JP4384484B2 - Method for producing conductive composition - Google Patents

Method for producing conductive composition Download PDF

Info

Publication number
JP4384484B2
JP4384484B2 JP2003421535A JP2003421535A JP4384484B2 JP 4384484 B2 JP4384484 B2 JP 4384484B2 JP 2003421535 A JP2003421535 A JP 2003421535A JP 2003421535 A JP2003421535 A JP 2003421535A JP 4384484 B2 JP4384484 B2 JP 4384484B2
Authority
JP
Japan
Prior art keywords
conductive material
metal
conductive
average particle
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003421535A
Other languages
Japanese (ja)
Other versions
JP2005183144A (en
Inventor
悟 竹森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2003421535A priority Critical patent/JP4384484B2/en
Priority to CN 200410082039 priority patent/CN1629984A/en
Publication of JP2005183144A publication Critical patent/JP2005183144A/en
Application granted granted Critical
Publication of JP4384484B2 publication Critical patent/JP4384484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、例えば各種電子素子の基板などに電極などの導電層を形成する導電性組成物製造方法に係り、特に比抵抗を低減できる導電性組成物製造方法に関する。 The present invention, for example, relates to a method for producing a conductive composition for forming a conductive layer, such as the such as the electrode substrate of various electronic devices, a method for producing a conductive composition capable in particular reducing the resistivity.

電子機器などに搭載される回路基板としては、エッチング処理によって電極パターンを形成するものの他に、電極パターンを印刷で形成するものがある。   As a circuit board mounted on an electronic device or the like, there is one that forms an electrode pattern by printing in addition to one that forms an electrode pattern by etching.

下記特許文献1に記載のものは、印刷で電極パターンを形成する電子部品用電極インキに関する発明である。この電極インキは、それぞれ10μm以下の異なる粒径の金属粉を所定量、水または有機溶媒中に分散させることで得られるものである。   The thing of the following patent document 1 is invention regarding the electrode ink for electronic components which forms an electrode pattern by printing. This electrode ink is obtained by dispersing predetermined amounts of metal powder having different particle diameters of 10 μm or less in water or an organic solvent.

また下記特許文献2には、回路基板の電極パターンとして設けられる導電性ペーストが記載されている。この導電性ペーストは、平均粒径が1〜100nmの金属微粒子を有機化合物で被覆して、液体中にて安定に分散させるようにしたものである。この導電性ペーストを所定の基板に印刷して所定の温度で焼結することにより電極パターンが形成される。
特開2000−331534号公報 特開2002−299833号公報
Patent Document 2 below describes a conductive paste provided as an electrode pattern of a circuit board. In this conductive paste, metal fine particles having an average particle diameter of 1 to 100 nm are coated with an organic compound and stably dispersed in a liquid. An electrode pattern is formed by printing this conductive paste on a predetermined substrate and sintering it at a predetermined temperature.
JP 2000-331534 A JP 2002-299833 A

上記特許文献1に示すものは、粒径の大きな金属粉と粒径の小さな金属粉を一緒に有機溶剤などに分散させた電極インキを形成することで、金属粉の沈殿を抑えて所定の粘度を維持するようにし、これをインキジェット装置に使用して印刷して所定の温度で加熱して焼結したときに印刷を安定にできるようにしたものである。しかし、特許文献1に記載のものでは電極パターンの微細化を進めると電極パターンが過度に発熱する問題があり、電極パターンの抵抗値を十分に低く設定する必要があるが、特許文献1に記載のものでは十分に低い抵抗値の電極パターンを得ることができず、装置の小型化を図るのが困難となる。   The above-mentioned Patent Document 1 forms an electrode ink in which a metal powder having a large particle size and a metal powder having a small particle size are dispersed together in an organic solvent, thereby suppressing precipitation of the metal powder and having a predetermined viscosity. This is used in an ink jet apparatus for printing, and when printing is performed at a predetermined temperature and sintered, printing can be stabilized. However, in the case described in Patent Document 1, there is a problem that the electrode pattern excessively generates heat when the electrode pattern is further miniaturized, and the resistance value of the electrode pattern needs to be set sufficiently low. In this case, an electrode pattern having a sufficiently low resistance value cannot be obtained, and it is difficult to reduce the size of the apparatus.

そこで、微細化を図るために特許文献2に示すように、平均粒径が1〜100nmの非常に小さい金属微粒子を所定の分散剤で被覆して有機溶媒中に分散させたものが提案されている。金属微粒子を分散剤で被覆することで、金属微粒子を有機溶媒中において安定して分散できるようにしている。しかし、電極パターンの全体を上記した金属微粒子で形成すると製造コストが高くなる問題がある。   Therefore, as shown in Patent Document 2 for the purpose of miniaturization, a very small metal fine particle having an average particle diameter of 1 to 100 nm is coated with a predetermined dispersant and dispersed in an organic solvent. Yes. By coating the metal fine particles with a dispersant, the metal fine particles can be stably dispersed in an organic solvent. However, when the entire electrode pattern is formed of the above-described metal fine particles, there is a problem that the manufacturing cost increases.

本発明は上記従来の課題を解決するものであり、低抵抗でしかもコスト的に安価な導電層を形成できる導電性組成物製造方法を提供することを目的とする。 The present invention is made to solve the conventional problems, and an object thereof is to provide a method for producing a conductive composition capable of forming a yet cost-expensive conductive layer low resistance.

本発明の導電性組成物の製造方法は、所定の粘度のバインダ樹脂に、平均粒径が2〜3μmの第1導電材と、平均粒径が0.2〜0.3μmの第2導電材と共に、平均粒径が100nm以下の金属ナノ粒子を含む金属コロイド液を含ませ、これにより所定のパターンの層を形成し、加熱焼成することにより、バインダ樹脂を硬化させると共に、前記第1導電材間の隙間に前記第2導電材を充填させ、さらに前記金属ナノ粒子を前記第1導電材と前記第2導電材の隙間に、析出させ、または凝集させることを特徴とするものである。 The method for producing a conductive composition of the present invention includes a binder resin having a predetermined viscosity, a first conductive material having an average particle size of 2 to 3 μm, and a second conductive material having an average particle size of 0.2 to 0.3 μm. In addition , a metal colloid liquid containing metal nanoparticles having an average particle diameter of 100 nm or less is included, thereby forming a layer with a predetermined pattern, and heating and baking to cure the binder resin, and the first conductive material. The gap is filled with the second conductive material, and the metal nanoparticles are further precipitated or aggregated in the gap between the first conductive material and the second conductive material .

または、所定の粘度のバインダ樹脂に、平均粒径が2〜3μmの第1導電材と、平均粒径が0.2〜0.3μmの第2導電材と共に、平均粒径が100nm以下の金属ナノ粒子を含むペースト状の金属有機化合物を含ませ、これにより所定のパターンの層を形成し、加熱焼成することにより、バインダ樹脂を硬化させると共に、前記第1導電材間の隙間に前記第2導電材を充填させ、さらに前記金属ナノ粒子を前記第1導電材と前記第2導電材の隙間に、析出させ、または凝集させることを特徴とするものである。 Alternatively , a binder resin having a predetermined viscosity, a metal having an average particle diameter of 100 nm or less, together with a first conductive material having an average particle diameter of 2 to 3 μm and a second conductive material having an average particle diameter of 0.2 to 0.3 μm. By including a paste-like metal organic compound containing nanoparticles , thereby forming a layer having a predetermined pattern, and baking it by heating, the binder resin is cured and the second conductive material is interposed in the gap between the first conductive materials. A conductive material is filled, and the metal nanoparticles are further precipitated or aggregated in a gap between the first conductive material and the second conductive material .

前記本発明の導電性組成物の製造方法では、導電材と導電材との間に形成される隙間に、各種添加剤に含まれる金属成分がその隙間を埋めるようにして成長して析出しまたは凝集するので、隣接する導電材どうしの接触性が高められ比抵抗を低減させることができる。   In the method for producing a conductive composition of the present invention, a metal component contained in various additives grows and precipitates in a gap formed between the conductive material and the conductive material so as to fill the gap, or Since they aggregate, the contact property between adjacent conductive materials is enhanced, and the specific resistance can be reduced.

本発明は、従来よりもさらに比抵抗を下げることができ、その結果、微細な電極パターンを形成したときに過度に発熱するのを抑えることができ、装置をさらに小型化できる。また電極パターンをより長く引き回すこともできる。   According to the present invention, the specific resistance can be further reduced as compared with the prior art. As a result, excessive heat generation can be suppressed when a fine electrode pattern is formed, and the apparatus can be further downsized. Further, the electrode pattern can be drawn longer.

図1は本発明の導電性組成物の硬化前の状態を示す充填構造図、図2は本発明の導電性組成物の硬化後の状態を示す充填構造図である。図3は回路基板を示す斜視図である。ただし、図1と図2はそれぞれ説明上規則的に配列した状態を示しているが、この状態に限られるものではない。   FIG. 1 is a filling structure diagram showing a state before curing of the conductive composition of the present invention, and FIG. 2 is a filling structure diagram showing a state after curing of the conductive composition of the present invention. FIG. 3 is a perspective view showing a circuit board. However, although FIG. 1 and FIG. 2 each show a regularly arranged state for explanation, it is not limited to this state.

図1に示すように、本発明の導電性組成物1は所定のバインダ樹脂10に、導電材2と、前記導電材よりも小さな別の導電材3が含まれている。前記導電材2と3はそれぞれ粒子状であり、導電材2の平均粒子径が導電材3の平均粒子径より十分に大きく形成されている。例えば、図1に示すように導電材2に含まれる複数の粒子が互いに接した状態にあるときに、導電材2の隣接する粒子と粒子とで形成される隙間5内に前記導電材3の粒子が充填されるように、互いの導電材2と導電材3との粒子径が設定されている。例えば、導電材2の平均粒子径が2〜3ミクロン(μm)で、前記導電材3の平均粒子径がそれよりも1桁程度小さい0.2〜0.3ミクロン(μm)である。   As shown in FIG. 1, in the conductive composition 1 of the present invention, a predetermined binder resin 10 contains a conductive material 2 and another conductive material 3 smaller than the conductive material. The conductive materials 2 and 3 are each in the form of particles, and the average particle size of the conductive material 2 is sufficiently larger than the average particle size of the conductive material 3. For example, as shown in FIG. 1, when a plurality of particles contained in the conductive material 2 are in contact with each other, the conductive material 3 has a gap 5 formed between adjacent particles of the conductive material 2. The particle diameters of the conductive material 2 and the conductive material 3 are set so that the particles are filled. For example, the average particle size of the conductive material 2 is 2 to 3 microns (μm), and the average particle size of the conductive material 3 is 0.2 to 0.3 microns (μm) smaller by one digit than that.

前記導電材2としては、銀、銅、白金、ニッケル、パラジウム、錫、銀−パラジウム、銀−錫、鉄−ニッケル(パーマロイ)などの金属や合金から選択できる。図3に示す回路基板20の電極パターン21として使用する場合には、銀や銅からなる金属単体、または前記金属単体を主成分とする合金などから選択することが好ましい。なお、電極パターンの比抵抗を下げることができるものであればこれらに限定されるものではない。   The conductive material 2 can be selected from metals and alloys such as silver, copper, platinum, nickel, palladium, tin, silver-palladium, silver-tin, and iron-nickel (permalloy). When used as the electrode pattern 21 of the circuit board 20 shown in FIG. 3, it is preferable to select from a single metal made of silver or copper, or an alloy containing the metal simple as a main component. It is not limited to these as long as the specific resistance of the electrode pattern can be lowered.

前記導電材3も上記した各種の金属または合金などから選択することができる。前記電極パターン21として使用する場合には、同様に銀や銅からなる金属を選択することが好ましく、導電材2が銀であれば導電材3も銀というように、同種の金属を選択することが好ましい。ただし、必ずしも同種の金属に限られるものではなく、異種の金属の組合せであってもよい。   The conductive material 3 can also be selected from the various metals or alloys described above. Similarly, when using as the electrode pattern 21, it is preferable to select a metal made of silver or copper. If the conductive material 2 is silver, the same kind of metal is selected so that the conductive material 3 is also silver. Is preferred. However, it is not necessarily limited to the same kind of metal, and a combination of different kinds of metals may be used.

前記バインダ樹脂10は、熱硬化性樹脂から選択することができる。例えば、ポリエステル樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリウレタン、シリコーン樹脂などから選択可能である。なお、必要に応じて熱硬化性樹脂を所定の有機溶媒などに溶解して粘度調整してもよい。   The binder resin 10 can be selected from thermosetting resins. For example, it can be selected from polyester resin, phenol resin, urea resin, melamine resin, epoxy resin, polyurethane, silicone resin and the like. If necessary, the viscosity may be adjusted by dissolving a thermosetting resin in a predetermined organic solvent or the like.

本発明の導電性組成物1では、前記導電材2,3が配合されたバインダ樹脂10に、さらに所定の添加剤4が添加される。   In the conductive composition 1 of the present invention, a predetermined additive 4 is further added to the binder resin 10 in which the conductive materials 2 and 3 are blended.

この添加剤4は、例えば金属ナノ粒子のみで形成された粉末である。この金属ナノ粒子の粉末は、例えば金、銀、銅、白金、ニッケル、パラジウム、錫などから選択される。本明細書での金属ナノ粒子とは、平均粒子径が百nm(ナノメートル)以下のものを意味し、さらに好ましくは20nm以下のものを意味する。この添加剤4を含ませた導電性組成物1を所定のパターンに印刷し、または塗布して、乾燥させ、且つ加熱処理することにより、前記導電材2と導電材3との間に添加剤4に含まれる導電性金属が析出しまたは凝集して、導電材料の充填率を高め、比抵抗を低下させることができる。   This additive 4 is, for example, a powder formed only of metal nanoparticles. The metal nanoparticle powder is selected from, for example, gold, silver, copper, platinum, nickel, palladium, tin, and the like. The metal nanoparticles in the present specification mean those having an average particle diameter of 100 nm (nanometers) or less, more preferably 20 nm or less. The conductive composition 1 containing the additive 4 is printed or applied in a predetermined pattern, dried, and heat-treated, so that the additive is interposed between the conductive material 2 and the conductive material 3. The conductive metal contained in 4 can be precipitated or aggregated to increase the filling rate of the conductive material and reduce the specific resistance.

ただし添加剤4として使用される金属ナノ粒子は、表面活性が高いため粒子が凝集しやすくなる。このためこの凝集を防止するために所定の有機溶媒などを含む分散剤を前記金属ナノ粒子の粉末に添加して、粒子の凝集を防止するようにしてもよい。例えば、約5nmの銀からなる金属ナノ粒子の場合、金属含有率を90wt%(質量%)に設定したものを使用できる。   However, since the metal nanoparticles used as the additive 4 have high surface activity, the particles easily aggregate. Therefore, in order to prevent this aggregation, a dispersing agent containing a predetermined organic solvent or the like may be added to the metal nanoparticle powder to prevent the particles from aggregating. For example, in the case of metal nanoparticles composed of silver of about 5 nm, those having a metal content set to 90 wt% (mass%) can be used.

また、前記バインダ樹脂10に添加する他の添加剤4としては、金属ナノ粒子を含む有機金属化合物、金属ナノ粒子を含む金属コロイド液などであってもよい。また、金属ナノ粒子、金属ナノ粒子を含む有機金属化合物及び金属ナノ粒子を含む金属コロイド液から複数を選択して添加することも可能できる。   The other additive 4 added to the binder resin 10 may be an organometallic compound containing metal nanoparticles, a metal colloid liquid containing metal nanoparticles, or the like. It is also possible to select and add a plurality of metal nanoparticles, an organometallic compound containing metal nanoparticles, and a metal colloid solution containing metal nanoparticles.

前記金属ナノ粒子を含む有機金属化合物としては、金属ナノ粒子の金属と有機化合物の炭素原子とが結合した炭素−金属結合を有するものであり、例えば所定の溶媒に銀の金属ナノ粒子の金属含有率を約40wt%(質量%)に設定したものを使用できる。   The organometallic compound containing the metal nanoparticle has a carbon-metal bond in which the metal of the metal nanoparticle is bonded to the carbon atom of the organic compound. For example, the metal content of the silver metal nanoparticle is contained in a predetermined solvent. What set the rate to about 40 wt% (mass%) can be used.

また金属ナノ粒子を含む金属コロイド液としては、金属ナノ粒子が所定の溶媒中に安定に分散するものから選択される。例えば、粒子径が約10nmの金や銀で形成された金属ナノ粒子で、金属ナノ粒子が金コロイド液であればアルコール系の有機溶媒に10wt%、銀コロイド液であればアルコール系及び水系の溶媒にそれぞれ30wt%のものを使用できる。添加剤4としてこのような金属コロイド液を添加すると、凝集や沈降を防止でき、有機溶媒から水まで幅広い媒体へ分散できるようになる。   The metal colloid liquid containing metal nanoparticles is selected from those in which metal nanoparticles are stably dispersed in a predetermined solvent. For example, metal nanoparticles formed of gold or silver having a particle size of about 10 nm. If the metal nanoparticles are a gold colloid solution, it is 10 wt% in an alcohol-based organic solvent. Each solvent can be 30 wt%. When such a metal colloidal solution is added as the additive 4, aggregation and sedimentation can be prevented, and the organic solvent to water can be dispersed in a wide range of media.

本発明の導電性組成物1では、導電材2と導電材3とが同種の金属で形成され、さらに前記導電材2,3と前記金属ナノ粒子を含む添加剤4とが同様に同じ種類の金属で形成されることが好ましい。   In the conductive composition 1 of the present invention, the conductive material 2 and the conductive material 3 are formed of the same kind of metal, and the conductive materials 2 and 3 and the additive 4 containing the metal nanoparticles are similarly of the same type. It is preferable to form with a metal.

以下、前記導電性組成物の製造方法について説明する。例えば、図3に示す回路基板20の電極パターン21を例に挙げて説明する。   Hereinafter, the manufacturing method of the said electroconductive composition is demonstrated. For example, the electrode pattern 21 of the circuit board 20 shown in FIG. 3 will be described as an example.

図3に示す回路基板20は、PET(ポリエチレンテレフタレート)やポリイミドなどの合成樹脂製のシート状基板22に図1に示す構造の導電性組成物1が一定の間隔で線状に形成される。このとき導電性組成物1は所定の粘度に調整されてスクリーン印刷などによって前記シート状基板22上に印刷形成される。   A circuit board 20 shown in FIG. 3 is formed by forming a conductive composition 1 having a structure shown in FIG. 1 in a linear shape at a constant interval on a sheet-like substrate 22 made of synthetic resin such as PET (polyethylene terephthalate) or polyimide. At this time, the conductive composition 1 is adjusted to a predetermined viscosity and printed and formed on the sheet-like substrate 22 by screen printing or the like.

前記導電性組成物1による電極パターン21が形成されたシート状基板22を乾燥後に、例えば120〜200℃程度の焼成温度で加熱すると、バインダとしての熱硬化性樹脂に含まれる溶剤成分が揮発して導電性組成物1Aが得られる。この導電性組成物1Aでは、図2に示すように、導電材2の各粒子と導電材3の各粒子とで形成される隙間5に充填された金属ナノ粒子が成長または析出して、導電材2,3の各粒子間の充填率が上昇する。   When the sheet-like substrate 22 on which the electrode pattern 21 made of the conductive composition 1 is formed is dried and then heated at, for example, a baking temperature of about 120 to 200 ° C., the solvent component contained in the thermosetting resin as the binder is volatilized. Thus, the conductive composition 1A is obtained. In this conductive composition 1A, as shown in FIG. 2, the metal nanoparticles filled in the gap 5 formed by each particle of the conductive material 2 and each particle of the conductive material 3 grow or precipitate, and the conductive composition 1A The filling rate between the particles of the materials 2 and 3 increases.

したがって、導電性組成物1A内での導電性が向上して、電極パターン21として形成したときの各抵抗体の抵抗値(比抵抗)をさらに低くできる。抵抗値が低下することで、電極パターン21をさらに細かいピッチで形成したとしても、発熱の問題を解消できる。また電極パターンを通電したときの電流のロスを低減できるため電極パターンを長く引き回すことも可能になる。   Accordingly, the conductivity in the conductive composition 1A is improved, and the resistance value (specific resistance) of each resistor when formed as the electrode pattern 21 can be further reduced. By reducing the resistance value, the problem of heat generation can be solved even if the electrode patterns 21 are formed at a finer pitch. In addition, since the loss of current when the electrode pattern is energized can be reduced, the electrode pattern can be extended for a long time.

また添加剤4として銀からなる金属ナノ粒子を含む有機金属化合物を使用してもよい。この場合も加熱したときに、導電材2,3で形成される隙間5内に銀の金属ナノ粒子が析出または凝集して、隙間5内の銀の充填率をより高めることができる。   Moreover, you may use the organometallic compound containing the metal nanoparticle which consists of silver as the additive 4. FIG. Also in this case, when heated, silver metal nanoparticles are precipitated or aggregated in the gap 5 formed by the conductive materials 2 and 3, and the filling rate of silver in the gap 5 can be further increased.

また添加剤4が銀や金の金属コロイド液であっても前記と同様に隙間5内の充填率を高めることができる。   Further, even when the additive 4 is a metal colloidal solution of silver or gold, the filling rate in the gap 5 can be increased as described above.

本発明の導電性組成物の硬化前の状態を示す説明図、Explanatory drawing which shows the state before hardening of the electrically conductive composition of this invention, 本発明の導電性組成物の硬化後の状態を示す説明図、Explanatory drawing which shows the state after hardening of the electrically conductive composition of this invention, 回路基板を示す斜視図、A perspective view showing a circuit board,

符号の説明Explanation of symbols

1,1A 導電性組成物
2,3 導電材
4,4A 添加剤
5 隙間
10 バインダ樹脂
20 回路基板
21 電極パターン
22 シート状基板
DESCRIPTION OF SYMBOLS 1,1A Conductive composition 2,3 Conductive material 4,4A Additive 5 Crevice 10 Binder resin 20 Circuit board 21 Electrode pattern 22 Sheet-like board

Claims (2)

所定の粘度のバインダ樹脂に、平均粒径が2〜3μmの第1導電材と、平均粒径が0.2〜0.3μmの第2導電材と共に、平均粒径が100nm以下の金属ナノ粒子を含む金属コロイド液を含ませ、これにより所定のパターンの層を形成し、加熱焼成することにより、バインダ樹脂を硬化させると共に、前記第1導電材間の隙間に前記第2導電材を充填させ、さらに前記金属ナノ粒子を前記第1導電材と前記第2導電材の隙間に、析出させ、または凝集させることを特徴とする導電性組成物の製造方法。 Metal nanoparticles having an average particle diameter of 100 nm or less, together with a first conductive material having an average particle diameter of 2 to 3 μm and a second conductive material having an average particle diameter of 0.2 to 0.3 μm , in a binder resin having a predetermined viscosity A metal colloidal solution containing the above, thereby forming a layer of a predetermined pattern, and heating and baking to cure the binder resin and fill the gap between the first conductive materials with the second conductive material. Furthermore , the method for producing a conductive composition , wherein the metal nanoparticles are deposited or aggregated in a gap between the first conductive material and the second conductive material . 所定の粘度のバインダ樹脂に、平均粒径が2〜3μmの第1導電材と、平均粒径が0.2〜0.3μmの第2導電材と共に、平均粒径が100nm以下の金属ナノ粒子を含むペースト状の金属有機化合物を含ませ、これにより所定のパターンの層を形成し、加熱焼成することにより、バインダ樹脂を硬化させると共に、前記第1導電材間の隙間に前記第2導電材を充填させ、さらに前記金属ナノ粒子を前記第1導電材と前記第2導電材の隙間に、析出させ、または凝集させることを特徴とする導電性組成物の製造方法。 Metal nanoparticles having an average particle diameter of 100 nm or less, together with a first conductive material having an average particle diameter of 2 to 3 μm and a second conductive material having an average particle diameter of 0.2 to 0.3 μm , in a binder resin having a predetermined viscosity And a paste-like metal organic compound containing, thereby forming a layer having a predetermined pattern, and heating and baking, thereby curing the binder resin and interposing the second conductive material in the gap between the first conductive materials. And further depositing or agglomerating the metal nanoparticles in the gap between the first conductive material and the second conductive material .
JP2003421535A 2003-12-18 2003-12-18 Method for producing conductive composition Expired - Fee Related JP4384484B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003421535A JP4384484B2 (en) 2003-12-18 2003-12-18 Method for producing conductive composition
CN 200410082039 CN1629984A (en) 2003-12-18 2004-12-17 Electroconductive composite and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003421535A JP4384484B2 (en) 2003-12-18 2003-12-18 Method for producing conductive composition

Publications (2)

Publication Number Publication Date
JP2005183144A JP2005183144A (en) 2005-07-07
JP4384484B2 true JP4384484B2 (en) 2009-12-16

Family

ID=34782727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003421535A Expired - Fee Related JP4384484B2 (en) 2003-12-18 2003-12-18 Method for producing conductive composition

Country Status (2)

Country Link
JP (1) JP4384484B2 (en)
CN (1) CN1629984A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709724B1 (en) * 2007-01-30 2007-04-24 (주)이그잭스 Metal paste for forming conductive layers
JP2009177010A (en) * 2008-01-25 2009-08-06 Toshiba Corp Flexible printed circuit board and electronic apparatus
WO2010032841A1 (en) * 2008-09-19 2010-03-25 旭硝子株式会社 Conductive filler, conductive paste and article having conductive film
JP5503132B2 (en) * 2008-10-29 2014-05-28 三ツ星ベルト株式会社 Resistor paste and resistor
CN101901844B (en) 2009-05-27 2012-06-06 比亚迪股份有限公司 Solar cell conductive slurry and preparation method thereof
JP5506042B2 (en) * 2010-07-27 2014-05-28 ハリマ化成株式会社 Conductive copper paste
WO2016031860A1 (en) * 2014-08-28 2016-03-03 石原産業株式会社 Metallic copper particles, and production method therefor
CN113862481A (en) * 2021-09-29 2021-12-31 杨诤溢 Method for recycling conductive paste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312712A (en) * 1997-05-14 1998-11-24 Asahi Chem Ind Co Ltd Solderable conductive paste
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2004111254A (en) * 2002-09-19 2004-04-08 Asahi Glass Co Ltd Metal contained composition for electrical connection of electronic device

Also Published As

Publication number Publication date
CN1629984A (en) 2005-06-22
JP2005183144A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP4157468B2 (en) Wiring board
CN100537677C (en) Method for manufacturing printed circuit board using ag-pd alloy nanoparticles
US7968010B2 (en) Method for electroplating a substrate
US7695644B2 (en) Device applications for voltage switchable dielectric material having high aspect ratio particles
EP2054897B1 (en) Voltage switchable dielectric material having high aspect ratio particles
JP2002299833A (en) Multilayered wiring board and its forming method
JP2016092404A (en) Chip electronic component and method of manufacturing the same
KR100633846B1 (en) Conductive wiring material, method for manufacturing wiring borard and wiring borard
US20090050856A1 (en) Voltage switchable dielectric material incorporating modified high aspect ratio particles
JP4936142B2 (en) Conductive paste composition, electronic circuit, and electronic component
JP2006339057A (en) Resin metal composite conductive material, its manufacturing method, and electronic device using it
JPWO2014185073A1 (en) Metal bonding composition
JP4384484B2 (en) Method for producing conductive composition
JP2006303368A (en) Manufacturing method of circuit board
JP4151541B2 (en) Wiring board and manufacturing method thereof
JP5988762B2 (en) Method for forming metal film, method for forming conductive film for through hole, and method for fixing electronic component
US8314339B2 (en) Circuit board with kneaded conductive paste
JP2008300846A (en) Circuit board which has internal register, and electric assembly using this circuit board
KR20170073650A (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
KR20190130998A (en) Conductive metal powder for forming electrode, manufacturing method tereof and conductive paste for electronic component termination electrode
JP4784160B2 (en) Resistance element and resistance value adjustment method of resistance element
JP4517290B2 (en) Metal particle composite structure, method for producing the same, and anisotropic conductive film using the same
JP2005317351A (en) Conductive paste
KR100784762B1 (en) Conductive metal paste
Nakamoto Fine electronic circuit pattern formation on plastic substrates by metal nanoparticle pastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees