JP2015056617A - Light-receiving element, method for manufacturing the same, and optical sensor device - Google Patents

Light-receiving element, method for manufacturing the same, and optical sensor device Download PDF

Info

Publication number
JP2015056617A
JP2015056617A JP2013190851A JP2013190851A JP2015056617A JP 2015056617 A JP2015056617 A JP 2015056617A JP 2013190851 A JP2013190851 A JP 2013190851A JP 2013190851 A JP2013190851 A JP 2013190851A JP 2015056617 A JP2015056617 A JP 2015056617A
Authority
JP
Japan
Prior art keywords
window layer
layer
light receiving
hole
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013190851A
Other languages
Japanese (ja)
Other versions
JP6115890B2 (en
Inventor
賢一 町長
Kenichi Machinaga
賢一 町長
俊之 新田
Toshiyuki Nitta
俊之 新田
猪口 康博
Yasuhiro Inoguchi
康博 猪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013190851A priority Critical patent/JP6115890B2/en
Publication of JP2015056617A publication Critical patent/JP2015056617A/en
Application granted granted Critical
Publication of JP6115890B2 publication Critical patent/JP6115890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a planar light-receiving element or the like capable of controlling diffusion depth with high accuracy in selective diffusion for forming a pn-junction.SOLUTION: A light-receiving element includes: a light-receiving layer; a diffusion concentration distribution adjustment layer; a window layer; a selective diffusion mask pattern; and a pixel electrode. Part of the window layer is removed for every opening of the selective diffusion mask pattern and a window layer through-hole is provided therein. Impurities penetrate into a side wall surface of the window layer through-hole and part of the diffusion concentration distribution adjustment layer forming a bottom surface of the window layer through-hole and are distributed therein. The pixel electrode is positioned on and in contact with the part of the diffusion concentration distribution adjustment layer forming the bottom surface of the window layer through-hole.

Description

本発明は、受光素子、その製造方法、および光センサ装置に関し、なかでもとくに近赤外〜赤外域の受光素子、その製造方法、および光センサ装置に関するものである。   The present invention relates to a light receiving element, a manufacturing method thereof, and an optical sensor device, and more particularly to a light receiving element in the near infrared to infrared region, a manufacturing method thereof, and an optical sensor device.

近赤外を含む赤外域の光は、動植物などの生体や環境に関連した吸収スペクトル域に対応するため、受光層にIII−V族化合物半導体を用いて、その赤外域の検出器の開発が行われている。とくに近赤外から長波長側へと受光感度の拡大が推進されている。これら受光素子では、近赤外から長波長側に感度拡大をはかるためタイプ2量子井戸構造(多重量子井戸構造:Multi-Quantum Well)を受光層として、選択拡散によって窓層から不純物を導入することで画素を形成するプレーナ型受光素子が採用されている(特許文献1)。選択拡散によって画素を形成する方式は、機械的な溝によって画素を形成する方式に比べて暗電流が低くなる利点を有する。上記のタイプ2の多重量子井戸では、受光時に、ヘテロ界面をわたるようにGaAsSbの価電子帯からInGaAsの伝導帯に電子の遷移が生じるので、感度を確保するためには、量子井戸のペア数を大きくしなければならない。たとえばInGaAs/GaAsSb多重量子井戸の場合、InGaAs/GaAsSbを1ペアとして250ペア程度積層する。   Infrared light, including near infrared, corresponds to the absorption spectrum region related to living organisms such as animals and plants, and the environment. Has been done. In particular, the expansion of photosensitivity from the near infrared to the long wavelength side is being promoted. In these light receiving elements, in order to increase sensitivity from the near infrared to the long wavelength side, a type 2 quantum well structure (multi-quantum well structure) is used as a light receiving layer, and impurities are introduced from the window layer by selective diffusion. A planar type light receiving element for forming pixels is employed (Patent Document 1). The method of forming pixels by selective diffusion has an advantage that the dark current is lower than the method of forming pixels by mechanical grooves. In the above-described type 2 multiple quantum well, an electron transition occurs from the valence band of GaAsSb to the conduction band of InGaAs so as to cross the heterointerface at the time of light reception. Therefore, in order to ensure sensitivity, the number of pairs of quantum wells Must be increased. For example, in the case of an InGaAs / GaAsSb multiple quantum well, about 250 pairs of InGaAs / GaAsSb are stacked.

上記のタイプ2のInGaAs/GaAsSb多重量子井戸は、しかしながら、不純物に対して脆弱であり、上記のプレーナ型受光素子の選択拡散に際して、多重量子井戸内には最小限の不純物しか許容されない。このため、選択拡散マスクパターンが設けられる窓層と、多重量子井戸構造との間に、拡散濃度分布調整層を挿入する。この拡散濃度分布調整層には、窓層における不純物の高濃度(1〜5E18cm−3程度)から、受光層に至る低濃度(1〜5E16cm−3程度)の不純物へと不純物濃度が急峻に変化する領域が含まれるようにする。この拡散濃度分布調整層では、その不純物の拡散速度が遅くなるような材料が用いられる。たとえば、タイプ2のInGaAs/GaAsSb多重量子井戸の場合、p型不純物である亜鉛(Zn)が選択拡散されるが、拡散濃度分布調整層にはInGaAsが用いられる。InGaAsはZnの拡散速度を抑えるので、上記の高濃度から低濃度へと急峻に変化する領域を、当該InGaAs層内にとどめやすい。 However, the type 2 InGaAs / GaAsSb multiple quantum well is vulnerable to impurities, and only a minimum amount of impurities is allowed in the multiple quantum well during selective diffusion of the planar light receiving element. Therefore, a diffusion concentration distribution adjusting layer is inserted between the window layer provided with the selective diffusion mask pattern and the multiple quantum well structure. In this diffusion concentration distribution adjustment layer, the impurity concentration changes sharply from a high impurity concentration (about 1 to 5E18 cm −3 ) in the window layer to a low concentration (about 1 to 5E16 cm −3 ) impurity reaching the light receiving layer. The area to be included is included. In this diffusion concentration distribution adjustment layer, a material that slows the diffusion rate of impurities is used. For example, in the case of a type 2 InGaAs / GaAsSb multiple quantum well, zinc (Zn), which is a p-type impurity, is selectively diffused, but InGaAs is used for the diffusion concentration distribution adjusting layer. Since InGaAs suppresses the diffusion rate of Zn, it is easy to keep the region where the above-mentioned abrupt change from the high concentration to the low concentration is in the InGaAs layer.

特許第4662188号Japanese Patent No. 4662188

上記したように、pn接合形成のための不純物導入は、窓層に接して形成した選択拡散マスクパターンの開口部からその窓層およびInGaAs拡散濃度分布調整層を経て受光層の上部に至るか、または受光層の手前にとどめるようにする。しかしながら、この選択拡散における不純物の深さの精度は低く、現状、ばらつきが大きい。タイプ2InGaAs/GaAsSb多重量子井戸内に、低く制御されていない濃度の不純物が入ると結晶性が劣化して暗電流が増大し、また選択拡散の深さが浅いと感度が小さくなる。   As described above, the impurity introduction for forming the pn junction may be performed from the opening of the selective diffusion mask pattern formed in contact with the window layer to the upper part of the light receiving layer through the window layer and the InGaAs diffusion concentration distribution adjusting layer. Alternatively, it should be kept in front of the light receiving layer. However, the accuracy of the depth of impurities in this selective diffusion is low, and there is a large variation at present. When impurities of low uncontrolled concentration enter the type 2 InGaAs / GaAsSb multiple quantum well, the crystallinity deteriorates and dark current increases, and the sensitivity decreases when the selective diffusion depth is shallow.

本発明は、画素ごとにpn接合を形成するための選択拡散において、拡散深さを高精度に制御することが可能な、受光素子、その製造方法、および光センサ装置を提供することを目的とする。   An object of the present invention is to provide a light receiving element, a manufacturing method thereof, and an optical sensor device capable of controlling the diffusion depth with high accuracy in selective diffusion for forming a pn junction for each pixel. To do.

本発明の受光素子は、半導体基板上に、不純物の選択拡散による画素を備えるプレーナ型の受光素子であって、半導体基板の上に位置する受光層と、受光層上に接して位置する拡散濃度分布調整層と、拡散濃度分布調整層上に接して位置する窓層と、窓層上に接して位置し、画素ごとに開口部がある選択拡散マスクパターンと、画素に設けられた画素電極とを備え、選択拡散マスクパターンの開口部ごとに窓層が除去されて窓層貫通孔が設けられ、不純物が、窓層貫通孔の側壁面、および、該窓層貫通孔の底面をなす前記拡散濃度分布調整層、に浸透して分布し、画素電極は、窓層貫通孔の底面をなす拡散濃度分布調整層上に接して位置している。   The light receiving element of the present invention is a planar light receiving element having pixels by selective diffusion of impurities on a semiconductor substrate, the light receiving layer located on the semiconductor substrate, and the diffusion concentration located in contact with the light receiving layer A distribution adjustment layer, a window layer located in contact with the diffusion concentration distribution adjustment layer, a selective diffusion mask pattern located in contact with the window layer and having an opening for each pixel, and a pixel electrode provided in the pixel; The window layer is removed for each opening of the selective diffusion mask pattern to provide a window layer through-hole, and the impurity forms the side wall surface of the window layer through-hole and the bottom surface of the window layer through-hole. The pixel electrode is located in contact with the diffusion concentration distribution adjusting layer forming the bottom surface of the window layer through hole.

本発明の受光素子によれば、画素ごとにpn接合を形成するための選択拡散において、拡散深さを高精度に制御することが可能となる。   According to the light receiving element of the present invention, in the selective diffusion for forming a pn junction for each pixel, the diffusion depth can be controlled with high accuracy.

本発明の実施の形態における受光素子を示す図である。It is a figure which shows the light receiving element in embodiment of this invention. 図1の受光素子の窓層貫通孔の窓層表面付近の拡大図である。It is an enlarged view of the window layer surface vicinity of the window layer through-hole of the light receiving element of FIG. 図1の受光素子の製造において、半導体積層体の上にSiN膜を堆積した状態を示す図である。FIG. 2 is a diagram showing a state in which a SiN film is deposited on a semiconductor stacked body in manufacturing the light receiving element of FIG. 1. SiN膜に開口部があけられたパターンを形成した状態を示す図である。It is a figure which shows the state which formed the pattern by which the opening part was opened in the SiN film. 開口部に窓層貫通孔を設けたあと、亜鉛の選択拡散を行ったあとの状態を示す図である。It is a figure which shows the state after performing the selective diffusion of zinc after providing the window layer through-hole in the opening part. 窓層貫通孔の底部に露出するInGaAs拡散濃度分布調整層に接して画素電極を形成した状態を示す図である。It is a figure which shows the state which formed the pixel electrode in contact with the InGaAs diffused concentration distribution adjustment layer exposed to the bottom part of a window layer through-hole. 実施例における試験体グループBの従来の窓層貫通孔を設けない、受光素子を示す図である。It is a figure which shows the light receiving element which does not provide the conventional window layer through-hole of the test body group B in an Example.

[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
1.受光素子:
(1)構造:
半導体基板上に、不純物の選択拡散による画素を備えるプレーナ型の受光素子であって、半導体基板の上に位置する受光層と、受光層上に接して位置する拡散濃度分布調整層と、拡散濃度分布調整層上に接して位置する窓層と、窓層上に接して位置し、画素ごとに開口部がある選択拡散マスクパターンと、画素に設けられた画素電極とを備え、選択拡散マスクパターンの開口部ごとに窓層が除去されて窓層貫通孔が設けられ、不純物が、窓層貫通孔の側壁面、および、該窓層貫通孔の底面をなす拡散濃度分布調整層、に浸透して分布し、画素電極は、窓層貫通孔の底面をなす拡散濃度分布調整層上に接して位置している。この構造によれば、開口部における窓層は除去されているので、不純物は、窓層貫通孔に露出している拡散濃度分布調整層に、直接、拡散するようになる。このため窓層の厚み変動のばらつきという因子が除去されるので、pn接合を精度よく意図した位置に形成することができる。
[Description of Embodiment of Present Invention]
First, the contents of the embodiments of the present invention will be listed and described.
1. Light receiving element:
(1) Structure:
A planar type light receiving element having pixels by selective diffusion of impurities on a semiconductor substrate, a light receiving layer positioned on the semiconductor substrate, a diffusion concentration distribution adjusting layer positioned on and in contact with the light receiving layer, and a diffusion concentration A selective diffusion mask pattern comprising: a window layer located in contact with the distribution adjustment layer; a selective diffusion mask pattern located in contact with the window layer and having an opening for each pixel; and a pixel electrode provided in the pixel. The window layer is removed for each opening portion to provide a window layer through hole, and impurities penetrate into the side wall surface of the window layer through hole and the diffusion concentration distribution adjusting layer forming the bottom surface of the window layer through hole. The pixel electrode is positioned in contact with the diffusion concentration distribution adjusting layer that forms the bottom surface of the window layer through hole. According to this structure, since the window layer in the opening is removed, the impurities directly diffuse into the diffusion concentration distribution adjusting layer exposed in the window layer through hole. For this reason, since the factor of variation in the thickness variation of the window layer is removed, the pn junction can be accurately formed at the intended position.

(2)窓層貫通孔:
窓層貫通孔の径は、少なくとも窓層表面で、選択拡散マスクパターンの開口部の径より大きくするのがよい。選択拡散によって導入された不純物は、窓層上面の窓層貫通孔の周縁部にも導入され、窓層上面にpn接合が選択拡散マスクパターンのマスク部直下に形成される。窓層上面のpn接合の端は、当該上面で窓層貫通孔とほぼ同心円状に形成される。窓層貫通孔の径を、窓層表面で、選択拡散マスクパターンの開口部の径より大きくすることで、選択拡散の最初から最後まで終始一貫して窓層表面におけるpn接合の端は、選択拡散マスクパターンのマスク部に被覆されており、大気等に露出することがない。このためpn接合の端に大気から高濃度の酸素等の不純物が付着することはなく、この結果、暗電流を低く抑えることができる。
(2) Window layer through hole:
The diameter of the window layer through-hole is preferably larger than the diameter of the opening of the selective diffusion mask pattern at least on the window layer surface. The impurity introduced by selective diffusion is also introduced into the peripheral portion of the window layer through hole on the upper surface of the window layer, and a pn junction is formed immediately below the mask portion of the selective diffusion mask pattern on the upper surface of the window layer. The end of the pn junction on the upper surface of the window layer is formed substantially concentrically with the window layer through hole on the upper surface. By making the diameter of the window layer through-hole larger than the diameter of the opening of the selective diffusion mask pattern on the surface of the window layer, the end of the pn junction on the surface of the window layer is selected consistently from the beginning to the end of selective diffusion. The mask portion of the diffusion mask pattern is covered and is not exposed to the atmosphere. For this reason, impurities such as high-concentration oxygen do not adhere to the end of the pn junction from the atmosphere, and as a result, the dark current can be kept low.

(3)選択拡散マスクパターン:
選択拡散マスクパターンは、選択拡散を行った後も、そのまま残す。その理由は、選択拡散を行った後、選択拡散マスクパターンを除去すると、窓層上面のpn接合の端は、一時的であるかもしれないが、確実に大気等に露出されることになる。この結果、pn接合の端に酸素等の不純物が付着して、暗電流増大をもたらす。このため、選択拡散マスクパターンはそのまま製品に残される。選択拡散マスクパターンの上には、別のパッシベーション膜が積層されるのが普通である。
(3) Selected diffusion mask pattern:
The selective diffusion mask pattern is left as it is after selective diffusion. The reason is that if the selective diffusion mask pattern is removed after selective diffusion, the end of the pn junction on the upper surface of the window layer may be temporarily exposed to the atmosphere or the like. As a result, impurities such as oxygen adhere to the end of the pn junction, resulting in an increase in dark current. For this reason, the selective diffusion mask pattern is left as it is in the product. Usually, another passivation film is laminated on the selective diffusion mask pattern.

(4)窓層と選択拡散マスクパターンの材料:
選択拡散マスクパターンが窒化シリコン(SiN)で形成され、また窓層がInPもしくはInAlAsで形成されているのがよい。SiN選択拡散マスク部とInP窓層もしくはInAlAs窓層との材料の組み合わせでは、他の材料の組み合わせよりも、漏れ電流が小さくなる。また、これらの材料について、多くの技術データの蓄積がある。
(4) Materials for window layer and selective diffusion mask pattern:
The selective diffusion mask pattern is preferably made of silicon nitride (SiN), and the window layer is preferably made of InP or InAlAs. In the combination of materials of the SiN selective diffusion mask portion and the InP window layer or InAlAs window layer, the leakage current is smaller than in the combination of other materials. There is also a great deal of technical data on these materials.

(5)不純物と拡散濃度分布調整層の材料:
不純物を亜鉛(Zn)とし、拡散濃度分布調整層をInGaAsで形成するのがよい。Znは、InGaAs中での拡散速度が遅くなる。このため、不純物に対して脆弱な多重量子井戸の上に位置して不純物濃度を調整する拡散濃度分布調整層をInGaAs層とすることで、不純物が高濃度から低濃度へと急峻に低下する領域を当該拡散濃度分布調整層内に形成しやすくなる。
(5) Impurity and diffusion concentration distribution adjusting layer material:
It is preferable that the impurity is zinc (Zn) and the diffusion concentration distribution adjusting layer is formed of InGaAs. Zn has a slow diffusion rate in InGaAs. For this reason, a region in which impurities are sharply decreased from a high concentration to a low concentration by using an InGaAs layer as a diffusion concentration distribution adjusting layer that is located on a multiple quantum well that is vulnerable to impurities and adjusts the impurity concentration. Can be easily formed in the diffusion concentration distribution adjusting layer.

(6)窓層および拡散濃度分布調整層の材料:
窓層をInP、拡散濃度分布調整層をInGaAs、とするのがよい。上述の各材料の理由の他に、窓層貫通孔の形成のしやすさが問題となる。窓層をInP、拡散濃度分布調整層をInGaAs、とすることで、InPのエッチング速度が大きく、InGaAsのエッチング速度が非常に小さいエッチング液は、普通にある。たとえば塩酸水溶液である。これらを用いて、窓層貫通孔を精度よく設けることができる。
(6) Materials for window layer and diffusion concentration distribution adjusting layer:
The window layer is preferably InP, and the diffusion concentration distribution adjusting layer is preferably InGaAs. In addition to the reasons for the above materials, the ease of forming the window layer through-holes becomes a problem. By using InP as the window layer and InGaAs as the diffusion concentration distribution adjusting layer, an etching solution having a high InP etching rate and a very low InGaAs etching rate is generally available. For example, an aqueous hydrochloric acid solution. By using these, the window layer through-hole can be provided with high accuracy.

(7)InGaAs拡散濃度分布調整層における画素電極の材料:
画素電極は選択拡散された画素ごとの不純物領域とオーミック接触する必要がある。画素電極は、pn接合に対して、グランド電極との間で逆バイアス電圧を印加し、かつ受光で生じたキャリアを集めるために配置される。
(i)窓層にInPが用いられ、不純物として亜鉛(Zn)が用いられる場合、画素電極の材料には、オーミック接触の実現のためAuZn系合金が用いられた。受光素子は、必ず読み出し回路とセットで用いられるが、読み出し回路に設けられる、画素の受光の強さなどを情報収集する読み出し電極は、画素電極と一対一で接続される。画素電極ごとに1つの読み出し電極を、確実に接続するために、画素電極と読み出し電極との間には、インジウム等のバンプが介在される。すなわち、1つの画素電極/1つのバンプ/1つの読み出し電極、の接続形態が形成される。通常用いられるインジウムバンプは、AuZn系合金との濡れ性がそれほど十分でない。このため、インジウムバンプをAuZn系合金に配置するとき、TiNiAu系合金のバンプ下地金属のパッドを形成する。つまり、窓層貫通孔を設けない場合、InP窓層のZn領域/AuZn系合金の画素電極/TiNiAu系合金のバンプ下地金属/インジウムバンプの電極の構成となる。
(ii)窓層貫通孔を設ける場合、InGaAs拡散濃度分布調整層のZn領域に画素電極をオーミック接触する。この場合、画素電極の材料に、TiPtAu系合金を用いることができる。TiPtAu系合金は、インジウムバンプとの濡れ性がよいため、バンプ下地金属を形成する必要がない。このため、バンプ下地金属の形成のための工数、バンプ下地金属の材料、等を省略することができる。この結果、ランタイムの大幅な短縮、蒸着コストの削減を得ることができる。
(iii)上記(ii)の場合、窓層貫通孔を設ける工程が加わるが、AnZn系電極の形成工程が無くなるので、全体として工程短縮を得ることができる。さらにAuの消費を抑えることができ、材料費のコスト削減にも資することができる。
(7) Pixel electrode material in the InGaAs diffusion concentration distribution adjusting layer:
The pixel electrode needs to be in ohmic contact with the impurity region for each selectively diffused pixel. The pixel electrode is arranged to apply a reverse bias voltage to the ground electrode with respect to the pn junction and collect carriers generated by light reception.
(I) When InP is used for the window layer and zinc (Zn) is used as an impurity, an AuZn-based alloy was used as the pixel electrode material for realizing ohmic contact. The light receiving element is always used as a set with the readout circuit, but the readout electrodes provided in the readout circuit for collecting information such as the intensity of light reception of the pixels are connected to the pixel electrodes on a one-to-one basis. In order to reliably connect one readout electrode for each pixel electrode, a bump such as indium is interposed between the pixel electrode and the readout electrode. That is, a connection form of one pixel electrode / one bump / one readout electrode is formed. Normally used indium bumps do not have sufficient wettability with AuZn alloys. For this reason, when an indium bump is disposed on an AuZn alloy, a bump base metal pad of TiNiAu alloy is formed. In other words, when the window layer through-hole is not provided, the structure is as follows: Zn region of InP window layer / pixel electrode of AuZn alloy / bump base metal of TiNiAu alloy / electrode of indium bump.
(Ii) When providing the window layer through hole, the pixel electrode is brought into ohmic contact with the Zn region of the InGaAs diffusion concentration distribution adjusting layer. In this case, a TiPtAu alloy can be used as the material of the pixel electrode. Since the TiPtAu alloy has good wettability with the indium bump, it is not necessary to form a bump base metal. For this reason, the man-hour for formation of a bump base metal, the material of a bump base metal, etc. can be omitted. As a result, the runtime can be greatly shortened and the deposition cost can be reduced.
(Iii) In the case of (ii), a step of providing a window layer through-hole is added, but since the step of forming the AnZn-based electrode is eliminated, the overall process can be shortened. Furthermore, consumption of Au can be suppressed, and it can also contribute to cost reduction of material costs.

(8)受光層:
受光層は、最も広くはInGaAs、GaInNAsなど単相の材料であってもよい。窓層の厚み変動によって、pn接合の位置の精度が得られないことの不都合は、InGaAsなど単相の受光層であっても同じである。したがって、拡散濃度調整層および窓層貫通孔を設けることで、InGaAs受光層におけるpn接合の位置を高い精度で配置することができる。しかし、拡散濃度調整層および窓層貫通孔などを備えた上記の構造は、受光層がタイプ2の多重量子井戸構造を有する場合に、その効力を大きく発揮する。多重量子井戸構造は、不純物に対して脆弱であり、高濃度の不純物が導入されると結晶性が劣化して暗電流が増大する。このため、本発明の本実施の形態例の受光素子の構造を備えることで、多重量子井戸内への不純物の導入は最小限にしながら、感度を低下させない所定の位置にpn接合を、精度よく配置することが可能となる。なお、タイプ2の多重量子井戸構造では、ペアを組む一方の化合物半導体のエネルギバンドを、他方より少しだけ高くしておき、高いほうの価電子帯から低い方の伝導帯に電子の遷移が生じさせる。この結果、遷移に伴うエネルギ変化が小さくなり、より長波長側の光の受光が可能になる。このため、近赤外〜赤外域の受光素子には有益である。受光時の電子の遷移は、ペアの界面を横切るため、十分な感度を確保するには、量子井戸の層数を大きくしなければならず、通常、数十〜数百のペア数とする。
(8) Light receiving layer:
The light receiving layer may be a single-phase material such as InGaAs or GaInNAs most widely. The disadvantage that the accuracy of the position of the pn junction cannot be obtained due to the variation in the thickness of the window layer is the same even in a single-phase light-receiving layer such as InGaAs. Therefore, by providing the diffusion concentration adjusting layer and the window layer through hole, the position of the pn junction in the InGaAs light receiving layer can be arranged with high accuracy. However, the above-described structure including the diffusion concentration adjusting layer, the window layer through-hole, and the like exerts its effectiveness greatly when the light receiving layer has a type 2 multiple quantum well structure. The multiple quantum well structure is fragile to impurities, and when a high concentration of impurities is introduced, the crystallinity deteriorates and dark current increases. For this reason, by providing the structure of the light receiving element according to the present embodiment of the present invention, the introduction of impurities into the multiple quantum well is minimized, and the pn junction is accurately placed at a predetermined position where the sensitivity is not lowered. It becomes possible to arrange. In the type 2 multiple quantum well structure, the energy band of one compound semiconductor forming a pair is set slightly higher than the other, and an electron transition occurs from the higher valence band to the lower conduction band. Let As a result, the energy change associated with the transition is reduced, and light on the longer wavelength side can be received. Therefore, it is useful for a light receiving element in the near infrared to infrared region. Since the electron transition at the time of light reception crosses the interface of the pair, in order to ensure sufficient sensitivity, the number of quantum well layers must be increased, and the number of pairs is usually several tens to several hundreds.

(9)タイプ2の多重量子井戸構造:
タイプ2の多重量子井戸構造としては、(InGaAs/GaAsSb、InGaAs/GaInAs、およびInAs/GaSb)のうちのいずれかを用いるのがよい。これによって、ペルチエ素子で冷却する程度で、暗電流を低くすることができる、小型・軽量化された近赤外〜赤外域の感度を有する受光素子を得ることができる。
(9) Type 2 multiple quantum well structure:
Any of (InGaAs / GaAsSb, InGaAs / GaInAs, and InAs / GaSb) is preferably used as the type 2 multiple quantum well structure. As a result, it is possible to obtain a light-receiving element having a sensitivity in the near-infrared to infrared range, which can reduce the dark current only by cooling with a Peltier element, and can be reduced in size and weight.

(10)光センサ装置:
上記のいずれかの受光素子と読み出し回路とを組み合わせることで、近赤外〜赤外域の光センサ装置を得ることができる。撮像(分析)対象の物が、複数の物質を含み、その複数の物質が吸収スペクトル帯を異にすれば、センサチップに入射する前の光を分光するなどして帯域化することにより、対象物における各物質の分布やその濃度を検知することができる。上記の光センサ装置を組み込んだスペクトルイメージング撮像システムは、このような帯域別の画像を得ることを可能にする。
(10) Optical sensor device:
By combining one of the light receiving elements and the readout circuit, a near-infrared to infrared photosensor device can be obtained. If the object to be imaged (analyzed) contains a plurality of substances, and the plurality of substances have different absorption spectrum bands, the target is obtained by banding the light before entering the sensor chip, etc. The distribution and concentration of each substance in the object can be detected. A spectral imaging imaging system incorporating the above-described optical sensor device makes it possible to obtain such an image for each band.

2.受光素子の製造方法:
(1)窓層貫通孔からの選択拡散の実施:
本発明の受光素子の製造方法は、半導体基板上に、不純物の選択拡散による画素を備えるプレーナ型の受光素子を製造する。この製造方法は、半導体基板の上に位置する受光層、拡散濃度分布調整層、および窓層を、順次、エピタキシャル成長する工程と、窓層上に接して、画素ごとに開口部がある選択拡散マスクパターンを形成する工程と、選択拡散マスクパターンの開口部ごとに窓層に窓層貫通孔を設ける工程と、選択拡散マスクパターンの開口部から窓層貫通孔の中に不純物の気体を導入して、該窓層貫通孔の側壁面および底面に不純物を拡散する工程とを備え、窓層貫通孔を設ける工程では、少なくとも窓層の表面における窓層貫通孔の径を選択拡散マスクパターンの開口部の径よりも大きくし、該表面における選択拡散された不純物の領域を、該選択拡散を開始する前から窓層貫通孔の表面において選択拡散マスクパターンのマスク部分で覆われていた領域とする。これによって、受光層に向かう深さ方向には、窓層がないので、窓層の厚み変動に起因するpn接合の位置の不正確さは除かれ、精度よくpn接合を配置することが可能となる。さらに、窓層の表面におけるpn接合の端は、選択拡散開始から終了まで一度も大気等に触れることがなく製品となる。このためpn接合の端に高濃度の酸素等の不純物が付着することがなく、暗電流を低く保つことができる。
2. Manufacturing method of light receiving element:
(1) Implementation of selective diffusion from the window layer through hole:
According to the method for manufacturing a light receiving element of the present invention, a planar light receiving element including pixels by selective diffusion of impurities is manufactured on a semiconductor substrate. In this manufacturing method, a light-receiving layer, a diffusion concentration distribution adjusting layer, and a window layer positioned on a semiconductor substrate are sequentially epitaxially grown, and a selective diffusion mask having an opening for each pixel in contact with the window layer A step of forming a pattern, a step of providing a window layer through hole in the window layer for each opening of the selective diffusion mask pattern, and introducing an impurity gas into the window layer through hole from the opening of the selective diffusion mask pattern And a step of diffusing impurities on the side wall surface and the bottom surface of the window layer through-hole, and in the step of providing the window layer through-hole, at least the diameter of the window layer through-hole on the surface of the window layer is selected. The area of the selectively diffused impurity on the surface is covered with the mask portion of the selective diffusion mask pattern on the surface of the window layer through-hole before starting the selective diffusion. To. As a result, since there is no window layer in the depth direction toward the light receiving layer, the inaccuracy of the position of the pn junction due to the thickness variation of the window layer is eliminated, and the pn junction can be arranged with high accuracy. Become. Further, the end of the pn junction on the surface of the window layer becomes a product without being exposed to the atmosphere or the like from the start to the end of selective diffusion. For this reason, impurities such as high-concentration oxygen do not adhere to the end of the pn junction, and the dark current can be kept low.

(2)エッチングによる窓層貫通孔の形成:
窓層貫通孔を設ける工程では、窓層と拡散濃度分布調整層のエッチング速度が10対1以上の比で窓層のエッチング速度が大きいエッチング液を用いるのがよい。これによって、窓層貫通孔を精度よく設けることができる。たとえばInP窓層/InGaAs拡散濃度分布調整層の場合、35%塩酸水溶液をエッチング液に用いることで、InP窓層がエッチングされてInGaAsはほとんどエッチングされない。この結果、選択拡散マスクパターンの開口部ごとに、形状の揃った窓層貫通孔を精度よく設けることができ、これによって、やはり精度のよい選択拡散、ひいては精度のよいpn接合位置の配置を実現することができる。
(2) Formation of through hole in window layer by etching:
In the step of providing the window layer through-hole, it is preferable to use an etchant having a large etching rate of the window layer at a ratio of 10 to 1 or more between the window layer and the diffusion concentration distribution adjusting layer. Thereby, the window layer through-hole can be provided with high accuracy. For example, in the case of an InP window layer / InGaAs diffusion concentration distribution adjusting layer, by using a 35% hydrochloric acid aqueous solution as an etching solution, the InP window layer is etched and InGaAs is hardly etched. As a result, a window layer through-hole having a uniform shape can be accurately provided for each opening of the selective diffusion mask pattern, which also realizes accurate selective diffusion, and thus accurate placement of pn junction positions. can do.

[本願発明の実施形態の詳細]
次に、本願発明の実施形態の受光素子等の具体例を、図面を参照しながら説明する。なお、本願発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図されている。
[Details of the embodiment of the present invention]
Next, specific examples of the light receiving element and the like according to the embodiment of the present invention will be described with reference to the drawings. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to the claim are included.

図1は、本発明の実施の形態における受光素子50を示す図である。図1に示す受光素子50は、次のIII−V族半導体のエピタキシャル層構造を有する。
(Feドープ半絶縁性InP基板1/n型バッファ層2/タイプ2のInGaAs/GaAsSb多重量子井戸構造の受光層3/InGaAs拡散濃度分布調整層4/InP窓層5)
複数の画素Pが配列されていて、各画素PにはZnを含むp型領域6が形成され、そのp型領域6の先端にはpn接合15が形成されている。画素Pは、隣の画素とは、p型不純物であるZnが選択拡散されていない領域で隔てられ、独立性を得ることができる。InP基板1の裏面の入射面には反射防止膜(ARF:Anti-reflection film)35が貼られている。
FIG. 1 is a diagram showing a light receiving element 50 according to an embodiment of the present invention. The light receiving element 50 shown in FIG. 1 has the following III-V semiconductor epitaxial layer structure.
(Fe doped semi-insulating InP substrate 1 / n-type buffer layer 2 / type 2 InGaAs / GaAsSb multiple quantum well structure light-receiving layer 3 / InGaAs diffusion concentration distribution adjusting layer 4 / InP window layer 5)
A plurality of pixels P are arranged. A p-type region 6 containing Zn is formed in each pixel P, and a pn junction 15 is formed at the tip of the p-type region 6. The pixel P is separated from the adjacent pixel by a region where Zn, which is a p-type impurity, is not selectively diffused, so that independence can be obtained. An anti-reflection film (ARF) 35 is attached to the incident surface on the back surface of the InP substrate 1.

画素Pは、選択拡散マスクパターン36の開口部36h、および窓層貫通孔5h、から導入されるZn原料が固相であるInGaAs拡散濃度分布調整層4およびInP窓層5に拡散した領域を含んでいる。図2は、窓層貫通孔5hの部分拡大図である。窓層貫通孔5hの底部にはInGaAs拡散濃度分布調整層4が位置し、側部にはInP窓層5が位置している。窓層貫通孔5hが設けられているので、選択拡散のとき、pn接合15の位置を制御するのにInP窓層5の厚みを考慮する必要がない。このため、pn接合15の位置を精度よく配置することができる。pn接合15に対して、p側電極である画素電極11と、n側電極である共通のグランド電極12との間で、逆バイアス電圧を印加する。   The pixel P includes a region where Zn raw material introduced from the opening 36h of the selective diffusion mask pattern 36 and the window layer through hole 5h is diffused into the InGaAs diffusion concentration distribution adjusting layer 4 and the InP window layer 5 which are solid phases. It is out. FIG. 2 is a partially enlarged view of the window layer through hole 5h. The InGaAs diffusion concentration distribution adjusting layer 4 is located at the bottom of the window layer through hole 5h, and the InP window layer 5 is located at the side. Since the window layer through-hole 5h is provided, it is not necessary to consider the thickness of the InP window layer 5 to control the position of the pn junction 15 during selective diffusion. For this reason, the position of the pn junction 15 can be accurately arranged. A reverse bias voltage is applied to the pn junction 15 between the pixel electrode 11 that is the p-side electrode and the common ground electrode 12 that is the n-side electrode.

窓層貫通孔5hの、InP窓層5の表面(上面)における径は、選択拡散マスクパターン36の開口部36hの径よりも大きい。Znの選択拡散では、Zn原料気体は、この開口部36hおよび窓層貫通孔5hから固相に拡散導入される。窓層5の上面には、拡散導入されたZn領域の端15eがあらわれる。しかし、窓層5の上面で、窓層貫通孔5hの径が選択拡散マスクパターン36の開口部36hの径よりも大きければ、処理室の雰囲気に露出することはない。pn接合の端15eは、暗電流を抑制する上で重要な箇所であり、端15eに酸素等が高濃度で付着すると暗電流が増大する事態となる。本実施の形態では、pn接合15の位置を意図した位置に精度よく配置した上で、pn接合の端15eを選択拡散の開始から終了まで、一度も処理室の雰囲気にさらすことはない。選択拡散マスクパターン36は、除去することなく保護膜の一部としてそのまま製品に残すので、pn接合の端15eは最後まで大気や処理室雰囲気等の酸素等の不純物が多い気体に触れることはない。   The diameter of the window layer through hole 5 h on the surface (upper surface) of the InP window layer 5 is larger than the diameter of the opening 36 h of the selective diffusion mask pattern 36. In the selective diffusion of Zn, the Zn source gas is diffused and introduced into the solid phase from the opening 36h and the window layer through hole 5h. On the upper surface of the window layer 5, an end 15e of the diffused Zn region appears. However, if the diameter of the window layer through-hole 5h is larger than the diameter of the opening 36h of the selective diffusion mask pattern 36 on the upper surface of the window layer 5, it is not exposed to the atmosphere of the processing chamber. The end 15e of the pn junction is an important part for suppressing dark current, and when oxygen or the like adheres to the end 15e at a high concentration, the dark current increases. In the present embodiment, the position of the pn junction 15 is accurately arranged at the intended position, and the end 15e of the pn junction is never exposed to the atmosphere of the processing chamber from the start to the end of selective diffusion. Since the selective diffusion mask pattern 36 is left as it is in the product as a part of the protective film without being removed, the end 15e of the pn junction is not exposed to a gas containing a large amount of impurities such as oxygen in the atmosphere or the processing chamber atmosphere until the end. .

図1において、画素電極11またはp側電極は、InGaAs拡散濃度分布調整層4にオーミック接触している。画素電極11の材料は、TiPtAu系合金を主成分に含む。上記したように、TiPtAu系合金は、インジウムバンプ29との濡れ性がよいため、バンプ下地金属を設ける必要がない。窓層貫通孔5hを設けない場合、InP窓層5とのオーミック接触のため、画素電極の材料には、AuZn系合金が用いられ、AuZn系合金はインジウムバンプとの濡れ性が十分でないため、TiNiAu系合金のバンプ下地パッドが必要であった(図7参照)。本実施の形態では、バンプ下地パッドを省略することができ、製造工程の短縮など大きな製造コスト削減を得ることができる。   In FIG. 1, the pixel electrode 11 or the p-side electrode is in ohmic contact with the InGaAs diffusion concentration distribution adjusting layer 4. The material of the pixel electrode 11 contains a TiPtAu alloy as a main component. As described above, since the TiPtAu-based alloy has good wettability with the indium bump 29, it is not necessary to provide a bump base metal. When the window layer through hole 5h is not provided, because of the ohmic contact with the InP window layer 5, an AuZn-based alloy is used as the material of the pixel electrode, and the AuZn-based alloy has insufficient wettability with the indium bump. A bump base pad of TiNiAu alloy was necessary (see FIG. 7). In this embodiment, the bump base pad can be omitted, and a great manufacturing cost reduction such as a shortening of the manufacturing process can be obtained.

次に製造方法について説明する。エピタキシャル成長法は何でもよい。たとえば、MBE(Molecular Beam Epitaxy)法、MOVPE(Metal Organic Vapor Phase Epitaxy)法などを用いることができる。まず、InP基板1上にSiなどをドーパントとしてn型バッファ層2を成長し、次いでタイプ2のInGaAs/GaAsSb多重量子井戸を成長する。厚みは各層3nm〜6nm程度とし、ペア数は100〜400ペア程度とするのがよい。次いでInGaAs拡散濃度分布調整層4、次いでInP窓層5をエピタキシャル成長する。このInP窓層5に対して、前処理として、バッファードフッ酸(BHF:Buffered Hydrofluoric acid)によるエッチングおよび硫酸によるエッチングを行う。   Next, a manufacturing method will be described. Any epitaxial growth method may be used. For example, MBE (Molecular Beam Epitaxy) method, MOVPE (Metal Organic Vapor Phase Epitaxy) method and the like can be used. First, an n-type buffer layer 2 is grown on an InP substrate 1 using Si or the like as a dopant, and then a type 2 InGaAs / GaAsSb multiple quantum well is grown. The thickness is preferably about 3 nm to 6 nm for each layer, and the number of pairs is preferably about 100 to 400 pairs. Next, the InGaAs diffusion concentration distribution adjusting layer 4 and then the InP window layer 5 are epitaxially grown. Etching with buffered hydrofluoric acid (BHF) and etching with sulfuric acid are performed on the InP window layer 5 as pretreatment.

次いで、前処理を行った後のInP窓層5上に接して、選択拡散マスクパターン36を形成するために、図3に示すように、窒化シリコン(SiN)膜36aを堆積する。SiN膜36aはプラズマCVD(Chemical Vapor Deposition)法などで、厚み100nm程度に成膜するのがよい。この膜36aはSiN膜でなくてもよいが、InP窓層5とSiN膜と組み合わせることで漏れ電流を抑制することができる。次にSiN膜36a上にレジスト膜(図示せず)を塗布してフォトリソグラフィによりレジストパターンを形成する。このあと、バッファードフッ酸によってSiN膜36aをエッチングして選択拡散マスクパターン36を形成する。ここで、図4に示すように選択拡散のための開口部36hが設けられる。   Next, in order to form a selective diffusion mask pattern 36 in contact with the InP window layer 5 after the pretreatment, a silicon nitride (SiN) film 36a is deposited as shown in FIG. The SiN film 36a is preferably formed to a thickness of about 100 nm by a plasma CVD (Chemical Vapor Deposition) method or the like. The film 36a may not be a SiN film, but leakage current can be suppressed by combining the InP window layer 5 and the SiN film. Next, a resist film (not shown) is applied on the SiN film 36a, and a resist pattern is formed by photolithography. Thereafter, the selective diffusion mask pattern 36 is formed by etching the SiN film 36a with buffered hydrofluoric acid. Here, an opening 36h for selective diffusion is provided as shown in FIG.

このあと、上記した35%塩酸水溶液などの選択性の高いエッチング液を用いてInP窓層5をエッチングして、開口部36hに窓層貫通孔5hを設ける。35%塩酸水溶液は、InPはエッチングするがInGaAsはほとんどエッチングしない選択性の強いエッチング液である。このとき、図2等に示すように、窓層貫通孔5hの径が、InP窓層5の表面(上面)において開口部36hの径よりも大きくなるようにする。理由は、既に説明したとおりである。   Thereafter, the InP window layer 5 is etched using a highly selective etching solution such as the 35% hydrochloric acid aqueous solution described above to provide the window layer through hole 5h in the opening 36h. The 35% hydrochloric acid aqueous solution is a highly selective etching solution that etches InP but hardly etches InGaAs. At this time, as shown in FIG. 2 and the like, the diameter of the window layer through hole 5h is set to be larger than the diameter of the opening 36h on the surface (upper surface) of the InP window layer 5. The reason is as described above.

次いで、図5に示すように、開口部36hおよび窓層貫通孔5hにZnの原料気体を導入して、固相にZnを拡散してpn接合15を形成する。窓層貫通孔5hの径が、窓層5の表面(上面)で開口部36hの径よりも大きいので、pn接合の端15eは、選択拡散の最初から最後まで処理室の雰囲気等に露出されることはない。このため暗電流の低い受光素子を得ることができる。   Next, as shown in FIG. 5, Zn source gas is introduced into the opening 36 h and the window layer through hole 5 h, and Zn is diffused into the solid phase to form the pn junction 15. Since the diameter of the window layer through hole 5h is larger than the diameter of the opening 36h on the surface (upper surface) of the window layer 5, the end 15e of the pn junction is exposed to the atmosphere of the processing chamber from the beginning to the end of the selective diffusion. Never happen. For this reason, a light receiving element with a low dark current can be obtained.

このあと、p側電極または画素電極11のレジストパターン(図示せず)をフォトリソグラフィで形成し、図6に示すように、真空蒸着によってTi/Pt/Au合金系の電極を形成しレジストパターンを除去する。上記したように、TiPtAu系合金は、インジウムバンプとの濡れ性がよいため、バンプ下地金属を形成する必要がない。このため、バンプ下地金属の形成のための工数、バンプ下地金属の材料、等を省略することができる。この結果、ランタイムの大幅な短縮、蒸着コストの削減を得ることができる。この電極製造費用の低減は、本実施の形態における副次的な効果である。   Thereafter, a resist pattern (not shown) of the p-side electrode or the pixel electrode 11 is formed by photolithography, and a Ti / Pt / Au alloy-based electrode is formed by vacuum deposition as shown in FIG. Remove. As described above, since the TiPtAu alloy has good wettability with the indium bump, it is not necessary to form a bump base metal. For this reason, the man-hour for formation of a bump base metal, the material of a bump base metal, etc. can be omitted. As a result, the runtime can be greatly shortened and the deposition cost can be reduced. This reduction in electrode manufacturing cost is a secondary effect in the present embodiment.

本実施の形態例の効果を検証するために、図1に示す試験体Aを試作して、従来の試験体グループB(5体)との比較を行った。従来の試験体グループBは、図7に示すように、選択拡散マスクパターン36の開口部136hから、InP窓層105の表面に直接、Znを拡散導入して、p型領域106およびその先端にpn接合115を形成する。その他の積層構造は、(Feドープ半絶縁性InP基板101/n型バッファ層102/タイプ2のInGaAs/GaAsSb多重量子井戸構造の受光層103/InGaAs拡散濃度分布調整層104/InP窓層105)であり、図1の試験体Aと同じである。AR膜135も同様にInP基板101裏面に貼られている。相違点は、図1の試験体Aには窓層貫通孔5hがあるのに比して、試験体グループBには窓層貫通孔はない。さらに図7には、画素電極111とインジウムバンプ129との間にバンプ下地金属パッド127が形成されているのに比して、図1の本発明例の試験体Aにはバンプ下地金属はない。   In order to verify the effect of the present embodiment, a test specimen A shown in FIG. 1 was prototyped and compared with the conventional test specimen group B (five specimens). As shown in FIG. 7, in the conventional specimen group B, Zn is diffused and introduced directly into the surface of the InP window layer 105 from the opening 136h of the selective diffusion mask pattern 36, so that the p-type region 106 and the tip thereof are introduced. A pn junction 115 is formed. Other stacked structures are (Fe-doped semi-insulating InP substrate 101 / n-type buffer layer 102 / type 2 InGaAs / GaAsSb multiple quantum well structure light-receiving layer 103 / InGaAs diffusion concentration distribution adjusting layer 104 / InP window layer 105) It is the same as the specimen A in FIG. Similarly, the AR film 135 is attached to the back surface of the InP substrate 101. The difference is that the specimen A in FIG. 1 has no window layer through-holes in the specimen group B as compared with the window layer through-holes 5h. Further, in FIG. 7, compared to the case where the bump base metal pad 127 is formed between the pixel electrode 111 and the indium bump 129, the test body A of the present invention example of FIG. .

これら試験体グループBと試験体Aについて、pn接合の位置を,Znの濃度を測定することで特定した。分析法には、SIMS分析法(Secondary Ion Mass Spectroscopy:二次イオン質量分析法)を用いた。結果を表1に示す。表1には、合わせて、試験体グループBについてInP窓層の厚みのばらつきの実績を示している。 For these specimen group B and specimen A, the position of the pn junction was specified by measuring the Zn concentration. As an analysis method, a SIMS analysis method (Secondary Ion Mass Spectroscopy) was used. The results are shown in Table 1. Table 1 also shows the results of variations in the thickness of the InP window layer for the specimen group B.

Figure 2015056617
Figure 2015056617

試験体Aのpn接合の位置のばらつきは±20nmの範囲内に入れることができ、拡散温度などを基にした予測とほぼ一致することが判明した。この試験体Aは、安定生産可能なランクAに該当する。これは、ひとえにZnの選択拡散導入箇所において、窓層貫通孔を設けてInP窓層の厚み変動の影響を除いたためである。一方、試験体グループBでは、InP窓層の厚みのばらつきが、すでに平均70nmに達するので、拡散温度などを基にした予測から大きく外れることとなった。すなわち試験体グループBのpn接合の位置の精度は、安定生産が達成されないレベルのランクCに該当する。   It was found that the variation in the position of the pn junction of the test specimen A can be within the range of ± 20 nm, which is almost in agreement with the prediction based on the diffusion temperature and the like. This specimen A corresponds to rank A capable of stable production. This is because a window layer through-hole is provided at the selective diffusion introduction portion of Zn to eliminate the influence of the thickness variation of the InP window layer. On the other hand, in the specimen group B, since the variation in the thickness of the InP window layer already reached an average of 70 nm, it greatly deviated from the prediction based on the diffusion temperature and the like. That is, the accuracy of the position of the pn junction of the specimen group B corresponds to the rank C at a level where stable production is not achieved.

本発明の受光素子によれば、選択拡散におけるpn接合の位置を精度よく配置することができ、その上、拡散濃度調整層にInGaAsを用いた場合、画素電極にTiPtAu系合金を用いることができるので、インジウムバンプのためにバンプ下地金属を設ける必要がなく、副次的に、蒸着工数の削減、工程短縮などを実現することが可能になる。   According to the light receiving element of the present invention, the position of the pn junction in selective diffusion can be accurately arranged. In addition, when InGaAs is used for the diffusion concentration adjusting layer, a TiPtAu alloy can be used for the pixel electrode. Therefore, it is not necessary to provide a bump base metal for the indium bump, and it becomes possible to realize a reduction in the number of deposition steps, a reduction in the process, and the like.

1 InP基板、2 バッファ層、3 タイプ2(InGaAs/GaAsSb)多重量子井戸構造、4 InGaAs拡散濃度分布調整層、5 InP窓層、5h 窓層貫通孔、6 p型領域、11 p側電極(画素電極)、12 グランド電極(n側電極)、15 pn接合、15e pn接合の端、29 バンプ、35 反射防止(AR)膜、36 選択拡散マスクパターン、36a SiN膜、36h 開口部、50 受光素子、P 画素。   1 InP substrate, 2 buffer layer, 3 type 2 (InGaAs / GaAsSb) multiple quantum well structure, 4 InGaAs diffusion concentration distribution adjusting layer, 5 InP window layer, 5h window layer through-hole, 6 p-type region, 11 p-side electrode ( Pixel electrode), 12 ground electrode (n-side electrode), 15 pn junction, end of 15e pn junction, 29 bump, 35 antireflection (AR) film, 36 selective diffusion mask pattern, 36a SiN film, 36h opening, 50 light reception Element, P pixel.

Claims (10)

半導体基板上に、不純物の選択拡散による画素を備えるプレーナ型の受光素子であって、
前記半導体基板の上に位置する受光層と、
前記受光層上に接して位置する拡散濃度分布調整層と、
前記拡散濃度分布調整層上に接して位置する窓層と、
前記窓層上に接して位置し、前記画素ごとに開口部がある選択拡散マスクパターンと、
前記画素に設けられた画素電極とを備え、
前記選択拡散マスクパターンの開口部ごとに前記窓層が除去されて窓層貫通孔が設けられ、
前記不純物が、前記窓層貫通孔の側壁面、および、該窓層貫通孔の底面をなす前記拡散濃度分布調整層、に浸透して分布し、
前記画素電極は、前記窓層貫通孔の底面をなす前記拡散濃度分布調整層上に接して位置している、受光素子。
A planar type light receiving element having pixels by selective diffusion of impurities on a semiconductor substrate,
A light receiving layer located on the semiconductor substrate;
A diffusion concentration distribution adjusting layer located on and in contact with the light receiving layer;
A window layer located on and in contact with the diffusion concentration distribution adjusting layer;
A selective diffusion mask pattern located on and in contact with the window layer and having an opening for each pixel;
A pixel electrode provided on the pixel,
The window layer is removed for each opening of the selective diffusion mask pattern to provide a window layer through-hole,
The impurities are permeated and distributed in the side wall surface of the window layer through-hole and the diffusion concentration distribution adjusting layer forming the bottom surface of the window layer through-hole,
The light receiving element, wherein the pixel electrode is positioned on and in contact with the diffusion concentration distribution adjusting layer forming a bottom surface of the window layer through hole.
前記窓層貫通孔の径は、少なくとも窓層表面で、前記選択拡散マスクパターンの開口部の径より大きい、請求項1に記載の受光素子。   2. The light receiving element according to claim 1, wherein a diameter of the window layer through-hole is larger than a diameter of an opening of the selective diffusion mask pattern at least on a window layer surface. 前記選択拡散マスクパターンが窒化シリコン(SiN)で形成され、また前記窓層がInPもしくはInAlAsで形成されている、請求項1または請求項2に記載の受光素子。   The light receiving element according to claim 1, wherein the selective diffusion mask pattern is formed of silicon nitride (SiN), and the window layer is formed of InP or InAlAs. 前記不純物が亜鉛(Zn)であり、前記拡散濃度分布調整層がInGaAsで形成されている、請求項1〜請求項3のいずれか1項に記載の受光素子。   4. The light receiving element according to claim 1, wherein the impurity is zinc (Zn), and the diffusion concentration distribution adjusting layer is formed of InGaAs. 5. 前記画素電極がTiPtAu系合金を主成分に含む、請求項4に記載の受光素子。   The light receiving element according to claim 4, wherein the pixel electrode contains a TiPtAu alloy as a main component. 前記受光層がタイプ2の多重量子井戸構造を有する、請求項1〜請求項5のいずれか1項に記載の受光素子。   The light receiving element according to claim 1, wherein the light receiving layer has a type 2 multiple quantum well structure. 前記受光層が、(InGaAs/GaAsSb、InGaAs/GaInAs、およびInAs/GaSb)のうちのいずれかの多重量子井戸構造である、請求項1〜請求項6のいずれか1項に記載の受光素子。   The light receiving element according to any one of claims 1 to 6, wherein the light receiving layer has a multiple quantum well structure of any one of (InGaAs / GaAsSb, InGaAs / GaInAs, and InAs / GaSb). 請求項1〜請求項7のいずれか1項に記載の受光素子と読み出し回路とを備える、光センサ装置。   An optical sensor device comprising the light receiving element according to claim 1 and a readout circuit. 半導体基板上に、不純物の選択拡散による画素を備えるプレーナ型の受光素子の製造方法であって、
前記半導体基板の上に位置する受光層、拡散濃度分布調整層、および窓層を、順次、エピタキシャル成長する工程と、
前記窓層上に接して、前記画素ごとに開口部がある選択拡散マスクパターンを形成する工程と、
前記選択拡散マスクパターンの前記開口部ごとに前記窓層に窓層貫通孔を設ける工程と、
前記選択拡散マスクパターンの開口部から前記窓層貫通孔の中に前記不純物の気体を導入して、該窓層貫通孔の側壁面および底面に不純物を拡散する工程とを備え、
前記窓層貫通孔を設ける工程では、少なくとも前記窓層の表面における前記窓層貫通孔の径を前記選択拡散マスクパターンの開口部の径よりも大きくし、該表面における前記選択拡散された不純物の領域を、該選択拡散を開始する前から前記選択拡散マスクパターンのマスク部分で覆われていた領域とする、受光素子の製造方法。
A method of manufacturing a planar light receiving element comprising a pixel by selective diffusion of impurities on a semiconductor substrate,
A step of sequentially epitaxially growing a light receiving layer, a diffusion concentration distribution adjusting layer, and a window layer located on the semiconductor substrate;
Forming a selective diffusion mask pattern having an opening for each pixel in contact with the window layer;
Providing a window layer through hole in the window layer for each opening of the selective diffusion mask pattern;
Introducing the impurity gas into the window layer through-hole from the opening of the selective diffusion mask pattern, and diffusing the impurity into the side wall surface and the bottom surface of the window layer through-hole,
In the step of providing the window layer through hole, at least the diameter of the window layer through hole on the surface of the window layer is made larger than the diameter of the opening of the selective diffusion mask pattern, and the selectively diffused impurities on the surface are formed. A method for manufacturing a light receiving element, wherein the region is a region covered with a mask portion of the selective diffusion mask pattern before the selective diffusion is started.
前記窓層貫通孔を設ける工程では、前記窓層と前記拡散濃度分布調整層のエッチング速度が10対1の比で窓層のエッチング速度が大きいエッチング液を用いる、請求項9に記載の受光素子の製造方法。   10. The light receiving element according to claim 9, wherein in the step of providing the window layer through hole, an etching solution is used in which the etching rate of the window layer and the diffusion concentration distribution adjusting layer is 10: 1 and the etching rate of the window layer is high. Manufacturing method.
JP2013190851A 2013-09-13 2013-09-13 Light receiving element, manufacturing method thereof, and optical sensor device Active JP6115890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013190851A JP6115890B2 (en) 2013-09-13 2013-09-13 Light receiving element, manufacturing method thereof, and optical sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013190851A JP6115890B2 (en) 2013-09-13 2013-09-13 Light receiving element, manufacturing method thereof, and optical sensor device

Publications (2)

Publication Number Publication Date
JP2015056617A true JP2015056617A (en) 2015-03-23
JP6115890B2 JP6115890B2 (en) 2017-04-19

Family

ID=52820764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013190851A Active JP6115890B2 (en) 2013-09-13 2013-09-13 Light receiving element, manufacturing method thereof, and optical sensor device

Country Status (1)

Country Link
JP (1) JP6115890B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098769A1 (en) * 2015-12-11 2017-06-15 ソニー株式会社 Light-receiving element, manufacturing method for light-receiving element, imaging element, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255075A (en) * 1985-05-03 1986-11-12 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Pin photodiode with limited leakage current
JPS639986A (en) * 1986-06-30 1988-01-16 Fujitsu Ltd Semiconductor photodetector
JP2001177142A (en) * 1999-12-16 2001-06-29 Hamamatsu Photonics Kk Photodetector
JP2012174977A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Light-receiving element and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255075A (en) * 1985-05-03 1986-11-12 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Pin photodiode with limited leakage current
JPS639986A (en) * 1986-06-30 1988-01-16 Fujitsu Ltd Semiconductor photodetector
JP2001177142A (en) * 1999-12-16 2001-06-29 Hamamatsu Photonics Kk Photodetector
JP2012174977A (en) * 2011-02-23 2012-09-10 Sumitomo Electric Ind Ltd Light-receiving element and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098769A1 (en) * 2015-12-11 2017-06-15 ソニー株式会社 Light-receiving element, manufacturing method for light-receiving element, imaging element, and electronic device
US10483299B2 (en) 2015-12-11 2019-11-19 Sony Semiconductor Solutions Corporation Light-receiving element, method of manufacturing light-receiving element, imaging device, and electronic apparatus
US10943932B2 (en) 2015-12-11 2021-03-09 Sony Semiconductor Solutions Corporation Light-receiving element, method of manufacturing light-receiving element, imaging device, and electronic apparatus

Also Published As

Publication number Publication date
JP6115890B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
US9847441B2 (en) Doped multiplier avalanche photodiode
JP6112472B2 (en) Manufacturing method of light receiving device
JP4571920B2 (en) Light detector
EP3089223B1 (en) A semi-conductor device
US8299497B1 (en) Near-infrared photodetector with reduced dark current
EP2750202A1 (en) Light receiving element, semiconductor epitaxial wafer, detecting apparatus, and light receiving element manufacturing method
US9773932B2 (en) Epitaxial wafer and method for manufacturing same
US9583654B2 (en) Light receiving device and image sensor
US7915639B2 (en) InGaAsSbN photodiode arrays
JP2014127499A (en) Light-receiving device, manufacturing method therefor, and sensing device
TW201921709A (en) Short wavelength infrared optoelectronic devices having a dilute nitride layer
US20150179863A1 (en) Avalanche photodiode utilizing interfacial misfit array
US20100148216A1 (en) Semiconductor light receiving element and method for manufacturing semiconductor light receiving element
Dong et al. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength
US20080308891A1 (en) Ultra low dark current pin photodetector
Marshall et al. Fabrication of InAs photodiodes with reduced surface leakage current
JP6115890B2 (en) Light receiving element, manufacturing method thereof, and optical sensor device
Sulima et al. Uncooled low-voltage AlGaAsSb/InGaAsSb/GaSb avalanche photodetectors
CA2873841A1 (en) Planar avalanche photodiode
CN112204756A (en) Optoelectronic devices formed over a buffer
US20160380137A1 (en) Light-receiving device
US11594570B2 (en) III-V semiconductor pixel X-ray detector
Knežević et al. Broadband PureGaB Ge-on-Si photodiodes responsive in the ultraviolet to near-infrared range
JP2009027046A (en) Light-receiving element
JP2015211053A (en) Semiconductor laminate and light-receiving element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

R150 Certificate of patent or registration of utility model

Ref document number: 6115890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170312

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250