JP2015061025A - GaSb/InAs/Si (111) STRUCTURE AND METHOD FOR FORMING THE SAME EXCELLENT IN COMPLETENESS OF SURFACE SMOOTHNESS AND CRYSTAL STRUCTURE, AND MOS DEVICE AND INFRARED RAY DETECTION DEVICE USING THE STRUCTURE - Google Patents

GaSb/InAs/Si (111) STRUCTURE AND METHOD FOR FORMING THE SAME EXCELLENT IN COMPLETENESS OF SURFACE SMOOTHNESS AND CRYSTAL STRUCTURE, AND MOS DEVICE AND INFRARED RAY DETECTION DEVICE USING THE STRUCTURE Download PDF

Info

Publication number
JP2015061025A
JP2015061025A JP2013195290A JP2013195290A JP2015061025A JP 2015061025 A JP2015061025 A JP 2015061025A JP 2013195290 A JP2013195290 A JP 2013195290A JP 2013195290 A JP2013195290 A JP 2013195290A JP 2015061025 A JP2015061025 A JP 2015061025A
Authority
JP
Japan
Prior art keywords
gasb
inas
film
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195290A
Other languages
Japanese (ja)
Other versions
JP6153224B2 (en
Inventor
晃浩 大竹
Akihiro Otake
晃浩 大竹
高明 間野
Takaaki Mano
高明 間野
典幸 宮田
Noriyuki Miyata
典幸 宮田
哲二 安田
Tetsuji Yasuda
哲二 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, National Institute for Materials Science filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013195290A priority Critical patent/JP6153224B2/en
Publication of JP2015061025A publication Critical patent/JP2015061025A/en
Application granted granted Critical
Publication of JP6153224B2 publication Critical patent/JP6153224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a GaSb/InAs/Si (111) structure excellent in surface smoothness and completeness of a crystal structure.SOLUTION: After an InAs two-dimensional layer having a thickness at least 2 nm or more is formed as a buffer layer by a molecular beam epitaxy method on a cleaned Si (111) substrate surface, further on the InAs two-dimensional layer, a GaSb epitaxial thin film is formed which is excellent in surface smoothness and has low defect density by the molecular beam epitaxy method.

Description

本発明は、表面の平坦性および結晶構造の完全性に優れたGaSb/InAs/Si(111)構造とその形成方法、並びにその構造を用いたMOSデバイスおよび赤外線検出デバイスに関するものである。   The present invention relates to a GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure integrity, a method of forming the same, and a MOS device and an infrared detection device using the structure.

GaSb(アンチモン化ガリウム)は半導体装置であるCMOSのpチャネル材料や赤外線検出デバイスなどの応用が期待できる。GaSbウエハは高価なのでGaSb膜をSi基板上に成長できれば都合がよい。また、GaSbはSiテクノロジーで組み合わせる上でも有利である。   GaSb (gallium antimonide) is expected to be applied to CMOS p-channel materials and infrared detection devices that are semiconductor devices. Since a GaSb wafer is expensive, it is convenient if a GaSb film can be grown on a Si substrate. GaSb is also advantageous when combined with Si technology.

ところが、Siの格子定数は5.40Åであり、GaSbの格子定数は6.095Åであり、両者の格子定数は大きく異なるため、Si基板上にGaSbの高品質の結晶膜を得ようとすると、貫通転位などの欠陥が膜中に形成されるため、Si基板上に高品質のGaSb結晶からなる結晶膜を得ることは困難であった。   However, the lattice constant of Si is 5.40Å, the lattice constant of GaSb is 6.095Å, and the lattice constants of the two are greatly different. Therefore, when trying to obtain a high-quality GaSb crystal film on the Si substrate, Since defects such as threading dislocations are formed in the film, it has been difficult to obtain a crystal film made of high-quality GaSb crystals on the Si substrate.

この問題を解決するため、非特許文献1には、有機金属気相成長(MOCVD)法を用い、Si(111)基板上に4核生成層(four nucleation layers)程度のInAs層をバッファー層として設け、さらにその上にGaSb膜を形成する技術が提案されている。そして、この技術により、転位密度がかなり少なく高品質なGaSb結晶膜が得られたと報告されている。   In order to solve this problem, Non-Patent Document 1 uses a metal organic chemical vapor deposition (MOCVD) method and uses an InAs layer of about four nucleation layers on a Si (111) substrate as a buffer layer. A technique has been proposed in which a GaSb film is formed thereon. It has been reported that a high-quality GaSb crystal film with a considerably low dislocation density was obtained by this technique.

しかしながら、非特許文献1の方法でGaSb/InAs/Si(111)構造を作成した場合、InAs膜成長時に膜中に高密度の欠陥が生成されるだけでなく、InAs膜の表面に高密度の穴が形成される。このため、その上に形成されたGaSb結晶層の表面も平坦性に劣る。これはCMOSのpチャネル材料等の半導体装置に応用した場合、界面準位密度の増加や移動度劣化という問題を生じさせ、さらに改善される余地があった。また、非特許文献1の方法ではInAs層の厚さを最低でも220nm以上にする必要があるが、非特許文献3に示されるように、InAs層の厚さが10nmを超えると、GaSb中のキャリアがInAs層中に流出し、GaSbがpチャネル層として機能しなくなる。そのため、InAs層の厚さを9nm以下にする必要がある。   However, when the GaSb / InAs / Si (111) structure is created by the method of Non-Patent Document 1, not only high-density defects are generated in the film during growth of the InAs film, but also high-density on the surface of the InAs film. A hole is formed. For this reason, the surface of the GaSb crystal layer formed thereon is also inferior in flatness. When this is applied to a semiconductor device such as a CMOS p-channel material, it causes problems such as an increase in interface state density and mobility degradation, and there is room for further improvement. Further, in the method of Non-Patent Document 1, the thickness of the InAs layer needs to be at least 220 nm. However, as shown in Non-Patent Document 3, if the thickness of the InAs layer exceeds 10 nm, Carriers flow out into the InAs layer, and GaSb does not function as a p-channel layer. Therefore, the thickness of the InAs layer needs to be 9 nm or less.

Sepideh et al., Journal of Crystal Growth 332 (2011) 12-16Sepideh et al., Journal of Crystal Growth 332 (2011) 12-16 Ohtake and Mitsuishi, J. Vac. Sci. Technol. B29, 031804 (2011)Ohtake and Mitsuishi, J. Vac. Sci. Technol. B29, 031804 (2011) Chang et al., Appl. Phys. Lett. 35, 939 (1979)Chang et al., Appl. Phys. Lett. 35, 939 (1979) A. Hood et al., Appl. Phys. Lett. 89, 093506 (2006))A. Hood et al., Appl. Phys. Lett. 89, 093506 (2006))

本発明は、以上のような従来技術の実情に鑑みてなされたもので、表面の平坦性および結晶構造の完全性に優れたGaSb/InAs/Si(111)構造とその形成方法を提供することを課題とする。   The present invention has been made in view of the above-described prior art, and provides a GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure integrity and a method for forming the same. Is an issue.

また、本発明は上記構造を用いたMOSデバイスおよび赤外線検出デバイスを提供することをも課題とする。   Another object of the present invention is to provide a MOS device and an infrared detection device using the above structure.

本発明者らは、分子線エピタキシー(MBE)法を用いてSi(111)基板表面上にInAsの単結晶膜を形成する研究を行ってきており、非特許文献2において報告している。この研究では、分子線エピタキシーを用いて、Si(111)基板表面上にInAsを成長させた場合、成長前のSi(111)基板の表面状態に応じて、形成されるInAs膜の表面形態が大きく異なることがわかった。すなわち、成長前のSi(111)基板の表面の処理に応じて、InAsは二次元的に成長したり、三次元的(島状)に成長したりすることがわかった。そして、InAsが二次元的に成長した場合、InAs膜とSi(111)基板との界面にのみ転位が局在し、InAs膜中には欠陥が入らないことを確認した。   The present inventors have been researching the formation of an InAs single crystal film on the surface of a Si (111) substrate by using molecular beam epitaxy (MBE), and reported in Non-Patent Document 2. In this study, when InAs is grown on the Si (111) substrate surface using molecular beam epitaxy, the surface morphology of the InAs film formed depends on the surface state of the Si (111) substrate before the growth. It turned out to be very different. That is, it was found that InAs grows two-dimensionally or three-dimensionally (islands) depending on the surface treatment of the Si (111) substrate before growth. Then, when InAs grew two-dimensionally, it was confirmed that dislocations were localized only at the interface between the InAs film and the Si (111) substrate, and no defects were introduced into the InAs film.

本発明者らは、これらの知見に基づいて、Si(111)基板の表面にGaSb結晶層を高品質で且つ表面の平坦性に優れた状態で形成することについて鋭意検討を重ねた結果、本発明を完成するに至った。   Based on these findings, the present inventors have conducted extensive studies on forming a GaSb crystal layer on the surface of a Si (111) substrate in a state of high quality and excellent surface flatness. The invention has been completed.

すなわち、本発明によれば、上記課題を解決するために、第1に、清浄化されたSi(111)基板表面上に、分子線エピタキシー法で厚さが少なくとも2nm以上のInAs二次元層をバッファー層として形成した後、さらにその上に、分子線エピタキシー法で表面の平坦性に優れ且つ低欠陥密度であるGaSbエピタキシャル薄膜を形成することを特徴とするGaSb/InAs/Si(111)構造の形成方法が提供される。   That is, according to the present invention, in order to solve the above problems, first, an InAs two-dimensional layer having a thickness of at least 2 nm or more is formed on a cleaned Si (111) substrate surface by a molecular beam epitaxy method. A GaSb / InAs / Si (111) structure characterized by forming a GaSb epitaxial thin film having excellent surface flatness and a low defect density by a molecular beam epitaxy method after being formed as a buffer layer. A forming method is provided.

第2に、上記第1の発明において、得られたGaSb/InAs/Si(111)構造の成長したGaSbエピタキシャル薄膜の面方位が(111)A面であることを特徴とするGaSb/InAs/Si(111)構造の形成方法が提供される。   Secondly, in the first invention, the GaSb / InAs / Si (111) structure grown GaSb epitaxial thin film obtained by growing the GaSb epitaxial film has a (111) A plane, and the GaSb / InAs / Si A method of forming a (111) structure is provided.

第3に、上記第1または第2の発明において、得られたGaSb/InAs/Si(111)構造のGaSbエピタキシャル薄膜の表面のニ乗平均粗さが0.2〜0.3nmであり且つInAs層の厚さが2〜9nmであることを特徴とするGaSb/InAs/Si(111)構造の形成方法が提供される。   Third, in the first or second invention, the surface mean square roughness of the obtained GaSb epitaxial thin film of GaSb / InAs / Si (111) structure is 0.2 to 0.3 nm and InAs A method of forming a GaSb / InAs / Si (111) structure is provided, wherein the layer thickness is 2-9 nm.

第4に、第1から第3のいずれかの発明において、得られたGaSb/InAs/Si(111)構造のGaSbエピタキシャル薄膜の欠陥密度が8×10cm−2以下であることを特徴とするGaSb/InAs/Si(111)構造の形成方法が提供される。 Fourth, in any one of the first to third inventions, the obtained GaSb / InAs / Si (111) structured GaSb epitaxial thin film has a defect density of 8 × 10 5 cm −2 or less. A method of forming a GaSb / InAs / Si (111) structure is provided.

また、第5に、清浄化されたSi(111)基板表面上に、分子線エピタキシー法で形成された厚さが少なくとも2nm以上のInAs二次元層よりなるバッファー層を設け、さらにその上に分子線エピタキシー法で形成された表面のニ乗平均粗さが0.2〜0.3nmであり且つ欠陥密度が8×10cm−2以下のGaSbエピタキシャル薄膜を設けてなることを特徴とするGaSb/InAs/Si(111)構造が提供される。 Fifth, a buffer layer composed of an InAs two-dimensional layer having a thickness of at least 2 nm formed by molecular beam epitaxy is provided on the cleaned Si (111) substrate surface, and further a molecular layer is provided thereon. A GaSb epitaxial thin film having a mean square roughness of a surface formed by a line epitaxy method of 0.2 to 0.3 nm and a defect density of 8 × 10 5 cm −2 or less is provided. A / InAs / Si (111) structure is provided.

また、第6に、上記GaSb/InAs/Si(111)構造を備えていることを特徴とするMOSデバイスが提供される。   Sixth, there is provided a MOS device comprising the GaSb / InAs / Si (111) structure.

さらに、第7に、上記GaSb/InAs/Si(111)構造を備えていることを特徴とする赤外線検出デバイスが提供される。   Furthermore, seventhly, an infrared detection device characterized by comprising the GaSb / InAs / Si (111) structure is provided.

本発明によれば、表面の平坦性および結晶構造の完全性に優れたGaSb/InAs/Si(111)構造を提供することができる。   According to the present invention, a GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure integrity can be provided.

また、本発明によれば、上記GaSb/InAs/Si(111)構造を用いた性能に優れたMOSデバイスおよび赤外線検出デバイスを提供することが可能となる。   In addition, according to the present invention, it is possible to provide a MOS device and an infrared detection device excellent in performance using the GaSb / InAs / Si (111) structure.

本発明によるGaSb/InAs/Si(111)構造の形成方法の工程を、GaSb/Si(111)構造の形成方法の工程と対比して示す。The steps of the method for forming the GaSb / InAs / Si (111) structure according to the present invention are shown in comparison with the steps for the method for forming the GaSb / Si (111) structure. GaSb/InAs/Si(111)構造の倍率が200000倍の高分解能断面TEM(透過型電子顕微鏡)像である。It is a high-resolution cross-sectional TEM (transmission electron microscope) image whose magnification of a GaSb / InAs / Si (111) structure is 200000 times. GaSb/InAs/Si(111)構造の倍率が500000倍の高分解能断面TEM(透過型電子顕微鏡)像である。It is a high-resolution cross-sectional TEM (transmission electron microscope) image with a magnification of 500,000 times of the GaSb / InAs / Si (111) structure. InAs/Si(111)界面の倍率が2000000倍の高分解能断面TEM(透過型電子顕微鏡)像である。It is a high-resolution cross-sectional TEM (transmission electron microscope) image in which the magnification of the InAs / Si (111) interface is 2000000 times. (a)はInAs(4nm)/Si(111)表面のRHEEDパターンを示す図であり、(b)は同表面上に0.7nm厚成長させたGaSb膜のRHEEDパターンを示す図であり、(c)は同表面上に2nm厚成長させたGaSb膜のRHEEDパターンを示す図であり、(d)は同表面上に30nm厚成長させたGaSb膜のRHEEDパターンを示す図であり、(e)は同表面上に100nm厚成長させたGaSb膜のRHEEDパターンを示す図であり、(f)は同表面上に200nm厚成長させたGaSb膜のRHEEDパターンを示す図である。(A) is a figure which shows the RHEED pattern of InAs (4 nm) / Si (111) surface, (b) is a figure which shows the RHEED pattern of the GaSb film | membrane grown by 0.7 nm thickness on the surface, (c) is a diagram showing an RHEED pattern of a GaSb film grown on the same surface by a thickness of 2 nm, (d) is a diagram showing an RHEED pattern of a GaSb film grown on the surface by a thickness of 30 nm, (e) FIG. 5 is a diagram showing an RHEED pattern of a GaSb film grown on the same surface to a thickness of 100 nm, and (f) is a diagram showing an RHEED pattern of a GaSb film grown on the same surface to a thickness of 200 nm. 本発明によるGaSb/InAs/Si(111)構造のGaSb膜表面の走査トンネル顕微鏡(STM)像である。It is a scanning tunneling microscope (STM) image of the surface of the GaSb film of the GaSb / InAs / Si (111) structure by this invention. 本発明によるGaSb/InAs/Si(111)構造のGaSb膜表面の原子間力顕微鏡(AFM)像である。2 is an atomic force microscope (AFM) image of the surface of a GaSb film having a GaSb / InAs / Si (111) structure according to the present invention. 本発明によるGaSb/InAs/Si(111)構造のフォトルミネッセンスの測定データを示す図である。It is a figure which shows the measurement data of the photoluminescence of the GaSb / InAs / Si (111) structure by this invention. (a)はSi(111)表面のRHEEDパターンを示す図であり、(b)は同表面上に0.15nm厚成長させたGaSb膜のRHEEDパターンを示す図であり、(c)は同表面上に0.3nm厚成長させたGaSb膜のRHEEDパターンを示す図であり、(d)は同表面上に2.1nm厚成長させたGaSb膜のRHEEDパターンを示す図である。(A) is a figure which shows the RHEED pattern of Si (111) surface, (b) is a figure which shows the RHEED pattern of the GaSb film | membrane grown by 0.15 nm thickness on the same surface, (c) is the same surface It is a figure which shows the RHEED pattern of the GaSb film | membrane grown by 0.3 nm thickness on the top, (d) is a figure which shows the RHEED pattern of the GaSb film | membrane grown by 2.1 nm thickness on the same surface. 本発明の形成方法により形成されたGaSb/InAs/Si(111)構造を備えたMOS型キャパシタの構成を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the MOS type capacitor provided with the GaSb / InAs / Si (111) structure formed by the formation method of this invention. 図10のMOS型キャパシタにより得られたC−V特性を示す図である。It is a figure which shows the CV characteristic obtained by the MOS type capacitor of FIG.

