JP2015061314A - Non-contact power and signal transmission system - Google Patents

Non-contact power and signal transmission system Download PDF

Info

Publication number
JP2015061314A
JP2015061314A JP2013212325A JP2013212325A JP2015061314A JP 2015061314 A JP2015061314 A JP 2015061314A JP 2013212325 A JP2013212325 A JP 2013212325A JP 2013212325 A JP2013212325 A JP 2013212325A JP 2015061314 A JP2015061314 A JP 2015061314A
Authority
JP
Japan
Prior art keywords
power
transmission line
signal transmission
contact
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013212325A
Other languages
Japanese (ja)
Other versions
JP6195064B2 (en
Inventor
植田 敏嗣
Toshitsugu Ueda
敏嗣 植田
徹 津野
Toru Tsuno
徹 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAMOTO ELECTRIC Manufacturing CO Ltd
Original Assignee
SAKAMOTO ELECTRIC Manufacturing CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAMOTO ELECTRIC Manufacturing CO Ltd filed Critical SAKAMOTO ELECTRIC Manufacturing CO Ltd
Priority to JP2013212325A priority Critical patent/JP6195064B2/en
Publication of JP2015061314A publication Critical patent/JP2015061314A/en
Application granted granted Critical
Publication of JP6195064B2 publication Critical patent/JP6195064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system capable of installing an arbitrary number of electronic circuits to a transmission line with the provision of an electronic circuit capable of acquiring power and a signal in a non-contact state from a transmission line which penetrates through a magnetic core, in regard to a system for transmitting both power and a signal in a non-contact manner.SOLUTION: A power transmission AC and a carrier AC, functioning as a signal carrier, which have mutually different frequencies are made to flow on one transmission line 2 from a master 1. By the disposition of electronic circuits, having secondary wiring 8, on annular cores 6, 7 of slaves 3, 4 through which the transmission line penetrates, power and a signal are transmitted in a non-contact manner through the transmission line 2.

Description

本発明は、非接触で電力と信号の両方を伝送するシステムに関し、磁気コアを貫通する伝送線から非接触状態で、電力と信号とを得る事ができる電子回路を設けることによって、伝送線に対し任意の数の電子回路を設置することのできるシステムを得る事を図るものである。  The present invention relates to a system for transmitting both electric power and signals in a non-contact manner, and by providing an electronic circuit capable of obtaining electric power and signals in a non-contact state from a transmission line penetrating a magnetic core. On the other hand, it is intended to obtain a system in which an arbitrary number of electronic circuits can be installed.

従来より、電力と信号とを非接触状態で、本体から供給されるものがあった。例えば集積回路(以下「IC」と書く)を有するICカードでは、内部のICが動作するための電力を受けながら、カード内部のICと本体との間でデータの送受を行うようになっているものがある。このような物の例としてフェリカ・カードと言われるICカードが普及している。  Conventionally, there has been a case where power and a signal are supplied from a main body in a non-contact state. For example, in an IC card having an integrated circuit (hereinafter referred to as “IC”), data is transmitted and received between the IC inside the card and the main body while receiving power for operating the internal IC. There is something. As an example of such a thing, an IC card called a Felica card is widely used.

このようなものは取り扱う電力も小さく、また常時接続するものではないため、例えば計測装置に用いることができないという問題がある。ある程度の電力を伝え、かつ信号も伝えることのできる技術として、特許文献1に開示されたものがある。  Such a device has a problem that it can not be used in, for example, a measuring device because it consumes less power and is not always connected. As a technique capable of transmitting a certain amount of power and also transmitting a signal, there is one disclosed in Patent Document 1.

特許文献1に開示されたものは、磁気透過率の互いに異なる部分を有するコアに、電力伝送用のコイルと、信号伝送用のコイルを設け、非接触で電力の供給と信号の送受信をするようにしている。  In the core disclosed in Patent Document 1, a power transmission coil and a signal transmission coil are provided in a core having mutually different portions of magnetic transmittance so that power can be supplied and signals can be transmitted and received without contact. I have to.

しかしながら、特許文献1に開示された物は、1つの電力供給伝送線に、複数の電力被供給電子回路を接続するのは容易ではない。なぜなら、電力供給伝送線にコイルを接続する必要があり、接続される電子回路の数を増減させるには、電力供給伝送線を切断して、コイルの接続を行う必要が生じる。本発明は、このような問題がなく、電力供給伝送線を環状のコアに挿入し貫通させるだけで、電力の供給と信号の送受信を行うことができるものである。  However, it is not easy for the product disclosed in Patent Document 1 to connect a plurality of power supplied electronic circuits to one power supply transmission line. This is because it is necessary to connect a coil to the power supply transmission line, and in order to increase or decrease the number of electronic circuits to be connected, it is necessary to disconnect the power supply transmission line and connect the coil. The present invention does not have such a problem, and can supply power and transmit / receive signals simply by inserting a power supply transmission line into an annular core and penetrating it.

特開2003−264423号公報JP 2003-264423 A

上記の説明のとおり特許文献1に開示された従来の非接触電力・信号伝送システムは、コアに巻かれたコイルを直接、電力供給伝送線に接続する必要があり、水が掛かる可能性がある場所やじん埃の多い場所で使用するには問題の多いものであった。また電力の供給を行う伝送線と、信号の送受を行う信号線との両方を設ける必要があり、配線が容易でない場所で使用するのも問題であった。  As described above, the conventional non-contact power / signal transmission system disclosed in Patent Document 1 needs to connect the coil wound around the core directly to the power supply transmission line, which may be splashed with water. There were many problems when used in a place with a lot of dust. In addition, it is necessary to provide both a transmission line for supplying power and a signal line for transmitting and receiving signals, and it has been a problem to use in places where wiring is not easy.

この対策として、電力の供給を行う伝送線や信号の送受を行う信号線と、電子回路との間を非接触状態で接続する事が求められる。また電力の供給を行う伝送線と信号の送受を行う信号線とを1本の伝送線にして、設置現場での作業をより容易にする事が求められる。  As a countermeasure, it is required to connect a transmission line for supplying power or a signal line for transmitting / receiving signals to an electronic circuit in a non-contact state. In addition, it is required that the transmission line for supplying power and the signal line for signal transmission / reception be made one transmission line to facilitate the work on the installation site.

本発明は以上の点に着目し、1本の伝送線に互いに周波数の異なる電力伝送用交流と、信号のキャリアとなるキャリア交流とを流し、この伝送線が貫通する環状のコアに2次巻線を有する電子回路を設ける事によって、伝送線を介して電力と信号とを非接触で送ることのできる非接触電力・信号伝送システムを提供しようとするものである。  The present invention pays attention to the above points, and a power transmission AC having different frequencies and a carrier AC serving as a signal carrier are caused to flow through one transmission line, and a secondary winding is wound around an annular core through which the transmission line passes. By providing an electronic circuit having a line, an object is to provide a non-contact power / signal transmission system capable of transmitting power and a signal in a non-contact manner via a transmission line.

以上の課題を解決するため、本発明の非接触電力・信号伝送システムは複数の環状磁気コアとそれを貫通し他の部分に対し非接触状態である伝送線から構成され、導体を介して磁気コアの発生する磁束から起電力を得る2次巻き線から電力を供給される電子回路を有し、電子回路に前記伝送線と磁気結合を介して電力および信号伝送を双方向的に行うようにし、電力の伝送を貫通する伝送線を直接駆動することにより実現する事によって、電力と信号とを非接触状態で伝送可能にした。  In order to solve the above problems, the non-contact power / signal transmission system of the present invention is composed of a plurality of annular magnetic cores and a transmission line penetrating the core and being in a non-contact state with respect to other parts. An electronic circuit that is supplied with power from a secondary winding that obtains an electromotive force from a magnetic flux generated by the core is configured to bidirectionally transmit power and signals to the electronic circuit via the transmission line and magnetic coupling. The power and signal can be transmitted in a non-contact state by directly driving a transmission line that penetrates the transmission of power.

本発明の非接触電力・信号伝送システムは、例えば長い管の中に種々のセンサ及びそれを制御する電子回路を挿入して、管の傾斜や温度などを測定する場合に、センサや電子回路の管内への設置が容易となる。  The non-contact power / signal transmission system according to the present invention includes, for example, various sensors and electronic circuits that control the sensors in a long pipe, and measures the inclination and temperature of the pipe when the sensors and electronic circuits are measured. Easy installation in the pipe.

つまり本発明の非接触電力・信号伝送システムは、環状の磁気コアを有し、そのコアに電力の供給を受ける受電コイルと、信号の送受を行う信号コイルとを設けている。このため、環状のコアの中心に伝送線を挿入することによって、伝送線を介して非接触で電力の供給及び信号の送受を行うことができる。  That is, the non-contact power / signal transmission system of the present invention has an annular magnetic core, and is provided with a power receiving coil that receives power supply to the core and a signal coil that transmits and receives signals. For this reason, electric power can be supplied and signals can be transmitted and received in a non-contact manner via the transmission line by inserting the transmission line in the center of the annular core.

例えば地震の予測などのために、地中に管を打ち込み、その管の中に傾斜センサや振動センサや温度センサなどを挿入する場合、地中の打ち込んだ管の中に地下水などが浸入する可能性がある。このような場合に本発明の非接触電力・信号伝送システムであると、電力の供給や信号の送受を非接触で行えるため、電子回路を防水しておけば地下水の浸入も問題がない。  For example, when a pipe is driven into the ground to predict an earthquake and an inclination sensor, vibration sensor, temperature sensor, or the like is inserted into the pipe, groundwater or the like can enter the pipe. There is sex. In such a case, the non-contact power / signal transmission system of the present invention can perform power supply and signal transmission / reception in a non-contact manner. Therefore, if the electronic circuit is waterproofed, there is no problem in ingress of groundwater.

さらに本発明の非接触電力・信号伝送システムは、1本の伝送線に対し、任意の数の電子回路を接続することができ、状況に合わせて接続される電子回路の数も増減することができる。  Furthermore, the contactless power / signal transmission system of the present invention can connect an arbitrary number of electronic circuits to one transmission line, and the number of electronic circuits connected can be increased or decreased according to the situation. it can.

本発明の非接触電力・信号伝送システム実施例の原理を示す接続図である。  1 is a connection diagram illustrating the principle of an embodiment of a contactless power / signal transmission system according to the present invention. 本発明の非接触電力・信号伝送システムの要部を示す斜視図である。  It is a perspective view which shows the principal part of the non-contact electric power and signal transmission system of this invention. 伝送線として銅撚線を使った場合の特性図である。  It is a characteristic view at the time of using a copper twisted wire as a transmission line. 伝送線としてリッツ線を使った場合の特性図である。  It is a characteristic view at the time of using a litz wire as a transmission line. 本発明の非接触電力・信号伝送システムの他の実施例の原理を示す接続図である。  It is a connection diagram which shows the principle of the other Example of the non-contact electric power and signal transmission system of this invention. 本発明の非接触電力・信号伝送システムのさらに他の実施例の原理を示す接続図である。  It is a connection diagram which shows the principle of the further another Example of the non-contact electric power and signal transmission system of this invention. 本発明の非接触電力・信号伝送システムを地震予測装置に応用した場合の接続図である。  It is a connection diagram at the time of applying the non-contact electric power and signal transmission system of the present invention to an earthquake prediction device.

本発明の請求項1に記載の発明は、複数の環状磁気コアとそれを貫通し他の部分に対し非接触状態である伝送線から構成され、導体を介して前記磁気コアの発生する磁束から起電力を得る2次巻き線から電力を供給される電子回路を有し、前記電子回路に前記伝送線と磁気結合を介して電力および信号伝送を双方向的に行うようにし、電力の伝送を貫通する伝送線を直接駆動することにより実現する事によって、電力と信号とを非接触状態で伝送可能な非接触電力・信号伝送システムを得ることができる。  The invention according to claim 1 of the present invention includes a plurality of annular magnetic cores and a transmission line that passes through the cores and is in a non-contact state with respect to other parts, and from magnetic flux generated by the magnetic cores via conductors. Having an electronic circuit to which power is supplied from a secondary winding for obtaining electromotive force, and transmitting and receiving power and signals bidirectionally to the electronic circuit through the transmission line and magnetic coupling. A non-contact power / signal transmission system that can transmit power and signals in a non-contact state can be obtained by directly driving a transmission line that penetrates.

以下本発明の非接触電力・信号伝送システムの実施例について図に沿って詳細に説明する。図1は本発明の非接触電力・信号伝送システムの原理を示す接続図である。1マスターであり、伝送線2を介してスレーブ3〜N(この実施例では、各スレーブをセンサ「Sensor」としている)に対して電力の供給と信号の送受を行う。  Embodiments of the non-contact power / signal transmission system of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a connection diagram showing the principle of the contactless power / signal transmission system of the present invention. One master, which supplies power and sends / receives signals to / from slaves 3 to N (in this embodiment, each slave is a sensor “Sensor”) via the transmission line 2.

マスター1も各Sensor3〜Nは全て環状のコア5〜7を有している。そして伝送線2は、各環状のコア5〜7の中を貫通している。各環状のコア5〜7の詳細は図2に示すとおりである。各環状のコア5〜7は2次コイル8を有している。マスター1の2次コイルは交流電源回路(後述する)に接続され、各Sensor3〜Nは全て環状のコア5〜7の2次コイルは電子回路(後述する)に接続されている。  Each of the sensors 3 to N also has an annular core 5 to 7. The transmission line 2 passes through the annular cores 5 to 7. Details of the annular cores 5 to 7 are as shown in FIG. Each of the annular cores 5 to 7 has a secondary coil 8. The secondary coil of the master 1 is connected to an AC power supply circuit (described later), and the sensors 3 to N are all connected to the secondary coil of the annular cores 5 to 7 to an electronic circuit (described later).

以上のように全体として、1つのマスターコアから、他のスレーブコアに、1ターン・ループ・トランスを構成し、各モジュールに信号と電力を供給する構成である。以下これを「1線式電力・信号伝送方式」と呼ぶ。ここでこの装置を地震の検知装置に応用する場合は、地中深くに各スレーブを設置する必要があり、1ターン・ループの全長は30mにも達する。  As described above, a one-turn loop transformer is configured from one master core to other slave cores, and signals and power are supplied to each module. Hereinafter, this is referred to as “one-wire power / signal transmission system”. Here, when this device is applied to an earthquake detection device, it is necessary to install each slave deep in the ground, and the total length of one-turn loop reaches 30 m.

各スレーブの環状のコアは、地中に打ち込まれる管に挿入される物であり、できるだけ小さい方が望ましい。よって、環状のコアは数cmの長さで構成される。よって、全体として大きな漏洩磁束が発生するトランスとなる。漏洩磁束は電力と信号の伝送効率を著しく減少させるため、最小とする事が必須である。漏洩磁束=伝送路長/磁束密度/コア長で表される。解決方法としては磁束密度を大きく、コア長を長くする事が必要である。今、漏洩磁束10%を目標とすると、透磁率>10000とすると、コア長>3cmが必要となってくる。  The annular core of each slave is inserted into a pipe that is driven into the ground, and is preferably as small as possible. Therefore, the annular core has a length of several centimeters. Therefore, the transformer generates a large leakage magnetic flux as a whole. Leakage magnetic flux must be minimized because it significantly reduces power and signal transmission efficiency. Leakage magnetic flux = transmission path length / magnetic flux density / core length. As a solution, it is necessary to increase the magnetic flux density and lengthen the core length. Now, assuming that the leakage magnetic flux is 10%, if the magnetic permeability> 10000, the core length> 3 cm is required.

環状のコアとして、次のように選定する。透磁率>10000のコアとしては日立金属株式会社製のファインメット(商品名)が最も適している。その次の候補としてMn−Znコアがある。ファインメットは金属コアで、Mn−Znコアはフェライトコアであるので、一般にファインメットのほうが高価となり、コスト比は10倍の差がある。従って、性能/コスト比での選択が重要である。ファインメット(FT−3KL)とMn−Znコア(T38)のインピーダンス特性を調査した結果、本発明の実施には実質的に同一特性であることが判明したため、本発明の実施にはMn−Znコアを用いる。  An annular core is selected as follows. Finemet (trade name) manufactured by Hitachi Metals Co., Ltd. is most suitable as a core having a magnetic permeability> 10000. The next candidate is a Mn—Zn core. Finemet is a metal core, and Mn—Zn core is a ferrite core. Therefore, finemet is generally more expensive and the cost ratio is 10 times different. Therefore, selection by performance / cost ratio is important. As a result of investigating the impedance characteristics of Finemet (FT-3KL) and Mn—Zn core (T38), it was found that the characteristics were substantially the same for the implementation of the present invention. Use the core.

マスター1の2次コイルに接続された交流電源回路は、例えば周波数100KHz〜400KHzの発振器の出力をアンプで増幅した物を用いる事ができる。この交流電源回路からの電力を効率よく各スレーブの2次コイルに伝えるために、伝送線の選択を行った。  As the AC power supply circuit connected to the secondary coil of the master 1, for example, a product obtained by amplifying the output of an oscillator having a frequency of 100 KHz to 400 KHz with an amplifier can be used. In order to efficiently transmit the power from the AC power supply circuit to the secondary coil of each slave, a transmission line was selected.

伝送線として、銅撚線(65/0.25)とリッツ線(600/0.04)とのインピーダンス特性を調べた。その結果を図3及び図4に示す。リッツ線は同撚線の1/4の低インピーダンス特性を示した。これは5mの長さで試験した結果なので30mの長さになると倍(30m/5m)となる。つまり30mであると、銅撚線であるとインピーダンスが2.9オームとなり、リッツ線では1.23オームとなる。ここで、例えば伝送線に1.5Armsの電流が流れるとすると、両者の電圧降下差は約2Vである。さらにこの実験で使用した銅撚線とリッツ線の断面積が4倍差があったので、リッツ線は低インピーダンスであり、長い管路内に挿入するのに適している。  As transmission lines, the impedance characteristics of copper stranded wires (65 / 0.25) and litz wires (600 / 0.04) were examined. The results are shown in FIGS. The litz wire showed a low impedance characteristic of 1/4 that of the stranded wire. Since this is a result of testing at a length of 5 m, a length of 30 m is doubled (30 m / 5 m). That is, when it is 30 m, the impedance is 2.9 ohms when it is a copper twisted wire, and 1.23 ohms when it is a litz wire. Here, for example, if a current of 1.5 Arms flows through the transmission line, the voltage drop difference between them is about 2V. Furthermore, since the cross-sectional area of the copper stranded wire and the litz wire used in this experiment was four times different, the litz wire has a low impedance and is suitable for insertion into a long pipeline.

以上の実施例ではマスター1も伝送線2に対して非接触としたが、図5に示すようにマスター1は伝送線2に直接接続することも可能である。この場合はマスター1の伝送線2への接続点の防水が必要であるが、効率が良くなる。  In the above embodiment, the master 1 is also non-contact with the transmission line 2, but the master 1 can be directly connected to the transmission line 2 as shown in FIG. In this case, waterproofing of the connection point of the master 1 to the transmission line 2 is necessary, but the efficiency is improved.

またさらに図6に示すように、マスター1に対して1つのスレーブ3を1つのループ状の伝送線2で連結し、スレーブ3に対して他のスレーブ4を他のループ状の伝送線で連結する事も可能である。この場合も伝送線2に対して各スレーブは非接触状態で接続される。またスレーブの数の増減が容易である。  Furthermore, as shown in FIG. 6, one slave 3 is connected to the master 1 by one loop transmission line 2, and the other slave 4 is connected to the slave 3 by another loop transmission line. It is also possible to do. Also in this case, each slave is connected to the transmission line 2 in a non-contact state. The number of slaves can be easily increased or decreased.

次に以上の全ての実施例共通のデータの伝送について説明する。伝送線2には電力と信号との両方を流すため、電力線通信(「Power line Communication」或いは「Power line Transmission」と呼ばれる)を採用する。本発明の実施例では、100KHz〜400KHzの帯域でスペクトラム拡散通信を用いる。このようなPLC或いはPLTの技術は1チップICが市販されており、容易に実現できる。  Next, data transmission common to all the above embodiments will be described. Power line communication (referred to as “Power line Communication” or “Power line Transmission”) is adopted to allow both power and signals to flow through the transmission line 2. In the embodiment of the present invention, spread spectrum communication is used in a band of 100 KHz to 400 KHz. Such a PLC or PLT technology can be easily realized since a one-chip IC is commercially available.

以上の本発明の非接触電力・信号伝送システムを地震の予測システムに応用した場合の例を図7に示す。マスター1は地表に設置し、スレーブ2〜nは地中に設置する。各スレーブには傾斜センサや振動センサを設け、常に地中の特定の場所の傾斜や振動を計測し、マスター1にデーター・ロガーを設けておくと、長期間のデータの収集が可能となる。  FIG. 7 shows an example in which the non-contact power / signal transmission system of the present invention is applied to an earthquake prediction system. The master 1 is installed on the ground surface, and the slaves 2 to n are installed in the ground. If each slave is provided with an inclination sensor and a vibration sensor, the inclination and vibration of a specific place in the ground are always measured, and a data logger is provided in the master 1, data can be collected for a long period of time.

本発明の非接触電力・信号伝送システムは、以上のように地中などに設置する装置に対し、電力の供給とデータの送受とを非接触状態で行う事ができるため、信頼性を高くすることができる。  The non-contact power / signal transmission system of the present invention increases the reliability because the power supply and the data transmission / reception can be performed in a non-contact state with respect to the apparatus installed in the ground as described above. be able to.

1 マスター
2 伝送線
3、4 スレーブ
5,6,7 環状のコア
1 Master 2 Transmission line 3, 4 Slave 5, 6, 7 Ring core

Claims (6)

複数の環状磁気コアとそれを貫通し他の部分と非接触状態の伝送線から構成され、導体を介して前記磁気コアの発生する磁束から起電力を得る2次巻き線から電力を供給される電子回路を有し、前記電子回路に前記伝送線と磁気結合を介して電力および信号伝送を双方向的に行うようにし、電力の伝送を貫通する伝送線を直接駆動することにより実現したことを特徴とする非接触電力・信号伝送システム。It is composed of a plurality of annular magnetic cores and a transmission line that passes through the cores and is not in contact with other parts, and is supplied with power from a secondary winding that obtains an electromotive force from the magnetic flux generated by the magnetic core via a conductor. It has been realized by having an electronic circuit, allowing the electronic circuit to perform power and signal transmission bidirectionally via the transmission line and magnetic coupling, and directly driving the transmission line that penetrates the transmission of power. Characteristic non-contact power / signal transmission system. 電力供給を貫通する非接触状態の伝送線をトランスの2次巻き線として、トランス結合で供給する事を特徴とする請求項1記載の非接触電力・信号伝送システム2. The non-contact power / signal transmission system according to claim 1, wherein a non-contact transmission line penetrating the power supply is used as a secondary winding of the transformer and is supplied by transformer coupling. 電力供給と信号伝送を行う非接触状態の伝送線を並列に形成し、おのおのの磁気コアの2次巻き線に設置された電子回路に対して、電力および信号伝送を伝送線と磁気結合を介して双方向的に行うことを特徴とする請求項1記載の非接触電力・信号伝送システム。A non-contact transmission line for power supply and signal transmission is formed in parallel, and power and signal transmission are transmitted via the transmission line and magnetic coupling to the electronic circuit installed in the secondary winding of each magnetic core. The contactless power / signal transmission system according to claim 1, wherein the system is bidirectionally operated. 貫通する非接触状態の伝送線としてリッツ線を使用することにより周波数特性を改善したことを特徴とする請求項1記載の非接触電力・信号伝送システム。2. The non-contact power / signal transmission system according to claim 1, wherein frequency characteristics are improved by using a litz wire as a non-contact transmission line that penetrates. 磁気コアの2次巻き線に接続された電子回路に信号伝送する伝送方式としてにスペクトラム拡散方式を使用することを特徴とする請求項1記載の非接触電力・信号伝送システム。2. The non-contact power / signal transmission system according to claim 1, wherein a spread spectrum system is used as a transmission system for transmitting a signal to an electronic circuit connected to the secondary winding of the magnetic core. 前記システムを筒状のパイプ内に設置し、おのおののユニットに、温度、圧力、方位、傾斜などを検出するセンサを複数セット設置し各ユニットのデータを信号処理することで、地盤の滑りなどの予知するシステムを構成したことを特長とする非接触電力・信号伝送システム。The system is installed in a cylindrical pipe, and each unit is equipped with multiple sets of sensors that detect temperature, pressure, direction, inclination, etc. A non-contact power / signal transmission system characterized by the construction of a predictive system.
JP2013212325A 2013-09-20 2013-09-20 Non-contact power / signal transmission system Active JP6195064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013212325A JP6195064B2 (en) 2013-09-20 2013-09-20 Non-contact power / signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013212325A JP6195064B2 (en) 2013-09-20 2013-09-20 Non-contact power / signal transmission system

Publications (2)

Publication Number Publication Date
JP2015061314A true JP2015061314A (en) 2015-03-30
JP6195064B2 JP6195064B2 (en) 2017-09-13

Family

ID=52818480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013212325A Active JP6195064B2 (en) 2013-09-20 2013-09-20 Non-contact power / signal transmission system

Country Status (1)

Country Link
JP (1) JP6195064B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4106605A4 (en) * 2020-03-20 2024-05-01 Xenter Inc Catheter for imaging and measurement of pressure and other physiological parameters

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202550A (en) * 1996-01-24 1997-08-05 Kokusai Electric Co Ltd Electric power and signal transmission method and its device utilizing suspension wire rope for elevating movement
JPH09289709A (en) * 1996-04-19 1997-11-04 Toyota Autom Loom Works Ltd Communication method for mover operation system
JPH10126319A (en) * 1996-10-16 1998-05-15 Toyota Autom Loom Works Ltd Feeder superimposing communication system for mobile body
JP2002148081A (en) * 2000-11-10 2002-05-22 Tokai Phs Hanbai Kk Bending force sensor
JP2003264423A (en) * 2002-03-07 2003-09-19 Nec Tokin Corp Contact-less power receiving element
JP2004532562A (en) * 2001-03-29 2004-10-21 アンビエント・コーポレイション Coupling circuit for power line communication
JP2009011100A (en) * 2007-06-28 2009-01-15 Mitsubishi Electric Corp Current limiting system
JP2009525645A (en) * 2006-01-31 2009-07-09 エスエーヴェー−オイロドライブ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンディトゲゼルシャフト System, apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202550A (en) * 1996-01-24 1997-08-05 Kokusai Electric Co Ltd Electric power and signal transmission method and its device utilizing suspension wire rope for elevating movement
JPH09289709A (en) * 1996-04-19 1997-11-04 Toyota Autom Loom Works Ltd Communication method for mover operation system
JPH10126319A (en) * 1996-10-16 1998-05-15 Toyota Autom Loom Works Ltd Feeder superimposing communication system for mobile body
JP2002148081A (en) * 2000-11-10 2002-05-22 Tokai Phs Hanbai Kk Bending force sensor
JP2004532562A (en) * 2001-03-29 2004-10-21 アンビエント・コーポレイション Coupling circuit for power line communication
JP2003264423A (en) * 2002-03-07 2003-09-19 Nec Tokin Corp Contact-less power receiving element
JP2009525645A (en) * 2006-01-31 2009-07-09 エスエーヴェー−オイロドライブ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー コマンディトゲゼルシャフト System, apparatus and method
JP2009011100A (en) * 2007-06-28 2009-01-15 Mitsubishi Electric Corp Current limiting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4106605A4 (en) * 2020-03-20 2024-05-01 Xenter Inc Catheter for imaging and measurement of pressure and other physiological parameters
EP4106619A4 (en) * 2020-03-20 2024-05-01 Xenter Inc Operatively coupled data and power transfer device for medical guidewires and catheters with sensors

Also Published As

Publication number Publication date
JP6195064B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
US8054190B2 (en) Apparatus for monitoring of brushes, in particular slipring or commutator brushes, on electrical machines
KR101322764B1 (en) Apparatus and method for wireless power transmition
US8509470B2 (en) Textile-based magnetic field interface clothes and mobile terminal in wearable computing system
US9800057B2 (en) Device for transfer of electrical signals and/or electrical energy
JP2010523030A (en) Contactless power supply / data transmission system
MX2007006111A (en) Methods and apparatus for communicating across casing.
JP2017535019A (en) Submarine connector having data collection and communication system and method
CN102946259B (en) Carrier wave communication system based on electric power line and carrier wave communication method
CN103336309A (en) Micro tracing probe and use method thereof
US7847671B1 (en) Subsea data and power transmission inductive coupler and subsea cone penetrating tool
JP6195064B2 (en) Non-contact power / signal transmission system
JP2008160490A (en) Ac adapter for power line communication and information terminal
CN104392590A (en) Wireless power internet-of-things sensor without need of connecting with power supply
EP3141915A1 (en) Electrical activity sensor device for detecting electrical activity and electrical activity monitoring apparatus
JP6842885B2 (en) Wireless power supply device and wireless power supply method
JP2007053705A (en) Coupler for power line communication
US9651183B2 (en) Controlling heating and communication in a pipeline system
JP2007158848A (en) Power line carrier communication system
JP4654831B2 (en) Power line communication coupler
JP2006004683A (en) Cable with identification information and cable power transmission monitoring device
JP2010211381A (en) Building diagnosing system
CN104471412B (en) The method and apparatus of identification or location current sensor
JP2013188017A (en) Leakage detection device
JP2007129701A (en) Power line communication system
JP6213768B2 (en) Communication apparatus and distribution board equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170801

R150 Certificate of patent or registration of utility model

Ref document number: 6195064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250