置21の軸線方向に関し、モータ部A、減速部B、車輪ハブ軸受部Cの順に同軸配置される。ケーシング22はインホイールモータ駆動装置21の外郭をなし、モータ部ケーシング部材22aと、減速部ケーシング部材22bと、モータカバー22dを結合したものである。   The in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a wheel hub bearing that transmits an output from the deceleration unit B to driving wheels (not shown). It consists of part C. And about the axial direction of the in-wheel motor drive device 21, it arranges coaxially in order of the motor part A, the deceleration part B, and the wheel hub bearing part C. The casing 22 forms an outline of the in-wheel motor drive device 21, and is a combination of the motor casing member 22a, the speed reduction casing member 22b, and the motor cover 22d.

モータ部Aは、筒状のモータ部ケーシング部材22aを含み、モータ部ケーシング部材22aの内周面に固定されるステータ23と、ステータ23の内側に径方向の隙間を空けて対向する位置に配置されるロータ24と、ロータ24の内側に固定連結されてロータ24と一体回転するモータ回転軸35とを備えるラジアルギャップモータである。ステータ23にはコイル23cが巻回される。ロータ24は、中央に貫通孔を有する複数枚の円盤を積層してなる中空円筒形状のロータ本体24aと、モータ回転軸35の外周から径方向外側に突出するよう形成されるとともにロータ本体24aの内周に固定されて、ロータ本体24aをモータ回転軸35の軸線方向中央部に支持する円筒形状のロータ支持体24bとを有する。減速部Bとは反対側に位置するモータ回転軸35の一端は、転がり軸受36aを介してモータカバー22dの中心部に回転自在に支持されている。減速部Bに近い側にあるモータ回転軸35の他端は、モータ部ケーシング部材22aの内向きフランジ部分22eの中心孔に通されて、転がり軸受36bを介して内向きフランジ部分22eの中心孔に回転自在に支持されている。   The motor part A includes a cylindrical motor part casing member 22a, and is arranged at a position facing the stator 23 fixed to the inner peripheral surface of the motor part casing member 22a with a radial gap inside the stator 23. And a motor rotating shaft 35 that is fixedly connected to the inner side of the rotor 24 and rotates integrally with the rotor 24. A coil 23 c is wound around the stator 23. The rotor 24 is formed so as to protrude radially outward from the outer periphery of the motor rotating shaft 35 and the rotor main body 24a having a hollow cylindrical shape in which a plurality of discs having a through hole in the center are stacked. A cylindrical rotor support 24b that is fixed to the inner periphery and supports the rotor main body 24a at the axial center of the motor rotation shaft 35 is provided. One end of the motor rotating shaft 35 located on the side opposite to the speed reduction portion B is rotatably supported by the central portion of the motor cover 22d via a rolling bearing 36a. The other end of the motor rotating shaft 35 on the side close to the speed reduction portion B is passed through the center hole of the inward flange portion 22e of the motor portion casing member 22a, and the center hole of the inward flange portion 22e via the rolling bearing 36b. Is supported rotatably.

モータ部Aのモータ回転軸35および減速部Bの入力軸25は、略水平な軸線Oに沿って延び、一体回転することから、モータ回転軸35および入力軸25の組立体はモータ側回転部材と呼ばれる。入力軸25の一端は、モータ回転軸35の中心孔になるモータ回転軸油路58aに差込固定され、モータ回転軸35の両端部のうち減速部Bに近い側の端部に例えばセレーション嵌合によって連結固定される。入力軸25の他端は、転がり軸受36dを介して、出力軸28の一端に回転自在に支持される。   Since the motor rotation shaft 35 of the motor part A and the input shaft 25 of the speed reduction part B extend along a substantially horizontal axis O and rotate integrally, the assembly of the motor rotation shaft 35 and the input shaft 25 is a motor side rotation member. Called. One end of the input shaft 25 is inserted into and fixed to a motor rotation shaft oil passage 58a that becomes a central hole of the motor rotation shaft 35, and serrations are fitted, for example, at both ends of the motor rotation shaft 35 on the side close to the speed reduction portion B. They are connected and fixed together. The other end of the input shaft 25 is rotatably supported by one end of the output shaft 28 via a rolling bearing 36d.

減速部Bは筒状の減速部ケーシング部材22bを含む。また減速部Bは、入力軸25と、出力軸28と、入力軸25および出力軸28間で回転を伝達するサイクロイド減速機構を含む。具体的には入力軸25の両端部のうち、モータ回転軸35から遠い側にある入力軸25の端部に偏心して設けられた偏心部25a,25bと、内周が偏心部25a,25bの外周に相対回転可能に取り付けられ、入力軸25の回転に伴って回転軸線を中心とする公転運動を行う公転部材としての曲線板26a,26bと、波形状にされた曲線板26a,26bの外周部に係合して曲線板26a,26bの自転運動を生じさせる外周係合部材としての複数の外ピン27と、曲線板26a,26bの自転のみを取り出して出力軸28に伝達する運動変換機構を有する。また、減速部Bは、後述する潤滑油回路により、潤滑油を供給される。   The speed reduction part B includes a cylindrical speed reduction part casing member 22b. The deceleration unit B includes an input shaft 25, an output shaft 28, and a cycloid reduction mechanism that transmits rotation between the input shaft 25 and the output shaft 28. Specifically, out of both ends of the input shaft 25, eccentric portions 25a and 25b provided eccentric to the end of the input shaft 25 on the side far from the motor rotation shaft 35, and the inner periphery of the eccentric portions 25a and 25b. Curved plates 26a and 26b as revolving members which are attached to the outer periphery so as to be relatively rotatable and perform a revolving motion around the rotation axis along with the rotation of the input shaft 25, and the outer peripheries of the corrugated plates 26a and 26b which are wave shaped A plurality of outer pins 27 as outer peripheral engagement members that engage with the portions to cause the rotation of the curved plates 26a and 26b, and a motion conversion mechanism that extracts only the rotation of the curved plates 26a and 26b and transmits it to the output shaft 28. Have Moreover, the deceleration part B is supplied with lubricating oil by the lubricating oil circuit mentioned later.

図2を参照して、曲線板26aは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する複数の貫通孔30a,30bを有する。貫通孔30aは、曲線板26aの自転軸心を中心とする円周上に等間隔に複数個設けられており、後述する内ピン31を受入れる。また、貫通孔30bは、曲線板26aの中心(自転軸心)に設けられており、偏心部25aの外周面を同心円となるように保持する。曲線板26bも同様である。   Referring to FIG. 2, the curved plate 26 a has a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer peripheral portion, and a plurality of through holes 30 a and 30 b penetrating from one end face to the other end face. Have A plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive an inner pin 31 described later. The through hole 30b is provided at the center (rotation axis) of the curved plate 26a, and holds the outer peripheral surface of the eccentric portion 25a so as to be concentric. The same applies to the curved plate 26b.

回転要素である曲線板26aは、転がり軸受41によって偏心部25aに対して回転自在に支持されている。回転要素になる転がり軸受41は、偏心部25aの外周面に嵌合し、その外周面に内側軌道面42aを有する内輪部材42と、曲線板26aの貫通孔30bの内周面に直接形成された外側軌道面43と、内側軌道面42aおよび外側軌道面43の間に配置される複数の円筒ころ44と、隣り合う円筒ころ44の間隔を保持する保持器(図示省略)とを備える円筒ころ軸受である。あるいは深溝玉軸受であってもよい。内輪部材42は、転動体になる円筒ころ44が転走する内輪部材42の内側軌道面42aを軸線方向に挟んで向かい合う1対の鍔部をさらに有し、円筒ころ44を1対の鍔部間に保持する。   The curved plate 26a which is a rotating element is supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric portion 25a. The rolling bearing 41 serving as a rotating element is formed directly on the inner peripheral surface of the inner ring member 42 having the inner raceway surface 42a fitted on the outer peripheral surface of the eccentric portion 25a and the through hole 30b of the curved plate 26a. A cylindrical roller provided with an outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42 a and the outer raceway surface 43, and a cage (not shown) that holds the spacing between adjacent cylindrical rollers 44. It is a bearing. Alternatively, it may be a deep groove ball bearing. The inner ring member 42 further has a pair of flanges facing each other across the inner raceway surface 42a of the inner ring member 42 on which the cylindrical rollers 44 that are rolling elements roll, and the cylindrical rollers 44 are paired with a pair of flanges. Hold in between.

外ピン27は、図3に示すように、軸線Oと平行に延び、その両端部が針状ころ軸受27aを介して外ピン保持部材45に支持される。外ピン保持部材45は、円筒部と、この円筒部の軸線方向両端に形成された内向きフランジ部45fとを有する。そして、外ピン保持部材45の内向きフランジ部45fには、外ピン27の端部を支持するための孔が周方向等間隔に形成される。外ピン保持部材45は、減速部ケーシング部材22bの内面に取付固定される。また外ピン保持部材45の下部には、貫通孔61が形成される。貫通孔61は、図2に示すように外ピン保持部材45の周方向に長く、図3に示すように軸線方向に幅狭に形成された長孔である。貫通孔61の周方向中央部は、貫通孔61の周方向両側よりも低い位置にある。後述するように潤滑油は湾曲した外ピン保持部材45の内周面に沿って流れ、貫通孔61の周方向中央部に誘導される。   As shown in FIG. 3, the outer pin 27 extends in parallel with the axis O, and both ends thereof are supported by the outer pin holding member 45 via the needle roller bearings 27a. The outer pin holding member 45 has a cylindrical portion and inward flange portions 45f formed at both axial ends of the cylindrical portion. And the hole for supporting the edge part of the outer pin 27 is formed in the inward flange part 45f of the outer pin holding member 45 at the circumferential direction equal intervals. The outer pin holding member 45 is attached and fixed to the inner surface of the speed reduction unit casing member 22b. A through hole 61 is formed in the lower portion of the outer pin holding member 45. The through hole 61 is a long hole that is long in the circumferential direction of the outer pin holding member 45 as shown in FIG. 2 and narrow in the axial direction as shown in FIG. The central portion in the circumferential direction of the through hole 61 is at a position lower than both sides in the circumferential direction of the through hole 61. As will be described later, the lubricating oil flows along the inner peripheral surface of the curved outer pin holding member 45 and is guided to the central portion in the circumferential direction of the through hole 61.

運動変換機構は、図1に示すように、出力軸28のフランジ部28aに植設された内側係合部材としての複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成される。内ピン31は、出力軸28の回転軸線になる軸線Oを中心とする円周軌道上に等間隔(図2参照)に設けられており、出力軸28の軸線Oと平行に延び、内ピン31の根元端が出力軸28に固定されている。内ピン31の外周には、中空円筒体31aと、中空円筒体31aおよび内ピン31の環状隙間に配置される複数のころ31eからなる針状ころ軸受が設けられている。この針状ころ軸受は内ピン31の一部である。   As shown in FIG. 1, the motion conversion mechanism includes a plurality of inner pins 31 as inner engagement members implanted in the flange portion 28 a of the output shaft 28, and through holes 30 a provided in the curved plates 26 a and 26 b. Consists of. The inner pins 31 are provided at equal intervals (see FIG. 2) on a circumferential track centering on the axis O serving as the rotation axis of the output shaft 28, and extend in parallel with the axis O of the output shaft 28. The base end of 31 is fixed to the output shaft 28. On the outer periphery of the inner pin 31, a hollow cylindrical body 31a and a needle roller bearing including a plurality of rollers 31e arranged in an annular gap between the hollow cylindrical body 31a and the inner pin 31 are provided. This needle roller bearing is a part of the inner pin 31.

上述した運動変換機構を介して、入力軸25と同軸に配置された出力軸28は、曲線板26a,26bの自転を減速部Bの出力として取り出す。この結果、入力軸25の回転が減速部Bによって減速されて出力軸28に伝達される。したがって、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。   The output shaft 28 arranged coaxially with the input shaft 25 takes out the rotation of the curved plates 26a and 26b as the output of the speed reduction unit B through the motion conversion mechanism described above. As a result, the rotation of the input shaft 25 is decelerated by the deceleration unit B and transmitted to the output shaft 28. Therefore, even when the low torque, high rotation type motor unit A is employed, it is possible to transmit the necessary torque to the drive wheels.

車輪ハブ軸受部Cは、出力軸28に固定連結されたハブ輪32と、ハブ輪32をケーシング22に対して回転自在に保持する車輪ハブ軸受33とを備える。車輪ハブ軸受33は複列アンギュラ玉軸受であって、その内輪部材33nがハブ輪32の外周面に嵌合固定される。外輪部材33gおよび内輪部材33nの環状隙間には複数の玉33bが配置される。さらに外輪部材33gおよびハブ輪32の環状隙間にも複数の玉33bが配置される。   The wheel hub bearing portion C includes a hub wheel 32 fixedly connected to the output shaft 28 and a wheel hub bearing 33 that holds the hub wheel 32 rotatably with respect to the casing 22. The wheel hub bearing 33 is a double-row angular ball bearing, and an inner ring member 33 n is fitted and fixed to the outer peripheral surface of the hub ring 32. A plurality of balls 33b are arranged in the annular gap between the outer ring member 33g and the inner ring member 33n. Further, a plurality of balls 33 b are arranged in the annular gap between the outer ring member 33 g and the hub ring 32.

車輪ハブ軸受33の外輪部材33gは、減速部ケーシング部材22bの軸線方向端に固定される。ハブ輪32は、出力軸28の軸部28bと結合する円筒形状の中空部32aと、減速部Bから遠い側の端部に形成されるフランジ部32bとを有する。フランジ部32bにはボルト32cによって図示しない駆動輪が固定連結される。減速部Bの出力軸28および車輪ハブ軸受部Cのハブ輪32は、略水平な軸線Oに沿って延び、一体回転することから、出力軸28およびハブ輪32の組立体は車輪側回転部材と呼ばれる。   The outer ring member 33g of the wheel hub bearing 33 is fixed to the axial end of the speed reduction unit casing member 22b. The hub wheel 32 includes a cylindrical hollow portion 32 a that is coupled to the shaft portion 28 b of the output shaft 28, and a flange portion 32 b that is formed at an end portion on the side farther from the speed reduction portion B. A driving wheel (not shown) is fixedly connected to the flange portion 32b by a bolt 32c. Since the output shaft 28 of the speed reduction part B and the hub wheel 32 of the wheel hub bearing part C extend along the substantially horizontal axis O and rotate together, the assembly of the output shaft 28 and the hub wheel 32 is a wheel-side rotating member. Called.

上記構成のインホイールモータ駆動装置21の作動原理を詳しく説明する。   The operation principle of the in-wheel motor drive device 21 having the above configuration will be described in detail.

モータ部Aは、バッテリ48からインバータ49を介してモータ駆動電流を供給され、ステータ23のコイル23cに交流のモータ駆動電流を供給することによって生じる電磁力を受けて、永久磁石または磁性体によって構成されるロータ24が回転する。モータ駆動電流は、インバータ49と電気的に接続するモータコントロールユニット50に制御される。モータコントロールユニット50、バッテリ48およびインバータ49は車体に搭載される。   The motor unit A is supplied with a motor drive current from the battery 48 via the inverter 49, receives an electromagnetic force generated by supplying an AC motor drive current to the coil 23c of the stator 23, and is configured by a permanent magnet or a magnetic material. The rotor 24 is rotated. The motor drive current is controlled by a motor control unit 50 that is electrically connected to the inverter 49. The motor control unit 50, the battery 48, and the inverter 49 are mounted on the vehicle body.

これにより、ロータ24に接続されたモータ回転軸35は回転を出力し、モータ回転軸35および入力軸25が回転すると、曲線板26a,26bは入力軸25の軸線Oを中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と転がり接触するよう係合して、曲線板26a,26bを入力軸25の回転とは逆向きに自転運動させる。   As a result, the motor rotating shaft 35 connected to the rotor 24 outputs rotation, and when the motor rotating shaft 35 and the input shaft 25 rotate, the curved plates 26 a and 26 b revolve around the axis O of the input shaft 25. At this time, the outer pin 27 is engaged so as to be in rolling contact with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the input shaft 25.

貫通孔30aに挿通される内ピン31の中空円筒体31aは、貫通孔30aの内径よりも十分に細く、曲線板26a,26bの自転運動に伴って貫通孔30aの孔壁面と当接する回転要素である。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが出力軸28を介して車輪ハブ軸受部Cに伝達される。かくして、貫通孔30aおよび内ピン31は運動変換機構としての役目を果たす。   The hollow cylindrical body 31a of the inner pin 31 inserted through the through hole 30a is sufficiently thinner than the inner diameter of the through hole 30a, and is a rotating element that contacts the hole wall surface of the through hole 30a as the curved plates 26a and 26b rotate. It is. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel hub bearing portion C via the output shaft 28. Thus, the through hole 30a and the inner pin 31 serve as a motion conversion mechanism.

この運動変換機構を介して、入力軸25と同軸に配置された出力軸28は、曲線板26a,26bの自転を減速部Bの出力として取り出す。この結果、入力軸25の回転が減速部Bによって減速されて出力軸28に伝達される。したがって、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。   Through this motion conversion mechanism, the output shaft 28 arranged coaxially with the input shaft 25 takes out the rotation of the curved plates 26a, 26b as the output of the deceleration unit B. As a result, the rotation of the input shaft 25 is decelerated by the deceleration unit B and transmitted to the output shaft 28. Therefore, even when the low torque, high rotation type motor unit A is employed, it is possible to transmit the necessary torque to the drive wheels.

なお、上記構成の減速部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの波形の数をZとすると、(Z−Z)/Zで算出される。図2に示す実施例では、Z=12、Z=11であるので、減速比は1/11と、非常に大きな減速比を得ることができる。 Note that the reduction ratio of the speed reduction unit B having the above-described configuration is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b. The In the embodiment shown in FIG. 2, because Z A = 12 and Z B = 11, the reduction ratio is 1/11, and a very large reduction ratio can be obtained.

このように、多段構成とすることなく大きな減速比を得ることができるサイクロイド減速機構を減速部Bに採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。   Thus, by adopting the cycloid reduction mechanism that can obtain a large reduction ratio without using a multistage configuration in the reduction part B, a compact and high reduction ratio in-wheel motor drive device 21 can be obtained.

次にインホイールモータ駆動装置21において潤滑油を循環させる機構について説明すると、潤滑油回路は、図1、図2を参照して、潤滑油ポンプ51と、吐出油路54と、ケーシング油路55と、連絡油路56と、出力軸カバー油路57と、モータ回転軸油路58aと、減速部入力軸油路58bと、径方向油路59a,59bと、環状溝60gと、給油孔先端口60hと、貫通孔61,62と、潤滑油タンク53と、吸入油路52を備え、この順序で潤滑油を循環させる。これにより潤滑油回路は、減速部Bを構成する入力軸25、出力軸28、内ピン31、偏心部25a,25b、曲線板26a,26b、および各種の針状ころ軸受といった回転要素の潤滑と冷却を行う。   Next, a mechanism for circulating the lubricating oil in the in-wheel motor drive device 21 will be described. The lubricating oil circuit is described with reference to FIGS. 1 and 2. The lubricating oil pump 51, the discharge oil passage 54, and the casing oil passage 55. A communication oil passage 56, an output shaft cover oil passage 57, a motor rotation shaft oil passage 58a, a speed reducing portion input shaft oil passage 58b, radial oil passages 59a and 59b, an annular groove 60g, and an oil supply hole tip. The end port 60h, the through holes 61 and 62, the lubricating oil tank 53, and the suction oil passage 52 are provided, and the lubricating oil is circulated in this order. As a result, the lubricating oil circuit lubricates rotating elements such as the input shaft 25, the output shaft 28, the inner pin 31, the eccentric portions 25a and 25b, the curved plates 26a and 26b, and various needle roller bearings that constitute the speed reduction portion B. Cool down.

減速部ケーシング部材22bの下部には潤滑油タンク53が附設される。外ピン27、内ピン31、偏心部25a,25b、曲線板26a,26b、および外ピン保持部材45を収容する減速部Bの空間と、潤滑油タンク53は、減速部ケーシング部材22bの中空円筒壁を境界壁として区画される。この境界壁には、貫通孔62が設けられる。上下方向に通じる貫通孔61,62は減速部Bから潤滑油タンク53に潤滑油を排出する排出油路である。減速部Bのサイクロイド減速機構を潤滑した潤滑油は、図2に矢印で示すように自重で減速部Bの下部へ集まり、図3に矢印で示すように、貫通孔61、62を順次流下して、潤滑油タンク53に貯留する。   A lubricating oil tank 53 is attached to the lower part of the speed reduction unit casing member 22b. The space of the speed reduction part B that houses the outer pin 27, the inner pin 31, the eccentric parts 25a and 25b, the curved plates 26a and 26b, and the outer pin holding member 45, and the lubricating oil tank 53 are the hollow cylinders of the speed reduction part casing member 22b. A wall is defined as a boundary wall. The boundary wall is provided with a through hole 62. The through holes 61 and 62 communicating in the vertical direction are discharge oil passages for discharging the lubricating oil from the speed reduction portion B to the lubricating oil tank 53. The lubricating oil that has lubricated the cycloid reduction mechanism of the reduction part B gathers under its own weight as indicated by the arrow in FIG. 2 and flows down through the through holes 61 and 62 sequentially as indicated by the arrow in FIG. And stored in the lubricating oil tank 53.

減速部Bの最下部になる貫通孔61、62間には温度センサ63が配置される。図3の拡大図に示すように、温度センサ63は、円柱形状のサーミスタであって、その長手方向中央にセンシング部63sを有する。温度センサ63の一端は、信号線65を介してモータコントロールユニット50と接続し、貫通孔61、62を流下する潤滑油の温度を検出してその検出信号をモータコントロールユニット50へ送信する。モータコントロールユニット50は、モータ部Aに供給するモータ駆動電流を制御するモータ駆動電流制御部50aと、減速部Bの過負荷運転を防止する温度対応モータ制御手段50bを含む。温度対応モータ制御手段50bについては後述する。   A temperature sensor 63 is disposed between the through-holes 61 and 62 that are the lowermost part of the deceleration unit B. As shown in the enlarged view of FIG. 3, the temperature sensor 63 is a cylindrical thermistor and has a sensing unit 63s at the center in the longitudinal direction. One end of the temperature sensor 63 is connected to the motor control unit 50 via the signal line 65, detects the temperature of the lubricating oil flowing down the through holes 61 and 62, and transmits the detection signal to the motor control unit 50. The motor control unit 50 includes a motor drive current control unit 50a that controls a motor drive current supplied to the motor unit A, and a temperature-responsive motor control unit 50b that prevents an overload operation of the deceleration unit B. The temperature corresponding motor control means 50b will be described later.

温度センサ63は、温度センサ支持部材66に固定支持される。図4は、温度センサ支持部材を温度センサとともに示す斜視図である。図5は、温度センサ支持部材を温度センサとともに示す平面図である。図6は、温度センサ支持部材を温度センサとともに示す縦断面図であり、図5中のVI−VI断面を表す。図7は温度センサ支持部材を示す横断面図であり、図5中のVII−VII断面を表す。図5に示すように、温度センサ支持部材66はH字状であり、その中心に受口部66aが形成される。受口部66aは、上下方向に延びる円形の開口断面であって、漏斗のように下端側が上端側よりも小径になった開口形状にされる。受口部66aの下端開口66dは、受口部66aの最も小径になった下端と同一径の円形開口であって、上下方向に延びる。つまり下端開口66dは、下端開口66dの上端側から下端側まで、上下方向において変化しない一定径の円形開口断面である。   The temperature sensor 63 is fixedly supported by the temperature sensor support member 66. FIG. 4 is a perspective view showing the temperature sensor support member together with the temperature sensor. FIG. 5 is a plan view showing the temperature sensor support member together with the temperature sensor. FIG. 6 is a longitudinal sectional view showing the temperature sensor support member together with the temperature sensor, and represents a VI-VI section in FIG. 5. FIG. 7 is a transverse sectional view showing the temperature sensor support member, and represents a VII-VII section in FIG. 5. As shown in FIG. 5, the temperature sensor support member 66 is H-shaped, and a receiving portion 66a is formed at the center thereof. The receiving portion 66a has a circular opening cross section extending in the vertical direction, and has an opening shape in which the lower end side has a smaller diameter than the upper end side like a funnel. The lower end opening 66d of the receiving portion 66a is a circular opening having the same diameter as the lower end of the receiving portion 66a having the smallest diameter, and extends in the vertical direction. That is, the lower end opening 66d is a circular opening section having a constant diameter that does not change in the vertical direction from the upper end side to the lower end side of the lower end opening 66d.

H字状の温度センサ支持部材66は、受口部66aの両側に、互いに平行に延びる2本の腕部66bを有する。腕部66bは、外ピン保持部材45の外周面に沿うよう、緩やかな円弧を描く。各腕部66bの両端部には、上下方向に貫通する孔66hが形成される。各孔66hには、図2に示すように下方からボルト67が通され、ボルト67の上端部を外ピン保持部材45の下部に螺合させることにより、温度センサ支持部材66は貫通孔61を跨ぐように取付固定される。そして2本の腕部66bは貫通孔61の両脇に沿って軸線方向に離隔して取り付けられ、受口部66aは図2に示すように貫通孔61の周方向中央部、つまり外ピン保持部材45の最下部、に配置される。これにより貫通孔61の周方向一方側の孔縁と受口部66aとの間、および貫通孔61の周方向他方側の孔縁と受口部66aとの間には、貫通孔61の開口が残される。   The H-shaped temperature sensor support member 66 has two arm portions 66b extending in parallel with each other on both sides of the receiving portion 66a. The arm portion 66b draws a gentle arc along the outer peripheral surface of the outer pin holding member 45. At both ends of each arm portion 66b, a hole 66h penetrating in the vertical direction is formed. As shown in FIG. 2, a bolt 67 is passed from below into each hole 66 h, and the temperature sensor support member 66 allows the through hole 61 to pass through by screwing the upper end of the bolt 67 into the lower part of the outer pin holding member 45. It is fixed so as to straddle. The two arm portions 66b are attached to both sides of the through-hole 61 so as to be separated from each other in the axial direction, and the receiving portion 66a is held in the circumferential center of the through-hole 61, that is, the outer pin is held It is arranged at the lowermost part of the member 45. Thereby, the opening of the through hole 61 is formed between the hole edge on one side in the circumferential direction of the through hole 61 and the receiving part 66a and between the hole edge on the other side in the circumferential direction of the through hole 61 and the receiving part 66a. Is left behind.

温度センサ支持部材66には横穴66cがさらに形成される。横穴66cは、円形の開口断面であって、一本の腕部66bから他の一本の腕部66bまで、受口部66aの下端に接続する下端開口66dを横切って延びる。横穴66cは円柱形状の温度センサ63を受け入れる。温度センサ63の両端部は、適切な固定手段によって横穴66cにそれぞれ固定される。これにより温度センサ63の中央に位置するセンシング部63sは受口部66aに配置される。   The temperature sensor support member 66 is further formed with a lateral hole 66c. The horizontal hole 66c has a circular opening cross section and extends from one arm portion 66b to the other arm portion 66b across a lower end opening 66d connected to the lower end of the receiving portion 66a. The horizontal hole 66c receives the cylindrical temperature sensor 63. Both ends of the temperature sensor 63 are fixed to the horizontal holes 66c by appropriate fixing means. Thereby, the sensing part 63s located at the center of the temperature sensor 63 is arranged in the receiving part 66a.

図1に示すように、モータ部ケーシング部材22aのうちモータ部Aと減速部Bとの境界壁になる内向きフランジ部分22eには、潤滑油ポンプ51と、潤滑油ポンプ51から上方に延びる吐出油路54と、潤滑油ポンプ51から下方に延びる吸入油路52が設けられている。吸入油路52の下端は潤滑油タンク53と接続する。潤滑油ポンプ51は、潤滑油タンク53から潤滑油を吸入して吐出油路54へ吐出する。   As shown in FIG. 1, a lubricating oil pump 51 and a discharge extending upward from the lubricating oil pump 51 are formed on an inward flange portion 22 e that becomes a boundary wall between the motor portion A and the speed reducing portion B of the motor portion casing member 22 a. An oil passage 54 and a suction oil passage 52 extending downward from the lubricating oil pump 51 are provided. The lower end of the suction oil passage 52 is connected to the lubricating oil tank 53. The lubricating oil pump 51 draws lubricating oil from the lubricating oil tank 53 and discharges it to the discharge oil passage 54.

潤滑油ポンプ51の駆動機構につき説明する。図1を参照して、各内ピン31の先端には、内ピン31を支持する内ピン支持部材31bが圧入で連結固定されている。内ピン支持部材31bは、複数の内ピン31先端同士を連結する円環形状のフランジ部31cと、フランジ部31cの内径部と結合し内ピン31から離れるよう軸線方向に延びる円筒形状の筒状部31dとを含む。複数の内ピン31を支持する内ピン支持部材31bは、曲線板26a,26bから一部の内ピン31に負荷された荷重を全ての内ピン31に均一に分散する。筒状部31dは、その内周面で針状ころ軸受36cを支持し、その外周面で潤滑油ポンプ51と係合する。   The drive mechanism of the lubricating oil pump 51 will be described. With reference to FIG. 1, an inner pin support member 31 b that supports the inner pin 31 is connected and fixed to the tip of each inner pin 31 by press-fitting. The inner pin support member 31b is connected to the inner flange portion 31c of the annular flange portion 31c connecting the tips of the inner pins 31, and the cylindrical cylindrical shape extending in the axial direction so as to be separated from the inner pin 31. Part 31d. The inner pin support member 31 b that supports the plurality of inner pins 31 uniformly distributes the load applied to some of the inner pins 31 from the curved plates 26 a and 26 b to all the inner pins 31. The cylindrical portion 31d supports the needle roller bearing 36c on its inner peripheral surface, and engages with the lubricating oil pump 51 on its outer peripheral surface.

複数の内ピン31が出力軸28とともに回転すると、内ピン31に連れ回される筒状部31dが潤滑油ポンプ51を駆動する。内向きフランジ部分22eの内周縁に設けられる潤滑油ポンプ51は、モータ部Aの出力によって駆動され、インホイールモータ駆動装置21の内部に潤滑油を循環させる。   When the plurality of inner pins 31 rotate together with the output shaft 28, the cylindrical portion 31 d that is rotated by the inner pins 31 drives the lubricating oil pump 51. The lubricating oil pump 51 provided at the inner peripheral edge of the inward flange portion 22 e is driven by the output of the motor part A, and circulates the lubricating oil inside the in-wheel motor driving device 21.

潤滑油ポンプ51は、軸線Oと同軸に配置され、内ピン支持部材31bによって駆動される。内向きフランジ部分22eの壁内部に形成された吸入油路52は、上下方向に延びて、その上端が潤滑油ポンプ51の吸入口と接続し、その下端が減速部Bの下部に設けられた潤滑油タンク53と接続する。内向きフランジ部分22eの壁内部に形成された吐出油路54は、上下方向に延びて、その下端で潤滑油ポンプ51の吐出口と接続し、その上端でモータ部ケーシング部材22aに形成されたケーシング油路55の一端と接続する。   The lubricating oil pump 51 is disposed coaxially with the axis O, and is driven by the inner pin support member 31b. The suction oil passage 52 formed inside the wall of the inward flange portion 22e extends in the vertical direction, and its upper end is connected to the suction port of the lubricating oil pump 51, and its lower end is provided at the lower part of the speed reduction part B. Connected to the lubricating oil tank 53. The discharge oil passage 54 formed inside the wall of the inward flange portion 22e extends in the vertical direction, is connected to the discharge port of the lubricating oil pump 51 at the lower end, and is formed in the motor casing member 22a at the upper end. Connected to one end of the casing oil passage 55.

ケーシング油路55は、モータ部ケーシング部材22aを構成する中空円筒壁の壁内部に形成されて、軸線方向に延びている。ケーシング油路55のモータカバー22d側の端部は、連絡油路56の外径側端と接続する。連絡油路56は、ケーシング22のモータカバー22dの壁内部に形成されて、径方向に延びる。連絡油路56の内径側端は、出力軸カバー油路57を介して、モータ回転軸35に設けられるモータ回転軸油路58aと接続する。   The casing oil passage 55 is formed inside the hollow cylindrical wall that constitutes the motor part casing member 22a, and extends in the axial direction. The end of the casing oil passage 55 on the motor cover 22 d side is connected to the outer diameter side end of the communication oil passage 56. The communication oil passage 56 is formed inside the wall of the motor cover 22d of the casing 22 and extends in the radial direction. An inner diameter side end of the communication oil passage 56 is connected to a motor rotation shaft oil passage 58 a provided in the motor rotation shaft 35 via an output shaft cover oil passage 57.

出力軸カバー油路57は、ケーシング22の一部になる出力軸カバー22fに設けられる。出力軸カバー22fは、モータ回転軸35の一端と対向位置される略円板状の壁部材である。そして出力軸カバー油路57は出力軸カバー22fの壁内部に形成される。   The output shaft cover oil passage 57 is provided in the output shaft cover 22 f that becomes a part of the casing 22. The output shaft cover 22 f is a substantially disk-shaped wall member positioned opposite to one end of the motor rotation shaft 35. The output shaft cover oil passage 57 is formed inside the wall of the output shaft cover 22f.

モータ回転軸油路58aは、モータ回転軸35の内部に設けられて、軸線Oに沿って延びる軸心給油のための油路である。そして、モータ回転軸油路58aの減速部Bに近い側の一端が、入力軸25に設けられて軸線Oに沿って延びる減速部入力軸油路58bと接続する。また、モータ回転軸油路58aの減速部Bから遠い側の一端が、上述した出力軸カバー油路57と接続する。さらにモータ回転軸油路58aは、途中の軸線方向中央部でロータ油路64の内径側端と接続する。   The motor rotation shaft oil passage 58 a is an oil passage that is provided inside the motor rotation shaft 35 and extends along the axis O to supply the center of the shaft. One end of the motor rotation shaft oil passage 58a on the side close to the speed reduction portion B is connected to a speed reduction portion input shaft oil passage 58b provided on the input shaft 25 and extending along the axis O. Further, one end of the motor rotation shaft oil passage 58a on the side farther from the speed reduction portion B is connected to the output shaft cover oil passage 57 described above. Further, the motor rotation shaft oil passage 58a is connected to the inner diameter side end of the rotor oil passage 64 at the middle in the axial direction.

減速部入力軸油路58bは、入力軸25の内部に設けられて、入力軸25の両端間を軸線Oに沿って延びる軸心給油のための油路である。出力軸28のフランジ部28aと対向する一端には、給油孔59cが設けられる。給油孔59cは、減速部入力軸油路58bの断面よりも小径の孔であり、通過する潤滑油の流量を規制して、減速部入力軸油路58bの一端と転がり軸受36dとを連通する。モータ回転軸油路58aおよび減速部入力軸油路58bは連続して延び1本の直線を構成することから、これらを軸線油路とも呼ぶ。   The speed reducer input shaft oil passage 58b is an oil passage provided inside the input shaft 25 and extending along the axis O between both ends of the input shaft 25. An oil supply hole 59c is provided at one end of the output shaft 28 facing the flange portion 28a. The oil supply hole 59c is a hole having a smaller diameter than the cross section of the speed reduction part input shaft oil path 58b, and regulates the flow rate of the lubricating oil passing therethrough so as to communicate one end of the speed reduction part input shaft oil path 58b with the rolling bearing 36d. . Since the motor rotation shaft oil passage 58a and the speed reducer input shaft oil passage 58b continuously extend to form one straight line, they are also referred to as an axial oil passage.

減速部入力軸油路58bは、途中で偏心部25a内を径方向外側に向かって延びる径方向油路59aと、偏心部25b内を径方向外側に向かって延びる径方向油路59bとに分岐する。径方向油路59a,59bは同一構成であるため、径方向油路59aを説明すると、図2を参照して、径方向油路59aは偏心部25aの反偏心方向、つまり軸線Oから偏心部25aの外周面に最も近い方向に直線状に延びる。径方向油路59aの外径側端は、偏心部25aの外周面に沿って形成された環状溝60gと接続する。環状溝60gは、偏心部25aの外周面と内輪部材42の内周面との間に配置されており、内輪部材42に穿設された複数の給油孔先端口60hと接続する。給油孔先端口60hは内輪部材42の内周面から内側軌道面42aまで貫通する。   The speed reducer input shaft oil passage 58b is branched into a radial oil passage 59a extending radially outward in the eccentric portion 25a and a radial oil passage 59b extending radially outward in the eccentric portion 25b. To do. Since the radial oil passages 59a and 59b have the same configuration, the radial oil passage 59a will be described. Referring to FIG. 2, the radial oil passage 59a is in the anti-eccentric direction of the eccentric portion 25a, that is, the eccentric portion from the axis O. It extends linearly in the direction closest to the outer peripheral surface of 25a. The outer diameter side end of the radial oil passage 59a is connected to an annular groove 60g formed along the outer peripheral surface of the eccentric portion 25a. The annular groove 60g is disposed between the outer peripheral surface of the eccentric portion 25a and the inner peripheral surface of the inner ring member 42, and is connected to a plurality of oil supply hole tip ports 60h drilled in the inner ring member 42. The oil supply hole front end port 60h penetrates from the inner peripheral surface of the inner ring member 42 to the inner raceway surface 42a.

潤滑油回路の作用につき説明すると、内ピン支持部材31bを介して出力軸28によって駆動される潤滑油ポンプ51は、吸入油路52を介して潤滑油タンク53に貯留した潤滑油を吸入し、吐出油路54に潤滑油を吐出する。潤滑油は、潤滑油ポンプ51によって加圧され、吐出油路54からケーシング油路55と、連絡油路56と、出力軸カバー油路57と、モータ回転軸油路58aとを流れる。   Explaining the operation of the lubricating oil circuit, the lubricating oil pump 51 driven by the output shaft 28 via the inner pin support member 31b sucks the lubricating oil stored in the lubricating oil tank 53 via the suction oil passage 52, Lubricating oil is discharged into the discharge oil passage 54. The lubricating oil is pressurized by the lubricating oil pump 51 and flows from the discharge oil passage 54 through the casing oil passage 55, the communication oil passage 56, the output shaft cover oil passage 57, and the motor rotation shaft oil passage 58a.

モータ回転軸油路58aを流れる潤滑油は、一部がロータ油路64に流入し、ロータ24の外周面から外径方向に噴射されて、ステータ23に向かい、ロータ24およびステータ23を冷却する。次に潤滑油は、モータ部Aの下部へ向かい、排出孔68を経て潤滑油タンク53に還流する。   A part of the lubricating oil flowing through the motor rotating shaft oil passage 58a flows into the rotor oil passage 64, and is jetted from the outer peripheral surface of the rotor 24 in the outer diameter direction toward the stator 23 to cool the rotor 24 and the stator 23. . Next, the lubricating oil goes to the lower part of the motor part A and returns to the lubricating oil tank 53 through the discharge hole 68.

またモータ回転軸油路58aを流れる潤滑油の残部は、減速部入力軸油路58bに流入する。そして減速部入力軸油路58bを流れる潤滑油の一部が、径方向油路59a、59bにそれぞれ分岐して流れ、環状溝60gを経由して給油孔先端口60hから内側軌道面42aに噴射される。かかる潤滑油は、偏心部25aに設けられた転がり軸受41と、偏心部25bに設けられた転がり軸受41とをそれぞれ潤滑する。潤滑油は遠心力の作用によって減速部Bの外径方向へ流れ、減速部Bにおいて曲線板26a,26bの表面と、内ピン31と貫通孔30aの孔壁面との当接箇所と、中空円筒体31aと、ころ31eと、外ピン27および曲線板26a,26bの波状外周面の係合箇所と、外ピン27の表面とを順次潤滑する。かかる軸心給油方式により潤滑油は、減速部Bを好適に潤滑および冷却する。   Further, the remaining portion of the lubricating oil flowing through the motor rotating shaft oil passage 58a flows into the speed reducer input shaft oil passage 58b. A part of the lubricating oil flowing through the speed reducing portion input shaft oil passage 58b branches and flows into the radial oil passages 59a and 59b, respectively, and is injected from the oil supply hole front end port 60h to the inner raceway surface 42a via the annular groove 60g. Is done. Such lubricating oil lubricates the rolling bearing 41 provided in the eccentric portion 25a and the rolling bearing 41 provided in the eccentric portion 25b. The lubricating oil flows in the direction of the outer diameter of the speed reduction portion B by the action of centrifugal force. In the speed reduction portion B, the surface of the curved plates 26a and 26b, the contact location between the inner pin 31 and the hole wall surface of the through hole 30a, and the hollow cylinder The body 31a, the roller 31e, the engaging portion of the outer pin 27 and the waved outer peripheral surfaces of the curved plates 26a and 26b, and the surface of the outer pin 27 are lubricated sequentially. Lubricating oil lubricates and cools the speed reduction part B suitably by this axial center oil supply system.

また減速部入力軸油路58bを流れる潤滑油の残部は、給油孔59cからフランジ部28aに向かって噴射されて転がり軸受36dを潤滑し、減速部Bに流入する。径方向油路59a,59bおよび給油孔59cから減速部Bに流入した潤滑油は、減速部Bの下部に向かい、外ピン保持部材45の円筒部の内周面に沿って流下して、図2に矢印で示すように貫通孔61に集まる。このとき潤滑油は、貫通孔61の周方向中央部、すなわち外ピン保持部材45の最下部、に配置されている受口部66aに誘導される。そして潤滑油は受口部66aに入り、図3に矢印で示すように漏斗形状の受口部66aによって、温度センサ63のセンシング部63sにムラなく掛かる。受口部66aから溢れる潤滑油は、開口部66aと貫通孔61の孔縁との間の開口を流下する。このようにして貫通孔61を流下した潤滑油は、次に貫通孔62を流下し、潤滑油タンク53に還流する。   Further, the remaining portion of the lubricating oil flowing through the speed reduction portion input shaft oil passage 58b is injected from the oil supply hole 59c toward the flange portion 28a, lubricates the rolling bearing 36d, and flows into the speed reduction portion B. The lubricating oil flowing into the speed reduction part B from the radial oil passages 59a and 59b and the oil supply hole 59c flows toward the lower part of the speed reduction part B and flows down along the inner peripheral surface of the cylindrical part of the outer pin holding member 45. As shown by the arrows in FIG. At this time, the lubricating oil is guided to the receiving portion 66a arranged at the center in the circumferential direction of the through hole 61, that is, the lowermost portion of the outer pin holding member 45. Then, the lubricating oil enters the receiving port 66a, and is uniformly applied to the sensing unit 63s of the temperature sensor 63 by the funnel-shaped receiving port 66a as indicated by an arrow in FIG. The lubricating oil overflowing from the receiving port 66a flows down the opening between the opening 66a and the hole edge of the through hole 61. The lubricating oil that has flowed down through the through hole 61 in this manner then flows down through the through hole 62 and returns to the lubricating oil tank 53.

かくして潤滑油回路は、潤滑油タンク53から減速部Bに潤滑油を供給し、減速部Bから潤滑油タンク53に潤滑油を排出する。このように本実施形態のインホイールモータ駆動装置21では、減速部Bの過負荷運転を防止するための手段として、潤滑油Bの温度を温度センサ63で検出し、この検出結果に応じて、モータ部Aの出力を制限する。   Thus, the lubricating oil circuit supplies the lubricating oil from the lubricating oil tank 53 to the speed reducing unit B, and discharges the lubricating oil from the speed reducing unit B to the lubricating oil tank 53. As described above, in the in-wheel motor drive device 21 of the present embodiment, the temperature of the lubricating oil B is detected by the temperature sensor 63 as a means for preventing the overload operation of the deceleration unit B, and according to the detection result, The output of the motor part A is limited.

また本実施形態によれば減速部Bを潤滑したばかりの潤滑油が貫通孔61,62を流れ、温度センサ63で貫通孔61,62を流下する潤滑油の温度を測定する。これにより、減速部Bの回転要素に温度センサを直接設けなくても、減速部Bの温度状態を正確に知ることができる。   In addition, according to the present embodiment, the lubricating oil that has just lubricated the speed reducing portion B flows through the through holes 61 and 62, and the temperature of the lubricating oil flowing down through the through holes 61 and 62 is measured by the temperature sensor 63. Thereby, even if it does not provide a temperature sensor directly in the rotation element of the deceleration part B, the temperature state of the deceleration part B can be known correctly.

温度センサ63で検出された潤滑油温度の検出信号は、インホイールモータ駆動装置21の出力を制御するモータコントロールユニット50に送信され、モータコントロールユニット50内に設けられた温度対応モータ制御手段50bが潤滑油温度の検出信号を受信する。モータコントロールユニット50は、インホイールモータ駆動装置21の外方、例えば車体、に設置されるが、インホイールモータ駆動装置21の内部に附設されてもよい。モータコントロールユニット50で実行される制御を図8にフローチャートで示す。   The detection signal of the lubricating oil temperature detected by the temperature sensor 63 is transmitted to the motor control unit 50 that controls the output of the in-wheel motor drive device 21, and the temperature corresponding motor control means 50b provided in the motor control unit 50 is used. Receive a detection signal of the lubricant temperature. The motor control unit 50 is installed outside the in-wheel motor drive device 21, for example, the vehicle body, but may be attached inside the in-wheel motor drive device 21. The control executed by the motor control unit 50 is shown in a flowchart in FIG.

インホイールモータ駆動装置の搭載車両のメインキーがOFFからONになると、モータ部Aのモータ制御を開始する。まずステップS10で、モータ部Aから減速部Bに通常のモータ駆動トルクを入力する。通常のモータ駆動トルクは、車両の運転者が操作するアクセル操作子の開度等から算出される。モータ駆動電流制御部50aは、通常のモータ駆動トルクに対応するモータ駆動電流をモータ部Aに通電するよう、インバータ49に指令する。ここで温度対応モータ制御手段50bはモータ駆動電流制御部50aに対して何らの減少指令を送信しない。   When the main key of the vehicle equipped with the in-wheel motor drive device is turned from OFF to ON, the motor control of the motor part A is started. First, in step S10, a normal motor driving torque is input from the motor unit A to the deceleration unit B. The normal motor driving torque is calculated from the opening degree of the accelerator operator operated by the driver of the vehicle. The motor drive current control unit 50a instructs the inverter 49 to energize the motor unit A with a motor drive current corresponding to a normal motor drive torque. Here, the temperature-corresponding motor control means 50b does not transmit any decrease command to the motor drive current control unit 50a.

次のステップS20で、温度対応モータ制御手段50bは、温度センサ63で検出した減速部の潤滑油温度を読み込む。次のステップS30で温度対応モータ制御手段50bは、読み込んだ減速部Bの潤滑油温度が、所定の規定値以上か否かを判定する。規定値未満である場合(No)、減速部Bは過負荷運転ではないと判断してステップS20へ戻り、ひきつづき減速部Bの潤滑油温度を監視する。これに対し、規定値以上である場合(Yes)、減速部Bは過負荷運転であると判断してステップS40へ進む。なお所定の規定値は、減速部Bの回転要素の温度と、減速部Bから排出される潤滑油温度との相関関係を予め試験等で確認しておくことで、潤滑油温度を減速部Bの回転要素の温度として代用する。   In the next step S <b> 20, the temperature corresponding motor control unit 50 b reads the lubricating oil temperature of the speed reduction unit detected by the temperature sensor 63. In the next step S30, the temperature-corresponding motor control means 50b determines whether or not the read lubricating oil temperature of the deceleration unit B is equal to or higher than a predetermined specified value. If it is less than the specified value (No), the deceleration unit B determines that it is not an overload operation, returns to step S20, and then monitors the lubricating oil temperature of the deceleration unit B. On the other hand, when it is more than a regulation value (Yes), it judges that deceleration part B is overload operation, and progresses to Step S40. Note that the predetermined specified value is obtained by confirming the correlation between the temperature of the rotating element of the speed reduction unit B and the temperature of the lubricating oil discharged from the speed reduction unit B by a test or the like in advance. Substitute as the temperature of the rotating element.

あるいはステップS30では、上述した判定に代えて、潤滑油温度の単位時間当たりの変化(温度勾配)を算出し、潤滑油温度の単位時間当たりの温度上昇が所定の規定値よりも急激である場合にはYesとし、そうでない場合にはNoとしてもよい。   Alternatively, in step S30, instead of the above-described determination, a change (temperature gradient) in the lubricating oil temperature per unit time is calculated, and the temperature increase in the lubricating oil temperature per unit time is more rapid than a predetermined specified value. Yes may be set to No. Otherwise, No may be set.

ステップS40で、温度対応モータ制御手段50bは、インホイールモータ駆動装置21の出力を制限する。つまり、モータ部Aから減速部Bに入力するモータ駆動トルクを、通常のモータ駆動トルクよりも少なくして、減速部Bを保護する。具体的には、温度対応モータ制御手段50bからモータ駆動電流制御部50aに指令して、モータ駆動電流制御部50aは通常よりも減少したモータ駆動電流をモータ部Aに通電するようインバータ49に指令する。これによりモータ部Aのモータ駆動トルクが減少する。そしてモータ回転軸35の回転数が減少する。   In step S <b> 40, the temperature corresponding motor control unit 50 b limits the output of the in-wheel motor drive device 21. That is, the motor drive torque input from the motor unit A to the speed reduction unit B is made smaller than the normal motor drive torque to protect the speed reduction unit B. Specifically, the temperature-corresponding motor control means 50b commands the motor drive current control unit 50a, and the motor drive current control unit 50a commands the inverter 49 to energize the motor unit A with a motor drive current that is reduced than usual. To do. Thereby, the motor drive torque of the motor part A decreases. And the rotation speed of the motor rotating shaft 35 decreases.

ステップS40を抜けるとステップS10へ戻り、上述したフローを所定の単位時間(例えば10〜1000msec)毎に繰り返す。インホイールモータ駆動装置の搭載車両のメインキーがONからOFFになると、モータ部Aのモータ制御を終了する。   After exiting step S40, the process returns to step S10, and the above-described flow is repeated every predetermined unit time (for example, 10 to 1000 msec). When the main key of the vehicle equipped with the in-wheel motor drive device turns from ON to OFF, the motor control of the motor unit A is terminated.

なお本実施形態では、上述したステップS30の判定結果を、運転席に表示してもよい。これにより運転者にアクセル操作子の開度を少なくするよう促すことができる。   In the present embodiment, the determination result of step S30 described above may be displayed on the driver's seat. As a result, the driver can be urged to reduce the opening of the accelerator operator.

本実施形態の潤滑油回路によれば、潤滑油タンク53と、潤滑油タンク53から減速部Bに潤滑油を供給する供給油路としての給油孔先端口60hと、減速部Bから潤滑油タンク53に潤滑油を排出する排出油路としての貫通孔61,62と、貫通孔61,62に配置されて潤滑油の温度を検出する温度センサ63とを有することから、減速部Bの温度に最も近い潤滑油温度を温度センサ63で検出することができる。したがって減速部Bが高温になった場合には、減速部Bの過負荷運転を正確に判定して、過負荷運転を的確に防止することができる。   According to the lubricating oil circuit of the present embodiment, the lubricating oil tank 53, the oil supply hole front end port 60h as a supply oil passage for supplying the lubricating oil from the lubricating oil tank 53 to the speed reducing portion B, and the lubricating oil tank from the speed reducing portion B are provided. 53 has through holes 61 and 62 as discharge oil passages for discharging the lubricating oil, and a temperature sensor 63 that is disposed in the through holes 61 and 62 and detects the temperature of the lubricating oil. The closest lubricating oil temperature can be detected by the temperature sensor 63. Therefore, when the speed reduction part B becomes high temperature, the overload operation of the speed reduction part B can be accurately determined and the overload operation can be prevented accurately.

また本実施形態によれば、潤滑油タンク53は減速部Bの下方に設けられ、減速部Bから潤滑油を排出する排出油路は、減速部Bと潤滑油タンク53の境界壁を上下方向に貫通する貫通孔61,62であり、温度センサ63は貫通孔61と貫通孔62の間に配置される。これにより減速部Bから排出されたばかりの潤滑油の温度を、減速部Bの近傍で検出することができる。したがって減速部Bの温度をより正確に検出することができる。   In addition, according to the present embodiment, the lubricating oil tank 53 is provided below the speed reduction unit B, and the discharge oil passage for discharging the lubricating oil from the speed reduction unit B extends in the vertical direction on the boundary wall between the speed reduction unit B and the lubricating oil tank 53. The temperature sensor 63 is disposed between the through hole 61 and the through hole 62. As a result, the temperature of the lubricating oil just discharged from the speed reduction part B can be detected in the vicinity of the speed reduction part B. Therefore, the temperature of the deceleration part B can be detected more accurately.

また本実施形態によれば、貫通孔61の下方かつ貫通孔62の上方に、温度センサ支持部材66が設けられる。温度センサ支持部材66は、下端側が上端側よりも小径になった開口形状の受口部66aと、受口部66aの下端側を横切って延びる横穴66cとを有し、横穴66c内に温度センサ63を収容する。これにより、減速部Bから排出されたばかりの潤滑油を、温度センサ63に集めて、温度センサ63に潤滑油をムラなく掛けることができる。したがって潤滑油温度の検出精度が向上する。   According to the present embodiment, the temperature sensor support member 66 is provided below the through hole 61 and above the through hole 62. The temperature sensor support member 66 has an opening-shaped receiving portion 66a whose lower end side is smaller in diameter than the upper end side, and a horizontal hole 66c extending across the lower end side of the receiving portion 66a, and the temperature sensor in the horizontal hole 66c. 63 is accommodated. As a result, the lubricating oil that has just been discharged from the deceleration portion B can be collected in the temperature sensor 63, and the lubricating oil can be applied to the temperature sensor 63 without unevenness. Therefore, the detection accuracy of the lubricating oil temperature is improved.

また本実施形態によれば、温度センサ63で検出した潤滑油温度が所定の規定値以上の場合に、モータ部Aの出力を制限する温度対応モータ制御手段50bをさらに備える。これにより減速部Bの過負荷運転を防止することができる。   Further, according to the present embodiment, the motor controller 50b corresponding to the temperature is further provided for limiting the output of the motor unit A when the lubricating oil temperature detected by the temperature sensor 63 is equal to or higher than a predetermined specified value. Thereby, the overload driving | operation of the deceleration part B can be prevented.

以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   Although the embodiments of the present invention have been described with reference to the drawings, the present invention is not limited to the illustrated embodiments. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明になるインホイールモータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。   The in-wheel motor drive device according to the present invention is advantageously used in electric vehicles and hybrid vehicles.

21 インホイールモータ駆動装置、 22 ケーシング、
22a モータ部ケーシング部材、 22b 減速部ケーシング部材、
22f 出力軸カバー、 23 ステータ、 23c コイル、 24 ロータ、
25 入力軸、 25a,25b 偏心部、 26a,26b 曲線板、
27 外ピン、 28 出力軸、 61,62 貫通孔、 31 内ピン、
31a 中空円筒体、 31b 内ピン支持部材、 32 ハブ輪、
33 車輪ハブ軸受、 35 モータ回転軸、 41 転がり軸受、
45 外ピン保持部材、 48 バッテリ、 49 インバータ、
50 モータコントロールユニット、 50a モータ駆動電流制御部、
50b 温度対応モータ制御手段、 51 潤滑油ポンプ、 52 吸入油路、
53 潤滑油タンク、 54 吐出油路、 55 ケーシング油路、
56 連絡油路、 57 出力軸カバー油路、 58a モータ回転軸油路、
58b 減速部入力軸油路、 59a,59b 径方向油路、 59c 給油孔、
60g 環状溝、 60h 給油孔先端口、 63 温度センサ、
65 信号線、 66 温度センサ支持部材、 66a 受口部、 66c 横穴、 A モータ部、 B 減速部、 C 車輪ハブ軸受部、 O 軸線。
21 in-wheel motor drive device, 22 casing,
22a motor part casing member, 22b reduction part casing member,
22f output shaft cover, 23 stator, 23c coil, 24 rotor,
25 input shaft, 25a, 25b eccentric part, 26a, 26b curved plate,
27 outer pin, 28 output shaft, 61, 62 through hole, 31 inner pin,
31a hollow cylindrical body, 31b inner pin support member, 32 hub ring,
33 wheel hub bearing, 35 motor rotating shaft, 41 rolling bearing,
45 outer pin holding member, 48 battery, 49 inverter,
50 motor control unit, 50a motor drive current control unit,
50b motor controller corresponding to temperature, 51 lubricating oil pump, 52 suction oil passage,
53 lubricating oil tank, 54 discharge oil passage, 55 casing oil passage,
56 communication oil passage, 57 output shaft cover oil passage, 58a motor rotation shaft oil passage,
58b Speed reducer input shaft oil passage, 59a, 59b Radial oil passage, 59c Oil supply hole,
60g annular groove, 60h oil supply hole tip, 63 temperature sensor,
65 signal line, 66 temperature sensor support member, 66a receiving part, 66c side hole, A motor part, B speed reducing part, C wheel hub bearing part, O axis line.

Claims (4)

モータ部と、車輪ハブ軸受部と、前記モータ部の出力回転を減速して前記車輪ハブ軸受部に伝達する減速部と、前記減速部内部に潤滑油を流す潤滑油回路とを備え、
前記潤滑油回路は、潤滑油タンクと、前記潤滑油タンクから前記減速部に潤滑油を供給する供給油路と、前記減速部から前記潤滑油タンクに潤滑油を排出する排出油路と、前記排出油路または前記潤滑油タンクに配置されて潤滑油の温度を検出する温度センサとを有する、インホイールモータ駆動装置。
A motor part, a wheel hub bearing part, a speed reduction part that decelerates the output rotation of the motor part and transmits it to the wheel hub bearing part, and a lubricating oil circuit that flows lubricating oil inside the speed reduction part,
The lubricating oil circuit includes a lubricating oil tank, a supply oil path for supplying lubricating oil from the lubricating oil tank to the speed reducing part, a discharge oil path for discharging lubricating oil from the speed reducing part to the lubricating oil tank, An in-wheel motor drive device comprising: a temperature sensor that is disposed in a discharge oil passage or the lubricating oil tank and detects a temperature of the lubricating oil.
前記潤滑油タンクは前記減速部の下方に設けられ、
前記排出油路は、前記減速部と前記潤滑油タンクの境界壁を上下方向に貫通する貫通孔であり、
前記温度センサは前記貫通孔または前記潤滑油タンクに配置される、請求項1に記載のインホイールモータ駆動装置。
The lubricating oil tank is provided below the speed reduction unit,
The drain oil passage is a through-hole penetrating a boundary wall between the speed reduction portion and the lubricating oil tank in the vertical direction,
The in-wheel motor drive device according to claim 1, wherein the temperature sensor is disposed in the through hole or the lubricating oil tank.
前記貫通孔には、下端側が上端側よりも小径になった開口形状の受口部と、前記受口部の下端側を横切って延びる横穴とを有し、前記横穴内に前記温度センサを収容する温度センサ支持部材が設けられる、請求項2に記載のインホイールモータ駆動装置。   The through hole has an opening-shaped receiving portion whose lower end side is smaller in diameter than the upper end side, and a horizontal hole extending across the lower end side of the receiving portion, and the temperature sensor is accommodated in the horizontal hole The in-wheel motor drive device according to claim 2, wherein a temperature sensor support member is provided. 前記温度センサで検出した潤滑油温度が所定の規定値以上の場合に、前記モータ部の出力を制限する温度対応モータ制御手段をさらに備える、請求項1〜3のいずれかに記載のインホイールモータ駆動装置。   The in-wheel motor according to any one of claims 1 to 3, further comprising temperature-responsive motor control means for restricting the output of the motor unit when the lubricating oil temperature detected by the temperature sensor is equal to or higher than a predetermined specified value. Drive device.
JP2013198131A 2013-09-25 2013-09-25 In-wheel motor drive device Expired - Fee Related JP6295049B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013198131A JP6295049B2 (en) 2013-09-25 2013-09-25 In-wheel motor drive device
PCT/JP2014/072136 WO2015045702A1 (en) 2013-09-25 2014-08-25 In-wheel motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198131A JP6295049B2 (en) 2013-09-25 2013-09-25 In-wheel motor drive device

Publications (2)

Publication Number Publication Date
JP2015064048A true JP2015064048A (en) 2015-04-09
JP6295049B2 JP6295049B2 (en) 2018-03-14

Family

ID=52742854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198131A Expired - Fee Related JP6295049B2 (en) 2013-09-25 2013-09-25 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP6295049B2 (en)
WO (1) WO2015045702A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002881A1 (en) * 2015-07-02 2017-01-05 Ntn株式会社 Motor drive device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168790A (en) * 2007-01-12 2008-07-24 Ntn Corp In-wheel motor drive
JP2009108898A (en) * 2007-10-29 2009-05-21 Toyota Motor Corp Lubricating structure of oil
JP2009227130A (en) * 2008-03-24 2009-10-08 Toyota Motor Corp Cooling device of in-wheel motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168790A (en) * 2007-01-12 2008-07-24 Ntn Corp In-wheel motor drive
JP2009108898A (en) * 2007-10-29 2009-05-21 Toyota Motor Corp Lubricating structure of oil
JP2009227130A (en) * 2008-03-24 2009-10-08 Toyota Motor Corp Cooling device of in-wheel motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017002881A1 (en) * 2015-07-02 2017-01-05 Ntn株式会社 Motor drive device
US10230323B2 (en) 2015-07-02 2019-03-12 Ntn Corporation Motor drive device

Also Published As

Publication number Publication date
JP6295049B2 (en) 2018-03-14
WO2015045702A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
US10230323B2 (en) Motor drive device
CN105934361B (en) In-wheel motor drive device
WO2011145502A1 (en) In-wheel motor drive device
CN112576730B (en) Control device for motor unit
CN103429933B (en) The diagnostic method of motor
WO2012140963A1 (en) Lubrication control device for in-wheel motor unit for vehicle
EP3429070A1 (en) Drive device for vehicles
JP5297758B2 (en) In-wheel motor drive device
JP2010172069A (en) Motor driving device, in-wheel motor driving device, and motor driving device for vehicles
KR100940516B1 (en) Wheel provided with electric driving means
CN104919684A (en) Motor equipped with resolver and re-greasable motor with resolver
JP2017057901A (en) Motor drive unit for vehicle
JP6295049B2 (en) In-wheel motor drive device
CN109510404A (en) Driving device
JP2015217746A (en) In-wheel motor drive device
JP6215613B2 (en) Motor drive device
JP2010221964A (en) In-wheel motor drive device
WO2018173936A1 (en) Abnormality diagnosis device
WO2015093381A1 (en) Electric vehicle abnormality detection device
JP2014206207A (en) In-wheel motor drive device
JP2016152638A (en) In-wheel motor drive device
JP2017050909A (en) In-wheel motor driving device
WO2016093149A1 (en) Wiring structure of motor drive device for vehicle
JP2016161030A (en) Drive device for electric automobile
CN104294432B (en) False twister spindle and false twister

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6295049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees