JP2015059117A - Method for producing 2,6-tetralin dicarboxylic acid dialkyl ester - Google Patents
Method for producing 2,6-tetralin dicarboxylic acid dialkyl ester Download PDFInfo
- Publication number
- JP2015059117A JP2015059117A JP2013195097A JP2013195097A JP2015059117A JP 2015059117 A JP2015059117 A JP 2015059117A JP 2013195097 A JP2013195097 A JP 2013195097A JP 2013195097 A JP2013195097 A JP 2013195097A JP 2015059117 A JP2015059117 A JP 2015059117A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- dialkyl ester
- acid dialkyl
- amount
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
本発明はテトラリン誘導体である2,6−テトラリンジカルボン酸ジアルキルエステルの製造方法に関するものである。 The present invention relates to a method for producing 2,6-tetralin dicarboxylic acid dialkyl ester which is a tetralin derivative.
2,6−テトラリンジカルボン酸ジアルキルエステルは、ポリエステルやポリカーボネート、ポリイミド、ポリアミドとして、液晶組成物、高分子改質剤、医薬中間体などとして有用である。 2,6-tetralin dicarboxylic acid dialkyl ester is useful as a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate, and the like as polyester, polycarbonate, polyimide, and polyamide.
下記式(1)で表される2,6−テトラリンジカルボン酸ジアルキルエステル(以下2,6−TDCE)を合成する方法として、下記式(2)で表される2,6−ナフタレンジカルボン酸ジアルキルエステル(以下2,6−NDCE)を貴金属触媒下で水素添加する手法が特許文献1により知られている。 As a method of synthesizing 2,6-tetralin dicarboxylic acid dialkyl ester (hereinafter 2,6-TDCE) represented by the following formula (1), 2,6-naphthalenedicarboxylic acid dialkyl ester represented by the following formula (2) Patent Document 1 discloses a method of hydrogenating (hereinafter, 2,6-NDCE) under a noble metal catalyst.
ナフタレン環を水素添加することによりテトラリン環へと誘導する方法はその他、特許文献2〜6に示されている。
これらの文献に示されている水素添加では触媒としてパラジウム、ルテニウム、ロジウム、白金等の貴金属を触媒成分とする触媒が用いられているが、その使用量は反応を短時間に完了させるために非常に多くの量を必要としている。たとえば、特許文献1の実施例では、原料の2,6−ナフタレンジカルボン酸ジメチルに対する触媒金属で0.33〜1質量%ものパラジウム触媒を使用している。
Other methods for deriving a naphthalene ring into a tetralin ring by hydrogenation are shown in Patent Documents 2-6.
In the hydrogenation shown in these documents, a catalyst containing a noble metal such as palladium, ruthenium, rhodium, platinum or the like as a catalyst component is used as a catalyst. However, the amount used is extremely high in order to complete the reaction in a short time. Need a lot of quantity. For example, in the Example of Patent Document 1, a palladium catalyst of 0.33 to 1% by mass is used as a catalyst metal for dimethyl 2,6-naphthalenedicarboxylate as a raw material.
特許文献1〜6に記載されるテトラリン化合物の製造方法は、高価な貴金属触媒を多量に必要とするため工業的に有利な製法ではなかった。また、水素添加の過剰進行等の副反応の影響で、得られるテトラリン化合物の収率は必ずしも十分ではなかった。 The production methods of tetralin compounds described in Patent Documents 1 to 6 are not industrially advantageous because they require a large amount of expensive noble metal catalyst. Moreover, the yield of the tetralin compound obtained was not necessarily enough under the influence of side reactions, such as excessive progress of hydrogenation.
本発明の課題は、2,6−NDCEの水素添加による2,6−TDCEの製造において、高価な貴金属触媒の使用量を削減し、適度な反応時間で高い収率にて2,6−TDCEを得ることができる工業的に有利な方法を提供することである。 The object of the present invention is to reduce the amount of expensive noble metal catalyst used in the production of 2,6-TDCE by hydrogenation of 2,6-NDCE, and to produce 2,6-TDCE in a high yield with an appropriate reaction time. It is to provide an industrially advantageous method capable of obtaining the above.
本発明者らは、鋭意研究した結果、特定範囲の反応温度及び水素圧力の条件で、ごく少量の貴金属触媒を使用して2,6−NDCEの水素添加反応を行うことにより、適度な反応時間で水素添加の過剰進行等の副反応を抑えて高い収率で2,6−TDCEを製造できることを見出し本発明に到達した。 As a result of diligent research, the present inventors have conducted a hydrogenation reaction of 2,6-NDCE using a very small amount of a noble metal catalyst under conditions of a reaction temperature and a hydrogen pressure within a specific range, thereby achieving an appropriate reaction time. Thus, the inventors have found that 2,6-TDCE can be produced in a high yield while suppressing side reactions such as excessive hydrogenation.
すなわち、本発明は、以下の通りである。
〔1〕
下記式(2)で表される2,6−ナフタレンジカルボン酸ジアルキルエステルを、貴金属触媒の存在下で水素を作用させ、下記式(1)で表される2,6−テトラリンジカルボン酸ジアルキルエステルを製造する方法であって、次の(I)〜(III)の全てを満たす条件下で反応を行うことを特徴とする2,6−テトラリンジカルボン酸ジアルキルエステルの製造方法。
(I)前記貴金属触媒の使用量が、前記2,6−ナフタレンジカルボン酸ジアルキルエステルに対する貴金属触媒中の触媒貴金属量で0.0005〜0.03質量%
(II)反応温度が、151〜230℃
(III)水素圧力が、1.6〜15MPa
〔2〕
前記貴金属触媒が、パラジウム触媒、及びルテニウム触媒からなる群より選ばれる少なくとも1種である、〔1〕に記載の2,6−テトラリンジカルボン酸ジアルキルエステルの製造方法。
〔3〕
前記貴金属触媒が、パラジウム触媒である、〔1〕に記載の2,6−テトラリンジカルボン酸ジアルキルエステルの製造方法。
〔4〕
水素圧力が3〜12MPaである、〔1〕〜〔3〕のいずれか一項に記載の2,6−テトラリンジカルボン酸ジアルキルエステルの製造方法。
That is, the present invention is as follows.
[1]
The 2,6-naphthalenedicarboxylic acid dialkyl ester represented by the following formula (2) is allowed to act on hydrogen in the presence of a noble metal catalyst, and the 2,6-tetralindicarboxylic acid dialkyl ester represented by the following formula (1) is obtained. A method for producing a 2,6-tetralindicarboxylic acid dialkyl ester, characterized in that the reaction is carried out under conditions satisfying all of the following (I) to (III).
(I) The amount of the noble metal catalyst used is 0.0005 to 0.03% by mass in terms of the amount of the catalyst noble metal in the noble metal catalyst relative to the 2,6-naphthalenedicarboxylic acid dialkyl ester.
(II) Reaction temperature is 151-230 degreeC
(III) Hydrogen pressure is 1.6 to 15 MPa
[2]
The method for producing a 2,6-tetralindicarboxylic acid dialkyl ester according to [1], wherein the noble metal catalyst is at least one selected from the group consisting of a palladium catalyst and a ruthenium catalyst.
[3]
The method for producing a 2,6-tetralindicarboxylic acid dialkyl ester according to [1], wherein the noble metal catalyst is a palladium catalyst.
[4]
The method for producing 2,6-tetralindicarboxylic acid dialkyl ester according to any one of [1] to [3], wherein the hydrogen pressure is 3 to 12 MPa.
本発明によれば、2,6−NDCEを貴金属触媒を用いて水素添加することによりテトラリン誘導体である2,6−TDCEを工業的に安価に製造することができる。
2,6−TDCEはポリエステルやポリカーボネート、ポリイミド、ポリアミドなどの樹脂原料、液晶組成物、高分子改質剤、医薬中間体などとしての利用が考えられるため、その工業的な意義は大きい。
According to the present invention, 2,6-TDCE, which is a tetralin derivative, can be industrially produced at low cost by hydrogenating 2,6-NDCE using a noble metal catalyst.
Since 2,6-TDCE can be used as a resin raw material such as polyester, polycarbonate, polyimide, and polyamide, a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate, and the like, its industrial significance is great.
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、
を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiment is
It is the illustration for demonstrating this, and is not the meaning which limits this invention to the following content. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.
[1.反応原料]
本実施形態の原料として使用される2,6−NDCEは、前記の式(2)で表される。式(2)中、R及びR’で表される炭素数1〜10のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、2−エチルヘキシル基等があげられる。
入手容易性の観点から原料としてより好ましいのは、R及びR’が共にメチル基である2,6−ナフタレンジカルボン酸ジメチルエステルである。
なお、原料の2,6−NDCEは、2,7−NDCE、1,5−NDCE等の構造異性体、及びナフトエ酸アルキルエステルやテレフタル酸アルキルエステル等の不純物を含んでいてもよいが、2,6−NDCEの純度として80質量%以上であるのが好ましく、純度90質量%以上であるのがより好ましく、純度95質量%以上であるのが更に好ましい。
[1. Reaction raw material]
2,6-NDCE used as a raw material of the present embodiment is represented by the above formula (2). In formula (2), the alkyl group having 1 to 10 carbon atoms represented by R and R ′ includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group, n -Hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, 2-ethylhexyl group and the like can be mentioned.
From the viewpoint of availability, 2,6-naphthalenedicarboxylic acid dimethyl ester in which R and R ′ are both methyl groups is more preferable as a raw material.
The raw material 2,6-NDCE may contain structural isomers such as 2,7-NDCE and 1,5-NDCE, and impurities such as naphthoic acid alkyl ester and terephthalic acid alkyl ester. , 6-NDCE has a purity of preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more.
[2.反応に用いられる触媒]
本実施形態で用いられる貴金属触媒としては、パラジウム(以下Pdと記載する場合がある)、ルテニウム(以下Ruと記載する場合がある)、ロジウム(以下Rhと記載する場合がある)、白金が好ましく、水素添加反応における選択性が高いという観点から、パラジウム、ルテニウムがより好ましく、パラジウムが更に好ましい。
[2. Catalyst used for reaction]
As the noble metal catalyst used in the present embodiment, palladium (hereinafter sometimes referred to as Pd), ruthenium (hereinafter sometimes referred to as Ru), rhodium (hereinafter sometimes referred to as Rh), and platinum are preferable. From the viewpoint of high selectivity in the hydrogenation reaction, palladium and ruthenium are more preferable, and palladium is more preferable.
前記貴金属触媒は、貴金属が担体に担持された触媒(担持触媒)であることが好ましい。担体としては、カーボン(活性炭)、アルミナ、シリカ、ゼオライト等が例示されるが、特に入手容易性、価格からカーボンが好ましい。
担持触媒中の貴金属の含有量は、0.1〜50質量%であることが好ましく、1〜10質量%であることがより好ましい。
The noble metal catalyst is preferably a catalyst in which a noble metal is supported on a carrier (supported catalyst). Examples of the carrier include carbon (activated carbon), alumina, silica, zeolite, and the like, and carbon is particularly preferable from the viewpoint of availability and cost.
The content of the noble metal in the supported catalyst is preferably 0.1 to 50% by mass, and more preferably 1 to 10% by mass.
上述した触媒は、市販のものを用いてもよいし、含浸担持法等の公知の方法に従い調製したものを用いてもよい。また、触媒は乾燥したものでも含水したものでもよく、安全面等の観点から含水したものを使用することが好ましい。市販の触媒では、エヌ・イーケムキャット社製の「5%Pdカーボン粉末PEタイプ(含水品)」、「5%Pdカーボン粉末STDタイプ(含水品)」、「10%Pdカーボン粉末PEタイプ(含水品)」等のPdカーボン粉末や、「5%Ruカーボン粉末Aタイプ(含水品)」、「5%Ruカーボン粉末Bタイプ(含水品)」等のRuカーボン粉末や、「5%Rhカーボン粉末(含水品)」等のRhカーボン粉末等が挙げられる。なお、上述したように、乾燥品を使用することも勿論可能である。 As the catalyst described above, a commercially available catalyst may be used, or a catalyst prepared according to a known method such as an impregnation support method may be used. Further, the catalyst may be dried or hydrated, and it is preferable to use a hydrated catalyst from the viewpoint of safety. Commercially available catalysts include “5% Pd carbon powder PE type (water-containing product)”, “5% Pd carbon powder STD type (water-containing product)” and “10% Pd carbon powder PE type (water-containing product) manufactured by N.E. Pd carbon powder such as “5% Ru carbon powder A type (hydrated product)”, “5% Ru carbon powder B type (hydrated product)”, and “5% Rh carbon powder” (Hydrogen-containing product) "and the like. As described above, it is of course possible to use a dried product.
前記貴金属触媒の使用量は、原料の2,6−NDCEに対する触媒中の貴金属量で、0.0005〜0.03質量%であることが好ましく、0.001〜0.025質量%であることがより好ましく、0.002〜0.02質量%であることが更に好ましい。触媒の使用量を上記範囲とすることで、高い収率で2,6−TDCEを得ることができると共に、触媒に要する費用を低減することができる。特に、過剰な水素添加反応による副生成物である下記式(3)に示す2,6−デカリンジカルボン酸ジアルキル(以下2,6−DDCE)が生成することを抑える顕著な効果がある。 The amount of the noble metal catalyst used is preferably 0.0005 to 0.03% by mass, and 0.001 to 0.025% by mass in terms of the amount of noble metal in the catalyst relative to the raw material 2,6-NDCE. Is more preferable, and it is still more preferable that it is 0.002-0.02 mass%. By making the usage-amount of a catalyst into the said range, while being able to obtain 2, 6-TDCE with a high yield, the cost which a catalyst requires can be reduced. In particular, there is a remarkable effect of suppressing the formation of dialkyl 2,6-decalin dicarboxylate (hereinafter referred to as 2,6-DDCE) represented by the following formula (3), which is a byproduct due to an excessive hydrogenation reaction.
触媒として例えば5%Pdカーボン触媒を使用する場合には、原料の2,6−NDCEに対する触媒使用量(乾燥状態の触媒使用量)で0.01〜0.6質量%であることが好ましく、0.02〜0.5質量%であることがより好ましく、0.04〜0.4質量%であることがさらに好ましい。 For example, when a 5% Pd carbon catalyst is used as the catalyst, it is preferably 0.01 to 0.6% by mass in terms of the amount of catalyst used relative to the raw material 2,6-NDCE (the amount of catalyst used in the dry state), It is more preferable that it is 0.02-0.5 mass%, and it is further more preferable that it is 0.04-0.4 mass%.
[3.反応に用いられる溶媒]
本実施形態で反応に用いられる溶媒としては、反応を阻害しないものであれば特に限定されない。例えば、ヘプタン、オクタン、デカン等の脂肪族炭化水素系溶媒、エタノール、イソプロパノール、ターシャリーブタノール、エチレングリコール等のアルコール系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、酢酸、プロピオン酸等の酸性溶媒が挙げられる。なお、反応時の蒸気圧が過大にならないように、使用する溶媒は、沸点が大気圧下で60℃以上であるのが好ましく、70℃以上であるのがより好ましい。
[3. Solvent used for reaction]
The solvent used in the reaction in the present embodiment is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbon solvents such as heptane, octane, decane, alcohol solvents such as ethanol, isopropanol, tertiary butanol, ethylene glycol, ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethyl acetate, butyl acetate, etc. And acid solvents such as acetic acid and propionic acid. In addition, the solvent used preferably has a boiling point of 60 ° C. or higher, more preferably 70 ° C. or higher, under atmospheric pressure so that the vapor pressure during the reaction does not become excessive.
溶媒の使用量は、特に限定されないが、2,6−NDCEに対する質量比で、0.5〜8の範囲であることが好ましく、0.8〜5の範囲であることがより好ましい。上記質量比が上記範囲にあれば、過大な量の溶媒を使用しないため適度な反応器容積で反応を実施出来るとともに、溶媒の分離、回収が容易になり好ましい。 Although the usage-amount of a solvent is not specifically limited, It is preferable that it is the range of 0.5-8 by the mass ratio with respect to 2, 6-NDCE, and it is more preferable that it is the range of 0.8-5. If the mass ratio is in the above range, an excessive amount of solvent is not used, so that the reaction can be carried out with an appropriate reactor volume, and the solvent can be easily separated and recovered.
[4.反応条件]
本実施形態の水素添加反応は、通常オートクレーブ等の加圧容器中で実施されることが好ましい。水素添加における水素圧力は1.6MPa以上であるのが好ましく、3MPa以上であるのがより好ましく、3.5MPa以上であるのがさらに好ましい。水素圧力の上限は特に限定されないが、15MPa以下であるのが好ましく、12MPa以下であるのがより好ましい。上記の水素圧力範囲で反応を行なうことで、反応の選択性が高くなり、また、適度な反応速度が得られ効率良く2,6−TDCEを製造できる。
なお、水素添加は以下に示すように加熱下で実施するため、反応器の圧力(全圧)は溶媒の蒸気圧を考慮して設定する必要がある。すなわち、反応器の圧力は、上記に示す水素圧力に溶媒の蒸気圧を上乗せした圧力に保持する必要がある。また、圧力を一定に保持するために、反応で消費された量に見合う水素を反応器に供給する方法を用いることができる。
[4. Reaction conditions]
The hydrogenation reaction of this embodiment is preferably carried out in a pressurized container such as an autoclave. The hydrogen pressure in hydrogenation is preferably 1.6 MPa or more, more preferably 3 MPa or more, and further preferably 3.5 MPa or more. The upper limit of the hydrogen pressure is not particularly limited, but is preferably 15 MPa or less, and more preferably 12 MPa or less. By performing the reaction in the above hydrogen pressure range, the selectivity of the reaction is increased, and an appropriate reaction rate is obtained, and 2,6-TDCE can be produced efficiently.
Since hydrogenation is carried out under heating as shown below, the pressure (total pressure) of the reactor needs to be set in consideration of the vapor pressure of the solvent. That is, the reactor pressure must be maintained at a pressure obtained by adding the vapor pressure of the solvent to the hydrogen pressure shown above. Further, in order to keep the pressure constant, a method of supplying hydrogen to the reactor corresponding to the amount consumed in the reaction can be used.
本実施形態の水素添加反応の反応温度は、151〜230℃であるのが好ましく、155〜210℃であるのがより好ましく、160〜200℃であるのが更に好ましい。上記の温度範囲で反応を行なうことで、ごく少量の触媒でも適度な反応速度が得られ効率良く2,6−TDCEを製造でき、さらに反応の選択性も高くなる。 The reaction temperature of the hydrogenation reaction of this embodiment is preferably 151 to 230 ° C, more preferably 155 to 210 ° C, and still more preferably 160 to 200 ° C. By carrying out the reaction in the above temperature range, an appropriate reaction rate can be obtained even with a very small amount of catalyst, 2,6-TDCE can be produced efficiently, and the selectivity of the reaction also increases.
本実施形態の反応時間は、水素添加反応の進捗状況に応じて適度な時間に設定すればよい。水素添加反応の進捗状況は、例えば反応器に供給する水素の流量を測定することで把握できる。水素添加反応の終点を見極める方法のひとつは、反応開始時から供給した水素の総量が理論水素消費量に達したかどうかによって判断する方法であり、もうひとつの方法は、反応器の圧力が一定になるように供給される水素流量が著しく低下した時点(例えば、反応が活発に進行していた際と比べて水素流量が1/10未満に低下した時点)を反応の終点とする方法である。本発明に記載の方法で水素添加反応を行った場合、通常、反応の終点が近づくと水素の消費量が急激に低下するので、反応の終点の見極めが容易であり、過剰な水素添加による2,6−DDCEの生成を抑えられ、好適に2,6−TDCEの製造を行うことができる。
なお、前記反応時間は、工業的な生産効率の観点より10時間以下であるのが好ましく、6時間以内であるのがより好ましく、4時間以内であるのがさらに好ましい。
The reaction time in this embodiment may be set to an appropriate time according to the progress of the hydrogenation reaction. The progress of the hydrogenation reaction can be grasped, for example, by measuring the flow rate of hydrogen supplied to the reactor. One method to determine the end point of the hydrogenation reaction is to determine whether the total amount of hydrogen supplied from the start of the reaction has reached the theoretical hydrogen consumption, and the other method is to keep the reactor pressure constant. This is a method in which the end point of the reaction is the time when the flow rate of hydrogen supplied is significantly reduced (for example, when the hydrogen flow rate is reduced to less than 1/10 compared to when the reaction was actively progressing). . When the hydrogenation reaction is carried out by the method described in the present invention, since the amount of hydrogen consumed usually decreases rapidly as the reaction end point approaches, it is easy to determine the end point of the reaction. , 6-DDCE can be suppressed, and 2,6-TDCE can be preferably produced.
The reaction time is preferably 10 hours or less from the viewpoint of industrial production efficiency, more preferably within 6 hours, and further preferably within 4 hours.
[5.反応方法]
本実施形態の水素添加反応の反応方法は特に限定されないが、反応器中に原料、溶媒、貴金属触媒を仕込み、所定の反応温度、水素圧力に設定して反応を行う回分式の反応方法、および、溶媒と貴金属触媒を仕込み所定の反応温度、水素圧力に維持した反応器に原料を供給する半回分式の反応方法が例示される。
[5. Reaction method]
The reaction method of the hydrogenation reaction of the present embodiment is not particularly limited, but a batch-type reaction method in which raw materials, a solvent, and a noble metal catalyst are charged in a reactor and the reaction is performed at a predetermined reaction temperature and hydrogen pressure, and A semi-batch type reaction method in which a solvent and a noble metal catalyst are charged and a raw material is supplied to a reactor maintained at a predetermined reaction temperature and hydrogen pressure is exemplified.
[6.生成物の回収および精製]
本実施形態で得られる生成物中の2,6−TDCEは、溶媒の使用量にもよるが通常は全量が溶媒に溶解しているので、例えば反応生成物から触媒を濾別した後、溶媒を留去することにより、粗2,6−TDCEを取り出すことができる。
更に、再結晶、蒸留やカラムクロマトグラフィー等の手段により精製を行ってもよい。
[6. Product recovery and purification]
Although 2,6-TDCE in the product obtained in this embodiment is usually dissolved in the solvent although it depends on the amount of the solvent used, for example, after filtering the catalyst from the reaction product, To remove crude 2,6-TDCE.
Further, purification may be performed by means such as recrystallization, distillation or column chromatography.
本発明の2,6−TDCEは、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド等の樹脂原料、液晶組成物、高分子改質剤、及び医薬中間体等として好適に用いることができる。 The 2,6-TDCE of the present invention can be suitably used as a resin raw material such as polyester, polycarbonate, polyimide, and polyamide, a liquid crystal composition, a polymer modifier, and a pharmaceutical intermediate.
実施例により本発明の方法を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例および比較例において、組成はガスクロマトグラフィー分析により得られた面積百分率値を示す。 The method of the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In the following examples and comparative examples, the composition indicates an area percentage value obtained by gas chromatography analysis.
<実施例1>
攪拌機付き200mLオートクレーブ(SUS316L製)に、2,6−ナフタレンジカルボン酸ジメチル(以下2,6−NDCM)30g、エヌ・イーケムキャット社製5%Pdカーボン粉末(含水率50重量%)PEタイプ90mg、イソプロパノール50gを仕込んだ。室温で、オートクレーブ内を窒素1MPaで2回置換し、次いで水素1MPaで2回置換した。その後常圧まで落圧した後、反応器内の温度を170℃に昇温し、水素で5MPaまで加圧し、同温度、同圧力を保持して攪拌下(回転数1500rpm)で水素添加反応を実施した。水素は圧力が一定に維持されるように消費量に見合う量を供給した。
60分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却した。水素を放出し、窒素1MPaで2回置換した後、焼結金属を通して触媒を分離し、反応液を抜き出した。得られた反応液から溶媒を除去して、粗2,6−テトラリンジカルボン酸ジメチル(以下2,6−TDCM)(30.1g)を得た。ガスクロマトグラフィー分析を行ったところ、生成物の組成は、2,6−NDCM:0.5%、2,6−TDCM:98.0%、2,6−デカリンジカルボン酸ジメチル(以下2,6−DDCM):0.3%であった。2,6−TDCMの収率は96.7モル%であった。
<Example 1>
In a 200 mL autoclave with a stirrer (manufactured by SUS316L), 30 g of dimethyl 2,6-naphthalenedicarboxylate (hereinafter 2,6-NDCM), 5% Pd carbon powder (moisture content 50 wt%) PE type 90 mg manufactured by N.E. 50 g of isopropanol was charged. At room temperature, the inside of the autoclave was replaced twice with 1 MPa of nitrogen, and then replaced twice with 1 MPa of hydrogen. Then, after dropping to normal pressure, the temperature in the reactor is raised to 170 ° C., pressurized to 5 MPa with hydrogen, and the hydrogenation reaction is performed with stirring (rotation speed: 1500 rpm) while maintaining the same temperature and pressure. Carried out. Hydrogen was supplied in an amount commensurate with consumption so that the pressure was kept constant.
After 60 minutes, the hydrogen supply amount became very small (5 mL / min or less), so the reaction was judged to be complete, and the mixture was cooled to room temperature. After releasing hydrogen and substituting twice with 1 MPa of nitrogen, the catalyst was separated through the sintered metal, and the reaction solution was extracted. The solvent was removed from the resulting reaction solution to obtain crude dimethyl 2,6-tetralindicarboxylate (hereinafter 2,6-TDCM) (30.1 g). As a result of gas chromatography analysis, the composition of the product was 2,6-NDCM: 0.5%, 2,6-TDCM: 98.0%, dimethyl 2,6-decalin dicarboxylate (hereinafter 2,6). -DDCM): 0.3%. The yield of 2,6-TDCM was 96.7 mol%.
<実施例2>
反応温度を190℃とした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
45分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(29.9g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 2>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the reaction temperature was 190 ° C.
After 45 minutes, the amount of hydrogen supplied became very small (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (29 0.9 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例3>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を30mgとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
150分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(30.0g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 3>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the amount of 5% Pd carbon powder (water content 50% by weight) PE type was changed to 30 mg.
After 150 minutes, the supply amount of hydrogen became a very small amount (5 mL / min or less), so the reaction was judged to be completed, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (30 0.0 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例4>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を30mgとし、反応圧力を10MPaとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
60分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(29.9g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 4>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the amount of 5% Pd carbon powder (water content 50 wt%) PE type was 30 mg and the reaction pressure was 10 MPa.
After 60 minutes, since the amount of hydrogen supplied became very small (5 mL / min or less), the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (29 0.9 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例5>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を100mgとし、反応温度を160℃とした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
100分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(30.1g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 5>
Hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the amount of 5% Pd carbon powder (water content 50% by weight) PE type was 100 mg and the reaction temperature was 160 ° C. .
After 100 minutes, the amount of hydrogen supplied became a very small amount (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (30 0.1 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例6>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を150mgとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
45分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(29.8g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 6>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the amount of 5% Pd carbon powder (water content 50% by weight) PE type was changed to 150 mg.
After 45 minutes, the amount of hydrogen supplied became very small (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (29 0.8 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例7>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を300mgとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
30分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(30.2g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 7>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the amount of 5% Pd carbon powder (water content 50 wt%) PE type was changed to 300 mg.
After 30 minutes, the amount of hydrogen supplied became a very small amount (5 mL / min or less), so the reaction was judged to be completed, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (30 .2 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例8>
反応圧力を3MPaとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
300分後、水素供給量が微量(3mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(30.0g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 8>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the reaction pressure was 3 MPa.
After 300 minutes, the amount of hydrogen supplied became very small (3 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product was treated in the same manner as in Example 1 with crude 2,6-TDCM (30 0.0 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例9>
2,6−NDCMの仕込み量を15g、5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を45mg、イソプロパノールの仕込み量を75gとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
75分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(29.4g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 9>
The amount of 2,6-NDCM was 15 g, 5% Pd carbon powder (water content 50 wt%) PE type was 45 mg, and the amount of isopropanol was 75 g. , 6-NDCM hydrogenation reaction was carried out.
After 75 minutes, the amount of hydrogen supplied became a very small amount (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (29 .4 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例10>
貴金属触媒として5%Pdカーボン粉末(含水率50重量%)PEタイプ100mg、及びエヌ・イーケムキャット社製5%Ruカーボン粉末(含水率50重量%)Aタイプ100mgを仕込んだ以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
60分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(29.6g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 10>
Example 1 except that 100 mg of 5% Pd carbon powder (water content 50% by weight) PE type and 100 mg of 5% Ru carbon powder (water content 50% by weight) A type manufactured by N.E. Similarly, a hydrogenation reaction of 2,6-NDCM was performed.
After 60 minutes, since the amount of hydrogen supplied became very small (5 mL / min or less), the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (29 0.6 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<実施例11>
溶媒としてイソプロパノールに代えて酢酸エチル50gを用いた以外は実施例5と同様にして、2,6−NDCMの水素添加反応を実施した。
105分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(29.5g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。
<Example 11>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 5 except that 50 g of ethyl acetate was used instead of isopropanol as a solvent.
After 105 minutes, the amount of hydrogen supplied became very small (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (29 0.5 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1.
<比較例1>
反応温度を130℃とした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
360分後、水素供給量が微量(3mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(21.3g)を得た。なお、未反応の原料と思われる結晶が、触媒と共に焼結金属で反応液から分離された。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。反応温度が低い条件では、原料の2,6−NDCMの残存量が多く、反応の進行が不十分である。
<Comparative Example 1>
A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the reaction temperature was 130 ° C.
After 360 minutes, the amount of hydrogen supplied became very small (3 mL / min or less), so that the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (21 .3 g) was obtained. In addition, the crystal | crystallization considered to be an unreacted raw material was isolate | separated from the reaction liquid with the sintered metal with the catalyst. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1. Under conditions where the reaction temperature is low, the residual amount of raw material 2,6-NDCM is large and the progress of the reaction is insufficient.
<比較例2>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を150mgとし、反応温度を150℃、反応圧力を3.5MPaとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
360分後、水素供給量が微量(3mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(22.6g)を得た。なお、未反応の原料と思われる結晶が、触媒と共に焼結金属で反応液から分離された。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。反応温度が低い条件では、原料の2,6−NDCMの残存量が多く、反応の進行が不十分である。
<Comparative Example 2>
2,6-NDCM in the same manner as in Example 1 except that the amount of 5% Pd carbon powder (water content 50% by weight) PE type was 150 mg, the reaction temperature was 150 ° C., and the reaction pressure was 3.5 MPa. The hydrogenation reaction of was carried out.
After 360 minutes, the amount of hydrogen supplied became very small (less than 3 mL / min), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (22 0.6 g) was obtained. In addition, the crystal | crystallization considered to be an unreacted raw material was isolate | separated from the reaction liquid with the sintered metal with the catalyst. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1. Under conditions where the reaction temperature is low, the residual amount of raw material 2,6-NDCM is large and the progress of the reaction is insufficient.
<比較例3>
2,6−NDCMの仕込み量を20g、5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を1000mg、イソプロパノールの仕込み量を60gとし、反応温度を140℃、反応圧力を1.0MPaとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
240分後、水素供給量が微量(3mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(20.6g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。反応温度および反応圧力が低い条件では、触媒濃度を大幅に高くしても、原料の2,6−NDCMの残存量が多く、反応の進行が不十分になっている。
<Comparative Example 3>
The amount of 2,6-NDCM charged is 20 g, the amount of 5% Pd carbon powder (water content 50% by weight) PE type is 1000 mg, the amount of isopropanol is 60 g, the reaction temperature is 140 ° C., and the reaction pressure is 1. A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the pressure was 0 MPa.
After 240 minutes, the amount of hydrogen supplied became very small (less than 3 mL / min), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (20 0.6 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1. Under conditions where the reaction temperature and reaction pressure are low, even if the catalyst concentration is greatly increased, the residual amount of raw material 2,6-NDCM is large, and the progress of the reaction is insufficient.
<比較例4>
5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を1000mgとし、イソプロパノールの仕込み量を30gとし、反応温度を140℃、反応圧力を3.0MPaとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
60分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(30.2g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。触媒使用量が過大な条件では、反応温度を下げて反応を行っても水添反応が過剰に進行し2,6−DDCMの副生が増加し、2,6−TDCMの収率が低下している。
<Comparative Example 4>
5% Pd carbon powder (water content 50% by weight) Same as Example 1 except that the PE type charge was 1000 mg, the isopropanol charge was 30 g, the reaction temperature was 140 ° C., and the reaction pressure was 3.0 MPa. Then, a hydrogenation reaction of 2,6-NDCM was carried out.
After 60 minutes, the amount of hydrogen supplied became very small (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (30 .2 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1. Under conditions where the amount of catalyst used is excessive, even if the reaction is carried out at a lower reaction temperature, the hydrogenation reaction proceeds excessively, the amount of by-produced 2,6-DDCM increases, and the yield of 2,6-TDCM decreases. ing.
<比較例5>
2,6−NDCMの仕込み量を20g、5%Pdカーボン粉末(含水率50重量%)PEタイプの仕込み量を400mg、イソプロパノールの仕込み量を60gとし、反応温度を135℃、反応圧力を2.0MPaとした以外は実施例1と同様にして、2,6−NDCMの水素添加反応を実施した。
75分後、水素供給量が微量(5mL/min以下)となったので反応終了と判断し、室温まで冷却し、以下、実施例1と同様にして生成物の粗2,6−TDCM(19.5g)を得た。得られた生成物分析結果及び2,6−TDCMの収率を表1に示す。触媒使用量を比較例4よりも少なくしたものの、やはり触媒使用量が過大な条件では、水添反応が過剰に進行し、2,6−TDCMの収率が低下している。
<Comparative Example 5>
The amount of 2,6-NDCM charged is 20 g, the amount of 5% Pd carbon powder (water content 50% by weight) PE type is 400 mg, the amount of isopropanol is 60 g, the reaction temperature is 135 ° C., and the reaction pressure is 2. A hydrogenation reaction of 2,6-NDCM was carried out in the same manner as in Example 1 except that the pressure was 0 MPa.
After 75 minutes, the amount of hydrogen supplied became very small (5 mL / min or less), so the reaction was judged to be complete, and the reaction solution was cooled to room temperature. Thereafter, the product crude 2,6-TDCM (19 0.5 g) was obtained. The results of product analysis and the yield of 2,6-TDCM are shown in Table 1. Although the amount of catalyst used was less than that of Comparative Example 4, the hydrogenation reaction proceeded excessively under the conditions where the amount of catalyst used was excessive, and the yield of 2,6-TDCM decreased.
本発明によれば、2,6−ナフタレンジカルボン酸ジアルキルエステルを特定の反応温度及び水素圧力下で、ごく少量の貴金属触媒を使用して水素添加反応を行うことにより、適度な反応時間で水素添加の過剰進行等の副反応を抑えて高い収率で2,6−テトラリンジカルボン酸ジアルキルエステルを合成できる。
2,6−テトラリンジカルボン酸ジアルキルエステルはポリエステルやポリカーボネート、ポリイミド、ポリアミドとして、液晶組成物、高分子改質剤、医薬中間体などとしての利用が考えられるため、その工業的な意義は大きい。
According to the present invention, hydrogenation of a 2,6-naphthalenedicarboxylic acid dialkyl ester is carried out in an appropriate reaction time by performing a hydrogenation reaction using a very small amount of noble metal catalyst at a specific reaction temperature and hydrogen pressure. 2,6-tetralin dicarboxylic acid dialkyl ester can be synthesized in a high yield while suppressing side reactions such as excessive progress of the reaction.
Since 2,6-tetralin dicarboxylic acid dialkyl ester can be used as a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate or the like as a polyester, polycarbonate, polyimide, or polyamide, its industrial significance is great.
Claims (4)
(I)前記貴金属触媒の使用量が、前記2,6−ナフタレンジカルボン酸ジアルキルエステルに対する貴金属触媒中の触媒貴金属量で0.0005〜0.03質量%
(II)反応温度が、151〜230℃
(III)水素圧力が、1.6〜15MPa
(I) The amount of the noble metal catalyst used is 0.0005 to 0.03% by mass in terms of the amount of the catalyst noble metal in the noble metal catalyst relative to the 2,6-naphthalenedicarboxylic acid dialkyl ester.
(II) Reaction temperature is 151-230 degreeC
(III) Hydrogen pressure is 1.6 to 15 MPa
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013195097A JP6206659B2 (en) | 2013-09-20 | 2013-09-20 | Method for producing 2,6-tetralindicarboxylic acid dialkyl ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013195097A JP6206659B2 (en) | 2013-09-20 | 2013-09-20 | Method for producing 2,6-tetralindicarboxylic acid dialkyl ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015059117A true JP2015059117A (en) | 2015-03-30 |
JP6206659B2 JP6206659B2 (en) | 2017-10-04 |
Family
ID=52816919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013195097A Expired - Fee Related JP6206659B2 (en) | 2013-09-20 | 2013-09-20 | Method for producing 2,6-tetralindicarboxylic acid dialkyl ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6206659B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06157406A (en) * | 1993-04-07 | 1994-06-03 | Mitsui Petrochem Ind Ltd | Production of tetralin derivative |
JPH06184042A (en) * | 1992-12-18 | 1994-07-05 | Cosmo Sogo Kenkyusho:Kk | Production of decahydro-2,6-naphthalenedicarboxylic acid dichloride,@(3754/24)1r*, 3r*,6r*,8r*)-3,8bicyclo(4,4,0)decane dicarbonyl dichloride and its production |
JPH06199705A (en) * | 1993-01-08 | 1994-07-19 | Mitsui Petrochem Ind Ltd | Production of tetralin derivative |
JPH0753458A (en) * | 1993-08-11 | 1995-02-28 | Teijin Ltd | Hydrogenation of naphthalenedicarboxylic acid |
JPH0753467A (en) * | 1993-08-11 | 1995-02-28 | Teijin Ltd | Hydrogenation of naphthalenedicarboxylic acid dialkyl ester |
JP2000226356A (en) * | 1999-02-03 | 2000-08-15 | Mitsubishi Gas Chem Co Inc | Method for production of dialkyl decahydronaphthalenedicarboxylate |
JP2001278836A (en) * | 2000-01-28 | 2001-10-10 | Sumitomo Chem Co Ltd | Method for producing tetralin derivative and catalyst for the same method |
WO2014051021A1 (en) * | 2012-09-28 | 2014-04-03 | 三菱瓦斯化学株式会社 | 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same |
-
2013
- 2013-09-20 JP JP2013195097A patent/JP6206659B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06184042A (en) * | 1992-12-18 | 1994-07-05 | Cosmo Sogo Kenkyusho:Kk | Production of decahydro-2,6-naphthalenedicarboxylic acid dichloride,@(3754/24)1r*, 3r*,6r*,8r*)-3,8bicyclo(4,4,0)decane dicarbonyl dichloride and its production |
JPH06199705A (en) * | 1993-01-08 | 1994-07-19 | Mitsui Petrochem Ind Ltd | Production of tetralin derivative |
JPH06157406A (en) * | 1993-04-07 | 1994-06-03 | Mitsui Petrochem Ind Ltd | Production of tetralin derivative |
JPH0753458A (en) * | 1993-08-11 | 1995-02-28 | Teijin Ltd | Hydrogenation of naphthalenedicarboxylic acid |
JPH0753467A (en) * | 1993-08-11 | 1995-02-28 | Teijin Ltd | Hydrogenation of naphthalenedicarboxylic acid dialkyl ester |
JP2000226356A (en) * | 1999-02-03 | 2000-08-15 | Mitsubishi Gas Chem Co Inc | Method for production of dialkyl decahydronaphthalenedicarboxylate |
JP2001278836A (en) * | 2000-01-28 | 2001-10-10 | Sumitomo Chem Co Ltd | Method for producing tetralin derivative and catalyst for the same method |
WO2014051021A1 (en) * | 2012-09-28 | 2014-04-03 | 三菱瓦斯化学株式会社 | 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP6206659B2 (en) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5973566B2 (en) | Integrated preparation of 1,4-cyclohexanedimethanol from terephthalic acid | |
JP5734286B2 (en) | Formic acid production method | |
JP5973565B2 (en) | Method for preparing 1,4-cyclohexanedimethanol | |
JP5964961B2 (en) | Process for preparing 1,4-cyclohexanedimethanol from terephthalic acid | |
EP2531466A2 (en) | Process for purifying a crude ethanol product | |
WO2011097193A2 (en) | Hydrolysis of ethyl acetate in ethanol separation process | |
CN102351651A (en) | Preparation method of 3,3,3-trifluoropropanol | |
JP6137766B2 (en) | Iron-catalyzed transesterification | |
WO2020022365A1 (en) | Method for producing 1-acyloxy-2-methyl-2-propene | |
JP6558446B2 (en) | Method for producing γ-valerolactone | |
JP6206659B2 (en) | Method for producing 2,6-tetralindicarboxylic acid dialkyl ester | |
JP2012201662A (en) | Method of producing hydrogenolysis product of glycerin | |
TWI776935B (en) | Method for producing dicyanocyclohexane | |
KR101577362B1 (en) | Preparation method of 1,4-cyclohexanedimethanol | |
WO2020022364A1 (en) | Method for producing 1,3-bisacyloxy-2-methylene propane | |
JP2004300131A (en) | Method for producing alcohol by hydrogenation of ester | |
TWI547478B (en) | Method for producing n-propyl acetate and method for producing allyl acetate | |
JP2024506153A (en) | 1,4-Cyclohexane dimethanol composition and method for purifying the same | |
WO2015193423A1 (en) | Process for producing ethanol | |
WO2015102893A1 (en) | Process for the preparation of cyclohexane carboxylic acid compounds | |
JP4809299B2 (en) | Method for hydrotreating 2,6-naphthalenedicarboxylic acid | |
WO2014051021A1 (en) | 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same | |
CN105209422A (en) | Process of production of dehydrolinalyl acetate (II) | |
JPWO2019017490A1 (en) | Method for producing pentenoate derivative | |
CN106687440B (en) | Process for the preparation of alpha-hydroxycarboxylic acid esters with ammonia recycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160721 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170404 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20170526 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170529 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170822 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6206659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |