JP2015062871A - Solid particle dispersion and device - Google Patents

Solid particle dispersion and device Download PDF

Info

Publication number
JP2015062871A
JP2015062871A JP2013198687A JP2013198687A JP2015062871A JP 2015062871 A JP2015062871 A JP 2015062871A JP 2013198687 A JP2013198687 A JP 2013198687A JP 2013198687 A JP2013198687 A JP 2013198687A JP 2015062871 A JP2015062871 A JP 2015062871A
Authority
JP
Japan
Prior art keywords
solid fine
dispersant
fine particle
particles
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013198687A
Other languages
Japanese (ja)
Inventor
大輔 植松
daisuke Uematsu
大輔 植松
亮真 中山
Ryoma Nakayama
亮真 中山
由理 齊藤
Yuri Saito
由理 齊藤
賢太郎 森
Kentaro Mori
賢太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2013198687A priority Critical patent/JP2015062871A/en
Publication of JP2015062871A publication Critical patent/JP2015062871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Colloid Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase dispersibility of solid particles without the surface modification of the solid particles.SOLUTION: A solid particle dispersion according to an embodiment comprises a dispersion medium, a solid particle in which acid points and basic points coexist on the surface, a first dispersant having only one of an acidic adsorptive group or a basic adsorptive group, and a second dispersant having both of an acidic adsorptive group and a basic adsorptive group.

Description

本発明は、固体微粒子分散体及びデバイスに関する。   The present invention relates to a solid fine particle dispersion and a device.

ニッケル(Ni)、白金(Pt)などの金属単体粒子や金属酸化物粒子などの固体微粒子を、溶媒中に分散させることにより、インクジェット印刷などで基材上に配線や電極の形成を可能とした導電性インクが提案されている(例えば特許文献1、2参照)。この種の導電性インクは、印刷形成される導体について所望の導電性を確保するために、固体微粒子を溶媒中に安定的に分散させることが求められる。   By dispersing solid fine particles such as single metal particles such as nickel (Ni) and platinum (Pt) and metal oxide particles in a solvent, wiring and electrodes can be formed on a substrate by inkjet printing or the like. Conductive inks have been proposed (see, for example, Patent Documents 1 and 2). This type of conductive ink is required to stably disperse solid fine particles in a solvent in order to ensure desired conductivity for a conductor to be printed.

そこで、従来の導電性インクは、酸点又は塩基点のいずれか一方に表面の物性を統一させた固体微粒子が得られるように、例えば固体微粒子の表面改質などを行い、さらに酸点又は塩基点の一方に対応した吸着基を持つ分散剤を添加することで、固体微粒子の分散性の改善を図っている。   Therefore, the conventional conductive ink is subjected to surface modification of the solid fine particles, for example, so as to obtain solid fine particles whose surface properties are unified at either the acid point or the base point, and further, the acid point or the base point. The dispersibility of the solid fine particles is improved by adding a dispersant having an adsorbing group corresponding to one of the points.

特表2008−513565号公報Special table 2008-513565 gazette 特開2012−216425号公報JP 2012-216425 A

ところで、酸点と塩基点とが表面に混在する固体微粒子は、酸点又は塩基点の一方に対応した吸着基を持つ分散剤を溶媒中に添加した場合、粒子表面には分散剤が吸着されない領域が存在することになる。この際、固体微粒子同士は、分散剤による分散効果が十分に得られず凝集するおそれがある。
塩基点に吸着する酸性吸着基を有する分散剤を用いて例示すると、固体微粒子表面の塩基点に対して分散剤は選択的に吸着するが、酸点に対しては通常吸着しない。このとき、粒子表面に分散剤が吸着されない領域が存在するため、当該領域において固体粒子間の分子間力が働き、その結果、固体微粒子同士が凝集するおそれがある。
By the way, in the case of solid fine particles in which acid points and base points are mixed on the surface, when a dispersant having an adsorbing group corresponding to one of acid points or base points is added to the solvent, the dispersant is not adsorbed on the particle surface. There will be an area. At this time, the solid fine particles may not be sufficiently dispersed by the dispersant and may aggregate.
When exemplified using a dispersing agent having an acidic adsorbing group that adsorbs to a base point, the dispersing agent selectively adsorbs to the base point on the surface of the solid fine particles, but usually does not adsorb to the acid point. At this time, since there is a region where the dispersant is not adsorbed on the particle surface, an intermolecular force between the solid particles acts in the region, and as a result, the solid fine particles may aggregate.

本発明は、上記課題を解決するためになされたものであり、酸点と塩基点とが表面に混在する固体微粒子の表面改質などを行うことなく固体微粒子の分散性を高めることができる固体微粒子分散体及びデバイスの提供を目的とする。   The present invention has been made in order to solve the above-described problem, and a solid that can improve the dispersibility of solid fine particles without modifying the surface of the solid fine particles in which acid points and base points are mixed on the surface. An object is to provide a fine particle dispersion and a device.

本発明の一態様である固体微粒子分散体は、分散媒と、酸点と塩基点とが表面に混在する固体微粒子と、酸性吸着基又は塩基性吸着基のいずれか一方のみを有する第1分散剤と、前記酸性吸着基と前記塩基性吸着基との両方を有する第2分散剤と、を含有することを特徴とする。   The solid fine particle dispersion which is one embodiment of the present invention is a first dispersion having a dispersion medium, solid fine particles in which acid points and base points are mixed on the surface, and either one of an acidic adsorption group or a basic adsorption group. And a second dispersant having both the acidic adsorbing group and the basic adsorbing group.

この固体微粒子分散体は、固体微粒子表面の酸点と塩基点とのそれぞれに対して、吸着可能な第2分散剤が固体微粒子表面に吸着されることになる。塩基点に吸着する酸性吸着基を有する第1分散剤を用いて例示すると、固体微粒子表面の塩基点に対して第1分散剤は選択的に吸着し、かつ、酸点に吸着した第2分散剤の塩基性吸着基に対しても第1分散剤は吸着し得る。つまり、第1分散剤が吸着されない領域に対しても、第2分散剤が介在することで吸着可能となる。これにより、固体微粒子表面に対して全体的に第1分散剤を吸着させることが可能となり、第1分散剤の立体障害による分散作用を有効に機能させて固体微粒子を分散させることができる。また、第2分散剤によって粒子表面上の分散剤が吸着されない領域が減少するに伴い、固体微粒子間の分子間力が弱まることによっても分散性を高めることができる。したがって、この固体微粒子分散体によれば、別途、固体微粒子の表面改質などを行うことなく、分散媒中における固体微粒子の分散性を向上させることができる。   In the solid fine particle dispersion, the adsorbable second dispersant is adsorbed on the surface of the solid fine particle with respect to each of the acid point and base point on the surface of the solid fine particle. When exemplified using the first dispersant having an acidic adsorbing group that adsorbs to the base point, the first dispersant selectively adsorbs to the base point on the surface of the solid fine particles, and the second dispersion adsorbs to the acid point. The first dispersant can also adsorb to the basic adsorbing group of the agent. In other words, even in the region where the first dispersant is not adsorbed, the second dispersant is interposed so that it can be adsorbed. As a result, the first dispersant can be adsorbed as a whole on the surface of the solid fine particles, and the solid fine particles can be dispersed by effectively functioning the dispersing action due to the steric hindrance of the first dispersant. Dispersibility can also be improved by reducing the intermolecular force between the solid fine particles as the area where the dispersant on the particle surface is not adsorbed by the second dispersant decreases. Therefore, according to the solid fine particle dispersion, the dispersibility of the solid fine particles in the dispersion medium can be improved without separately performing surface modification of the solid fine particles.

ここで、上記した固体微粒子分散体に含まれる固体微粒子は、金属単体粒子、金属合金粒子及びセラミックス粒子のうちから選ばれた1種以上の粒子からなる。また、固体微粒子は、金属単体粒子及び/又は非錯体化合物粒子で構成されている。言い換えれば、本発明で適用する固体微粒子は、顔料インクなどに用いられる錯体化合物粒子を含まないものである。   Here, the solid fine particles included in the solid fine particle dispersion are composed of one or more kinds of particles selected from simple metal particles, metal alloy particles, and ceramic particles. The solid fine particles are composed of simple metal particles and / or non-complex compound particles. In other words, the solid fine particles applied in the present invention do not contain complex compound particles used for pigment inks and the like.

また、このような固体微粒子分散体は、スラリー(懸濁液)状のもの、液状のもの、ペースト状のものなど、様々な状態のものを含む。例えばこの固体微粒子分散体は、インクジェット用インクとして適用することなどが可能である。   Such solid fine particle dispersions include those in various states such as slurry (suspension), liquid, and paste. For example, the solid fine particle dispersion can be applied as an inkjet ink.

また、第1分散剤は、第2分散剤よりも分子量が大きいため、立体障害による分散作用を固体微粒子に付与することができる。   Further, since the first dispersant has a molecular weight larger than that of the second dispersant, it is possible to impart a dispersing action due to steric hindrance to the solid fine particles.

さらに、本発明の一態様であるデバイスは、前述した固体微粒子分散体を用いてパターン状に形成された固体微粒子焼結膜を基材上に備えたことを特徴とする。このデバイスによれば、例えば固体微粒子が導電性を有し固体微粒子焼結膜が導体パターンなどとして構成されている場合、上記したように固体微粒子の分散性が高いことから、導体パターンから良好な導通性能が得られ、これにより電気的な接続信頼性を向上させることができる。   Furthermore, a device which is one embodiment of the present invention is characterized in that a solid fine particle sintered film formed in a pattern using the solid fine particle dispersion described above is provided on a substrate. According to this device, for example, when the solid fine particles have conductivity and the solid fine particle sintered film is configured as a conductor pattern, the dispersibility of the solid fine particles is high as described above. Performance can be obtained, thereby improving electrical connection reliability.

本発明によれば、固体微粒子の表面改質などを行うことなく固体微粒子の分散性を高めることが可能な固体微粒子分散体及びデバイスを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the solid fine particle dispersion and device which can improve the dispersibility of a solid fine particle, without performing the surface modification of a solid fine particle, etc. can be provided.

本発明の実施形態に係る固体微粒子分散体の構成を模式的に示す図。The figure which shows typically the structure of the solid fine particle dispersion which concerns on embodiment of this invention. 比較例1の固体微粒子分散体の構成を模式的に示す図。The figure which shows the structure of the solid fine particle dispersion of the comparative example 1 typically. 比較例2の固体微粒子分散体の構成を模式的に示す図。The figure which shows the structure of the solid fine particle dispersion of the comparative example 2 typically. 比較例1、2とは異なる他の固体微粒子分散体の構成を模式的に示す図。The figure which shows typically the structure of the other solid fine particle dispersion different from the comparative examples 1 and 2. FIG. 本発明の実施形態に係るデバイスを示す断面図。Sectional drawing which shows the device which concerns on embodiment of this invention. 固体微粒子の分散性を評価するための沈降試験の方法を示す図。The figure which shows the method of the sedimentation test for evaluating the dispersibility of a solid microparticle. 図6の方法による沈降試験の結果を示す図。The figure which shows the result of the sedimentation test by the method of FIG.

以下、本発明の実施の形態を図面に基づき説明する。
図1に示すように、本実施形態に係る固体微粒子分散体10は、分散媒、固体微粒子7、第1分散剤3、第2分散剤5、バインダなどを主に含有する。分散媒は、水系分散媒であってもよいし、また、非水系分散媒であってもよく、例えば有機溶媒(有機溶剤)などを例示することができる。バインダとしては、分散媒中に溶ける例えば高分子の固体粉末材料などが挙げられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the solid fine particle dispersion 10 according to the present embodiment mainly contains a dispersion medium, solid fine particles 7, a first dispersant 3, a second dispersant 5, a binder, and the like. The dispersion medium may be an aqueous dispersion medium or a non-aqueous dispersion medium, and examples thereof include an organic solvent (organic solvent). Examples of the binder include, for example, a polymer solid powder material that dissolves in the dispersion medium.

固体微粒子7は、顔料インクなどに用いられる錯体化合物を含まない粒子であり、金属単体粒子、金属合金粒子及びセラミックス粒子のうちの1種以上の粒子から構成されている。この固体微粒子7としては、例えば、白金(Pt)粒子やニッケル(Ni)粒子などの金属単体粒子や、酸化ジルコニウム(ジルコニア/ZrO2)粒子などのセラミックス粒子を挙げることができる。 The solid fine particles 7 are particles that do not contain a complex compound used for pigment inks and the like, and are composed of one or more kinds of particles among simple metal particles, metal alloy particles, and ceramic particles. Examples of the solid fine particles 7 include single metal particles such as platinum (Pt) particles and nickel (Ni) particles, and ceramic particles such as zirconium oxide (zirconia / ZrO 2 ) particles.

このような固体微粒子分散体10は、インクジェット方式で印刷を行うインクジェット用インクとして適用することができ、例えば導体パターンを基板上にパターン印刷することなどを可能とする。   Such a solid fine particle dispersion 10 can be applied as an ink-jet ink for printing by an ink-jet method. For example, it is possible to pattern-print a conductor pattern on a substrate.

ここで、固体微粒子7、第1分散剤3及び第2分散剤5の構成について詳述する。図1に示すように、固体微粒子7は、特に表面改質などの処理を施しておらず、粒子表面に酸点7aと塩基点7bとが混在する表面物性を有している。   Here, the configuration of the solid fine particles 7, the first dispersant 3, and the second dispersant 5 will be described in detail. As shown in FIG. 1, the solid fine particles 7 are not particularly subjected to a treatment such as surface modification, and have surface physical properties in which acid points 7a and base points 7b are mixed on the particle surface.

図1に示すように、第1分散剤3は、いわゆる立体障害を生じさせる相溶性基3bを備えている。さらに、この第1分散剤3は、酸性吸着基又は塩基性吸着基のいずれか一方のみを有している。図1の例では、第1分散剤3は、酸性吸着基3aを備えている。第2分散剤5は、図1に示すように、相溶性基5cを備えている。さらに、この第2分散剤5は、両性分散剤であって、酸性吸着基5aと塩基性吸着基5bとの両方を有している。   As shown in FIG. 1, the 1st dispersing agent 3 is equipped with the compatible group 3b which produces what is called a steric hindrance. Furthermore, this 1st dispersing agent 3 has only any one of an acidic adsorption group or a basic adsorption group. In the example of FIG. 1, the 1st dispersing agent 3 is provided with the acidic adsorption group 3a. The 2nd dispersing agent 5 is provided with the compatible group 5c, as shown in FIG. Further, the second dispersant 5 is an amphoteric dispersant and has both an acidic adsorbing group 5a and a basic adsorbing group 5b.

したがって、本実施形態の固体微粒子分散体10は、固体微粒子7の表面の酸点7aと塩基点7bとのそれぞれに対して、第1分散剤3及び第2分散剤5のうちの少なくとも一方が吸着されることになる。具体的には、図1に示すように、固体微粒子7の表面の酸点7aには、第2分散剤5の塩基性吸着基5bが吸着される。一方、固体微粒子7の表面の塩基点7bには、第1分散剤3の酸性吸着基3aと第2分散剤5の酸性吸着基5aとがそれぞれ吸着される。さらには、第2分散剤5の塩基性吸着基5bに対し、第1分散剤3の酸性吸着基3aが吸着される。   Therefore, in the solid fine particle dispersion 10 of the present embodiment, at least one of the first dispersant 3 and the second dispersant 5 is different from the acid point 7a and the base point 7b on the surface of the solid fine particle 7, respectively. Will be adsorbed. Specifically, as shown in FIG. 1, the basic adsorption group 5 b of the second dispersant 5 is adsorbed on the acid sites 7 a on the surface of the solid fine particles 7. On the other hand, the acidic adsorption groups 3a of the first dispersant 3 and the acidic adsorption groups 5a of the second dispersant 5 are adsorbed on the base points 7b on the surface of the solid fine particles 7, respectively. Furthermore, the acidic adsorption group 3 a of the first dispersant 3 is adsorbed on the basic adsorption group 5 b of the second dispersant 5.

これにより、固体微粒子分散体10は、固体微粒子7の表面に対して全体的に第1分散剤を吸着させることが可能となり、第1分散剤3の立体障害による分散作用を有効に機能させて固体微粒子7を分散させることができる。また、第2分散剤5によって粒子表面上の分散剤が吸着されない領域が減少するに伴い、固体微粒子7間の分子間力が弱まることによっても分散性を高めることができる。つまり、固体微粒子分散体10は、粒子表面の露出が極力抑えられて表面全体が分散剤で覆われるため、固体微粒子7同士の凝集を抑制することができる。   As a result, the solid fine particle dispersion 10 can adsorb the first dispersant to the surface of the solid fine particles 7 as a whole, and the dispersing action due to the steric hindrance of the first dispersant 3 is effectively functioned. The solid fine particles 7 can be dispersed. In addition, the dispersibility can be enhanced by a decrease in the intermolecular force between the solid fine particles 7 as the area where the dispersant on the particle surface is not adsorbed by the second dispersant 5 decreases. That is, the solid fine particle dispersion 10 can suppress the aggregation of the solid fine particles 7 because the exposure of the particle surface is suppressed as much as possible and the entire surface is covered with the dispersant.

これに対して、図2に示すように、例えば第1分散剤3だけを含有させた比較例1の固体微粒子分散体20は、固体微粒子7の表面の酸点7aには、分散剤が吸着されないため、酸点7aにおいて固体微粒子7間の分子間力が働き、その結果、固体微粒子7同士の凝集が懸念される。また、図3に示すように、例えば第2分散剤5(両性分散剤)だけを含有させた比較例2の固体微粒子分散体30は、固体微粒子7の表面の酸点7a及び塩基点7bのそれぞれに分散剤が吸着されるものの、一般に分子量が比較的小さい両性分散剤だけでは、所望する立体障害効果を得ることが難しく、結果的に固体微粒子同士の凝集が生じるおそれがある。   On the other hand, as shown in FIG. 2, for example, in the solid fine particle dispersion 20 of Comparative Example 1 containing only the first dispersant 3, the dispersant is adsorbed on the acid sites 7 a on the surface of the solid fine particles 7. Therefore, an intermolecular force between the solid fine particles 7 works at the acid point 7a, and as a result, there is a concern about aggregation of the solid fine particles 7. Further, as shown in FIG. 3, for example, the solid fine particle dispersion 30 of Comparative Example 2 containing only the second dispersant 5 (amphoteric dispersant) has an acid point 7a and a base point 7b on the surface of the solid fine particle 7. Although the dispersant is adsorbed on each of them, it is generally difficult to obtain a desired steric hindrance effect only with an amphoteric dispersant having a relatively small molecular weight, and as a result, aggregation of solid fine particles may occur.

なお、図4に示すように、表面改質などによって固体微粒子47の表面を塩基点47bに統一し、さらに第1分散剤3だけを含有させた他の例の固体微粒子分散体40は、固体微粒子47の表面全体に分散剤が吸着されて固体微粒子同士の凝集を抑制できるものの、表面改質などの処理が必要になることから材料コストの増大を招く結果となる。   As shown in FIG. 4, the solid fine particle dispersion 40 of another example in which the surface of the solid fine particles 47 is unified at the base point 47b by surface modification or the like and further contains only the first dispersant 3 is solid Although the dispersing agent is adsorbed on the entire surface of the fine particles 47 and aggregation of the solid fine particles can be suppressed, a treatment such as surface modification is required, resulting in an increase in material cost.

これに対して、本実施形態の固体微粒子分散体10によれば、固体微粒子7の表面改質などを行うことなく、前述したように、分散媒中における固体微粒子7の分散性を向上させることができる。   On the other hand, according to the solid fine particle dispersion 10 of the present embodiment, as described above, the dispersibility of the solid fine particles 7 in the dispersion medium can be improved without modifying the surface of the solid fine particles 7. Can do.

次に、図5に基づき本実施形態に係るデバイス50について説明する。図5に示すように、デバイス50は、既述した固体微粒子分散体10を用いてパターン形成された固体微粒子焼結膜としての導体パターン54、55を、基板(基材)52上に備えている。   Next, the device 50 according to the present embodiment will be described with reference to FIG. As shown in FIG. 5, the device 50 includes conductor patterns 54 and 55 as solid fine particle sintered films patterned using the solid fine particle dispersion 10 described above on a substrate (base material) 52. .

デバイス50の一例としては、配線基板上に半導体素子を電子部品として搭載した半導体デバイスなどを例示できる。この半導体デバイスとしては、例えば、フリップチップパッケージ、チップスケールパッケージ、マルチチップパッケージ、アンテナスイッチモジュール、ミキサーモジュール、PLLモジュール、マルチチップモジュールなどを挙げることができる。   An example of the device 50 is a semiconductor device in which a semiconductor element is mounted as an electronic component on a wiring board. Examples of the semiconductor device include a flip chip package, a chip scale package, a multichip package, an antenna switch module, a mixer module, a PLL module, and a multichip module.

図5に示すように、デバイス50の製法としては、例えばセラミックス製の基板52上に、まず、厚さ0.5μm程度の導体パターン54を、上記した固体微粒子分散体を用いて例えばインクジェット印刷により形成する。次に、導電パターン54の表面に、触媒成分を付着させた後、無電解銅めっきを施し、めっき処理された導体パターン54上に例えば厚さ25μmの導電パターン55を、上記固体微粒子分散体を用いてインクジェット印刷などによりパターン形成する。   As shown in FIG. 5, as a method of manufacturing the device 50, for example, a conductive pattern 54 having a thickness of about 0.5 μm is first formed on a ceramic substrate 52 by, for example, ink jet printing using the solid fine particle dispersion described above. Form. Next, after a catalyst component is attached to the surface of the conductive pattern 54, electroless copper plating is performed, and the conductive pattern 55 having a thickness of, for example, 25 μm is formed on the plated conductive pattern 54. The pattern is formed by ink jet printing or the like.

この後、焼成処理を行う。ここで、固体微粒子として白金粒子と共に固体微粒子分散体中に含有させている酸化ジルコニウム粒子は、焼成時における白金粒子同士の凝集を抑制するためや、導電パターン54、55の焼成時の収縮率を上記した例えばセラミックス製の基板52の収縮率に近付けるために含有されている。   Then, a baking process is performed. Here, the zirconium oxide particles contained in the solid fine particle dispersion together with the platinum particles as solid fine particles suppress the aggregation of the platinum particles at the time of firing, or the shrinkage rate at the time of firing the conductive patterns 54 and 55. For example, it is contained in order to approach the shrinkage rate of the ceramic substrate 52 described above.

続いて、固体微粒子焼結膜となった導体パターン54、55を備える基板52上に、半導体素子などの電子部品を搭載し、導体パターン54、55と電気的に接続する。さらにこの後、パッケージングなどを行うことによって、デバイス50を作製する。   Subsequently, an electronic component such as a semiconductor element is mounted on the substrate 52 including the conductor patterns 54 and 55 that are solid fine particle sintered films, and is electrically connected to the conductor patterns 54 and 55. Thereafter, the device 50 is manufactured by packaging and the like.

このようにして作製されたデバイス50は、導体パターン54、55の材料として用いた固体微粒子分散体10中における固体微粒子7の分散性が高められている。したがって、デバイス50によれば、導体パターン54、55から優れた導通性能が得られ、これによって電気的な接続信頼性を確保することができる。   In the device 50 thus manufactured, the dispersibility of the solid fine particles 7 in the solid fine particle dispersion 10 used as the material of the conductor patterns 54 and 55 is enhanced. Therefore, according to the device 50, excellent conduction performance can be obtained from the conductor patterns 54 and 55, thereby ensuring electrical connection reliability.

以上、本発明を実施の形態により具体的に説明したが、本発明は、この実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば上述した実施形態では、固体微粒子分散体をインクジェット方式でパターン印刷する場合について例示したが、これに代えて、ディスペンサ方式でパターン形成する場合においても当該固体微粒子分散体を適用してもよい。   Although the present invention has been specifically described above with reference to the embodiment, the present invention is not limited to this embodiment, and various modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the case where the solid fine particle dispersion is subjected to pattern printing by the ink jet method has been exemplified. However, instead of this, the solid fine particle dispersion may be applied also when the pattern is formed by the dispenser method.

[実施例]
次に、本発明の実施例を、前述した図1〜図3に加え、図6、図7に基づき説明する。ここで、図6は、固体微粒子分散体中の固体微粒子の分散性を評価するための沈降試験の方法を示すものである。具体的には、図6に示すように、評価対象の固体微粒子分散体を栓付きのメスシリンダーに投入し、初期(0hr)の時点からの時間の計測を開始する。時間が経過すると、固形分が沈降して上澄みが透明になるので、x時間(xhr)後において、メスシリンダー中の固体微粒子分散体の最底面から上澄みを含む最上面までの高さを確認して固体微粒子分散体の総量Aを求める。さらに、この時点において、沈降した固形分の上面(上澄みの底面)から上澄みの上面までの高さを確認して上澄み量Bを求める。
[Example]
Next, an embodiment of the present invention will be described with reference to FIGS. 6 and 7 in addition to FIGS. Here, FIG. 6 shows a sedimentation test method for evaluating the dispersibility of the solid fine particles in the solid fine particle dispersion. Specifically, as shown in FIG. 6, the solid fine particle dispersion to be evaluated is put into a measuring cylinder with a stopper, and measurement of the time from the initial time point (0 hr) is started. As time passes, the solids settle and the supernatant becomes transparent. After x hours (xhr), the height from the bottom surface of the solid fine particle dispersion in the graduated cylinder to the top surface including the supernatant is confirmed. The total amount A of the solid fine particle dispersion is determined. Furthermore, at this time, the height from the upper surface (the bottom surface of the supernatant) of the settled solid content to the upper surface of the supernatant is confirmed to determine the amount B of the supernatant.

このようにして、x時間後の総量Aに対する上澄み量Bの占める割合(B/A)を検出することで、固体微粒子分散体中の固形分(固体微粒子)の分散性を定量的に求めることが可能となる。つまり、固体微粒子分散体中において、固体微粒子の分散性が低い場合、上澄み量Bの占める割合は多くなり、一方、固体微粒子の分散性が高い場合、上澄み量Bの占める割合は少なくなる。   Thus, the dispersibility of the solid content (solid fine particles) in the solid fine particle dispersion is quantitatively determined by detecting the ratio (B / A) of the supernatant amount B to the total amount A after x hours. Is possible. In other words, in the solid fine particle dispersion, when the dispersibility of the solid fine particles is low, the ratio of the supernatant amount B increases. On the other hand, when the dispersibility of the solid fine particles is high, the ratio of the supernatant amount B decreases.

そこで、本実施例では、総量Aに対する上澄み量Bの占める割合が、例えば30%未満のものを良品(OK品)として判定し、30%以上のものを不良品(NG品)として判定した。なお、メスシリンダーの底に沈殿物を目視で確認できる固体微粒子分散体は、不良品(NG品)として判定した。   Therefore, in this example, the proportion of the supernatant amount B with respect to the total amount A was determined to be, for example, less than 30% as a non-defective product (OK product), and 30% or more was determined to be a defective product (NG product). In addition, the solid fine particle dispersion which can confirm a deposit visually on the bottom of a graduated cylinder was determined as inferior goods (NG goods).

また、図7は、図1に示した実施例としての固体微粒子分散体10と、図2に示した比較例1の固体微粒子分散体20と、図3に示した比較例2の固体微粒子分散体30と、を評価の対象として、図6の方法による沈降試験の結果を表したものである。ここで、実施例の固体微粒子分散体10の成分は、固体微粒子分散体10の全質量に対して、例えば、白金粒子を28質量%、酸化ジルコニウム粒子を4質量%(固体微粒子分散体中の白金粒子の質量に対して例えば14%)、第1分散剤3を0.5質量%、第2分散剤5を0.5質量%、バインダを1質量%、非水系分散媒を66質量%とした。   7 shows the solid fine particle dispersion 10 as the example shown in FIG. 1, the solid fine particle dispersion 20 of the comparative example 1 shown in FIG. 2, and the solid fine particle dispersion of the comparative example 2 shown in FIG. FIG. 7 shows the result of a sedimentation test by the method of FIG. 6 with the body 30 as an evaluation target. Here, the components of the solid fine particle dispersion 10 of the example are, for example, 28 mass% of platinum particles and 4 mass% of zirconium oxide particles with respect to the total mass of the solid fine particle dispersion 10 (in the solid fine particle dispersion). 14% with respect to the mass of the platinum particles), 0.5% by mass of the first dispersant 3, 0.5% by mass of the second dispersant 5, 1% by mass of the binder, and 66% by mass of the non-aqueous dispersion medium. It was.

一方、比較例1の固体微粒子分散体20の成分は、実施例の固体微粒子分散体10の成分に対して、第1分散剤3及び第2分散剤5の添加量を変更したものであって、具体的には、第1分散剤3を0.5質量%から1質量%に増加させ、かつ第2分散剤5を0.5質量%から0質量%に変更した(第2分散剤5を添加しなかった)。さらに、比較例2の固体微粒子分散体30の成分は、実施例の固体微粒子分散体10の成分に対して、第2分散剤5及び第1分散剤3の添加量を変更したものであって、具体的には、第2分散剤5を0.5質量%から1質量%に増加させ、かつ第1分散剤3を0.5質量%から0質量%に変更した(第1分散剤3を添加しなかった)。   On the other hand, the component of the solid fine particle dispersion 20 of Comparative Example 1 is obtained by changing the addition amount of the first dispersant 3 and the second dispersant 5 with respect to the component of the solid fine particle dispersion 10 of the example. Specifically, the first dispersant 3 was increased from 0.5 mass% to 1 mass%, and the second dispersant 5 was changed from 0.5 mass% to 0 mass% (second dispersant 5 Was not added). Further, the component of the solid fine particle dispersion 30 of Comparative Example 2 is obtained by changing the addition amount of the second dispersant 5 and the first dispersant 3 with respect to the component of the solid fine particle dispersion 10 of the example. Specifically, the second dispersant 5 was increased from 0.5 mass% to 1 mass%, and the first dispersant 3 was changed from 0.5 mass% to 0 mass% (first dispersant 3 Was not added).

沈降試験の結果、図7に示すように、第1分散剤3及び第2分散剤5の両方を含有させた実施例の固体微粒子分散体10は、良品(OK品)となり、一方、第1分散剤3だけを含有させた比較例1の固体微粒子分散体20と第2分散剤5だけを含有させた比較例2の固体微粒子分散体30は、ともに不良品(NG品)となった。これにより、酸点7aと塩基点7bとが表面に混在する固体微粒子7の分散性は、分散媒中に第1分散剤3と第2分散剤(両性分散剤)5との両方を添加することによって、向上することが明らかとなった。   As a result of the sedimentation test, as shown in FIG. 7, the solid fine particle dispersion 10 of the example containing both the first dispersant 3 and the second dispersant 5 is a non-defective product (OK product), while the first Both the solid fine particle dispersion 20 of Comparative Example 1 containing only the dispersant 3 and the solid fine particle dispersion 30 of Comparative Example 2 containing only the second dispersant 5 were defective products (NG products). Thereby, the dispersibility of the solid fine particles 7 in which the acid points 7a and the base points 7b are mixed on the surface is obtained by adding both the first dispersant 3 and the second dispersant (amphoteric dispersant) 5 to the dispersion medium. It became clear that it improved.

3…第1分散剤、3a,5a…酸性吸着基、3b,5c…相溶性基、5…第2分散剤、5b…塩基性吸着基、10…固体微粒子分散体、7…固体微粒子、7a…酸点、7b…塩基点、50…デバイス、52…基板、54,55…導体パターン。   3 ... 1st dispersing agent, 3a, 5a ... acidic adsorption group, 3b, 5c ... compatible group, 5 ... 2nd dispersing agent, 5b ... basic adsorption group, 10 ... solid fine particle dispersion, 7 ... solid fine particle, 7a ... acid point, 7b ... base point, 50 ... device, 52 ... substrate, 54, 55 ... conductor pattern.

Claims (5)

分散媒と、
酸点と塩基点とが表面に混在する固体微粒子と、
酸性吸着基又は塩基性吸着基のいずれか一方のみを有する第1分散剤と、
前記酸性吸着基と前記塩基性吸着基との両方を有する第2分散剤と、
を含有することを特徴とする固体微粒子分散体。
A dispersion medium;
Solid fine particles in which acid points and base points are mixed on the surface;
A first dispersant having only one of an acidic adsorbing group and a basic adsorbing group;
A second dispersant having both the acidic adsorbing group and the basic adsorbing group;
A solid fine particle dispersion comprising:
前記固体微粒子は、金属単体粒子、金属合金粒子及びセラミック粒子のうちの1種以上の粒子からなること特徴とする請求項1に記載の固体微粒子分散体。   2. The solid fine particle dispersion according to claim 1, wherein the solid fine particles include one or more kinds of particles selected from metal simple particles, metal alloy particles, and ceramic particles. 前記固体微粒子は、金属単体粒子及び/又は非錯体化合物粒子で構成されていることを特徴とする請求項1に記載の固体微粒子分散体。   The solid fine particle dispersion according to claim 1, wherein the solid fine particles are composed of single metal particles and / or non-complex compound particles. インクジェット用インクであることを特徴とする請求項1乃至3のいずれかに記載の固体微粒子分散体。   4. The solid fine particle dispersion according to claim 1, wherein the solid fine particle dispersion is an inkjet ink. 請求項1乃至4のいずれかに記載の固体微粒子分散体を用いてパターン状に形成された固体微粒子焼結膜を基材上に備えたことを特徴とするデバイス。   A device comprising a solid fine particle sintered film formed in a pattern using the solid fine particle dispersion according to claim 1 on a base material.
JP2013198687A 2013-09-25 2013-09-25 Solid particle dispersion and device Pending JP2015062871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013198687A JP2015062871A (en) 2013-09-25 2013-09-25 Solid particle dispersion and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013198687A JP2015062871A (en) 2013-09-25 2013-09-25 Solid particle dispersion and device

Publications (1)

Publication Number Publication Date
JP2015062871A true JP2015062871A (en) 2015-04-09

Family

ID=52831250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198687A Pending JP2015062871A (en) 2013-09-25 2013-09-25 Solid particle dispersion and device

Country Status (1)

Country Link
JP (1) JP2015062871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210135300A (en) 2019-03-11 2021-11-12 가부시키가이샤 노리타케 캄파니 리미티드 Conductive Inkjet Ink
US12139628B2 (en) 2019-03-11 2024-11-12 Noritake Co., Limited Electroconductive inkjet ink

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210135300A (en) 2019-03-11 2021-11-12 가부시키가이샤 노리타케 캄파니 리미티드 Conductive Inkjet Ink
US12139628B2 (en) 2019-03-11 2024-11-12 Noritake Co., Limited Electroconductive inkjet ink

Similar Documents

Publication Publication Date Title
CN104715923B (en) Multilayer ceramic capacitor and its manufacturing method and installing plate
TWI665165B (en) Silver fine particle disperant, silver fine particle and production method thereof and bonding composition
Schneider et al. Highly conductive, printable pastes from capillary suspensions
US8999204B2 (en) Conductive ink composition, method for manufacturing the same, and method for manufacturing conductive thin layer using the same
KR20070097055A (en) Conductive ink
CN105869704B (en) Conductive paste
JP6900278B2 (en) Silver coated alloy powder, conductive paste, electronic components and electrical equipment
CN104752054A (en) Multilayer ceramic electronic component, method of manufacturing the same, and board having the same mounted thereon
KR20100096111A (en) Copper powder for electrically conductive paste, and electrically conductive paste
US20190148030A1 (en) Process for producing highly conductive, printable pastes from capillary suspensions
WO2014155834A1 (en) Flake-shaped microparticles
US9661756B1 (en) Nano-copper pillar interconnects and methods thereof
JP5310957B2 (en) Conductive water-based ink for inkjet recording
CN107614156B (en) Copper powder and the manufacturing method for using its copper cream, conductive coating paint, conductive sheet and copper powder
US20140220238A1 (en) Hybrid materials for printing (semi-) conductive elements
JP2015062871A (en) Solid particle dispersion and device
WO2013115300A1 (en) Method for inducing conductivity in films including metal microparticles
JP2015065060A (en) Method for producing solid fine particle dispersion, solid fine particle dispersion, and device
KR102138884B1 (en) Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
JP2005183144A (en) Conductive composition and manufacturing method of same
JP2012177098A (en) Ink and device
TWI652764B (en) Wiring formation method
TWI586832B (en) Copper film forming composition, copper film forming method, copper film, wiring substrate and electronic equipment
KR102304865B1 (en) Composition for forming conductive film, conductive film, method of manufacturing plating film, plating film and electronic device
JP7249307B2 (en) Conductive composition, metallized substrate and manufacturing method thereof