WO2018173936A1 - Abnormality diagnosis device - Google Patents

Abnormality diagnosis device Download PDF

Info

Publication number
WO2018173936A1
WO2018173936A1 PCT/JP2018/010342 JP2018010342W WO2018173936A1 WO 2018173936 A1 WO2018173936 A1 WO 2018173936A1 JP 2018010342 W JP2018010342 W JP 2018010342W WO 2018173936 A1 WO2018173936 A1 WO 2018173936A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensors
motor
abnormality
cooling oil
Prior art date
Application number
PCT/JP2018/010342
Other languages
French (fr)
Japanese (ja)
Inventor
明生 中島
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018173936A1 publication Critical patent/WO2018173936A1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an abnormality diagnosis device, and more particularly to an abnormality diagnosis device that diagnoses an abnormality of a temperature sensor provided in a vehicle using a plurality of motors as drive sources.
  • the abnormality detection apparatus of Patent Document 1 includes a motor temperature sensor and a cooling water temperature sensor that detects the temperature of cooling water that cools the motor and the like.
  • the current characteristics calculated as a linear function of the relationship between the motor temperature detected by each sensor and the coolant temperature, and the normal motor temperature and coolant temperature stored in advance are calculated.
  • the deterioration state of the motor temperature sensor is determined by comparing the normal characteristic calculated as a linear function with the relationship.
  • Patent Document 1 when an abnormality occurs in the cooling water temperature sensor, the deterioration state of the motor temperature sensor cannot be determined. Further, when it is unknown whether the cooling water temperature sensor is normal or abnormal, the motor temperature sensor cannot be determined to be abnormally objective.
  • the in-wheel motor drive device includes, for example, a motor temperature sensor that detects the temperature of the motor and a cooling oil temperature sensor that detects the temperature of the cooling oil that cools the motor in order to monitor the temperature of the motor.
  • a motor temperature sensor that detects the temperature of the motor
  • a cooling oil temperature sensor that detects the temperature of the cooling oil that cools the motor in order to monitor the temperature of the motor.
  • An object of the present invention is to provide an abnormality diagnosis device for diagnosing abnormality of a temperature sensor provided in a vehicle equipped with left and right motor drive devices, and capable of individually determining the abnormality of each temperature sensor. It is to be.
  • the temperatures of the motors 6 of the left and right motor drive devices in a vehicle having left and right motor drive devices for independently driving the left and right wheels 2 and 2 are respectively determined.
  • An abnormality in the left and right motor temperature sensors S aL and S aR to be detected and an abnormality in the left and right cooling oil temperature sensors S bL and S bR that respectively detect the temperatures of the respective cooling oils for cooling the left and right motor driving devices An abnormality diagnosing device for diagnosing an initial diagnosis that is within a certain period of time before the vehicle starts running from when the vehicle is turned on, Of the two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR , Temperature comparison means 23 for comparing temperatures; The temperatures of the two motors 6 detected by the left and right motor temperature sensors S aL and S aR , and the two cooling oil temperatures detected by the left and
  • the predetermined time is a time appropriately determined by design or the like, for example, a short time of about 300 milliseconds.
  • the two predetermined temperatures are temperatures appropriately determined by design or the like, and are determined by obtaining appropriate temperatures by one or both of tests and simulations, for example.
  • the temperature comparison unit 23 compares two predetermined temperatures among the two motor temperatures and the two cooling oil temperatures.
  • the paired average value comparison means 26 is detected by each of the two motor temperatures and the two cooling oil temperatures, and the motor temperature sensors S aL and S aR and the cooling oil temperature sensors S bL and S bR. Compare the average temperature.
  • the temperature sensor individual abnormality determination unit 25 determines the motor temperature sensors S aL and S aR and the cooling oil temperature sensors S bL and S bR from the comparison result by the temperature comparison unit 23 and the comparison result by the paired average value comparison unit 26. The presence or absence of each abnormality is judged.
  • the temperature sensor individual abnormality determination means 25 has the same two temperatures compared by the temperature comparison means 23 and the average values of all the temperatures compared by the respective average values comparison means 26. If it is, it is determined that there is no abnormality in each of the temperature sensors S aL , S aR , S bL , S bR . In the temperature sensor individual abnormality determination unit 25, for example, when only the temperature detected by one temperature sensor is significantly smaller than the average value, it is determined that the temperature sensor has an abnormality.
  • each temperature sensor S aL , S aR , S bL , S bR can be individually determined using the existing temperature sensors S aL , S aR , S bL , S bR .
  • measures such as not being used for temperature detection can be taken.
  • the temperatures of the motors 6 of the left and right motor drive devices in a vehicle having left and right motor drive devices for independently driving the left and right wheels 2 and 2 are respectively determined.
  • An abnormality in the left and right motor temperature sensors S aL and S aR to be detected and an abnormality in the left and right cooling oil temperature sensors S bL and S bR that respectively detect the temperatures of the respective cooling oils for cooling the left and right motor driving devices An abnormality diagnosing device for diagnosing an initial diagnosis that is within a certain period of time before the vehicle starts running from when the vehicle is turned on,
  • the vehicle includes an air temperature sensor Sd that detects an outside air temperature of the vehicle, Of the two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR , Temperature comparison means 23 for comparing the temperatures with each other according to predetermined conditions; The two motor temperatures detected by the left and right motor temperature sensors S aL and S aR
  • Outside air temperature comparing means 24 for comparing the outside air temperature detected by the air temperature sensor Sd;
  • Temperature sensor individual abnormality determining means 25 for determining the presence or absence of
  • the predetermined time is a time appropriately determined by design or the like, for example, a short time of about 300 milliseconds.
  • the predetermined conditions are conditions appropriately determined by design or the like, and are determined by obtaining appropriate conditions by, for example, one or both of testing and simulation.
  • the two predetermined temperatures are temperatures appropriately determined by design or the like, and are determined by obtaining appropriate temperatures by one or both of tests and simulations, for example.
  • the temperature comparison unit 23 compares two predetermined temperatures among the two motor temperatures and the two cooling oil temperatures.
  • the outside air temperature comparing means 24 compares the temperatures of the two motor temperatures and the two cooling oil temperatures with the outside air temperature detected by the air temperature sensor Sd.
  • the temperature sensor individual abnormality determination unit 25 determines whether the motor temperature sensors S aL and S aR and the cooling oil temperature sensors S bL and S bR are based on the comparison result by the temperature comparison unit 23 and the comparison result by the outside air temperature comparison unit 24. Determine the presence or absence of each abnormality.
  • the temperature sensor individual abnormality determination unit 25 It is determined that there is no abnormality in S aL , S aR , S bL , and S bR .
  • the temperature sensor individual abnormality determination unit 25 for example, when the temperatures detected by the temperature sensors S aL , S aR , S bL , and S bR are significantly lower than the outside air temperature, it is determined that the outside air temperature sensor Sd has an abnormality. To do.
  • the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor has an abnormality. In this way, it is possible to individually determine the abnormality of each of the temperature sensors S aL , S aR , S bL , S bR using an existing temperature sensor or the like. For temperature sensors determined to be abnormal, measures such as not being used for temperature detection can be taken.
  • the temperature sensor individual abnormality determining means 25 determines whether or not there is an abnormality in each of the left and right motor temperature sensors S aL and S aR and the left and right cooling oil temperature sensors S bL and S bR while the vehicle is traveling. May be.
  • the motor temperatures of the left and right motors 6 and 6 should be approximately the same. If there is a large discrepancy, it is judged as abnormal.
  • the sensor outputs of the left and right cooling oil temperature sensors S bL and S bR should be approximately the same. If there is a large discrepancy, it is judged as abnormal.
  • the time constant of the temperature of the motor 6 is smaller than the oil temperature, and the motor temperature rises. Is relatively fast. Since the heat source is the motor 6, the motor temperature should always be higher than the cooling oil temperature. In the opposite case, it is determined that one of the sensors is abnormal.
  • FIG. 1 is a block diagram of a conceptual configuration showing, in plan view, an electric vehicle equipped with an abnormality diagnosis apparatus according to this embodiment.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 and 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels and the wheels 3 and 3 that are the left and right front wheels are driven wheels.
  • the front wheels 3 and 3 are steering wheels.
  • the left and right drive wheels 2, 2 are driven by independent traveling motors 6, respectively.
  • Each motor 6 constitutes an in-wheel motor drive device IWM described later.
  • Each wheel 2 and 3 is provided with a brake.
  • the wheels 3 and 3 which are the steering wheels which are the left and right front wheels can be steered via a steering mechanism (not shown) and are steered by a steering means 15 such as a steering wheel.
  • each in-wheel motor drive device IWM which is a left and right motor drive device, has a motor 6, a speed reducer 7, a wheel bearing 4, and an oil supply mechanism Jk (FIG. 3) described later. , Some or all of these are placed in the wheel.
  • the rotation of the motor 6 is transmitted to the wheel 2 which is a drive wheel via the speed reducer 7 and the wheel bearing 4.
  • a brake rotor 5 constituting the brake is fixed to a flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2.
  • the motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a.
  • This motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
  • the oil supply mechanism Jk is a so-called shaft center oil supply mechanism that supplies lubricating oil used for cooling the motor 6 and lubricating and cooling the speed reducer 7 from the inside of the rotary output shaft 9.
  • the oil supply mechanism Jk includes a pump 27, a lubricating oil storage unit 10, and a plurality of oil passages 11.
  • the pump 27 and the lubricating oil reservoir 10 are each provided in the housing 8. The pump 27 sucks up the lubricating oil stored in the lubricating oil reservoir 10 from the lubricating oil reservoir 10 and circulates it through the plurality of oil passages 11.
  • the pump 27 includes an inner rotor 40 that rotates as the output member 12 rotates, an outer rotor 41 that rotates following the rotation of the inner rotor 40, a pump chamber 42, a suction port 43, and a discharge port 44. It is a cycloid pump.
  • the inner rotor 40 is configured to be rotated by the rotation of the output member 12.
  • the outer rotor 41 is driven to rotate.
  • the inner rotor 40 and the outer rotor 41 rotate about different rotation centers c1 and c2, respectively, so that the volume of the pump chamber 42 constantly changes.
  • the lubricating oil stored in the lubricating oil reservoir 10 is sucked up, flows in from the suction port 43, and is sequentially pumped from the discharge port 44 to the plurality of oil passages 11.
  • a part of the lubricating oil pumped into the rotation output shaft 9 during rotation of the motor 6 is guided to the motor 6 by the centrifugal force of the rotor 6 a and the pressure of the pump 27.
  • the motor 6 is cooled.
  • the lubricating oil used for this cooling moves downward due to gravity and collects in the lower part of the housing 8, and is then stored in the lubricating oil storage part 10 communicating with the lower part of the housing 8.
  • the remaining lubricating oil that has not been used for cooling the motor 6 is guided into the speed reducer 7 by the centrifugal force and the pressure of the pump 27, and lubricates and cools each part in the speed reducer 7.
  • the lubricating oil provided for this lubrication or the like moves downward due to gravity and is stored in the lubricating oil reservoir 10 via an oil discharge port (not shown).
  • the in-wheel motor drive device IWM that drives the left wheel 2 is provided with a left motor temperature sensor S aL and a left cooling oil temperature sensor S bL to drive the right wheel 2.
  • the in-wheel motor drive device IWM that is provided is provided with a right motor temperature sensor SaR and a right cooling oil temperature sensor SbR .
  • a total of four temperature sensors are provided for the left and right in-wheel motor drive devices IWM. Each temperature sensor is provided to monitor the temperature of the motor 6.
  • each motor temperature sensor S aL , S aR and cooling oil temperature sensors S bL , S bR for example, a thermistor that detects a temperature change in resistance with a voltage value when a certain current flows is used.
  • Each motor temperature sensor S aL , S aR is provided, for example, in a housing 8 (FIG. 2) of each motor 6 or a gap between motor coils adjacent to each other in the circumferential direction.
  • Each cooling oil temperature sensor SbL , SbR is provided in each lubricating oil storage part 10 (FIG. 2), for example, and detects the temperature of the cooling oil which cools the reduction gear 7 and the motor 6.
  • FIG. The temperatures detected by the four sensors are taken into the left and right inverter devices 13 or ECUs 14 and the temperature rise of each motor 6 is monitored.
  • the electric vehicle is further provided with a temperature sensor Sd for detecting the outside temperature of the electric vehicle.
  • the temperature detected by the air temperature sensor Sd is taken into the left and right inverter devices 13 or the ECU 14 and used during initial diagnosis described later.
  • the temperature sensor Sd a dedicated product for the abnormality diagnosis device may be used.
  • the coolant temperature, various ECU temperatures, the inverter IGBT temperature, the intake air temperature, the air conditioner temperature, and the like may be used as the outside air temperature.
  • the cooling water temperature, various ECU temperatures, inverter IGBT temperature, intake air temperature, air conditioner temperature, etc. are used for the initial diagnosis described later, the difference from the atmospheric temperature is taken into consideration during the evaluation.
  • FIG. 5 is a block diagram of a control system of the in-wheel motor drive device IWM.
  • the control device includes an ECU 14 that is an electric control unit that controls the entire vehicle, and inverter devices 13 and 13 that control the left and right motors 6 for traveling in accordance with commands from the ECU 14.
  • the ECU 14 is an electric control unit (VCU) that controls the entire vehicle.
  • each inverter device 13 includes a power circuit unit 16 for the corresponding motor 6 and a motor control unit 17 that controls the power circuit unit 16.
  • the motor control unit 17 has a function of outputting each information stored in the motor control unit 17 to the ECU 14 such as each detection value and control value regarding the in-wheel motor drive device IWM.
  • the power circuit unit 16 includes an inverter 16a that converts the DC power of the battery 18 into three-phase AC power used to drive the motor 6, and a PWM driver 16b that controls the inverter 16a.
  • the inverter 16a is composed of a plurality of semiconductor switching elements (not shown).
  • the PWM driver 16b performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 17 includes a computer, a program executed on the computer, and an electronic circuit, and includes a motor drive control unit 19 as a basic control unit.
  • the ECU 14 receives an accelerator opening signal (acceleration command) output from the accelerator operation unit 20 (FIG. 1) and a deceleration command output from the brake operation unit 21 (FIG. 1), or an acceleration command, a deceleration command, and steering means. Acceleration / deceleration commands to be given to the motors 6 and 6 of the left and right rear wheels 2 and 2 (FIG. 1) are generated as torque commands from the turning command output by 15 (FIG. 1) and output to each inverter device 13.
  • the motor drive control unit 19 is a unit that converts an acceleration / deceleration command based on a torque command or the like given from the ECU 14, which is a higher-level control unit, into a current command and gives a current command to the PWM driver 16b.
  • the motor drive control unit 19 obtains a motor current flowing from the inverter 16a to the motor 6 from the current detection means Se, and performs current feedback control. Further, the motor drive control unit 19 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation speed detection sensor Sc and performs vector control.
  • the ECU 14 is provided with an abnormality diagnosis device 22 for diagnosing abnormalities in the temperature sensors S aL , S aR , S bL , S bR and the temperature sensor Sd.
  • the abnormality diagnosis device 22 includes a temperature comparison unit 23, an outside air temperature comparison unit 24, and a temperature sensor individual abnormality determination unit 25.
  • the temperature comparison means 23 determines the two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR. The two given temperatures are compared with each other.
  • the outside air temperature comparing means 24 compares the temperatures of the motors 6 and the cooling oils with the outside air temperature detected by the air temperature sensor Sd.
  • the temperature sensor individual abnormality determining unit 25 compares the result of comparison by the temperature comparing unit 23 and the outside air temperature comparing unit 24 or the average value comparing unit 26 (when there is no temperature sensor, as shown in FIG. Based on the comparison result obtained by comparing the paired average value comparison means 26 in place of the means 24, the presence or absence of abnormality of each temperature sensor S aL , S aR , S bL , S bR is individually determined. Further, the temperature sensor individual abnormality determining means 25, when it is determined that any one of the temperature sensors is abnormal, for example, the temperature sensor S aL , S aR , S bL or the display device 28 provided on the console panel of the vehicle. Command to output a display notifying the abnormality of SbR .
  • FIG. 6 is a diagram showing an example of changes in motor temperature and oil temperature in one in-wheel motor drive device. While the vehicle is traveling (I in FIG. 6), both the motor temperature and the oil temperature fluctuate up and down due to motor loss. During traveling, the motor temperature is usually higher than the oil temperature. During parking (stopped state with the vehicle powered off) (II in FIG. 6), the motor temperature and the oil temperature are lowered by the outside air temperature. Then, after the motor temperature and the oil temperature are lowered due to parking, the vehicle travels again (III in FIG. 6). Next, when the vehicle is stopped for a short time (IV in FIG. 6), the next vehicle starts to travel. At the time (V in FIG. 6), the motor temperature and the oil temperature are still high without decreasing to the outside air temperature.
  • FIG. 7 is a flowchart showing in steps the process at the time of initial diagnosis of the abnormality diagnosis apparatus.
  • the initial diagnosis when the vehicle has the temperature sensor Sd will be described with reference to FIG. 5 and Table 1.
  • Tat temperature of temperature sensor Sd the temperature Trm is detected by the right motor temperature sensor S aR
  • temperature Tro is detected by the right of the cooling oil temperature sensor S bR
  • Tlm the left motor temperature sensor temperature detected by the S aL
  • Tlo indicates the temperature detected by the left of the cooling oil temperature sensor S bL.
  • “ ⁇ ” indicates that the temperatures are approximately the same. For example, it is assumed that the temperature difference is within ⁇ 5 ° C.
  • Table 1 the case where “>>” and “ ⁇ ” temperature differences are significantly large is shown.
  • ⁇ and ⁇ in Table 1 are variables having positive values, and are functions such as a vehicle stop time, a stop-time temperature, and an outside air temperature.
  • the initial diagnosis by the abnormality diagnosis device 22 is started within a certain period of time before the vehicle travels from when the vehicle is turned on, and the abnormality diagnosis device 22 determines that there is the temperature sensor Sd (Yes in step a1). Then, it is determined whether or not the condition 1 is satisfied by the outside air temperature comparison means 24 (step a2).
  • the predetermined time is a time determined as appropriate according to design or the like, and is a short time of about 300 milliseconds, for example. If the vehicle does not originally include the temperature sensor Sd, the step a1 for determining the presence or absence of the temperature sensor Sd and steps a4, a6 to a8 are omitted, and the process proceeds from step a9 after the start of this process. Good.
  • Satisfying condition 1 (Yes in step a2) is a case where all of Trm ⁇ Tat, Tro ⁇ Tat, Tlm ⁇ Tat, and Tlo ⁇ Tat are satisfied. This is a case where the temperature (sensor output) is about the same as the air temperature.
  • step a3 If it is determined that the condition 1 is not satisfied (No in step a2), it is determined whether or not the condition 2 is satisfied by the outside air temperature comparison means 24 (step a3). Satisfying condition 2 (Yes in step a3) is a case where all of Trm >> Tat, Tro >> Tat, Tlm >> Tat, Tlo >> Tat are satisfied. Is when it is warm.
  • step a3 If it is determined that the condition 2 is not satisfied (No in step a3), it is determined whether or not the condition 3 is satisfied by the outside air temperature comparison means 24 (step a4).
  • Satisfying condition 3 is a case where all of Trm ⁇ Tat + ⁇ , Tro ⁇ Tat + ⁇ , Tlm ⁇ Tat + ⁇ , and Tlo ⁇ Tat + ⁇ are satisfied, and either one of the left and right wheels is warmed by sunlight or the like, or This is a case where one of the wheels is rapidly cooled by water or snow.
  • the temperature sensor individual abnormality determining unit 25 determines that all the temperature sensors are normal (step a5). After this step a5, the initial diagnosis ends normally. Also, if condition 2 is determined after the time has passed since the time when condition 1 was determined immediately after stopping, and condition 2 is determined, it may not apply to either condition. Intermediate conditions can also be added.
  • step a6 If it is determined that the condition 3 is not satisfied (No in step a4), it is determined whether or not the condition 4 is satisfied by the outside air temperature comparison means 24 (step a6).
  • Satisfying condition 4 (Yes in step a6) is a case where all of Trm ⁇ Tat, Tro ⁇ Tat, Tlm ⁇ Tat, and Tlo ⁇ Tat are satisfied.
  • the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor Sd is abnormal. This is because the temperature of the temperature sensor Sd does not become much lower than the temperatures of the temperature sensors S aL , S aR , S bL , S bR . Therefore, the temperature sensor individual abnormality determining unit 25 operates by assuming that the temperature sensor Sd is not present, without using the temperature sensor Sd (step a7). After step a7, the process proceeds to the initial diagnosis (conditions 9 to 15) when there is no temperature sensor Sd. These conditions 9 to 15 will be described later.
  • step a6 it is determined by the outside air temperature comparison means 24 whether each of the conditions 5 to 8 is satisfied (step a8).
  • Conditions 5 to 8 are that the temperature output by the three temperature sensors among the four sensor outputs of the left and right motor temperature sensors S aL and S aR and the left and right cooling oil temperature sensors S bL and S bR is the temperature sensor Sd.
  • the condition is that the temperature is approximately the same as the sensor output, and the temperature output by the remaining one temperature sensor is significantly lower than the temperature output by the air temperature sensor Sd.
  • the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor that has detected a temperature significantly lower than the sensor output of the temperature sensor Sd is abnormal (step a10). Thereafter, it is possible to take measures such as not using the sensor output of the temperature sensor in the control of the motor 6 (that is, control by the motor drive control unit 19). After step a10, the initial diagnosis is terminated. Although not shown in FIG.
  • the temperature sensor individual abnormality determination unit 25 compares the result compared by the temperature comparison unit 23 and the result compared by the paired average value comparison unit 26. Therefore , the presence or absence of abnormality of each temperature sensor S aL , S aR , S bL , S bR is individually determined according to the conditions in Table 2.
  • the paired average value comparison means 26 is configured to detect the temperature of each motor 6 detected by the left and right motor temperature sensors S aL and S aR and the temperature of each cooling oil detected by the left and right cooling oil temperature sensors S bL and S bR . Each temperature and the average value of all temperatures are compared with each other.
  • Tav is an average value of temperatures output from the four temperature sensors S aL , S aR , S bL , and S bR .
  • the paired average value comparing means 26 determines whether or not the condition 9 is satisfied (step a9).
  • Satisfying condition 9 is the case where all of Trm ⁇ Tav, Tro ⁇ Tav, Tlm ⁇ Tav, and Tlo ⁇ Tav are satisfied. Sufficient time has passed since the vehicle stopped, and the temperature output by all temperature sensors (sensor output) Is the same level.
  • the process proceeds to step a5 and all temperature sensors are determined to be normal. If it is determined that the condition 9 is not satisfied (No in step a9), the temperature comparison unit 23 determines whether or not the condition 10 is satisfied (step a11).
  • the condition 10 is satisfied when Trm ⁇ Tlm and Tro ⁇ Tlo are satisfied. This is because the motor 6 and the oil temperature are warmed immediately after the vehicle stops, and even if there is a temperature difference between the motor temperature and the oil temperature, the left and right motor temperatures and the left and right oil temperatures are approximately the same. This is the case.
  • the process proceeds to step a5 and all temperature sensors are determined to be normal. If it is determined that the condition 10 is not satisfied (No in step a11), the temperature comparison unit 23 determines whether the condition 11 is satisfied (step a12).
  • Satisfying condition 11 is a case where Trm ⁇ Tro and Tlm ⁇ Tlo are satisfied, and either of the left and right wheels is warmed by sunlight or the like, or one of the wheels is This is the case where the water is cooled rapidly with water, snow, or the like, and the right motor temperature and the right oil temperature, and the left motor temperature and the left oil temperature are approximately the same.
  • the process proceeds to step a5 and all the temperature sensors are determined to be normal.
  • it is determined that the condition 11 is not satisfied it is determined whether or not each of the conditions 12 to 15 is satisfied by the paired average value comparison means 26 (step a13).
  • Conditions 12 to 15 are conditions in which only the temperature output by the remaining one temperature sensor is extremely lower than the temperatures output by three of the four temperature sensors.
  • the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor that outputs a temperature extremely lower than the temperatures output by the other three sensors is abnormal (step a10). Thereafter, it is possible to take measures such as not using the sensor output of the temperature sensor in the control of the motor 6 (that is, control by the motor drive control unit 19).
  • an abnormality occurs in the above diagnosis, considering a malfunction of detection, etc., it was determined that the abnormality was only performed when it was tested not only once but several times in succession and was judged abnormal all times. It is also possible to shift to processing such as not using a sensor.
  • the temperature sensor individual abnormality determination unit 25 determines whether each temperature sensor is based on the result of comparison by the temperature comparison unit 23 and the result of comparison by the paired average value comparison unit 26.
  • the presence or absence of abnormality in S aL , S aR , S bL , and S bR is individually determined according to the conditions in Table 3.
  • the abnormality diagnosis device 22 can determine, for example, whether or not the vehicle is traveling from one or both of the motor current obtained from the current detection means Se and the motor rotation angle obtained from the rotation speed detection sensor Sc.
  • the average value comparison means 26 first determines whether or not the condition 16 is satisfied (step b1).
  • the condition 16 is satisfied when Trm ⁇ Tav, Tro ⁇ Tav, Tlm ⁇ Tav, and Tlo ⁇ Tav are all satisfied, and when the temperature of all the temperature sensors is approximately the same.
  • the process proceeds to step b2, and all the temperature sensors are determined to be normal. Thereafter, the diagnosis result is normal and the process is terminated.
  • step b3 determines whether the condition 17 is satisfied.
  • the condition 17 is satisfied when Trm ⁇ Tlm and Tro ⁇ Tlo are satisfied. This is a case where the left and right motor temperatures and the left and right oil temperatures are approximately the same even if there is a temperature difference between the motor temperature and the oil temperature.
  • step b3 the process proceeds to step b2, and all the temperature sensors are determined to be normal.
  • step b4 it is determined whether or not the condition 18 is satisfied by the temperature comparison unit 23 (step b4). Satisfying condition 18 is a case where Trm ⁇ Tro and Tlm ⁇ Tlo are satisfied, and the right motor temperature and the right oil temperature, and the left motor temperature and the left oil temperature are approximately the same. Is the case.
  • the process proceeds to step b2, and all the temperature sensors are determined to be normal. If it is determined that the condition 18 is not satisfied (No in step b4), the temperature comparison unit 23 determines whether or not the condition 19 is satisfied (step b5).
  • the condition 19 is satisfied when Trm ⁇ Tro is satisfied, and when the right motor temperature is significantly lower than the right oil temperature. In this case, for example, after a certain time (step b6), it is determined again whether the condition 19 is satisfied (step b7). If the condition 19 is satisfied again (Yes in step b7), the right motor It is determined that the temperature sensor S aR or the right cooling oil temperature sensor S bR is abnormal (step b8). Thereafter, the diagnosis result is abnormal and the present process is terminated.
  • the temperature comparison unit 23 determines whether the condition 20 is satisfied (step b9). Satisfying the condition 20 is a case where Tlm ⁇ Tlo is satisfied, and a case where the left motor temperature is significantly lower than the left oil temperature. In this case, for example, after a predetermined time (step b10), it is determined whether or not the condition 20 is satisfied again (step b11). If the condition 20 is satisfied again (Yes in step b11), the left motor temperature sensor S aL or left cooling oil temperature sensor S bL is judged to be abnormal (step b12).
  • the paired average value comparing means 26 determines whether or not each of the conditions 21 to 24 is satisfied (Step b13).
  • Conditions 21 to 24 are conditions in which only the temperature output from the remaining one temperature sensor is extremely lower than the temperatures output from three of the four temperature sensors.
  • the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor that outputs an extremely low temperature is abnormal (step b14). Thereafter, the sensor output of the temperature sensor is not used in the control of the motor 6 (ie, control by the motor drive control unit 19). If all the conditions 21 to 24 are not satisfied (No in step b13), the process proceeds to step b2 and all the temperature sensors are determined to be normal.
  • the temperature sensor Sd can be used to individually determine abnormality of each temperature sensor S aL , S aR , S bL , S bR .
  • the temperature sensor determined to be abnormal is not used for temperature detection thereafter, and the temperature of the motor 6 can be monitored using only a normal temperature sensor.
  • the left and right motor temperature sensor S aL, and S aR, left and right cooling oil temperature sensor S bL by using the S bR, the temperature sensor S aL, S aR, S Abnormalities in bL and SbR can be determined individually.
  • the temperature sensor determined to be abnormal is not used for temperature detection thereafter, and the temperature of the motor 6 can be monitored using only a normal temperature sensor.
  • the control device When the motor temperature is monitored using only a normal temperature sensor while the vehicle is running, for example, when the motor temperature exceeds a threshold value, the control device reduces the current of each motor 6 so as to reduce the current.
  • the motor drive control unit 19 instructs the power circuit unit 16.
  • the motor current may be reduced at a predetermined ratio with respect to the current motor current, or a predetermined value may be decreased. Thereby, the overload of the motor 6 can be prevented.
  • the control device releases the restriction on the output to each motor 6.
  • the threshold value is determined by a test or simulation.
  • a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied.
  • the rear wheel drive is shown, but the front wheel drive or the four wheel drive may be used.
  • the example in which the drive control device is applied to the electric vehicle equipped with the in-wheel motor drive device has been described.
  • FIG. 10 A two-motor on-board type electric vehicle in which the speed reducers 7 and 7 corresponding to 6 are provided and the left and right wheels 3 and 3 are driven by the motors 6 and 6 may be provided with an abnormality diagnosis device.
  • the left and right wheels driven by the motor 6 may be either the front or rear wheels 3 and 2.
  • four-wheel drive may be used.

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Provided is an abnormality diagnosis device that diagnoses abnormalities in temperature sensors provided to a vehicle having left and right motor drive devices, wherein abnormalities in the temperature sensors can be individually assessed. This abnormality diagnosis device assesses abnormalities of left and right independently driven temperature sensors provided to a vehicle. Left and right motor temperature sensors (SaL, SaR) and left and right cooling oil temperature sensors (SbL, SbR) are provided as temperature sensors. Also provided are: a temperature comparison means (23) for comparing two prescribed temperatures to each other, these being either the two motor temperatures or the two cooling oil temperatures, during an initial diagnosis; a paired average value comparison means (26) for comparing the average values of all temperatures with the temperatures sensed by the sensors; and a temperature sensor individual abnormality assessment means (25) for individually assessing whether or not there are any abnormalities in the temperature sensors (SaL, SaR, SbL, SbR) from the result of the comparison made by the temperature comparison means (23) and the result of the comparison made by the paired average value comparison means (26).

Description

異常診断装置Abnormality diagnosis device 関連出願Related applications
 本出願は、2017年3月23日出願の特願2017-057043の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-057043 filed on Mar. 23, 2017, which is incorporated herein by reference in its entirety.
 この発明は、異常診断装置に関し、詳細には、複数のモータを駆動源とした車両に設けられる温度センサの異常を診断する異常診断装置に関する。 The present invention relates to an abnormality diagnosis device, and more particularly to an abnormality diagnosis device that diagnoses an abnormality of a temperature sensor provided in a vehicle using a plurality of motors as drive sources.
 従来、モータを駆動源とし、モータの温度を検出するモータ温度センサを備えた車両が公知である。そして、モータ温度センサの異常を検出する異常検出装置が提案されている(例えば、特許文献1)。この特許文献1の異常検出装置は、モータ温度センサと、モータ等を冷却する冷却水の温度を検出する冷却水温度センサとを備えている。この異常検出装置では、車両の停止時に、各センサから検出されたモータ温度と冷却水温度との関係を一次関数として算出した現状特性と、予め記憶された正常なモータ温度と冷却水温度との関係を一次関数として算出した正常特性とを比較することで、モータ温度センサの劣化状態を判定している。 Conventionally, a vehicle including a motor temperature sensor that detects a motor temperature using a motor as a drive source is known. And the abnormality detection apparatus which detects abnormality of a motor temperature sensor is proposed (for example, patent documents 1). The abnormality detection apparatus of Patent Document 1 includes a motor temperature sensor and a cooling water temperature sensor that detects the temperature of cooling water that cools the motor and the like. In this abnormality detection device, when the vehicle is stopped, the current characteristics calculated as a linear function of the relationship between the motor temperature detected by each sensor and the coolant temperature, and the normal motor temperature and coolant temperature stored in advance are calculated. The deterioration state of the motor temperature sensor is determined by comparing the normal characteristic calculated as a linear function with the relationship.
 なお左右の車輪を独立して駆動するインホイールモータ駆動装置では、冷却水を車両からインホイールモータ駆動装置まで配管することが困難なため、モータを冷却油で冷却し、その冷却油をインホールモータ内において走行風で冷却する構造が従来から用いられている。 In addition, in an in-wheel motor drive device that independently drives the left and right wheels, it is difficult to pipe cooling water from the vehicle to the in-wheel motor drive device, so the motor is cooled with cooling oil and the cooling oil is in-holed. Conventionally, a structure for cooling with running wind in a motor has been used.
特開2016-125960号公報Japanese Unexamined Patent Publication No. 2016-125960
 特許文献1では、冷却水温度センサに異常が発生した場合、モータ温度センサの劣化状態を判定できない。また冷却水温度センサが正常か異常か不明の場合、モータ温度センサを客観的に異常判断することができない。 In Patent Document 1, when an abnormality occurs in the cooling water temperature sensor, the deterioration state of the motor temperature sensor cannot be determined. Further, when it is unknown whether the cooling water temperature sensor is normal or abnormal, the motor temperature sensor cannot be determined to be abnormally objective.
 インホイールモータ駆動装置では、モータの温度を監視するために、例えば、モータの温度を検出するモータ温度センサと、モータを冷却する冷却油の温度を検出する冷却油温度センサとを備えている。温度センサに異常が発生した場合を考えると、インホイールモータ駆動装置につき、これら温度センサを多数配置することが理想である。しかし、コストの点で、インホイールモータ駆動装置につき、一個のモータ温度センサと、一個の冷却油温度センサにすることが望まれる。その場合、温度センサを多数配置する場合に比べて、各温度センサの異常または劣化を判定するうえで温度センサの測定値を個別に検証することが困難である。 The in-wheel motor drive device includes, for example, a motor temperature sensor that detects the temperature of the motor and a cooling oil temperature sensor that detects the temperature of the cooling oil that cools the motor in order to monitor the temperature of the motor. Considering the case where an abnormality occurs in the temperature sensor, it is ideal to arrange a large number of these temperature sensors for the in-wheel motor drive device. However, in terms of cost, it is desired to use one motor temperature sensor and one cooling oil temperature sensor for the in-wheel motor drive device. In that case, it is difficult to verify the measured values of the temperature sensors individually in determining abnormality or deterioration of each temperature sensor, compared to the case where a large number of temperature sensors are arranged.
 この発明の目的は、左右のモータ駆動装置を備えた車両に設けられる温度センサの異常を診断する異常診断装置であって、各温度センサの異常を個別に判断することができる異常診断装置を提供することである。 An object of the present invention is to provide an abnormality diagnosis device for diagnosing abnormality of a temperature sensor provided in a vehicle equipped with left and right motor drive devices, and capable of individually determining the abnormality of each temperature sensor. It is to be.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, description will be made with reference to the reference numerals of the embodiments.
 この発明の第1の構成に係る異常診断装置は、左右の車輪2,2を独立して駆動する左右のモータ駆動装置を備えた車両における前記左右のモータ駆動装置の各モータ6の温度をそれぞれ検出する左右のモータ温度センサSaL,SaRの異常と、前記左右のモータ駆動装置を冷却する各冷却油の温度をそれぞれ検出する左右の冷却油温度センサSbL,SbRの異常とを、前記車両の電源の投入時から車両走行開始前の一定時間内である初期診断時に診断する異常診断装置であって、
 前記左右のモータ温度センサSaL,SaRで検出される二つのモータ温度、および前記左右の冷却油温度センサSbL,SbRで検出される二つの冷却油温度のうち、定められた二つの温度を比較する温度比較手段23と、
 前記左右のモータ温度センサSaL,SaRで検出される二つのモータ6の温度、および前記左右の冷却油温度センサSbL,SbRで検出される二つの冷却油温度の各温度と、前記左右のモータ温度センサSaL,SaRおよび前記左右の冷却油温度センサSbL,SbRで検出される温度の平均値とを比較する対平均値比較手段26と、
 前記温度比較手段23による比較の結果と、前記対平均値比較手段26による比較の結果とから前記左右のモータ温度センサSaL,SaRおよび前記左右の冷却油温度センサSbL,SbRのそれぞれの異常の有無を判断する温度センサ個別異常判断手段25と、を備えている。
In the abnormality diagnosis device according to the first configuration of the present invention, the temperatures of the motors 6 of the left and right motor drive devices in a vehicle having left and right motor drive devices for independently driving the left and right wheels 2 and 2 are respectively determined. An abnormality in the left and right motor temperature sensors S aL and S aR to be detected and an abnormality in the left and right cooling oil temperature sensors S bL and S bR that respectively detect the temperatures of the respective cooling oils for cooling the left and right motor driving devices, An abnormality diagnosing device for diagnosing an initial diagnosis that is within a certain period of time before the vehicle starts running from when the vehicle is turned on,
Of the two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR , Temperature comparison means 23 for comparing temperatures;
The temperatures of the two motors 6 detected by the left and right motor temperature sensors S aL and S aR , and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR , A pair average value comparison means 26 for comparing the left and right motor temperature sensors S aL and S aR and the average value of the temperatures detected by the left and right cooling oil temperature sensors S bL and S bR ;
The left and right motor temperature sensors S aL and S aR and the left and right cooling oil temperature sensors S bL and S bR are respectively determined based on the comparison result by the temperature comparison unit 23 and the comparison result by the paired average value comparison unit 26. Temperature sensor individual abnormality determining means 25 for determining whether there is any abnormality.
 前記一定時間は、設計等によって適宜に定める時間であり、例えば300m秒程度の短時間である。 The predetermined time is a time appropriately determined by design or the like, for example, a short time of about 300 milliseconds.
 前記定められた二つの温度は、設計等によって適宜に定める温度であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な温度を求めて定められる。 The two predetermined temperatures are temperatures appropriately determined by design or the like, and are determined by obtaining appropriate temperatures by one or both of tests and simulations, for example.
 この構成によると、車両の初期診断時に、温度比較手段23は、二つのモータ温度および二つの冷却油温度のうち、定められた二つの温度を互いに比較する。前記初期診断時において、対平均値比較手段26は、二つのモータ温度および二つの冷却油温度の各温度と、モータ温度センサSaL,SaRおよび冷却油温度センサSbL,SbRで検出される温度の平均値とを比較する。温度センサ個別異常判断手段25は、温度比較手段23による比較の結果と、対平均値比較手段26による比較の結果とから、モータ温度センサSaL,SaRおよび冷却油温度センサSbL,SbRのそれぞれの異常の有無を判断する。 According to this configuration, during the initial diagnosis of the vehicle, the temperature comparison unit 23 compares two predetermined temperatures among the two motor temperatures and the two cooling oil temperatures. At the time of the initial diagnosis, the paired average value comparison means 26 is detected by each of the two motor temperatures and the two cooling oil temperatures, and the motor temperature sensors S aL and S aR and the cooling oil temperature sensors S bL and S bR. Compare the average temperature. The temperature sensor individual abnormality determination unit 25 determines the motor temperature sensors S aL and S aR and the cooling oil temperature sensors S bL and S bR from the comparison result by the temperature comparison unit 23 and the comparison result by the paired average value comparison unit 26. The presence or absence of each abnormality is judged.
 温度センサ個別異常判断手段25は、例えば、温度比較手段23で比較された二つの温度が同程度で、対平均値比較手段26で比較された、各温度と全ての温度の平均値が同程度である場合、各温度センサSaL,SaR,SbL,SbRに異常はないと判断する。温度センサ個別異常判断手段25において、例えば、一つの温度センサで検出される温度のみが平均値よりも著しく小さい場合、前記温度センサに異常が有ると判断する。このように、既存の温度センサSaL,SaR,SbL,SbRを用いて、各温度センサSaL,SaR,SbL,SbRの異常を個別に判断することができる。異常と判断された温度センサについては、その後温度検出に使用しない等の対策を講じることができる。 For example, the temperature sensor individual abnormality determination means 25 has the same two temperatures compared by the temperature comparison means 23 and the average values of all the temperatures compared by the respective average values comparison means 26. If it is, it is determined that there is no abnormality in each of the temperature sensors S aL , S aR , S bL , S bR . In the temperature sensor individual abnormality determination unit 25, for example, when only the temperature detected by one temperature sensor is significantly smaller than the average value, it is determined that the temperature sensor has an abnormality. In this way, the abnormality of each temperature sensor S aL , S aR , S bL , S bR can be individually determined using the existing temperature sensors S aL , S aR , S bL , S bR . For temperature sensors determined to be abnormal, measures such as not being used for temperature detection can be taken.
 この発明の第2の構成に係る異常診断装置は、左右の車輪2,2を独立して駆動する左右のモータ駆動装置を備えた車両における前記左右のモータ駆動装置の各モータ6の温度をそれぞれ検出する左右のモータ温度センサSaL,SaRの異常と、前記左右のモータ駆動装置を冷却する各冷却油の温度をそれぞれ検出する左右の冷却油温度センサSbL,SbRの異常とを、前記車両の電源の投入時から車両走行開始前の一定時間内である初期診断時に診断する異常診断装置であって、
 前記車両は、この車両の外気温を検出する気温センサSdを備え、
 前記左右のモータ温度センサSaL,SaRで検出される二つのモータ温度、および前記左右の冷却油温度センサSbL,SbRで検出される二つの冷却油温度のうち、定められた二つの温度を定められた条件に従い互いに比較する温度比較手段23と、
 前記左右のモータ温度センサSaL,SaRで検出される前記二つのモータ温度、および前記左右の冷却油温度センサSbL,SbRで検出される前記二つの冷却油温度の各温度のそれぞれと、前記気温センサSdで検出される外気温とを比較する対外気温比較手段24と、
 前記温度比較手段23による比較の結果と、前記対外気温比較手段24による比較の結果とから前記左右の温度センサSaL,SaRおよび前記左右の冷却油温度センサSbL,SbRのそれぞれの異常の有無を判断する温度センサ個別異常判断手段25と、を備えている。
In the abnormality diagnosis device according to the second configuration of the present invention, the temperatures of the motors 6 of the left and right motor drive devices in a vehicle having left and right motor drive devices for independently driving the left and right wheels 2 and 2 are respectively determined. An abnormality in the left and right motor temperature sensors S aL and S aR to be detected and an abnormality in the left and right cooling oil temperature sensors S bL and S bR that respectively detect the temperatures of the respective cooling oils for cooling the left and right motor driving devices, An abnormality diagnosing device for diagnosing an initial diagnosis that is within a certain period of time before the vehicle starts running from when the vehicle is turned on,
The vehicle includes an air temperature sensor Sd that detects an outside air temperature of the vehicle,
Of the two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR , Temperature comparison means 23 for comparing the temperatures with each other according to predetermined conditions;
The two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR , respectively. Outside air temperature comparing means 24 for comparing the outside air temperature detected by the air temperature sensor Sd;
The abnormalities of the left and right temperature sensors S aL and S aR and the left and right cooling oil temperature sensors S bL and S bR based on the comparison result by the temperature comparison unit 23 and the comparison result by the outside air temperature comparison unit 24, respectively. Temperature sensor individual abnormality determining means 25 for determining the presence or absence of
 前記一定時間は、設計等によって適宜に定める時間であり、例えば300m秒程度の短時間である。 The predetermined time is a time appropriately determined by design or the like, for example, a short time of about 300 milliseconds.
 前記定められた条件は、設計等によって適宜に定める条件であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な条件を求めて定められる。 The predetermined conditions are conditions appropriately determined by design or the like, and are determined by obtaining appropriate conditions by, for example, one or both of testing and simulation.
 前記定められた二つの温度は、設計等によって適宜に定める温度であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な温度を求めて定められる。 The two predetermined temperatures are temperatures appropriately determined by design or the like, and are determined by obtaining appropriate temperatures by one or both of tests and simulations, for example.
 この構成によると、車両の初期診断時に、温度比較手段23は、二つのモータ温度および二つの冷却油温度のうち、定められた二つの温度を互いに比較する。前記初期診断時において、対外気温比較手段24は、二つのモータ温度および二つの冷却油温度の各温度と気温センサSdで検出される外気温とを比較する。温度センサ個別異常判断手段25は、温度比較手段23による比較の結果と、対外気温比較手段24による比較の結果とから、モータ温度センサSaL,SaRおよび冷却油温度センサSbL,SbRのそれぞれの異常の有無を判断する。 According to this configuration, during the initial diagnosis of the vehicle, the temperature comparison unit 23 compares two predetermined temperatures among the two motor temperatures and the two cooling oil temperatures. At the time of the initial diagnosis, the outside air temperature comparing means 24 compares the temperatures of the two motor temperatures and the two cooling oil temperatures with the outside air temperature detected by the air temperature sensor Sd. The temperature sensor individual abnormality determination unit 25 determines whether the motor temperature sensors S aL and S aR and the cooling oil temperature sensors S bL and S bR are based on the comparison result by the temperature comparison unit 23 and the comparison result by the outside air temperature comparison unit 24. Determine the presence or absence of each abnormality.
 温度センサ個別異常判断手段25は、例えば、温度比較手段23で比較された二つの温度が同程度で、対外気温比較手段24で比較された各温度が外気温よりも著しく大きい場合、各温度センサSaL,SaR,SbL,SbRに異常はないと判断する。温度センサ個別異常判断手段25において、例えば、各温度センサSaL,SaR,SbL,SbRでそれぞれ検出される温度が外気温よりも著しく小さい場合、外気温センサSdに異常が有ると判断する。温度センサ個別異常判断手段25は、例えば、一つの温度センサで検出される温度のみが外気温よりも著しく小さい場合、前記温度センサに異常が有ると判断する。このように、既存の温度センサ等を用いて、各温度センサSaL,SaR,SbL,SbRの異常を個別に判断することができる。異常と判断された温度センサについては、その後温度検出に使用しない等の対策を講じることができる。 For example, when the two temperatures compared by the temperature comparison unit 23 are about the same and the temperatures compared by the outside air temperature comparison unit 24 are significantly higher than the outside air temperature, the temperature sensor individual abnormality determination unit 25 It is determined that there is no abnormality in S aL , S aR , S bL , and S bR . In the temperature sensor individual abnormality determination unit 25, for example, when the temperatures detected by the temperature sensors S aL , S aR , S bL , and S bR are significantly lower than the outside air temperature, it is determined that the outside air temperature sensor Sd has an abnormality. To do. For example, when only the temperature detected by one temperature sensor is significantly lower than the outside air temperature, the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor has an abnormality. In this way, it is possible to individually determine the abnormality of each of the temperature sensors S aL , S aR , S bL , S bR using an existing temperature sensor or the like. For temperature sensors determined to be abnormal, measures such as not being used for temperature detection can be taken.
 前記温度センサ個別異常判断手段25は、前記車両の走行中に、前記左右のモータ温度センサSaL,SaRおよび前記左右の冷却油温度センサSbL,SbRのそれぞれの異常の有無を判断してもよい。 The temperature sensor individual abnormality determining means 25 determines whether or not there is an abnormality in each of the left and right motor temperature sensors S aL and S aR and the left and right cooling oil temperature sensors S bL and S bR while the vehicle is traveling. May be.
 この構成によると、車両の走行中に左右のモータ6,6が同一トルクとなるようにトルク指令する場合、左右のモータ6,6のモータ温度は同程度になるはずである。大きな乖離がある場合、異常と判断する。また左右の冷却油温度センサSbL,SbRのセンサ出力も同程度になるはずである。大きな乖離がある場合、異常と判断する。モータ温度センサSaL,SaRが検出する温度と冷却油温度センサSbL,SbRが検出する温度の関係に関しては、モータ6の温度の時定数が油温に比べて小さく、モータ温度の上昇が相対的に早い。発熱源はモータ6であるため、常にモータ温度が冷却油温に比べて高いはずである。逆の場合は、どちらかのセンサが異常と判断する。 According to this configuration, when the torque is commanded so that the left and right motors 6 and 6 have the same torque while the vehicle is running, the motor temperatures of the left and right motors 6 and 6 should be approximately the same. If there is a large discrepancy, it is judged as abnormal. In addition, the sensor outputs of the left and right cooling oil temperature sensors S bL and S bR should be approximately the same. If there is a large discrepancy, it is judged as abnormal. Regarding the relationship between the temperature detected by the motor temperature sensors S aL and S aR and the temperature detected by the cooling oil temperature sensors S bL and S bR , the time constant of the temperature of the motor 6 is smaller than the oil temperature, and the motor temperature rises. Is relatively fast. Since the heat source is the motor 6, the motor temperature should always be higher than the cooling oil temperature. In the opposite case, it is determined that one of the sensors is abnormal.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る異常診断装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 図1の電気自動車におけるインホイールモータ駆動装置の断面図である。 図2のインホイールモータ駆動装置の給油機構のポンプを軸方向から見た図である。 図2のインホイールモータ駆動装置の基本構造を示すブロック図である。 図2のインホイールモータ駆動装置の制御系のブロック図である。 モータ温度および油温の変化例を示す図である。 図1の電気自動車に搭載された異常診断装置の初期診断時の過程を段階的に示すフローチャートである。 図1の電気自動車に搭載された異常診断装置の車両走行中の過程を段階的に示すフローチャートである。 図1の電気自動車に搭載された異常診断装置の制御系の変形例を示すブロック図である。 この発明の第2の実施形態に係るモータ駆動装置を備えた車両を平面図で示す概念構成のブロック図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
It is a block diagram of the conceptual composition which shows the electric vehicle carrying the abnormality diagnosis device concerning a 1st embodiment of this invention with a top view. It is sectional drawing of the in-wheel motor drive device in the electric vehicle of FIG. It is the figure which looked at the pump of the oil supply mechanism of the in-wheel motor drive device of FIG. 2 from the axial direction. It is a block diagram which shows the basic structure of the in-wheel motor drive device of FIG. It is a block diagram of the control system of the in-wheel motor drive device of FIG. It is a figure which shows the example of a change of motor temperature and oil temperature. It is a flowchart which shows the process at the time of the initial diagnosis of the abnormality diagnosis apparatus mounted in the electric vehicle of FIG. 1 in steps. It is a flowchart which shows the process in the vehicle driving | running | working of the abnormality diagnosis apparatus mounted in the electric vehicle of FIG. It is a block diagram which shows the modification of the control system of the abnormality diagnosis apparatus mounted in the electric vehicle of FIG. It is a block diagram of the conceptual structure which shows the vehicle provided with the motor drive device which concerns on 2nd Embodiment of this invention with a top view.
 この発明の第1の実施形態を図1ないし図8と共に説明する。
 <この電気自動車(車両)の概念構成について>
 図1は、この実施形態に係る異常診断装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。この電気自動車は、車体1の左右の後輪である車輪2,2が駆動輪とされ、左右の前輪である車輪3,3が従動輪とされた4輪の自動車である。前輪3,3は操舵輪とされている。左右の駆動輪2,2は、それぞれ独立の走行用のモータ6により駆動される。各モータ6は、後述のインホイールモータ駆動装置IWMを構成する。各車輪2,3には、ブレーキが設けられている。また、左右の前輪となる操舵輪である車輪3,3は、図示しない転舵機構を介して転舵可能であり、ハンドル等の操舵手段15により操舵される。
A first embodiment of the present invention will be described with reference to FIGS.
<Conceptual configuration of this electric vehicle (vehicle)>
FIG. 1 is a block diagram of a conceptual configuration showing, in plan view, an electric vehicle equipped with an abnormality diagnosis apparatus according to this embodiment. This electric vehicle is a four-wheeled vehicle in which the wheels 2 and 2 that are the left and right rear wheels of the vehicle body 1 are driving wheels and the wheels 3 and 3 that are the left and right front wheels are driven wheels. The front wheels 3 and 3 are steering wheels. The left and right drive wheels 2, 2 are driven by independent traveling motors 6, respectively. Each motor 6 constitutes an in-wheel motor drive device IWM described later. Each wheel 2 and 3 is provided with a brake. Further, the wheels 3 and 3 which are the steering wheels which are the left and right front wheels can be steered via a steering mechanism (not shown) and are steered by a steering means 15 such as a steering wheel.
 <インホイールモータ駆動装置IWMの概略構成について>
 図2に示すように、左右のモータ駆動装置である各インホイールモータ駆動装置IWMは、それぞれ、モータ6、減速機7、車輪用軸受4、および後述の給油機構Jk(図3)を有し、これらの一部または全体が車輪内に配置される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪である車輪2に伝達される。車輪用軸受4のハブ輪4aのフランジ部には前記ブレーキを構成するブレーキロータ5が固定され、このブレーキロータ5は、車輪2と一体に回転する。モータ6は、例えば、ロータ6aのコア部に永久磁石が内蔵された埋込磁石型同期モータである。このモータ6は、ハウジング8に固定されたステータ6bと、回転出力軸9に取り付けられたロータ6aとの間にラジアルギャップを設けたモータである。
<About the schematic configuration of the in-wheel motor drive device IWM>
As shown in FIG. 2, each in-wheel motor drive device IWM, which is a left and right motor drive device, has a motor 6, a speed reducer 7, a wheel bearing 4, and an oil supply mechanism Jk (FIG. 3) described later. , Some or all of these are placed in the wheel. The rotation of the motor 6 is transmitted to the wheel 2 which is a drive wheel via the speed reducer 7 and the wheel bearing 4. A brake rotor 5 constituting the brake is fixed to a flange portion of the hub wheel 4 a of the wheel bearing 4, and the brake rotor 5 rotates integrally with the wheel 2. The motor 6 is, for example, an embedded magnet type synchronous motor in which a permanent magnet is built in the core portion of the rotor 6a. This motor 6 is a motor in which a radial gap is provided between a stator 6 b fixed to the housing 8 and a rotor 6 a attached to the rotation output shaft 9.
 <給油機構について>
 図2および図3に示すように、給油機構Jkは、モータ6の冷却ならびに減速機7の潤滑および冷却に用いられる潤滑油を回転出力軸9の内部から供給するいわゆる軸心給油機構である。この給油機構Jkは、ポンプ27と、潤滑油貯留部10と、複数の油路11とを有する。ポンプ27、潤滑油貯留部10は、それぞれハウジング8内に設けられる。ポンプ27は、潤滑油貯留部10に貯留された潤滑油を、潤滑油貯留部10から吸い上げて前記複数の油路11に循環させる。
<About the lubrication mechanism>
As shown in FIGS. 2 and 3, the oil supply mechanism Jk is a so-called shaft center oil supply mechanism that supplies lubricating oil used for cooling the motor 6 and lubricating and cooling the speed reducer 7 from the inside of the rotary output shaft 9. The oil supply mechanism Jk includes a pump 27, a lubricating oil storage unit 10, and a plurality of oil passages 11. The pump 27 and the lubricating oil reservoir 10 are each provided in the housing 8. The pump 27 sucks up the lubricating oil stored in the lubricating oil reservoir 10 from the lubricating oil reservoir 10 and circulates it through the plurality of oil passages 11.
 ポンプ27は、出力部材12の回転により回転するインナーロータ40と、このインナーロータ40の回転に伴って従動回転するアウターロータ41と、ポンプ室42と、吸入口43と、吐出口44とを有するサイクロイドポンプである。インナーロータ40は、出力部材12の回転により回転できるように構成されている。モータ6に駆動される出力部材12の回転によりインナーロータ40が回転すると、アウターロータ41は従動回転する。このときインナーロータ40およびアウターロータ41はそれぞれ異なる回転中心c1、c2を中心として回転することで、ポンプ室42の容積が絶えず変化する。これにより、潤滑油貯留部10に貯留された潤滑油は、吸い上げられて前記吸入口43から流入し、前記吐出口44から前記複数の油路11に順次圧送される。 The pump 27 includes an inner rotor 40 that rotates as the output member 12 rotates, an outer rotor 41 that rotates following the rotation of the inner rotor 40, a pump chamber 42, a suction port 43, and a discharge port 44. It is a cycloid pump. The inner rotor 40 is configured to be rotated by the rotation of the output member 12. When the inner rotor 40 is rotated by the rotation of the output member 12 driven by the motor 6, the outer rotor 41 is driven to rotate. At this time, the inner rotor 40 and the outer rotor 41 rotate about different rotation centers c1 and c2, respectively, so that the volume of the pump chamber 42 constantly changes. As a result, the lubricating oil stored in the lubricating oil reservoir 10 is sucked up, flows in from the suction port 43, and is sequentially pumped from the discharge port 44 to the plurality of oil passages 11.
 この電気自動車では、モータ6の回転時に、回転出力軸9の内部に圧送された潤滑油は、ロータ6aの遠心力とポンプ27の圧力とにより、潤滑油の一部がモータ6に導かれてモータ6を冷却する。この冷却に供された潤滑油は、重力によって下方に移動しハウジング8の下部に集まり、その後、このハウジング8の下部に連通する潤滑油貯留部10に貯留される。モータ6の冷却に使われなかった残りの潤滑油は、遠心力とポンプ27の圧力により減速機7内に導かれ、減速機7内の各部を潤滑および冷却する。この潤滑等に供された潤滑油は重力によって下方に移動して、図示外のオイル排出口を介して、潤滑油貯留部10に貯留される。 In this electric vehicle, a part of the lubricating oil pumped into the rotation output shaft 9 during rotation of the motor 6 is guided to the motor 6 by the centrifugal force of the rotor 6 a and the pressure of the pump 27. The motor 6 is cooled. The lubricating oil used for this cooling moves downward due to gravity and collects in the lower part of the housing 8, and is then stored in the lubricating oil storage part 10 communicating with the lower part of the housing 8. The remaining lubricating oil that has not been used for cooling the motor 6 is guided into the speed reducer 7 by the centrifugal force and the pressure of the pump 27, and lubricates and cools each part in the speed reducer 7. The lubricating oil provided for this lubrication or the like moves downward due to gravity and is stored in the lubricating oil reservoir 10 via an oil discharge port (not shown).
 <センサ類について>
 図4に示すように、左の車輪2を駆動するインホイールモータ駆動装置IWMには、左のモータ温度センサSaLと左の冷却油温度センサSbLとが設けられ、右の車輪2を駆動するインホイールモータ駆動装置IWMには、右のモータ温度センサSaRと右の冷却油温度センサSbRとが設けられている。左右のインホイールモータ駆動装置IWMにつき、合計四つの温度センサが設けられている。各温度センサは、モータ6の温度を監視するために設けられている。
<About sensors>
As shown in FIG. 4, the in-wheel motor drive device IWM that drives the left wheel 2 is provided with a left motor temperature sensor S aL and a left cooling oil temperature sensor S bL to drive the right wheel 2. The in-wheel motor drive device IWM that is provided is provided with a right motor temperature sensor SaR and a right cooling oil temperature sensor SbR . A total of four temperature sensors are provided for the left and right in-wheel motor drive devices IWM. Each temperature sensor is provided to monitor the temperature of the motor 6.
 これらモータ温度センサSaL,SaR、および冷却油温度センサSbL,SbRとして、例えば、抵抗の温度変化をある一定の電流を流したときの電圧値で検知するサーミスタが用いられる。各モータ温度センサSaL,SaRは、例えば、各モータ6のハウジング8(図2)または円周方向に互いに隣り合うモータコイル間の隙間等に設けられている。各冷却油温度センサSbL,SbRは、例えば、各潤滑油貯留部10(図2)に設けられ、減速機7およびモータ6を冷却する冷却油の温度を検出する。四つのセンサで検出される温度は、左右のインバータ装置13またはECU14に取り込まれ、各モータ6の温度上昇が監視される。 As these motor temperature sensors S aL , S aR and cooling oil temperature sensors S bL , S bR , for example, a thermistor that detects a temperature change in resistance with a voltage value when a certain current flows is used. Each motor temperature sensor S aL , S aR is provided, for example, in a housing 8 (FIG. 2) of each motor 6 or a gap between motor coils adjacent to each other in the circumferential direction. Each cooling oil temperature sensor SbL , SbR is provided in each lubricating oil storage part 10 (FIG. 2), for example, and detects the temperature of the cooling oil which cools the reduction gear 7 and the motor 6. FIG. The temperatures detected by the four sensors are taken into the left and right inverter devices 13 or ECUs 14 and the temperature rise of each motor 6 is monitored.
 この電気自動車には、さらに、この電気自動車の外気温を検出する気温センサSdが設けられている。この気温センサSdの検出温度は、左右のインバータ装置13またはECU14に取り込まれ、後述する初期診断時に用いられる。気温センサSdとして、この異常診断装置の専用品を使用してもよい。代わりに、冷却水温度、各種ECU温度、インバータIGBT温度、吸気温度、エアコン温度等を外気温として利用してもよい。但し、冷却水温度、各種ECU温度、インバータIGBT温度、吸気温度、エアコン温度等を後述する初期診断に用いる場合には、大気温度との差を評価時に考慮する。 The electric vehicle is further provided with a temperature sensor Sd for detecting the outside temperature of the electric vehicle. The temperature detected by the air temperature sensor Sd is taken into the left and right inverter devices 13 or the ECU 14 and used during initial diagnosis described later. As the temperature sensor Sd, a dedicated product for the abnormality diagnosis device may be used. Instead, the coolant temperature, various ECU temperatures, the inverter IGBT temperature, the intake air temperature, the air conditioner temperature, and the like may be used as the outside air temperature. However, when the cooling water temperature, various ECU temperatures, inverter IGBT temperature, intake air temperature, air conditioner temperature, etc. are used for the initial diagnosis described later, the difference from the atmospheric temperature is taken into consideration during the evaluation.
 <制御系について>
 図5は、このインホイールモータ駆動装置IWMの制御系のブロック図である。図1および図5に示すように、制御装置は、自動車全般の制御を行う電気制御ユニットであるECU14と、このECU14の指令に従って走行用の左右のモータ6の制御を行うインバータ装置13,13とを有する。ECU14は、電気自動車の場合、車両全般を制御する電気制御ユニット(VCU)である。図5に示すように、各インバータ装置13は、対応するモータ6のためのパワー回路部16と、このパワー回路部16を制御するモータコントロール部17とを有する。モータコントロール部17は、インホイールモータ駆動装置IWMに関する各検出値および制御値等の各情報であって、モータコントロール部17に記憶された各情報をECU14に出力する機能を有する。
<About control system>
FIG. 5 is a block diagram of a control system of the in-wheel motor drive device IWM. As shown in FIGS. 1 and 5, the control device includes an ECU 14 that is an electric control unit that controls the entire vehicle, and inverter devices 13 and 13 that control the left and right motors 6 for traveling in accordance with commands from the ECU 14. Have In the case of an electric vehicle, the ECU 14 is an electric control unit (VCU) that controls the entire vehicle. As shown in FIG. 5, each inverter device 13 includes a power circuit unit 16 for the corresponding motor 6 and a motor control unit 17 that controls the power circuit unit 16. The motor control unit 17 has a function of outputting each information stored in the motor control unit 17 to the ECU 14 such as each detection value and control value regarding the in-wheel motor drive device IWM.
 パワー回路部16は、バッテリ18の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ16aと、このインバータ16aを制御するPWMドライバ16bとを有する。インバータ16aは、複数の半導体スイッチング素子(図示せず)で構成される。PWMドライバ16bは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。 The power circuit unit 16 includes an inverter 16a that converts the DC power of the battery 18 into three-phase AC power used to drive the motor 6, and a PWM driver 16b that controls the inverter 16a. The inverter 16a is composed of a plurality of semiconductor switching elements (not shown). The PWM driver 16b performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
 モータコントロール部17は、コンピュータとこれに実行されるプログラム、および電子回路により構成され、その基本となる制御部としてモータ駆動制御部19を有している。ECU14は、アクセル操作部20(図1)が出力するアクセル開度の信号(加速指令)と、ブレーキ操作部21(図1)が出力する減速指令とから、あるいは加速指令と減速指令と操舵手段15(図1)が出力する旋回指令とから、左右の後輪2,2(図1)のモータ6,6に与える加速・減速指令をトルク指令として生成し、各インバータ装置13へ出力する。 The motor control unit 17 includes a computer, a program executed on the computer, and an electronic circuit, and includes a motor drive control unit 19 as a basic control unit. The ECU 14 receives an accelerator opening signal (acceleration command) output from the accelerator operation unit 20 (FIG. 1) and a deceleration command output from the brake operation unit 21 (FIG. 1), or an acceleration command, a deceleration command, and steering means. Acceleration / deceleration commands to be given to the motors 6 and 6 of the left and right rear wheels 2 and 2 (FIG. 1) are generated as torque commands from the turning command output by 15 (FIG. 1) and output to each inverter device 13.
 モータ駆動制御部19は、上位制御手段であるECU14から与えられるトルク指令等による加速・減速指令を電流指令に変換して、PWMドライバ16bに電流指令を与える手段である。モータ駆動制御部19は、インバータ16aからモータ6に流すモータ電流を電流検出手段Seから得て、電流フィードバック制御を行う。また、モータ駆動制御部19は、モータ6のロータ6a(図2)の回転角度を回転速度検出センサScから得てベクトル制御を行う。 The motor drive control unit 19 is a unit that converts an acceleration / deceleration command based on a torque command or the like given from the ECU 14, which is a higher-level control unit, into a current command and gives a current command to the PWM driver 16b. The motor drive control unit 19 obtains a motor current flowing from the inverter 16a to the motor 6 from the current detection means Se, and performs current feedback control. Further, the motor drive control unit 19 obtains the rotation angle of the rotor 6a (FIG. 2) of the motor 6 from the rotation speed detection sensor Sc and performs vector control.
 この実施形態では、ECU14に、温度センサSaL,SaR、SbL,SbRおよび気温センサSdの異常を診断する異常診断装置22を設けている。この異常診断装置22は、温度比較手段23と、対外気温比較手段24と、温度センサ個別異常判断手段25とを備える。温度比較手段23は、左右のモータ温度センサSaL,SaRで検出される二つのモータ温度、および左右の冷却油温度センサSbL,SbRで検出される二つの冷却油温度のうち、定められた二つの温度を互いに比較する。対外気温比較手段24は、各モータ6の温度および各冷却油の温度の各温度と、気温センサSdで検出される外気温とを互いに比較する。温度センサ個別異常判断手段25は、温度比較手段23で比較された結果と、対外気温比較手段24または対平均値比較手段26(図9に示すように、気温センサが無い場合は、対外気温比較手段24の代わりに対平均値比較手段26が設けられる)で比較された結果とから、各温度センサSaL,SaR、SbL,SbRの異常の有無を個別に判断する。また温度センサ個別異常判断手段25は、いずれかの温度センサが異常と判断されたとき、例えば、車両のコンソールパネル等に設けられた表示装置28に、温度センサSaL,SaR,SbLまたはSbRの異常を知らせる表示を出力するよう指令する。 In this embodiment, the ECU 14 is provided with an abnormality diagnosis device 22 for diagnosing abnormalities in the temperature sensors S aL , S aR , S bL , S bR and the temperature sensor Sd. The abnormality diagnosis device 22 includes a temperature comparison unit 23, an outside air temperature comparison unit 24, and a temperature sensor individual abnormality determination unit 25. The temperature comparison means 23 determines the two motor temperatures detected by the left and right motor temperature sensors S aL and S aR and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors S bL and S bR. The two given temperatures are compared with each other. The outside air temperature comparing means 24 compares the temperatures of the motors 6 and the cooling oils with the outside air temperature detected by the air temperature sensor Sd. The temperature sensor individual abnormality determining unit 25 compares the result of comparison by the temperature comparing unit 23 and the outside air temperature comparing unit 24 or the average value comparing unit 26 (when there is no temperature sensor, as shown in FIG. Based on the comparison result obtained by comparing the paired average value comparison means 26 in place of the means 24, the presence or absence of abnormality of each temperature sensor S aL , S aR , S bL , S bR is individually determined. Further, the temperature sensor individual abnormality determining means 25, when it is determined that any one of the temperature sensors is abnormal, for example, the temperature sensor S aL , S aR , S bL or the display device 28 provided on the console panel of the vehicle. Command to output a display notifying the abnormality of SbR .
 図6は、一つのインホイールモータ駆動装置におけるモータ温度および油温の変化例を示す図である。車両の走行中(図6のI)は、モータ温度、油温ともモータの損失によって温度が上下変動する。走行中は通常、モータ温度の方が油温より高い。駐車中(車両の電源をオフにした停車状態)(図6のII)は、モータ温度および油温が外気温によって下がる。そして、駐車によりモータ温度および油温が下がった後に再度車両の走行を行い(図6のIII)、次に、短時間だけ停車を行った場合(図6のIV)、次の車両の走行開始時(図6のV)には、未だモータ温度、油温とも外気温まで下がることなく高くなっている。 FIG. 6 is a diagram showing an example of changes in motor temperature and oil temperature in one in-wheel motor drive device. While the vehicle is traveling (I in FIG. 6), both the motor temperature and the oil temperature fluctuate up and down due to motor loss. During traveling, the motor temperature is usually higher than the oil temperature. During parking (stopped state with the vehicle powered off) (II in FIG. 6), the motor temperature and the oil temperature are lowered by the outside air temperature. Then, after the motor temperature and the oil temperature are lowered due to parking, the vehicle travels again (III in FIG. 6). Next, when the vehicle is stopped for a short time (IV in FIG. 6), the next vehicle starts to travel. At the time (V in FIG. 6), the motor temperature and the oil temperature are still high without decreasing to the outside air temperature.
 図7は、この異常診断装置の初期診断時の過程を段階的に示すフローチャートである。図5および表1と共に、車両に気温センサSdがあるときの初期診断を説明する。表1において、Tatは気温センサSdの温度、Trmは右のモータ温度センサSaRで検出される温度、Troは右の冷却油温度センサSbRで検出される温度、Tlmは左のモータ温度センサSaLで検出される温度、Tloは左の冷却油温度センサSbLで検出される温度を示す。また、表1において、”≒”は温度が同程度であることを示し、例えば温度差が±5℃以内である場合を示すとする。また、表1において、”>>”、および”<<”温度差が著しく大きい、場合を示す。「著しく」とは、例えば温度差が10℃以上である場合を示すとする。後述する表2および表3についても同じである。また表1におけるα、βは正の値をとる変数で、車両の停止時間、停止時温度、外気温等の関数となる。 FIG. 7 is a flowchart showing in steps the process at the time of initial diagnosis of the abnormality diagnosis apparatus. The initial diagnosis when the vehicle has the temperature sensor Sd will be described with reference to FIG. 5 and Table 1. In Table 1, Tat temperature of temperature sensor Sd, the temperature Trm is detected by the right motor temperature sensor S aR, temperature Tro is detected by the right of the cooling oil temperature sensor S bR, Tlm the left motor temperature sensor temperature detected by the S aL, Tlo indicates the temperature detected by the left of the cooling oil temperature sensor S bL. In Table 1, “≈” indicates that the temperatures are approximately the same. For example, it is assumed that the temperature difference is within ± 5 ° C. In Table 1, the case where “>>” and “<<” temperature differences are significantly large is shown. “Remarkably” means, for example, a case where the temperature difference is 10 ° C. or more. The same applies to Tables 2 and 3 described later. Further, α and β in Table 1 are variables having positive values, and are functions such as a vehicle stop time, a stop-time temperature, and an outside air temperature.
 <気温センサがあるときの初期診断>
Figure JPOXMLDOC01-appb-T000001
<Initial diagnosis with temperature sensor>
Figure JPOXMLDOC01-appb-T000001
 この車両の電源の投入時から車両走行前の一定時間内に、この異常診断装置22による初期診断が開始され、異常診断装置22は、気温センサSdがあるとの判定で(ステップa1のYes)、対外気温比較手段24により条件1を充足するか否かを判定する(ステップa2)。前記一定時間は、設計等によって適宜に定める時間であり、例えば300m秒程度の短時間である。なお、この車両が気温センサSdを元々備えていない場合には、気温センサSdの有無を判定するステップa1、およびステップa4,a6~a8を省略し、本処理開始後ステップa9から進行してもよい。 The initial diagnosis by the abnormality diagnosis device 22 is started within a certain period of time before the vehicle travels from when the vehicle is turned on, and the abnormality diagnosis device 22 determines that there is the temperature sensor Sd (Yes in step a1). Then, it is determined whether or not the condition 1 is satisfied by the outside air temperature comparison means 24 (step a2). The predetermined time is a time determined as appropriate according to design or the like, and is a short time of about 300 milliseconds, for example. If the vehicle does not originally include the temperature sensor Sd, the step a1 for determining the presence or absence of the temperature sensor Sd and steps a4, a6 to a8 are omitted, and the process proceeds from step a9 after the start of this process. Good.
 条件1を充足する(ステップa2のYes)とは、Trm≒Tat、Tro≒Tat、Tlm≒Tat、Tlo≒Tatを全て満足する場合であり、停車から充分時間が経っており、全温度センサの温度(センサ出力)が気温と同程度になっている場合である。 Satisfying condition 1 (Yes in step a2) is a case where all of Trm≈Tat, Tro≈Tat, Tlm≈Tat, and Tlo≈Tat are satisfied. This is a case where the temperature (sensor output) is about the same as the air temperature.
 条件1を充足しない(ステップa2のNo)との判定で、対外気温比較手段24により条件2を充足するか否かを判定する(ステップa3)。
 条件2を充足する(ステップa3のYes)とは、Trm>>Tat、Tro>>Tat、Tlm>>Tat、Tlo>>Tatを全て満足する場合であり、停車直後で、モータ6および油温が温まっている場合である。
If it is determined that the condition 1 is not satisfied (No in step a2), it is determined whether or not the condition 2 is satisfied by the outside air temperature comparison means 24 (step a3).
Satisfying condition 2 (Yes in step a3) is a case where all of Trm >> Tat, Tro >> Tat, Tlm >> Tat, Tlo >> Tat are satisfied. Is when it is warm.
 条件2を充足しない(ステップa3のNo)との判定で、対外気温比較手段24により条件3を充足するか否かを判定する(ステップa4)。 If it is determined that the condition 2 is not satisfied (No in step a3), it is determined whether or not the condition 3 is satisfied by the outside air temperature comparison means 24 (step a4).
 条件3を充足するとは、Trm≒Tat+α、Tro≒Tat+α、Tlm≒Tat+β、Tlo≒Tat+βを全て満足する場合であり、左右の車輪のうちいずれか一方の車輪が太陽光等で温まっている、または、いずれか一方の車輪が水や雪等で急冷された場合である。条件1~3の少なくともいずれか1つが成立する場合は、各温度センサに明らかな異常は認められない。そのため、温度センサ個別異常判断手段25は、全ての温度センサを正常と判断する(ステップa5)。このステップa5の後、初期診断は正常終了する。また、停車直後に条件1が判断されてから時間が経過して温度が低下してから条件2が判断されるような場合、どちらの条件にも当てはまらない可能性があるが、実際の運用では、中間の条件を加えることもできる。 Satisfying condition 3 is a case where all of Trm≈Tat + α, Tro≈Tat + α, Tlm≈Tat + β, and Tlo≈Tat + β are satisfied, and either one of the left and right wheels is warmed by sunlight or the like, or This is a case where one of the wheels is rapidly cooled by water or snow. When at least one of the conditions 1 to 3 is satisfied, no obvious abnormality is recognized in each temperature sensor. Therefore, the temperature sensor individual abnormality determining unit 25 determines that all the temperature sensors are normal (step a5). After this step a5, the initial diagnosis ends normally. Also, if condition 2 is determined after the time has passed since the time when condition 1 was determined immediately after stopping, and condition 2 is determined, it may not apply to either condition. Intermediate conditions can also be added.
 条件3を充足しない(ステップa4のNo)との判定で、対外気温比較手段24により条件4を充足するか否かを判定する(ステップa6)。 If it is determined that the condition 3 is not satisfied (No in step a4), it is determined whether or not the condition 4 is satisfied by the outside air temperature comparison means 24 (step a6).
 条件4を充足する(ステップa6のYes)とは、Trm<<Tat、Tro<<Tat、Tlm<<Tat、Tlo<<Tatを全て満足する場合である。この条件4を充足する場合(ステップa6のYes)、温度センサ個別異常判断手段25は、気温センサSdが異常と判断する。気温センサSdの温度が各温度センサSaL,SaR、SbL,SbRの温度よりも大幅に低温になることはないからである。したがって、温度センサ個別異常判断手段25は、この気温センサSdを使用しないで、以後、気温センサSdがないものとみなして動作させる(ステップa7)。ステップa7の後、気温センサSdがないときの初期診断(条件9~15)に移行する。これら条件9~15については後述する。 Satisfying condition 4 (Yes in step a6) is a case where all of Trm << Tat, Tro << Tat, Tlm << Tat, and Tlo << Tat are satisfied. When this condition 4 is satisfied (Yes in step a6), the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor Sd is abnormal. This is because the temperature of the temperature sensor Sd does not become much lower than the temperatures of the temperature sensors S aL , S aR , S bL , S bR . Therefore, the temperature sensor individual abnormality determining unit 25 operates by assuming that the temperature sensor Sd is not present, without using the temperature sensor Sd (step a7). After step a7, the process proceeds to the initial diagnosis (conditions 9 to 15) when there is no temperature sensor Sd. These conditions 9 to 15 will be described later.
 条件4を充足しないとき(ステップa6のNo)、対外気温比較手段24により条件5~8それぞれを充足するか否かを判定する(ステップa8)。 When the condition 4 is not satisfied (No in step a6), it is determined by the outside air temperature comparison means 24 whether each of the conditions 5 to 8 is satisfied (step a8).
 条件5~8は、左右のモータ温度センサSaL,SaRおよび左右の冷却油温度センサSbL,SbRの四つのセンサ出力のうち、三つの温度センサが出力する温度が、気温センサSdのセンサ出力と同程度であり、残りの一つの温度センサが出力する温度が気温センサSdの出力する温度より著しく小さいという条件である。 Conditions 5 to 8 are that the temperature output by the three temperature sensors among the four sensor outputs of the left and right motor temperature sensors S aL and S aR and the left and right cooling oil temperature sensors S bL and S bR is the temperature sensor Sd. The condition is that the temperature is approximately the same as the sensor output, and the temperature output by the remaining one temperature sensor is significantly lower than the temperature output by the air temperature sensor Sd.
 この場合、温度センサ個別異常判断手段25は、気温センサSdのセンサ出力よりも著しく小さい温度を検出した温度センサを異常と判定する(ステップa10)。そして、これ以後は、当該温度センサのセンサ出力をモータ6の制御(すなわちモータ駆動制御部19による制御)において使用しない等の対策を講じ得る。ステップa10の後、初期診断を終了する。また図7および表1には示していないが、四つの温度センサSaL,SaR、SbL,SbRのうち、三つのセンサ出力が気温センサSdのセンサ出力より著しく大きく、且つ、残りの一つのセンサ出力が気温センサSdのセンサ出力より著しく小さい場合も、上述した場合と同様に、気温センサSdのセンサ出力よりも著しく小さい温度を出力する温度センサを異常と判定することができる。 In this case, the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor that has detected a temperature significantly lower than the sensor output of the temperature sensor Sd is abnormal (step a10). Thereafter, it is possible to take measures such as not using the sensor output of the temperature sensor in the control of the motor 6 (that is, control by the motor drive control unit 19). After step a10, the initial diagnosis is terminated. Although not shown in FIG. 7 and Table 1, among the four temperature sensors S aL , S aR , S bL , S bR , three sensor outputs are significantly larger than the sensor output of the temperature sensor Sd, and the remaining Even when one sensor output is significantly smaller than the sensor output of the temperature sensor Sd, a temperature sensor that outputs a temperature significantly smaller than the sensor output of the temperature sensor Sd can be determined to be abnormal as in the case described above.
 <気温センサが無いときの初期診断>
Figure JPOXMLDOC01-appb-T000002
<Initial diagnosis when there is no temperature sensor>
Figure JPOXMLDOC01-appb-T000002
 図9に示すように、気温センサが無いときの初期診断時に、温度センサ個別異常判断手段25は、前記温度比較手段23で比較された結果と、対平均値比較手段26で比較された結果とから、各温度センサSaL,SaR、SbL,SbRの異常の有無を表2の条件に従って個別に判断する。対平均値比較手段26は、左右のモータ温度センサSaL,SaRで検出される各モータ6の温度、および左右の冷却油温度センサSbL,SbRで検出される各冷却油の温度の各温度と、全ての温度の平均値を互いに比較する。 As shown in FIG. 9, at the time of the initial diagnosis when there is no temperature sensor, the temperature sensor individual abnormality determination unit 25 compares the result compared by the temperature comparison unit 23 and the result compared by the paired average value comparison unit 26. Therefore , the presence or absence of abnormality of each temperature sensor S aL , S aR , S bL , S bR is individually determined according to the conditions in Table 2. The paired average value comparison means 26 is configured to detect the temperature of each motor 6 detected by the left and right motor temperature sensors S aL and S aR and the temperature of each cooling oil detected by the left and right cooling oil temperature sensors S bL and S bR . Each temperature and the average value of all temperatures are compared with each other.
 図7および図9ならびに表2と共に、車両に気温センサが無いとき(気温センサが無いものとみなす場合も含む)の初期診断を説明する。表2において、Tavは、四つの温度センサSaL,SaR、SbL,SbRのセンサ出力の平均値であり、対平均値比較手段26によりTav=(Trm+Tro+Tlm+Tlo)/4で求められる(後述の表3についても同じである)。換言すれば、Tavとは、4つの温度センサSaL,SaR、SbL,SbRが出力する温度の平均値である。この初期診断において、先ず、対平均値比較手段26は、条件9を充足するか否かを判定する(ステップa9)。 7 and 9 and Table 2 will be used to explain the initial diagnosis when the vehicle has no temperature sensor (including the case where the vehicle is regarded as having no temperature sensor). In Table 2, Tav is an average value of sensor outputs of four temperature sensors S aL , S aR , S bL , S bR , and is obtained by Tav = (Trm + Tro + Tlm + Tlo) / 4 by the average value comparison means 26 (described later). The same applies to Table 3). In other words, Tav is an average value of temperatures output from the four temperature sensors S aL , S aR , S bL , and S bR . In this initial diagnosis, first, the paired average value comparing means 26 determines whether or not the condition 9 is satisfied (step a9).
 条件9を充足するとは、Trm≒Tav、Tro≒Tav、Tlm≒Tav、Tlo≒Tavを全て満足する場合であり、停車から充分時間が経っており、全温度センサが出力する温度(センサ出力)が同程度になっている場合である。条件9を充足する場合(ステップa9のYes)、ステップa5に移行し全ての温度センサを正常と判断する。条件9を充足しない(ステップa9のNo)との判定で、温度比較手段23により条件10を充足するか否かを判定する(ステップa11)。 Satisfying condition 9 is the case where all of Trm≈Tav, Tro≈Tav, Tlm≈Tav, and Tlo≈Tav are satisfied. Sufficient time has passed since the vehicle stopped, and the temperature output by all temperature sensors (sensor output) Is the same level. When the condition 9 is satisfied (Yes in step a9), the process proceeds to step a5 and all temperature sensors are determined to be normal. If it is determined that the condition 9 is not satisfied (No in step a9), the temperature comparison unit 23 determines whether or not the condition 10 is satisfied (step a11).
 条件10を充足するとは、Trm≒Tlm、且つ、Tro≒Tloを満足する場合である。これは、停車直後で、モータ6および油温が温まっている場合に、モータ温度と油温に温度差があっても、左右のモータ温度、左右の油温がそれぞれ同程度になっているような場合である。条件10を充足する場合(ステップa11のYes)、ステップa5に移行し全ての温度センサを正常と判断する。条件10を充足しない(ステップa11のNo)との判定で、温度比較手段23により条件11を充足するか否かを判定する(ステップa12)。 The condition 10 is satisfied when Trm≈Tlm and Tro≈Tlo are satisfied. This is because the motor 6 and the oil temperature are warmed immediately after the vehicle stops, and even if there is a temperature difference between the motor temperature and the oil temperature, the left and right motor temperatures and the left and right oil temperatures are approximately the same. This is the case. When the condition 10 is satisfied (Yes in step a11), the process proceeds to step a5 and all temperature sensors are determined to be normal. If it is determined that the condition 10 is not satisfied (No in step a11), the temperature comparison unit 23 determines whether the condition 11 is satisfied (step a12).
 条件11を充足するとは、Trm≒Tro、且つ、Tlm≒Tloを満足する場合であり、左右の車輪のうちいずれか一方の車輪が太陽光等で温まっている、または、いずれか一方の車輪が水や雪等で急冷された場合であり、右のモータ温度と右の油温、左のモータ温度と左の油温がそれぞれ同程度になっている場合である。条件11を充足する場合(ステップa12のYes)、ステップa5に移行し全ての温度センサを正常と判断する。条件11を充足しない(ステップa12のNo)との判定で、対平均値比較手段26により条件12~15それぞれを充足するか否かを判定する(ステップa13)。 Satisfying condition 11 is a case where Trm≈Tro and Tlm≈Tlo are satisfied, and either of the left and right wheels is warmed by sunlight or the like, or one of the wheels is This is the case where the water is cooled rapidly with water, snow, or the like, and the right motor temperature and the right oil temperature, and the left motor temperature and the left oil temperature are approximately the same. When the condition 11 is satisfied (Yes in step a12), the process proceeds to step a5 and all the temperature sensors are determined to be normal. When it is determined that the condition 11 is not satisfied (No in step a12), it is determined whether or not each of the conditions 12 to 15 is satisfied by the paired average value comparison means 26 (step a13).
 条件12~15は、四つの温度センサのうちの三つの温度センサが出力する温度比べて、残りの一つの温度センサが出力する温度のみが極端に低いという条件である。この場合、温度センサ個別異常判断手段25は、他の三つのセンサの出力した温度よりも極端に低い温度を出力する温度センサを異常と判定する(ステップa10)。そして、これ以後は、当該温度センサのセンサ出力をモータ6の制御(すなわちモータ駆動制御部19による制御)において使用しない等の対策を講じ得る。また、上記診断で異常が出た場合は、検出の誤動作等も考慮して、一回だけでなく数回連続で試験し、全ての回で異常と判断した場合のみ、その異常と判定されたセンサを使用しない等の処理に移行することもできる。 Conditions 12 to 15 are conditions in which only the temperature output by the remaining one temperature sensor is extremely lower than the temperatures output by three of the four temperature sensors. In this case, the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor that outputs a temperature extremely lower than the temperatures output by the other three sensors is abnormal (step a10). Thereafter, it is possible to take measures such as not using the sensor output of the temperature sensor in the control of the motor 6 (that is, control by the motor drive control unit 19). In addition, if an abnormality occurs in the above diagnosis, considering a malfunction of detection, etc., it was determined that the abnormality was only performed when it was tested not only once but several times in succession and was judged abnormal all times. It is also possible to shift to processing such as not using a sensor.
 <車両走行中の診断>
Figure JPOXMLDOC01-appb-T000003
<Diagnosis while driving>
Figure JPOXMLDOC01-appb-T000003
 図9に示すように、車両の走行中に、温度センサ個別異常判断手段25は、温度比較手段23で比較された結果と、対平均値比較手段26で比較された結果とから、各温度センサSaL,SaR、SbL,SbRの異常の有無を表3の条件に従って個別に判断する。異常診断装置22は、例えば、電流検出手段Seから得たモータ電流、および回転速度検出センサScから得たモータ回転角度のいずれか一方または両方から車両が走行中か否かを判断し得る。 As shown in FIG. 9, while the vehicle is running, the temperature sensor individual abnormality determination unit 25 determines whether each temperature sensor is based on the result of comparison by the temperature comparison unit 23 and the result of comparison by the paired average value comparison unit 26. The presence or absence of abnormality in S aL , S aR , S bL , and S bR is individually determined according to the conditions in Table 3. The abnormality diagnosis device 22 can determine, for example, whether or not the vehicle is traveling from one or both of the motor current obtained from the current detection means Se and the motor rotation angle obtained from the rotation speed detection sensor Sc.
 図8および図9ならびに表3と共に、車両走行中の診断を説明する。この車両走行中の診断において、先ず、対平均値比較手段26は、条件16を充足するか否かを判定する(ステップb1)。条件16を充足するとは、Trm≒Tav、Tro≒Tav、Tlm≒Tav、Tlo≒Tavを全て満足する場合であり、全温度センサの温度が同程度になっている場合である。条件16を充足する場合(ステップb1のYes)、ステップb2に移行し全ての温度センサを正常と判断する。その後、診断結果は正常で本処理を終了する。 8 and 9 and Table 3 are used to explain the diagnosis while the vehicle is running. In the diagnosis during traveling of the vehicle, the average value comparison means 26 first determines whether or not the condition 16 is satisfied (step b1). The condition 16 is satisfied when Trm≈Tav, Tro≈Tav, Tlm≈Tav, and Tlo≈Tav are all satisfied, and when the temperature of all the temperature sensors is approximately the same. When the condition 16 is satisfied (Yes in step b1), the process proceeds to step b2, and all the temperature sensors are determined to be normal. Thereafter, the diagnosis result is normal and the process is terminated.
 条件16を充足しない(ステップb1のNo)との判定で、温度比較手段23により条件17を充足するか否かを判定する(ステップb3)。条件17を充足するとは、Trm≒Tlm、且つ、Tro≒Tloを満足する場合である。これは、モータ温度と油温に温度差があっても、左右のモータ温度、左右の油温がそれぞれ同程度になっているような場合である。条件17を充足する場合(ステップb3のYes)、ステップb2に移行し全ての温度センサを正常と判断する。 If it is determined that the condition 16 is not satisfied (No in step b1), the temperature comparison unit 23 determines whether the condition 17 is satisfied (step b3). The condition 17 is satisfied when Trm≈Tlm and Tro≈Tlo are satisfied. This is a case where the left and right motor temperatures and the left and right oil temperatures are approximately the same even if there is a temperature difference between the motor temperature and the oil temperature. When the condition 17 is satisfied (Yes in step b3), the process proceeds to step b2, and all the temperature sensors are determined to be normal.
 条件17を充足しない(ステップb3のNo)との判定で、温度比較手段23により条件18を充足するか否かを判定する(ステップb4)。条件18を充足するとは、Trm≒Tro、且つ、Tlm≒Tloを満足する場合であり、右のモータ温度と右の油温、左のモータ温度と左の油温がそれぞれ同程度になっている場合である。条件18を充足する場合(ステップb4のYes)、ステップb2に移行し全ての温度センサを正常と判断する。条件18を充足しない(ステップb4のNo)との判定で、温度比較手段23により条件19を充足するか否かを判定する(ステップb5)。 If it is determined that the condition 17 is not satisfied (No in step b3), it is determined whether or not the condition 18 is satisfied by the temperature comparison unit 23 (step b4). Satisfying condition 18 is a case where Trm≈Tro and Tlm≈Tlo are satisfied, and the right motor temperature and the right oil temperature, and the left motor temperature and the left oil temperature are approximately the same. Is the case. When the condition 18 is satisfied (Yes in step b4), the process proceeds to step b2, and all the temperature sensors are determined to be normal. If it is determined that the condition 18 is not satisfied (No in step b4), the temperature comparison unit 23 determines whether or not the condition 19 is satisfied (step b5).
 条件19を充足するとは、Trm<<Troを満足する場合であり、右のモータ温度が右の油温に比べて著しく低い場合である。この場合は、例えば、一定時間後(ステップb6)、再度、条件19を充足するか否かの判定を行い(ステップb7)、再度条件19を充足すれば(ステップb7のYes)、右のモータ温度センサSaRまたは右の冷却油温度センサSbRが異常と判断される(ステップb8)。その後、診断結果は異常で本処理を終了する。 The condition 19 is satisfied when Trm << Tro is satisfied, and when the right motor temperature is significantly lower than the right oil temperature. In this case, for example, after a certain time (step b6), it is determined again whether the condition 19 is satisfied (step b7). If the condition 19 is satisfied again (Yes in step b7), the right motor It is determined that the temperature sensor S aR or the right cooling oil temperature sensor S bR is abnormal (step b8). Thereafter, the diagnosis result is abnormal and the present process is terminated.
 条件19を充足しない場合(ステップb5のNo、ステップb7のNo)、温度比較手段23により条件20を充足するか否かを判定する(ステップb9)。条件20を充足するとは、Tlm<<Tloを満足する場合であり、左のモータ温度が左の油温に比べて著しく低い場合である。この場合は、例えば、一定時間後(ステップb10)、再度条件20を充足するか否かの判定を行い(ステップb11)、再度条件20を充足すれば(ステップb11のYes)、左のモータ温度センサSaLまたは左の冷却油温度センサSbLが異常と判断される(ステップb12)。 When the condition 19 is not satisfied (No in step b5, No in step b7), the temperature comparison unit 23 determines whether the condition 20 is satisfied (step b9). Satisfying the condition 20 is a case where Tlm << Tlo is satisfied, and a case where the left motor temperature is significantly lower than the left oil temperature. In this case, for example, after a predetermined time (step b10), it is determined whether or not the condition 20 is satisfied again (step b11). If the condition 20 is satisfied again (Yes in step b11), the left motor temperature sensor S aL or left cooling oil temperature sensor S bL is judged to be abnormal (step b12).
 条件20を充足しない場合(ステップb9のNo、ステップb11のNo)、対平均値比較手段26により条件21~24それぞれを充足するか否かを判定する(ステップb13)。条件21~24は、四つの温度センサのうちの三つの温度センサが出力する温度比べて、残りの一つの温度センサが出力する温度のみが極端に低いという条件である。この場合(ステップb13のYes)、温度センサ個別異常判断手段25は、極端に低い温度を出力する温度センサを異常と判定する(ステップb14)。そして、これ以後は、当該温度センサのセンサ出力をモータ6の制御(すなわちモータ駆動制御部19による制御)において使用しない。条件21~24を全て充足しない場合(ステップb13のNo)、ステップb2に移行して全ての温度センサを正常と判断する。 If the condition 20 is not satisfied (No in Step b9, No in Step b11), the paired average value comparing means 26 determines whether or not each of the conditions 21 to 24 is satisfied (Step b13). Conditions 21 to 24 are conditions in which only the temperature output from the remaining one temperature sensor is extremely lower than the temperatures output from three of the four temperature sensors. In this case (Yes in step b13), the temperature sensor individual abnormality determining unit 25 determines that the temperature sensor that outputs an extremely low temperature is abnormal (step b14). Thereafter, the sensor output of the temperature sensor is not used in the control of the motor 6 (ie, control by the motor drive control unit 19). If all the conditions 21 to 24 are not satisfied (No in step b13), the process proceeds to step b2 and all the temperature sensors are determined to be normal.
 これらのテストは、車両の走行中、例えば10秒毎など、一定時間毎に実施する。また異常の判断は、検出の誤動作等も考慮して、一回だけでなく数回連続で異常と判断した場合のみ、その異常と検出された温度センサを使用しない等の処理に移行することもできる。 These tests are performed at regular intervals while the vehicle is running, for example, every 10 seconds. In addition, in consideration of malfunction of detection, the judgment of abnormality may be shifted to processing such as not using the temperature sensor detected as abnormal, only when it is judged that the abnormality is not continuous once but several times continuously. it can.
 また、図8の処理では、初期診断で異常な温度センサが無いと判断(全ての温度センサを正常と判断)された場合であっても、初期診断で異常とされた温度センサがある場合は、別にそれを考慮した処理を行う。 Further, in the process of FIG. 8, even when it is determined that there is no abnormal temperature sensor in the initial diagnosis (all temperature sensors are determined to be normal), there is a temperature sensor that is abnormal in the initial diagnosis. Separately, processing that takes that into consideration.
 <作用効果について>
 以上説明した異常診断装置22によれば、初期診断時に、定められた条件に従い、既存の左右のモータ温度センサSaL,SaRと、左右の冷却油温度センサSbL,SbRと、気温センサSdがある場合は気温センサSdとを用いて、各温度センサSaL,SaR、SbL,SbRの異常を個別に判断することができる。異常と判断された温度センサは、それ以後温度検出に使用せず、正常な温度センサのみを用いてモータ6の温度を監視することができる。
<About the effects>
According to the abnormality diagnosing device 22 described above, the existing left and right motor temperature sensors S aL and S aR , the left and right cooling oil temperature sensors S bL and S bR, and the temperature sensor according to predetermined conditions at the time of initial diagnosis. When Sd is present, the temperature sensor Sd can be used to individually determine abnormality of each temperature sensor S aL , S aR , S bL , S bR . The temperature sensor determined to be abnormal is not used for temperature detection thereafter, and the temperature of the motor 6 can be monitored using only a normal temperature sensor.
 車両走行中においても、定められた条件に従い、左右のモータ温度センサSaL,SaRと、左右の冷却油温度センサSbL,SbRとを用いて、各温度センサSaL,SaR、SbL,SbRの異常を個別に判断することができる。異常と判断された温度センサは、それ以後温度検出に使用せず、正常な温度センサのみを用いてモータ6の温度を監視することができる。 Even during vehicle running, according a defined condition, the left and right motor temperature sensor S aL, and S aR, left and right cooling oil temperature sensor S bL, by using the S bR, the temperature sensor S aL, S aR, S Abnormalities in bL and SbR can be determined individually. The temperature sensor determined to be abnormal is not used for temperature detection thereafter, and the temperature of the motor 6 can be monitored using only a normal temperature sensor.
 なお、車両走行中において、正常な温度センサのみを用いてモータ温度を監視する場合において、例えば、モータ温度が閾値を超えたとき、前記制御装置は、各モータ6の電流を低減するように、モータ駆動制御部19からパワー回路部16に指令する。この場合に、現在のモータ電流に対して定められた割合でモータ電流を低減してもよいし、定められた値低下させてもよい。これによりモータ6の過負荷を防止することができる。制御装置は、一定時間後にモータ温度が前記閾値以下になると、各モータ6への出力制限を解除する。前記閾値は、試験やシミュレーションにより定められる。 When the motor temperature is monitored using only a normal temperature sensor while the vehicle is running, for example, when the motor temperature exceeds a threshold value, the control device reduces the current of each motor 6 so as to reduce the current. The motor drive control unit 19 instructs the power circuit unit 16. In this case, the motor current may be reduced at a predetermined ratio with respect to the current motor current, or a predetermined value may be decreased. Thereby, the overload of the motor 6 can be prevented. When the motor temperature becomes equal to or lower than the threshold value after a certain time, the control device releases the restriction on the output to each motor 6. The threshold value is determined by a test or simulation.
 <第2の実施形態について>
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
<About the second embodiment>
In the following description, the same reference numerals are given to portions corresponding to the matters described in advance in the respective embodiments, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 インホイールモータ駆動装置においては、サイクロイド式の減速機、遊星減速機、2軸並行減速機、その他の減速機を適用可能である。また、前記の実施形態のインホイールモータ駆動装置においては、後輪駆動を示したが、前輪駆動でも4輪駆動としてもよい。前記の実施形態においては、インホイールモータ駆動装置を備えた電気自動車に駆動制御装置を適用した例を説明したが、図10に示すように、車体1に二台のモータ6,6および各モータ6に対応する減速機7,7を設け、これらモータ6,6により左右の車輪3,3を駆動する二モータオンボードタイプの電気自動車に、異常診断装置を備えてもよい。図10において、モータ6で駆動する左右の車輪は前後輪3,2のいずれであってもよい。また、4輪駆動としてもよい。 In the in-wheel motor drive device, a cycloid reducer, a planetary reducer, a two-axis parallel reducer, and other reducers can be applied. Further, in the in-wheel motor drive device of the above-described embodiment, the rear wheel drive is shown, but the front wheel drive or the four wheel drive may be used. In the above embodiment, the example in which the drive control device is applied to the electric vehicle equipped with the in-wheel motor drive device has been described. However, as shown in FIG. A two-motor on-board type electric vehicle in which the speed reducers 7 and 7 corresponding to 6 are provided and the left and right wheels 3 and 3 are driven by the motors 6 and 6 may be provided with an abnormality diagnosis device. In FIG. 10, the left and right wheels driven by the motor 6 may be either the front or rear wheels 3 and 2. Also, four-wheel drive may be used.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments have been described with reference to the drawings, but various additions, changes, or deletions can be made without departing from the spirit of the present invention. Therefore, such a thing is also included in the scope of the present invention.
2,3…車輪
6…モータ
22…異常診断装置
23…温度比較手段
24…対外気温比較手段
25…温度センサ個別異常判断手段
26…対平均値比較手段
aL,SaR…左右のモータ温度センサ
bL,SbR…左右の冷却油温度センサ
Sd…気温センサ
2, 3 ... Wheel 6 ... Motor 22 ... Abnormality diagnosis device 23 ... Temperature comparison means 24 ... External air temperature comparison means 25 ... Temperature sensor individual abnormality determination means 26 ... Mean value comparison means S aL , S aR ... Left and right motor temperature sensors S bL , S bR ... Left and right cooling oil temperature sensor Sd ... Air temperature sensor

Claims (3)

  1.  左右の車輪を独立して駆動する左右のモータ駆動装置を備えた車両における前記左右のモータ駆動装置の各モータの温度をそれぞれ検出する左右のモータ温度センサの異常と、前記左右のモータ駆動装置を冷却する各冷却油の温度をそれぞれ検出する左右の冷却油温度センサの異常とを、前記車両の電源の投入時から車両走行開始前の一定時間内である初期診断時に診断する異常診断装置であって、
     前記左右のモータ温度センサで検出される二つのモータ温度、および前記左右の冷却油温度センサで検出される二つの冷却油温度のうち、定められた二つの温度を比較する温度比較手段と、
     前記左右のモータ温度センサで検出される二つのモータの温度、および前記左右の冷却油温度センサで検出される二つの冷却油温度の各温度と、前記左右のモータ温度センサおよび前記左右の冷却油温度センサで検出される温度の平均値とを比較する対平均値比較手段と、
     前記温度比較手段による比較の結果と、前記対平均値比較手段による比較の結果とから前記左右のモータ温度センサおよび前記左右の冷却油温度センサのそれぞれの異常の有無を判断する温度センサ個別異常判断手段と、を備えた異常診断装置。
    An abnormality in the left and right motor temperature sensors for detecting the temperatures of the respective motors of the left and right motor drive devices in a vehicle having left and right motor drive devices for independently driving the left and right wheels; and the left and right motor drive devices An abnormality diagnosing device for diagnosing abnormalities in the left and right cooling oil temperature sensors that detect the temperature of each cooling oil to be cooled at an initial diagnosis that is within a certain period of time before the vehicle travels from when the vehicle is turned on. And
    A temperature comparing means for comparing two motor temperatures detected by the left and right motor temperature sensors and two cooling oil temperatures detected by the left and right cooling oil temperature sensors;
    The temperatures of the two motors detected by the left and right motor temperature sensors, the two cooling oil temperatures detected by the left and right cooling oil temperature sensors, the left and right motor temperature sensors and the left and right cooling oils An average value comparison means for comparing the average value of the temperature detected by the temperature sensor;
    Temperature sensor individual abnormality determination for determining whether there is an abnormality in each of the left and right motor temperature sensors and the left and right cooling oil temperature sensors from the comparison result by the temperature comparison means and the comparison result by the paired average value comparison means And an abnormality diagnosis device.
  2.  左右の車輪を独立して駆動する左右のモータ駆動装置を備えた車両における前記左右のモータ駆動装置の各モータの温度をそれぞれ検出する左右のモータ温度センサの異常と、前記左右のモータ駆動装置を冷却する各冷却油の温度をそれぞれ検出する左右の冷却油温度センサの異常とを、前記車両の電源の投入時から車両走行開始前の一定時間内である初期診断時に診断する異常診断装置であって、
     前記車両は、この車両の外気温を検出する気温センサを備え、
     前記左右のモータ温度センサで検出される二つのモータ温度、および前記左右の冷却油温度センサで検出される二つの冷却油温度のうち、定められた二つの温度を定められた条件に従い互いに比較する温度比較手段と、
     前記左右のモータ温度センサで検出される前記二つのモータ温度、および前記左右の冷却油温度センサで検出される前記二つの冷却油温度の各温度のそれぞれと、前記気温センサで検出される外気温とを比較する対外気温比較手段と、
     前記温度比較手段による比較の結果と、前記対外気温比較手段による比較の結果とから前記左右のモータ温度センサおよび前記左右の冷却油温度センサのそれぞれの異常の有無を判断する温度センサ個別異常判断手段と、を備えた異常診断装置。
    An abnormality in the left and right motor temperature sensors for detecting the temperatures of the respective motors of the left and right motor drive devices in a vehicle having left and right motor drive devices for independently driving the left and right wheels; and the left and right motor drive devices An abnormality diagnosing device for diagnosing abnormalities in the left and right cooling oil temperature sensors that detect the temperature of each cooling oil to be cooled at an initial diagnosis that is within a certain period of time before the vehicle travels from when the vehicle is turned on. And
    The vehicle includes an air temperature sensor that detects an outside air temperature of the vehicle,
    Of the two motor temperatures detected by the left and right motor temperature sensors and the two cooling oil temperatures detected by the left and right cooling oil temperature sensors, two predetermined temperatures are compared with each other according to a predetermined condition. Temperature comparison means;
    Each of the two motor temperatures detected by the left and right motor temperature sensors, the two cooling oil temperatures detected by the left and right cooling oil temperature sensors, and the outside air temperature detected by the air temperature sensor An outside temperature comparison means for comparing
    Temperature sensor individual abnormality determination means for determining whether each of the left and right motor temperature sensors and the left and right cooling oil temperature sensors has an abnormality based on the comparison result by the temperature comparison means and the comparison result by the outside air temperature comparison means. And an abnormality diagnosis device.
  3.  請求項1または請求項2に記載の異常診断装置において、前記温度センサ個別異常判断手段は、前記車両の走行中に、前記左右のモータ温度センサおよび前記左右の冷却油温度センサのそれぞれの異常の有無を判断する異常診断装置。 3. The abnormality diagnosis device according to claim 1, wherein the temperature sensor individual abnormality determination unit detects an abnormality of each of the left and right motor temperature sensors and the left and right cooling oil temperature sensors while the vehicle is running. An abnormality diagnosis device that determines the presence or absence.
PCT/JP2018/010342 2017-03-23 2018-03-15 Abnormality diagnosis device WO2018173936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-057043 2017-03-23
JP2017057043A JP2018159625A (en) 2017-03-23 2017-03-23 Abnormality diagnostic device

Publications (1)

Publication Number Publication Date
WO2018173936A1 true WO2018173936A1 (en) 2018-09-27

Family

ID=63584474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010342 WO2018173936A1 (en) 2017-03-23 2018-03-15 Abnormality diagnosis device

Country Status (2)

Country Link
JP (1) JP2018159625A (en)
WO (1) WO2018173936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220266692A1 (en) * 2021-02-24 2022-08-25 Hyundai Motor Company Apparatus and method for diagnosing damage to drive-train hardware of vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203692A1 (en) * 2019-03-19 2020-09-24 Robert Bosch Gmbh Method for the plausibility check of at least one coolant temperature in a drive unit for an electric vehicle and drive unit for an electric vehicle
WO2021100896A1 (en) * 2019-11-19 2021-05-27 박진환 Sensor authentication-based data collection system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011869A (en) * 2002-06-11 2004-01-15 Nissan Motor Co Ltd Functional diagnostic method for oil temperature sensor for automatic transmission
JP2010007530A (en) * 2008-06-25 2010-01-14 Hitachi Ltd Temperature sensor diagnostic device
JP2010174941A (en) * 2009-01-28 2010-08-12 Hitachi Constr Mach Co Ltd Lubricating oil cooling device for traveling speed reduction gear
JP2014075867A (en) * 2012-10-03 2014-04-24 Ntn Corp Control device for electric vehicle
JP2015142415A (en) * 2014-01-28 2015-08-03 Ntn株式会社 in-wheel motor drive device
JP2016089797A (en) * 2014-11-11 2016-05-23 富士重工業株式会社 Temperature sensor abnormality diagnosis device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011869A (en) * 2002-06-11 2004-01-15 Nissan Motor Co Ltd Functional diagnostic method for oil temperature sensor for automatic transmission
JP2010007530A (en) * 2008-06-25 2010-01-14 Hitachi Ltd Temperature sensor diagnostic device
JP2010174941A (en) * 2009-01-28 2010-08-12 Hitachi Constr Mach Co Ltd Lubricating oil cooling device for traveling speed reduction gear
JP2014075867A (en) * 2012-10-03 2014-04-24 Ntn Corp Control device for electric vehicle
JP2015142415A (en) * 2014-01-28 2015-08-03 Ntn株式会社 in-wheel motor drive device
JP2016089797A (en) * 2014-11-11 2016-05-23 富士重工業株式会社 Temperature sensor abnormality diagnosis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220266692A1 (en) * 2021-02-24 2022-08-25 Hyundai Motor Company Apparatus and method for diagnosing damage to drive-train hardware of vehicle
US11642963B2 (en) * 2021-02-24 2023-05-09 Hyundai Motor Company Apparatus and method for diagnosing damage to drive-train hardware of vehicle

Also Published As

Publication number Publication date
JP2018159625A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US20180109222A1 (en) Motor drive device
JP6113455B2 (en) On-vehicle power control device cooling system and abnormality diagnosis method thereof
US8701803B2 (en) Diagnostic apparatus and method for motor
US9701204B2 (en) In-wheel motor drive device
JP5705598B2 (en) Motor diagnosis method
EP1826058A2 (en) Controller for an electric four-wheel-drive vehicle
WO2018173936A1 (en) Abnormality diagnosis device
CN106716709B (en) Cooling device for battery
KR101724508B1 (en) Limp home mode drive method for hybrid electric vehicle
US20160204679A1 (en) Wheel drive device
US10855219B2 (en) Drive device
JP2014241720A (en) Diagnostic device of driving motor for electric automobile
JP6951090B2 (en) Drive control device
WO2015093381A1 (en) Electric vehicle abnormality detection device
WO2014168092A1 (en) In-wheel motor drive device
CN103404023A (en) Electric automobile
JP2013104532A (en) In-wheel motor vehicle driving device
JP5785004B2 (en) Motor drive device
JP2012075293A (en) Motor controller
JP6087399B2 (en) Motor drive device
JP6729328B2 (en) Motor controller
JP3931833B2 (en) Electric vehicle drive control device, electric vehicle drive control method, and program thereof
CN113196030B (en) Method for monitoring at least one bearing of a motor vehicle and motor vehicle
CN111491821B (en) Drive control device for motor-equipped vehicle
JP2019118190A (en) Abnormality diagnosis device for inverter, inverter device and electric vehicle with the inverter device mounted thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772146

Country of ref document: EP

Kind code of ref document: A1