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明のGaSb/InAs/Si(111)構造の形成方法は、清浄化されたSi(111)基板表面上に、分子線エピタキシー法で厚さが少なくとも2nm以上のInAs二次元層をバッファー層として形成した後、さらにその上に、分子線エピタキシー法で表面の平坦性に優れ且つ低欠陥密度であるGaSbエピタキシャル薄膜を形成することを特徴とする。   The method of forming a GaSb / InAs / Si (111) structure according to the present invention uses an InAs two-dimensional layer having a thickness of at least 2 nm or more by a molecular beam epitaxy method on a cleaned Si (111) substrate surface as a buffer layer. After the formation, a GaSb epitaxial thin film having excellent surface flatness and a low defect density is further formed thereon by molecular beam epitaxy.

以下、本発明のGaSb/InAs/Si(111)構造の形成方法の手順について図1を参照して説明する。   Hereinafter, the procedure of the method for forming the GaSb / InAs / Si (111) structure of the present invention will be described with reference to FIG.

本実施形態では、図1(a)の左側に示すように、清浄化されたSi(111)基板を用いる。Si(111)基板を清浄化する方法としては、種々の方法を用いることができるが、例えば、モリブデン製のホルダーにSi(111)基板を取り付け、ホルダーの開口部を通して裏面からヒーターで加熱する方法を用いることができる。   In the present embodiment, as shown on the left side of FIG. 1A, a cleaned Si (111) substrate is used. Various methods can be used as a method for cleaning the Si (111) substrate. For example, a method of attaching the Si (111) substrate to a molybdenum holder and heating it with a heater from the back through the opening of the holder. Can be used.

本実施形態では、図1(b)の左側に示すように、清浄化されたSi(111)基板上に、分子線エピタキシー法で厚さが少なくとも2nm以上のInAs二次元層をバッファー層として形成する。InAs二次元層が2nm未満であると、GaSb成長初期時に表面が荒れたり、欠陥が増えたりするおそれがある。InAs二次元層の膜厚の上限は、InAs層の厚さが10nmを超えると、GaSb中のキャリアがInAs層中に流出し、GaSbがpチャネル層として機能しなくなるため、9nm程度が好ましい。InAs二次元膜の形成は、一般に分子線エピタキシー法で薄膜を形成する超高真空チャンバーを備えた装置を用いて行うことができる。この装置は、反射高速電子線回折(RHEED)と走査型トンネル顕微鏡(STM)観察を行うことができるようになっている。本発明において、InAs層は二次元的に成長し、表面の平坦性および結晶構造の完全性に優れたGaSbを形成するためバッファー層として非常に重要な役割を行う。InAs層は、先ず、一層のInを蒸着し、次いでInとAsを同時に供給して所望の厚さのInAs層とする。膜形成条件としては、基板温度が250〜500℃、V族/III族フラックス比10〜100程度であることが好ましい。Si(111)基板上にInAs二次元層をバッファー層として形成した場合、転位は両者の界面にのみ局在するようになり、InAs二次元層中には欠陥がない状態となる。   In this embodiment, as shown on the left side of FIG. 1B, an InAs two-dimensional layer having a thickness of at least 2 nm or more is formed as a buffer layer on a cleaned Si (111) substrate by molecular beam epitaxy. To do. If the InAs two-dimensional layer is less than 2 nm, the surface may be roughened or defects may increase at the initial stage of GaSb growth. The upper limit of the thickness of the InAs two-dimensional layer is preferably about 9 nm because when the thickness of the InAs layer exceeds 10 nm, carriers in GaSb flow out into the InAs layer and GaSb does not function as a p-channel layer. Formation of an InAs two-dimensional film can be generally performed using an apparatus including an ultrahigh vacuum chamber for forming a thin film by a molecular beam epitaxy method. This apparatus can perform reflection high-energy electron diffraction (RHEED) and scanning tunneling microscope (STM) observations. In the present invention, the InAs layer grows two-dimensionally and plays a very important role as a buffer layer in order to form GaSb excellent in surface flatness and crystal structure integrity. In the InAs layer, first, a single layer of In is deposited, and then In and As are supplied simultaneously to form an InAs layer having a desired thickness. As film formation conditions, it is preferable that the substrate temperature is 250 to 500 ° C. and the group V / III flux ratio is about 10 to 100. When an InAs two-dimensional layer is formed on a Si (111) substrate as a buffer layer, dislocations are localized only at the interface between the two, and there is no defect in the InAs two-dimensional layer.

次に、図1(c)の左側に示すように、InAs二次元層の上に、分子線エピタキシー法により、GaSb二次元層を形成する。このGaSb二次元層は、GaSbの格子定数が6.095Åであり、InAsの格子定数が6.058Åであることから、両者の格子定数が非常に近いため、欠陥がないあるいは非常に少ない膜となる。次いで、成膜を続け、図1(d)の左側に示すように、所望膜厚のGaSb薄膜を形成する。この膜形成も上記装置を用いて行う。GaSb膜の形成は、Gaを先に供給し、後でSbを供給してもよいし、Sbを先に供給し、後でGaを供給してもよいし、GaとSbを同時に供給してもよい。本方法で形成したGaSb膜の面方位は(111)A(Ga終端)となる。膜厚については特に制限はなく、目的に応じた膜厚まで成長させることができる。膜形成条件としては、基板温度が250〜500℃、V族/III族フラックス比10〜100程度であることが好ましい。形成されたGaSb膜は欠陥密度が8×10cm−2以下で表面のニ乗平均粗さが0.2〜0.3nmの平坦性の優れた膜となる。 Next, as shown on the left side of FIG. 1C, a GaSb two-dimensional layer is formed on the InAs two-dimensional layer by molecular beam epitaxy. Since this GaSb two-dimensional layer has a lattice constant of GaSb of 6.095 、 and a lattice constant of InAs of 6.058 、, both lattice constants are very close, so there is no defect or very few films. Become. Next, film formation is continued, and a GaSb thin film having a desired film thickness is formed as shown on the left side of FIG. This film formation is also performed using the above apparatus. The GaSb film can be formed by supplying Ga first, then supplying Sb later, supplying Sb first, supplying Ga later, or supplying Ga and Sb simultaneously. Also good. The surface orientation of the GaSb film formed by this method is (111) A (Ga termination). There is no restriction | limiting in particular about a film thickness, It can be made to grow to the film thickness according to the objective. As film formation conditions, it is preferable that the substrate temperature is 250 to 500 ° C. and the group V / III flux ratio is about 10 to 100. The formed GaSb film is an excellent flat film having a defect density of 8 × 10 5 cm −2 or less and a surface mean square roughness of 0.2 to 0.3 nm.

図2、図3に、それぞれ作成例のGaSb/InAs/Si(111)構造の倍率が200000倍、500000倍の高分解能断面TEM(透過型電子顕微鏡)像をそれぞれ示す。また、図4に、同構造のInAs/Si(111)界面の倍率が2000000倍の高分解能断面TEM像を示す。   FIG. 2 and FIG. 3 show high-resolution cross-sectional TEM (transmission electron microscope) images with the magnification of the GaSb / InAs / Si (111) structure of the preparation example being 200,000 times and 500,000 times, respectively. FIG. 4 shows a high-resolution cross-sectional TEM image in which the magnification of the InAs / Si (111) interface having the same structure is 2000000 times.

一方、同様な方法でInAs膜を設けない場合には、図1(c)の右側に示すように、GaSbは三次元状(島状)となり、転位、双晶などが発生する。また、GaSb成長後の状態は図1(d)の右側に示すようになる。   On the other hand, when the InAs film is not provided by the same method, as shown on the right side of FIG. 1C, GaSb has a three-dimensional shape (island shape), and dislocations, twins, and the like are generated. The state after the growth of GaSb is as shown on the right side of FIG.

また、Si(111)基板上に直接GaSbを成長させた場合も、同様に三次元状(島状)となる。   Similarly, when GaSb is grown directly on the Si (111) substrate, it also has a three-dimensional shape (island shape).

本発明のGaSb/InAs/Si(111)構造は、その優れた表面の平坦性および結晶構造の完全性により、MOSデバイスや赤外線検出デバイスに好ましく適用され、優れた性能を発揮することができる。   The GaSb / InAs / Si (111) structure of the present invention is preferably applied to MOS devices and infrared detection devices due to its excellent surface flatness and crystal structure perfection, and can exhibit excellent performance.

例えば、非特許文献4においては、GaSb基板上にInAs/GaSb多重量子井戸構造の受光層を形成したフォトダイオードが提案されている。InAs/GaSb多重量子井戸構造は波長3μm以上の中赤外線検出器への応用が期待される。これまで、InAs/GaSb多重量子井戸構造の基板として用いるGaSbやInAsは赤外線の透過率が低いため、二次元センサアレイなどの裏面入射のセンサを作製するためには基板の除去が必要であった。また、Siは赤外域での透過率が高いため、Si上にInAs/GaSb超格子を作製できれば基板の除去が不要になる。通常の方法でSi上にGaSbやInAsを成長させると、欠陥が大量に発生し、欠陥の少ない膜を得るためには厚くGaSbを成長させなければならない。その場合、欠陥による吸収ロスだけでなく、GaSb膜が厚いことによって透過率が低下する。   For example, Non-Patent Document 4 proposes a photodiode in which a light-receiving layer having an InAs / GaSb multiple quantum well structure is formed on a GaSb substrate. The InAs / GaSb multiple quantum well structure is expected to be applied to a mid-infrared detector having a wavelength of 3 μm or more. Until now, GaSb and InAs used as substrates of InAs / GaSb multiple quantum well structures have low infrared transmittance, so that it was necessary to remove the substrate in order to produce a back-illuminated sensor such as a two-dimensional sensor array. . Further, since Si has a high transmittance in the infrared region, if an InAs / GaSb superlattice can be formed on Si, the substrate need not be removed. When GaSb or InAs is grown on Si by a normal method, a large number of defects are generated, and in order to obtain a film with few defects, it is necessary to grow GaSb thickly. In that case, not only the absorption loss due to defects, but also the transmittance decreases due to the thick GaSb film.

これに対し、本発明の方法を用いて作製したGaSb/InAs/Si(111)構造(図1(d)の左側)上に多重量子井戸構造を作製した場合、最初に成長させるInAs層の膜厚を非常に薄くでき、膜中にも欠陥が存在しないので、吸収ロスの少ない赤外検出器の実現が期待できる。   On the other hand, when a multiple quantum well structure is formed on a GaSb / InAs / Si (111) structure (left side of FIG. 1 (d)) manufactured by using the method of the present invention, the InAs layer film grown first. Since the thickness can be made very thin and there are no defects in the film, an infrared detector with little absorption loss can be realized.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

実施例1
縦20mm横20mm厚さ0.3mmのSi(111)基板をモリブデン製のホルダーに固定し、裏面からヒーターで加熱して、表面を清浄化した。次いで、チャンバー内で分子線エピタキシー法によりSi(111)基板上にInAsをバッファー層として3nmほど二次元成長させた。基板温度は380℃、In/Asのフラックス比50、真空度5×10−5Paであった。このときの反射高速電子線回折(RHEED)パターンを図5(a)に示す。この図からInAs層が二次元成長していることがわかる。
Example 1
A Si (111) substrate having a length of 20 mm, a width of 20 mm, and a thickness of 0.3 mm was fixed to a molybdenum holder, and heated from the back with a heater to clean the surface. Next, two-dimensional growth was performed on the Si (111) substrate by 3 nm using InAs as a buffer layer in the chamber by molecular beam epitaxy. The substrate temperature was 380 ° C., the In / As flux ratio was 50, and the degree of vacuum was 5 × 10 −5 Pa. The reflection high-energy electron diffraction (RHEED) pattern at this time is shown in FIG. This figure shows that the InAs layer has grown two-dimensionally.

次に、分子線エピタキシー法によりInAs二次元層上にGaSbを成長させた。基板温度は380℃、Ga/Sbのフラックス比20、真空度5×10−8Paであった。GaSb膜は層状成長し、三次元膜が形成された。膜厚が0.7nm、2nm、30nm、100nm、200nmの場合のRHEEDパターンをそれぞれ図5(b)、(c)、(d)、(e)、(f)に示す。これらの図から、形成されたGaSb膜の結晶構造は完全性に優れていることが確認された。また、最終的に成膜したGaSb膜の表面を走査トンネル顕微鏡により評価した像を図6、原子間力顕微鏡により評価(大気中に取り出してからの観察)を図7、フォトルミネッセンスの測定データを図8にそれぞれ示す。フォトルミネッセンスの測定は、測定温度8K、励起レーザー波長532nmの条件で行った。どちらの場合もニ乗平均粗さは0.2〜0.3nm程度で非常に平坦性に優れていることが確認された。またフォトルミネッセンスのデータでは、波長1060nm付近にSiの発光ピークが、1580nm付近にGaSbの発光ピークが見られる。 Next, GaSb was grown on the InAs two-dimensional layer by molecular beam epitaxy. The substrate temperature was 380 ° C., the Ga / Sb flux ratio was 20, and the degree of vacuum was 5 × 10 −8 Pa. The GaSb film was grown in layers to form a three-dimensional film. The RHEED patterns when the film thickness is 0.7 nm, 2 nm, 30 nm, 100 nm, and 200 nm are shown in FIGS. 5B, 5C, 5D, 5E, and 5F, respectively. From these figures, it was confirmed that the crystal structure of the formed GaSb film was excellent in completeness. Moreover, the image which evaluated the surface of the GaSb film | membrane finally formed with the scanning tunneling microscope in FIG. 6, evaluation (observation after taking out in air | atmosphere) with an atomic force microscope is FIG. 7, and measurement data of photoluminescence Each is shown in FIG. Photoluminescence was measured under the conditions of a measurement temperature of 8K and an excitation laser wavelength of 532 nm. In both cases, the mean square roughness was about 0.2 to 0.3 nm, and it was confirmed that the flatness was extremely excellent. In the photoluminescence data, a Si emission peak is observed near a wavelength of 1060 nm, and a GaSb emission peak is observed near 1580 nm.

比較例
実施例1において、InAsを形成しないこと以外は同様にしてGaSbを蒸着させた。Si(111)のRHEEDパターンを図9(a)に、GaSbの厚さが0.15nm、0.3nm、2.1nmの場合のRHEEDパターンをそれぞれ9(b)、(c)、(d)に示す。これらの図から、Si(111)上でのGaSbは三次元(島状)成長していることがわかる。また双晶も形成されていることがわかる。
Comparative Example In Example 1, GaSb was deposited in the same manner except that InAs was not formed. The RHEED pattern of Si (111) is shown in FIG. 9A, and the RHEED patterns when the thickness of GaSb is 0.15 nm, 0.3 nm, and 2.1 nm are 9 (b), (c), and (d), respectively. Shown in From these figures, it can be seen that GaSb on Si (111) grows three-dimensionally (island-like). It can also be seen that twins are also formed.

実施例2
実施例1で得たGaSb/InAs/Si(111)構造を用いてMOS型キャパシタを作製した。そのMOSキャパシタの断面構造を図10に模式的に示す。図中、11はSi(111)基板、12はInAsバッファー層、13はGaSbエピタキシャル層、14はハフニウム酸化膜、15は金属電極(Au)、16は裏面コンタクト(Al)である。
Example 2
A MOS capacitor was fabricated using the GaSb / InAs / Si (111) structure obtained in Example 1. A cross-sectional structure of the MOS capacitor is schematically shown in FIG. In the figure, 11 is a Si (111) substrate, 12 is an InAs buffer layer, 13 is a GaSb epitaxial layer, 14 is a hafnium oxide film, 15 is a metal electrode (Au), and 16 is a back contact (Al).

MOSキャパシタ作製工程は、実施例1で得たGaSb/InAs/Si(111)構造のGaSbエピタキシャル層13の上に、2.7×10-4PaのO雰囲気の下でHfを電子ビーム蒸着して6nm厚のハフニウム酸化膜(HfO)14を形成した。次に、ステンシルマスクを用い、Auを抵抗加熱蒸着してハフニウム酸化膜14上に金属電極(ゲート電極)15を設けた。次に、Alを抵抗加熱してSi(111)基板11の裏面に裏面コンタクト16を設け、本実施例のMOSキャパシタを作製した。 In the MOS capacitor fabrication process, Hf was electron beam deposited on the GaSb epitaxial layer 13 having the GaSb / InAs / Si (111) structure obtained in Example 1 under an O 2 atmosphere of 2.7 × 10 −4 Pa. Thus, a hafnium oxide film (HfO 2 ) 14 having a thickness of 6 nm was formed. Next, a metal electrode (gate electrode) 15 was provided on the hafnium oxide film 14 by resistance heating vapor deposition of Au using a stencil mask. Next, Al was resistance-heated to provide a back contact 16 on the back surface of the Si (111) substrate 11 to fabricate the MOS capacitor of this example.

本実施例で作製したMOSキャパシタを用いて測定したC−V曲線のデータを図11に示す。この図から、p型のGaSb半導体層が形成できていることがわかる。   FIG. 11 shows CV curve data measured using the MOS capacitor manufactured in this example. From this figure, it can be seen that a p-type GaSb semiconductor layer has been formed.

Claims (7)

清浄化されたSi(111)基板表面上に、分子線エピタキシー法で厚さが少なくとも2nm以上のInAs二次元層をバッファー層として形成した後、さらにその上に、分子線エピタキシー法で表面の平坦性に優れ且つ低欠陥密度であるGaSbエピタキシャル薄膜を形成することを特徴とするGaSb/InAs/Si(111)構造の形成方法。   On the cleaned Si (111) substrate surface, an InAs two-dimensional layer having a thickness of at least 2 nm or more is formed as a buffer layer by molecular beam epitaxy, and then the surface is planarized by molecular beam epitaxy. A GaSb / InAs / Si (111) structure forming method characterized by forming a GaSb epitaxial thin film having excellent properties and low defect density. 得られたGaSb/InAs/Si(111)構造の成長したGaSbエピタキシャル薄膜の面方位が(111)A面であることを特徴とする請求項1に記載のGaSb/InAs/Si(111)構造の形成方法。   The GaSb / InAs / Si (111) structure according to claim 1, wherein the obtained GaSb / InAs / Si (111) structure has a GaSb epitaxial thin film with a (111) A plane orientation. Forming method. 得られたGaSb/InAs/Si(111)構造のGaSbエピタキシャル薄膜の表面のニ乗平均粗さが0.2〜0.3nmであり且つInAs層の厚さが2〜9nmであることを特徴とする請求項1または2に記載のGaSb/InAs/Si(111)構造の形成方法。   The mean square roughness of the surface of the GaSb epitaxial thin film having the GaSb / InAs / Si (111) structure obtained is 0.2 to 0.3 nm, and the thickness of the InAs layer is 2 to 9 nm. A method for forming a GaSb / InAs / Si (111) structure according to claim 1 or 2. 得られたGaSb/InAs/Si(111)構造のGaSbエピタキシャル薄膜の欠陥密度が8×10cm−2以下であることを特徴とする請求項1から3のいずれかに記載のGaSb/InAs/Si(111)構造の形成方法。 4. The GaSb / InAs / according to claim 1, wherein a defect density of the obtained GaSb / InAs / Si (111) structure GaSb epitaxial thin film is 8 × 10 5 cm −2 or less. A method for forming a Si (111) structure. 清浄化されたSi(111)基板表面上に、分子線エピタキシー法形成された厚さが少なくとも2nm以上のInAs二次元層よりなるバッファー層を設け、さらにその上に分子線エピタキシー法で形成された表面のニ乗平均粗さが0.2〜0.3nmであり且つ欠陥密度が8×10cm−2以下であるGaSbエピタキシャル薄膜を設けてなることを特徴とするGaSb/InAs/Si(111)構造。 A buffer layer composed of an InAs two-dimensional layer having a thickness of at least 2 nm formed by molecular beam epitaxy was provided on the cleaned Si (111) substrate surface, and further formed thereon by molecular beam epitaxy. GaSb / InAs / Si (111) characterized in that a GaSb epitaxial thin film having a root mean square roughness of 0.2 to 0.3 nm and a defect density of 8 × 10 5 cm −2 or less is provided. )Construction. 請求項5のGaSb/InAs/Si(111)構造を備えていることを特徴とするMOSデバイス。   A MOS device comprising the GaSb / InAs / Si (111) structure according to claim 5. 請求項5のGaSb/InAs/Si(111)構造を備えていることを特徴とする赤外線検出デバイス。   An infrared detection device comprising the GaSb / InAs / Si (111) structure according to claim 5.
JP2013195290A 2013-09-20 2013-09-20 GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure perfectness, method for forming the same, and MOS device and infrared detection device using the structure Expired - Fee Related JP6153224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195290A JP6153224B2 (en) 2013-09-20 2013-09-20 GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure perfectness, method for forming the same, and MOS device and infrared detection device using the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195290A JP6153224B2 (en) 2013-09-20 2013-09-20 GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure perfectness, method for forming the same, and MOS device and infrared detection device using the structure

Publications (2)

Publication Number Publication Date
JP2015061025A true JP2015061025A (en) 2015-03-30
JP6153224B2 JP6153224B2 (en) 2017-06-28

Family

ID=52818290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195290A Expired - Fee Related JP6153224B2 (en) 2013-09-20 2013-09-20 GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure perfectness, method for forming the same, and MOS device and infrared detection device using the structure

Country Status (1)

Country Link
JP (1) JP6153224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204756A (en) * 2018-05-29 2021-01-08 Iqe公司 Optoelectronic devices formed over a buffer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126290A (en) * 1973-01-05 1974-12-03
JPH04252019A (en) * 1991-01-28 1992-09-08 Fujitsu Ltd Growth method for hetroepitaxial crystal
JP2005085916A (en) * 2003-09-08 2005-03-31 National Institute Of Information & Communication Technology Method of forming compound semiconductor thin film on si substrate
US20060017063A1 (en) * 2004-03-10 2006-01-26 Lester Luke F Metamorphic buffer on small lattice constant substrates
JP2006253414A (en) * 2005-03-10 2006-09-21 National Institute Of Information & Communication Technology Method for forming semiconductor thin film on si substrate and its structure
US20070164333A1 (en) * 2004-07-01 2007-07-19 Varian Medical Systems Technologies, Inc. Integrated mis photosensitive device using continuous films
JP2008505496A (en) * 2004-07-01 2008-02-21 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド Integrated MIS photoelectric device using continuous film
JP2012009777A (en) * 2010-06-28 2012-01-12 Sumitomo Electric Ind Ltd Semiconductor wafer and semiconductor device
JP2012129247A (en) * 2010-12-13 2012-07-05 Fujitsu Ltd Infrared imaging apparatus
JP2014157994A (en) * 2013-02-18 2014-08-28 Asahi Kasei Corp Compound semiconductor laminate and manufacturing method of the same
US20140339680A1 (en) * 2013-05-17 2014-11-20 Imec III-V Device and Method for Manufacturing Thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126290A (en) * 1973-01-05 1974-12-03
JPH04252019A (en) * 1991-01-28 1992-09-08 Fujitsu Ltd Growth method for hetroepitaxial crystal
JP2005085916A (en) * 2003-09-08 2005-03-31 National Institute Of Information & Communication Technology Method of forming compound semiconductor thin film on si substrate
US20060017063A1 (en) * 2004-03-10 2006-01-26 Lester Luke F Metamorphic buffer on small lattice constant substrates
JP2008505496A (en) * 2004-07-01 2008-02-21 バリアン・メディカル・システムズ・テクノロジーズ・インコーポレイテッド Integrated MIS photoelectric device using continuous film
US20070164333A1 (en) * 2004-07-01 2007-07-19 Varian Medical Systems Technologies, Inc. Integrated mis photosensitive device using continuous films
JP2006253414A (en) * 2005-03-10 2006-09-21 National Institute Of Information & Communication Technology Method for forming semiconductor thin film on si substrate and its structure
JP2010521816A (en) * 2007-03-16 2010-06-24 バリアン・メディカル・システムズ・インコーポレイテッド Integrated MIS photoelectric device using continuous film
JP2012009777A (en) * 2010-06-28 2012-01-12 Sumitomo Electric Ind Ltd Semiconductor wafer and semiconductor device
JP2012129247A (en) * 2010-12-13 2012-07-05 Fujitsu Ltd Infrared imaging apparatus
JP2014157994A (en) * 2013-02-18 2014-08-28 Asahi Kasei Corp Compound semiconductor laminate and manufacturing method of the same
US20140339680A1 (en) * 2013-05-17 2014-11-20 Imec III-V Device and Method for Manufacturing Thereof
JP2014229900A (en) * 2013-05-17 2014-12-08 アイメックImec Iii-v device and method for manufacturing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A.OHTAKE ET AL.: "Polarity controlled InAs{111} films grown on Si(111)", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY B, vol. 29, no. 3, JPN7017000191, May 2011 (2011-05-01), US, pages 031804 - 1, ISSN: 0003484573 *
CHEN WANG ET AL.: "GaSb Metal-Oxide-Semiconductor Capacitors with Atomic-Layer-Deposited HfAlO as Gate Dielectric", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 15, no. 3, JPN7017000192, 2012, pages 51 - 54, ISSN: 0003484576 *
E.PAPIS-POLAKOWSKA ET AL.: "Study of interfaces chemistry in type-II GaSb/InAs superlattice structures", PHYSICS PROCEDIA, vol. 32, JPN6017001855, 2012, pages 184 - 190, ISSN: 0003484574 *
S.G.GHALAMESTANI ET AL.: "High quality InAs and GaSb thin layers grown on Si(111)", JOURNAL OF CRYSTAL GROWTH, vol. Vol.332, Issue 1, JPN6017001854, 1 October 2011 (2011-10-01), pages 12 - 16, ISSN: 0003484572 *
後藤 高寛 他: "28a-G2-11 GaAs基板上GaSb MOS構造の作製 Fabrication of GaSb MOS Capacitor on GaAs Substrates", <第60回>応用物理学関係連合講演会講演予稿集, JPN6017001856, 11 March 2013 (2013-03-11), JP, pages 13 - 037, ISSN: 0003484575 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204756A (en) * 2018-05-29 2021-01-08 Iqe公司 Optoelectronic devices formed over a buffer

Also Published As

Publication number Publication date
JP6153224B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
JP5180189B2 (en) Method of zinc oxide film growth on epitaxial laterally abnormally grown gallium nitride templates
TW200917337A (en) Method for forming group-III nitride semiconductor on the semiconductor substrate
WO2013047361A1 (en) Method for producing substrate having buffer layer structure for growing nitride semiconductor layer
Ryu et al. Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth
Iwawaki et al. STM study of initial stage of Ge epitaxy on Si (001)
JP6062887B2 (en) Epitaxial solid-state semiconductor heterostructure and manufacturing method thereof
JP6153224B2 (en) GaSb / InAs / Si (111) structure excellent in surface flatness and crystal structure perfectness, method for forming the same, and MOS device and infrared detection device using the structure
JP4041877B2 (en) Semiconductor device
Vézian et al. Origins of GaN (0 0 0 1) surface reconstructions
WO2017164036A1 (en) Method for producing group iii nitride laminate
Sammak et al. Ge-on-Si: Single-crystal selective epitaxial growth in a CVD reactor
TW201145581A (en) Method for manufacturing epitaxial crystal substrate
Hasegawa et al. Dynamic observation of silicon homoepitaxial growth by high‐temperature scanning tunneling microscopy
JP5772290B2 (en) Manufacturing method of semiconductor device
Orlov et al. Microcrystalline Structure and Light-Emitting Properties of 3 C–SiC Island Films Grown on the Si (100) Surface
JP6241939B2 (en) Device manufacturing substrate, manufacturing method thereof, and near infrared light emitting device
Elias et al. Achievement of high density InAs/GaInAsP quantum dots on misoriented InP (001) substrates emitting at 1.55 µm
Jernigan et al. Analysis of growth on 75 mm Si (100) wafers by molecular beam epitaxy using in vacuo scanning tunneling microscopy
Chang et al. Selective-area growth of heavily n–doped GaAs nanostubs on Si (001) by molecular beam epitaxy
CN111446313B (en) Quantum well structure and growth method thereof
WO2023037490A1 (en) Nanowires and method for producing same
JP7139960B2 (en) semiconductor equipment
JP6090767B2 (en) Manufacturing method of semiconductor device
JP2016174071A (en) Method for crystal growth
TWI677964B (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170526

R150 Certificate of patent or registration of utility model

Ref document number: 6153224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees