JP2015053433A - Reflective mask blank and reflective mask - Google Patents

Reflective mask blank and reflective mask Download PDF

Info

Publication number
JP2015053433A
JP2015053433A JP2013186246A JP2013186246A JP2015053433A JP 2015053433 A JP2015053433 A JP 2015053433A JP 2013186246 A JP2013186246 A JP 2013186246A JP 2013186246 A JP2013186246 A JP 2013186246A JP 2015053433 A JP2015053433 A JP 2015053433A
Authority
JP
Japan
Prior art keywords
layer
reflective mask
mask blank
mask
reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013186246A
Other languages
Japanese (ja)
Other versions
JP6303346B2 (en
Inventor
福上 典仁
Norihito Fukugami
典仁 福上
将人 田辺
Masato Tanabe
将人 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2013186246A priority Critical patent/JP6303346B2/en
Publication of JP2015053433A publication Critical patent/JP2015053433A/en
Application granted granted Critical
Publication of JP6303346B2 publication Critical patent/JP6303346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an EUV mask, the surface of which is effectively cooled (temperature-regulated) during light exposure, and a mask blank.SOLUTION: In a reflective mask blank, a multilayer reflection layer 2, a protective layer 3, and an absorber layer 4 are sequentially stacked on one surface (front side) of a base plate 1. The reflective mask blank is characterized as follows: heat conduction layers 6t, 6b and 6s are formed on the front and back sides of the base plate 1 and a side surface thereof, respectively; and the heat conduction layers are made of a material including carbon or solid metal.

Description

本発明は、極端紫外線(Extreme Ultra Violet;以下「EUV」と表記する)を光源とするEUVリソグラフィなどに利用される反射型マスクブランクおよび反射型マスクに関する。   The present invention relates to a reflective mask blank and a reflective mask used for EUV lithography or the like using extreme ultraviolet (Extreme Ultra Violet; hereinafter referred to as “EUV”) as a light source.

近年、半導体デバイスの微細化に伴い、波長が13.5nm近傍のEUVを光源に用いたEUVリソグラフィが開発されている。EUVリソグラフィは光源波長が短く光吸収性が非常に高いため、真空中で行われる必要がある。また、EUVの波長領域においては、ほとんどの物質の屈折率は1よりもわずかに小さい値であるため、EUVリソグラフィでは、従来用いられている透過型の屈折光学系を使用することができず、反射型の光学系となる。従って、原版となるEUVリソグラフィ用のフォトマスク(以下、EUVマスクと呼ぶ)も、従来の透過型のマスクは使用できないため、反射型のマスクとする必要がある。   In recent years, with the miniaturization of semiconductor devices, EUV lithography using EUV having a wavelength of around 13.5 nm as a light source has been developed. Since EUV lithography has a short light source wavelength and very high light absorption, it needs to be performed in a vacuum. Further, in the EUV wavelength region, since the refractive index of most substances is slightly smaller than 1, EUV lithography cannot use a conventionally used transmission type refractive optical system, It becomes a reflection type optical system. Therefore, a photomask for EUV lithography (hereinafter referred to as an EUV mask) as an original plate cannot be used as a conventional transmission type mask, and therefore needs to be a reflection type mask.

一般に反射型マスクは、図1に示すような構造からなる反射型マスクブランクから作製される。具体的には、低熱膨張性を有する基板1の一方の面(以下、表面と記す)に、露光光源波長に対して高い反射率を示す多層反射層2、それを保護する保護層3、露光光源波長を吸収する吸収層4とが順次積層され、さらに基板1の他方の面(以下、裏面と記す)に、露光機内における静電チャックのための裏面導電膜5が形成されている。   In general, a reflective mask is manufactured from a reflective mask blank having a structure as shown in FIG. Specifically, on one surface (hereinafter, referred to as a surface) of a substrate 1 having low thermal expansibility, a multilayer reflective layer 2 exhibiting a high reflectivity with respect to the exposure light source wavelength, a protective layer 3 protecting the same, exposure An absorption layer 4 that absorbs a light source wavelength is sequentially laminated, and a back surface conductive film 5 for an electrostatic chuck in the exposure machine is formed on the other surface (hereinafter referred to as a back surface) of the substrate 1.

反射型マスクブランクから反射型マスクへ加工する際には、EBリソグラフィとエッチング技術とにより吸収層を部分的に除去し、緩衝層を有する構造の場合は緩衝層も同様に除去し、吸収部と反射部とからなる回路パターンを形成する。このように作製された反射型マスクによって反射された光像が、反射光学系を経て、半導体基板上に転写される。   When processing from a reflective mask blank to a reflective mask, the absorption layer is partially removed by EB lithography and etching technology. In the case of a structure having a buffer layer, the buffer layer is also removed in the same manner. A circuit pattern including a reflection portion is formed. The light image reflected by the reflection type mask thus produced is transferred onto the semiconductor substrate via the reflection optical system.

特にEUVマスクブランク(EUVリソグラフィ用の反射型マスクブランク)に用いられる多層反射層は、Si(シリコン)とMo(モリブデン)をそれぞれ約4.2nmと約2.8nmの膜厚で交互に成膜されており、トータルで40〜50ペア(=80層から100層程度)から成る。SiやMoは、EUV光に対する吸収(消衰係数)が小さく、且つSiとMoのEUV光における屈折率差が大きいので、SiとMoの界面での反射率を高く出来るために用いられている。最初の界面でEUV光の一部が反射されるが、残りの反射できずに透過したEUV光は次の界面、さらには次の界面で、というように40回(40ペアの場合)の反射するチャンスがある。各界面で反射したEUV光は、それぞれ位相が揃っており、それらの合算が多層反射層からのEUV反射率となる。ブランクメーカ各社から販売されているEUVマスクブランク(EUVマスク用基板)では、概ね60〜65%程度である。   In particular, the multilayer reflective layer used in EUV mask blanks (reflective mask blanks for EUV lithography) is formed alternately with Si (silicon) and Mo (molybdenum) at a thickness of about 4.2 nm and about 2.8 nm, respectively. In total, it consists of 40 to 50 pairs (= about 80 to 100 layers). Si and Mo are used to increase the reflectivity at the interface between Si and Mo because the absorption (extinction coefficient) with respect to EUV light is small and the refractive index difference between EUV light between Si and Mo is large. . A part of the EUV light is reflected at the first interface, but the remaining EUV light transmitted without being reflected can be reflected 40 times (in the case of 40 pairs) at the next interface, and further at the next interface. There is a chance to do. The EUV light reflected at each interface has the same phase, and the sum of them is the EUV reflectivity from the multilayer reflective layer. In EUV mask blanks (EUV mask substrates) sold by blank manufacturers, the ratio is approximately 60 to 65%.

EUVマスクブランクのEUV光の反射率(以下、EUV反射率と呼ぶ)は、半導体チップ製造のスループット(生産能力)に直接効いてくるため、出来るだけ高いことが望まれるが、現在知られている材料とその組み合わせは、上述したSiとMoの多層反射層が最良とされている。反射率を生み出す本質的な能力を上げるには、SiとMoの界面がきっちりと形成されていることが重要である。このため、SiとMoを同一真空チャンバー内で、真空を破らずに交互に成膜(主としてスパッタリング法)する方法が取られている。   The EUV mask blank reflectivity (hereinafter referred to as EUV reflectivity) of the EUV mask blank directly affects the throughput (production capacity) of the semiconductor chip manufacturing, and is desired to be as high as possible, but is currently known. As the material and the combination thereof, the above-described multilayer reflection layer of Si and Mo is the best. In order to increase the essential ability to generate reflectivity, it is important that the interface between Si and Mo be formed exactly. For this reason, a method is employed in which Si and Mo are alternately formed (mainly sputtering) without breaking the vacuum in the same vacuum chamber.

また、一般の真空成膜(スパッタリング法)では、成膜後の材料は強い内部応力を有し
ているために、基板の熱処理(アニール)によって、材料の応力調整、安定化などが成されるのが一般的である。しかしながら、EUVマスクブランクでは成膜後に熱処理を施すと、SiとMoの材料のミキシング(拡散)が発生し、EUV光の反射率の低下を招く恐れがあるために、積極的な熱処理はできない。
In general vacuum film formation (sputtering method), since the material after film formation has a strong internal stress, the stress of the material is adjusted and stabilized by heat treatment (annealing) of the substrate. It is common. However, in the EUV mask blank, when heat treatment is performed after film formation, mixing of Si and Mo materials (diffusion) occurs, and there is a risk of reducing the reflectivity of EUV light.

上記ように、EUVマスクブランクやEUVマスクは熱に弱く、更に、EUV光は従来の露光波長(ArFエキシマレーザーやKrFエキシマレーザーやi線やg線等)に比べて、エネルギーが高く、且つ、マスク材料へのエネルギーの吸収も高いので、露光中に反射型マスクの温度が著しく上昇し易い。その結果、露光を繰り返すうちに、EUV反射率が低下してしまう問題が生じる。   As described above, EUV mask blanks and EUV masks are vulnerable to heat, and EUV light has higher energy than conventional exposure wavelengths (ArF excimer laser, KrF excimer laser, i-line, g-line, etc.), and Since the absorption of energy into the mask material is also high, the temperature of the reflective mask is likely to rise significantly during exposure. As a result, there arises a problem that the EUV reflectance is lowered while the exposure is repeated.

また、露光中のマスクの温度上昇は、マスクの熱膨張も引き起こし、それによるマスクパターンの位置精度が低下し、結果として、ウェハーパターンの重ね精度(オーバーレイ精度、と呼ぶ)の低下を引き起こす。そのため、多少の温度変化にもマスク位置精度が低下しないように、先に述べた低熱膨張性基板が反射型マスクブランクに用いられている。しかしながら、EUVマスクブランクは、基板の表面側に、SiとMoから成る多層反射層やTa材料から成る吸収層があるため、基板だけが低熱膨張であっても、基板以外のそれらの材料の熱膨張は避けられず、やはりマスクの変形が生じ、マスクパターンの位置精度とウェハーオーバーレイ精度が低下してしまう問題が生じる。   In addition, an increase in the temperature of the mask during exposure also causes thermal expansion of the mask, thereby reducing the positional accuracy of the mask pattern, and as a result, reducing the overlay accuracy (referred to as overlay accuracy) of the wafer pattern. For this reason, the low thermal expansion substrate described above is used for the reflective mask blank so that the mask position accuracy does not deteriorate even with a slight temperature change. However, since the EUV mask blank has a multilayer reflective layer made of Si and Mo and an absorption layer made of Ta material on the surface side of the substrate, even if only the substrate has low thermal expansion, the heat of those materials other than the substrate can be reduced. The expansion is unavoidable, and the mask is also deformed, resulting in a problem that the mask pattern position accuracy and the wafer overlay accuracy are lowered.

このような問題を解決するために、EUV露光機のマスクチャックには、マスクの温度を一定に保つために、輻射冷却する方法やペルチェ素子を用いる方法(特許文献1)、あるいは冷媒を用いる方法(特許文献2)が提案されている。実際の現状のEUV露光機では、マスクチャックは静電チャック式になっており、その内部に冷却用の冷媒を流すことで、マスクチャックの温度を一定に保ち、それによってマスクの温度も一定に保つ方法が取られている。   In order to solve such problems, the mask chuck of the EUV exposure apparatus uses a radiation cooling method, a method using a Peltier element (Patent Document 1), or a method using a refrigerant in order to keep the mask temperature constant. (Patent Document 2) has been proposed. In an actual EUV exposure machine, the mask chuck is of an electrostatic chuck type, and a cooling coolant is allowed to flow through the mask chuck to keep the mask chuck temperature constant, thereby keeping the mask temperature constant. A way to keep is taken.

特開平09−92613号公報JP 09-92613 A 特開平09−306834号公報Japanese Patent Laid-Open No. 09-306834

しかしながら、現状の露光装置のマスク冷却方法ではEUVマスクの裏面のみを冷却するために、厚さ6.35mmの基板自体の厚みに起因する厚み方向での温度勾配が生じ易く、EUV光が直接照射されるマスク表面(パターン面)は十分に冷却されず、高温になるという問題が生じる。その結果、マスク表面側の多層反射層にミキシングが発生して反射率が低下し、また、マスク表面にある材料の熱膨張によるマスクパターン位置精度低下や、さらにそれによるオーバーレイ精度の低下等の品質低下の問題が生じる。   However, in the current exposure apparatus mask cooling method, since only the back surface of the EUV mask is cooled, a temperature gradient in the thickness direction due to the thickness of the 6.35 mm substrate itself is likely to occur, and EUV light is directly irradiated. The mask surface (pattern surface) to be formed is not sufficiently cooled, resulting in a problem that the temperature becomes high. As a result, mixing occurs in the multilayer reflective layer on the mask surface side and the reflectivity decreases, and the quality of the mask pattern position decreases due to thermal expansion of the material on the mask surface, and the overlay accuracy also decreases. The problem of degradation occurs.

本発明は、上記問題点に鑑みてなされたものであり、露光中にEUVマスク表面が効果的に冷却(温度調整)されるEUVマスクおよびマスクブランクを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an EUV mask and a mask blank in which the EUV mask surface is effectively cooled (temperature adjustment) during exposure.

本発明に係る請求項1の発明は、基板の一方の面に、多層反射層、保護層、吸収層を順次積層して成る反射型マスクブランクであって、前記基板は表裏に熱伝導層が形成されていることを特徴とする反射型マスクブランクである。   The invention of claim 1 according to the present invention is a reflective mask blank formed by sequentially laminating a multilayer reflective layer, a protective layer, and an absorption layer on one surface of a substrate, wherein the substrate has a heat conductive layer on both sides. The reflective mask blank is formed.

また、請求項2の発明は、前記基板は表裏及び側面に熱伝導層が形成されていることを特徴とする請求項1に記載の反射型マスクブランクである。   According to a second aspect of the present invention, in the reflective mask blank according to the first aspect, a heat conductive layer is formed on the front and back sides and side surfaces of the substrate.

また、請求項3の発明は、前記熱伝導層は、カーボンまたは固体金属を含む材料から成ることを特徴とする請求項1または2に記載の反射型マスクブランクである。   According to a third aspect of the present invention, in the reflective mask blank according to the first or second aspect, the heat conductive layer is made of a material containing carbon or a solid metal.

また、請求項4の発明は、前記固体金属は、Ag、Cu、Au、Al、Si、Ni、Fe、Pt、W、Cr、Ti、Ru、Ta、Moの少なくとも一つから選ばれることを特徴とする請求項3に記載の反射型マスクブランクである。   According to a fourth aspect of the present invention, the solid metal is selected from at least one of Ag, Cu, Au, Al, Si, Ni, Fe, Pt, W, Cr, Ti, Ru, Ta, and Mo. The reflective mask blank according to claim 3.

また、請求項5の発明は、前記熱伝導層の熱伝導率は、50W/(m・K)以上であることを特徴とする請求項1〜4のいずれかに記載の反射型マスクブランクである。   The invention according to claim 5 is the reflective mask blank according to any one of claims 1 to 4, wherein the thermal conductivity of the thermal conductive layer is 50 W / (m · K) or more. is there.

また、請求項6の発明は、前記熱伝導層の膜厚は、0.5μm以上であることを特徴とする請求項1〜5のいずれかに記載の反射型マスクブランクである。   The invention according to claim 6 is the reflective mask blank according to any one of claims 1 to 5, wherein the film thickness of the heat conductive layer is 0.5 μm or more.

また、請求項7の発明は、請求項1〜6のいずれかに記載の反射型マスクブランクを用いて作製したことを特徴とする反射型マスクである。   A seventh aspect of the present invention is a reflective mask produced using the reflective mask blank according to any one of the first to sixth aspects.

本発明によれば、基板の一方の面に、多層反射層、保護層、吸収層を順次積層してなる反射型マスクの前記基板を、その表裏、さらには側面に熱伝導層を形成することによって、
EUV露光中にマスク表面を効率的に冷却することができる。これによって、EUV露光中の発熱に起因するEUV反射率の低下やマスクの変形を抑制することができ、EUVマスクの品質を維持したまま、長時間、高品質の半導体デバイスを製造することができる。
According to the present invention, the substrate of the reflective mask formed by sequentially laminating a multilayer reflective layer, a protective layer, and an absorption layer is formed on one surface of the substrate, and a heat conductive layer is formed on the front and back surfaces, and further on the side surfaces. By
The mask surface can be efficiently cooled during EUV exposure. As a result, a decrease in EUV reflectivity and mask deformation caused by heat generation during EUV exposure can be suppressed, and a high-quality semiconductor device can be manufactured for a long time while maintaining the quality of the EUV mask. .

従来の反射型マスクブランクの概略断面図。The schematic sectional drawing of the conventional reflective mask blank. 本発明の反射型マスクブランクの構造の概略断面図。The schematic sectional drawing of the structure of the reflective mask blank of this invention. 本発明の反射型マスクの構造の概略断面図。The schematic sectional drawing of the structure of the reflective mask of this invention. 実施例の反射型マスクブランク及び反射型マスクの製造工程を示す概略断面図。The schematic sectional drawing which shows the manufacturing process of the reflective mask blank and reflective mask of an Example. 実施例で作製したマスク表面の加熱実験に係る概略断面図。The schematic sectional drawing which concerns on the heating experiment of the mask surface produced in the Example. 図5による実施例でのマスク表面温度測定結果。The mask surface temperature measurement result in the Example by FIG.

本発明に係る反射型マスクブランク及びそれに基づく反射型マスクは、低熱膨張性を有する基材の表裏、さらには基材の側面に熱伝導層を備えたことを特徴とする。   The reflective mask blank according to the present invention and the reflective mask based thereon are characterized in that a heat conductive layer is provided on the front and back surfaces of the substrate having low thermal expansibility, and further on the side surfaces of the substrate.

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は本発明に係る反射型マスクブランクの一実施形態を示している。図2(a)に示す反射型マスクブランク201は、基板1の表面に熱伝導層6t、多層反射層2、保護層3、吸収層4が順次積層され、基材1の裏面に熱伝導層6b、導電膜5が順次積層された構成である。   FIG. 2 shows an embodiment of a reflective mask blank according to the present invention. In the reflective mask blank 201 shown in FIG. 2A, a heat conductive layer 6t, a multilayer reflective layer 2, a protective layer 3, and an absorption layer 4 are sequentially laminated on the surface of the substrate 1, and the heat conductive layer is formed on the back surface of the substrate 1. 6b and the conductive film 5 are sequentially laminated.

なお、図2には示してないが、多層反射層2と吸収層4の間に緩衝層を有する構造もある。緩衝層は、吸収層4のマスクパターン修正時(イオンビーム、微細プローブによる機械的研削等)に、下地の保護層3にダメージを与えないために設けられる層である。   Although not shown in FIG. 2, there is also a structure having a buffer layer between the multilayer reflective layer 2 and the absorption layer 4. The buffer layer is a layer provided so as not to damage the underlying protective layer 3 when the mask pattern of the absorption layer 4 is corrected (such as ion beam, mechanical grinding with a fine probe).

図2(b)に示す反射型マスクブランク202は、図2(a)に示す反射型マスクブランク201から導電膜5を除いた構成からなり、基材1の裏面の熱伝導層6bが導電膜5の機能を兼ねることを特徴としている。   The reflective mask blank 202 shown in FIG. 2 (b) has a configuration in which the conductive film 5 is removed from the reflective mask blank 201 shown in FIG. 2 (a), and the heat conductive layer 6b on the back surface of the substrate 1 is a conductive film. It also features 5 functions.

図2(c)に示す反射型マスクブランク203は、図2(a)に示す反射型マスクブランク201の基材1の側面にも熱伝導層6sを備えたことを特徴としている。すなわち、基材1の側面にも熱伝導層6sを備えることにより、マスク表面をより効果的に冷却(温度調節)することができる。   A reflective mask blank 203 shown in FIG. 2C is characterized in that a heat conductive layer 6s is also provided on the side surface of the base 1 of the reflective mask blank 201 shown in FIG. That is, by providing the side surface of the substrate 1 with the heat conductive layer 6s, the mask surface can be more effectively cooled (temperature adjustment).

図2(d)に示す反射型マスクブランク204は、上記反射型マスクブランク203の構造から導電膜5を除いた構成からなり、基材1の裏面の熱伝導層6bが導電膜5の機能を兼ねることを特徴としている。   The reflective mask blank 204 shown in FIG. 2D has a structure in which the conductive film 5 is removed from the structure of the reflective mask blank 203, and the heat conductive layer 6 b on the back surface of the substrate 1 has the function of the conductive film 5. It is also characterized by serving.

本発明の反射型マスクブランクに係る熱伝導層6t、6b、6sは、EUV露光機で露光時に、反射型マスクの表面に発生する熱を効率的に逃がすための材料である必要があるため、熱伝導率の高い、金属材料あるいはカーボン材料、あるいはそれらの化合物である。   Since the heat conductive layers 6t, 6b, 6s according to the reflective mask blank of the present invention need to be a material for efficiently releasing the heat generated on the surface of the reflective mask during exposure with an EUV exposure machine, A metal material, a carbon material, or a compound thereof having high thermal conductivity.

その目的を満たすためには、熱伝導層6t、6b、6sの熱伝導率は、50W/(m・K)以上である。ちなみに、一般的なEUVマスクブランクに使用される低熱膨張基板の熱伝導率は1〜1.5W/(m・K)程度であるため、本発明に使用される熱伝導層は、少なくとも30倍以上の熱伝導率を有する。   In order to satisfy the purpose, the thermal conductivity of the heat conductive layers 6t, 6b, and 6s is 50 W / (m · K) or more. Incidentally, since the thermal conductivity of the low thermal expansion substrate used for a general EUV mask blank is about 1 to 1.5 W / (m · K), the thermal conductive layer used in the present invention is at least 30 times larger. It has the above thermal conductivity.

前記熱伝導層には、C、Ag、Cu、Au、Al、Si、Ni、Fe、Pt、W、Cr、Ti、Ru、Ta、Moを含む材料が好ましい。例えば、Cを含む材料には、いくつかの構造があり、代表的なものとしてダイヤモンドやグラファイトがある。熱伝導率はダイヤモンドが最も高く1000W/(m・K)以上、グラファイトで500W/(m・K)程度である。金属材料では、Ag(420)、Cu(398)、Au(320)、Al(236)などやはり高い熱伝導率を有する。   The heat conductive layer is preferably made of a material containing C, Ag, Cu, Au, Al, Si, Ni, Fe, Pt, W, Cr, Ti, Ru, Ta, and Mo. For example, the material containing C has several structures, and typical examples include diamond and graphite. Thermal conductivity is the highest for diamond, 1000 W / (m · K) or more, and about 500 W / (m · K) for graphite. Metal materials such as Ag (420), Cu (398), Au (320), and Al (236) also have high thermal conductivity.

また、前記熱伝導層の膜厚は0.5μm以上が好ましい。何故なら、実際の熱量の移動は、熱伝導率だけでなく、熱伝導層の膜厚にも比例するため、厚いほど好ましい。   The thickness of the heat conductive layer is preferably 0.5 μm or more. This is because the actual movement of heat is proportional not only to the thermal conductivity but also to the film thickness of the thermal conductive layer, so that a thicker thickness is more preferable.

本発明に係る多層反射層2は、EUV光に対して60%程度の反射率が好ましく、具体的には、モリブデン(Mo)層とシリコン(Si)層を交互に40〜50ペア積層した積層膜が用いられる。MoやSiは、EUV光に対する吸収(消衰係数)が小さく、且つMoとSiのEUV光での屈折率差が大きいので、SiとMoの界面での反射率を高くすることが出来るために用いられている。   The multilayer reflective layer 2 according to the present invention preferably has a reflectance of about 60% with respect to EUV light. Specifically, the multilayer reflective layer 2 is a laminate in which 40 to 50 pairs of molybdenum (Mo) layers and silicon (Si) layers are alternately laminated. A membrane is used. Mo and Si have low absorption (extinction coefficient) for EUV light and a large refractive index difference between Mo and Si EUV light, so that the reflectance at the interface between Si and Mo can be increased. It is used.

また、多層反射層2の上に形成される保護層3は、その上に積層される吸収層4の加工に用いられるストッパー層やマスク洗浄における多層反射層2の保護が役割であり、酸やアルカリに対する洗浄耐性を有する材料からなる。一般的にはルテニウム(Ru)やシリコン(Si)が用いられ、具体的には、膜厚2〜3nmのルテニウム(Ru)層あるいは膜厚10nm程度のシリコン(Si)層である。Ruを用いた場合には、保護層3の下に隣接する多層反射層2の最上層はSi層である。   The protective layer 3 formed on the multilayer reflective layer 2 plays a role in protecting the multilayer reflective layer 2 in the stopper layer used for processing the absorption layer 4 laminated thereon or in mask cleaning. It consists of material which has the washing | cleaning tolerance with respect to an alkali. Generally, ruthenium (Ru) or silicon (Si) is used, and specifically, a ruthenium (Ru) layer having a thickness of 2 to 3 nm or a silicon (Si) layer having a thickness of about 10 nm. When Ru is used, the uppermost layer of the multilayer reflective layer 2 adjacent below the protective layer 3 is a Si layer.

前記保護層3にSiを用いた場合には、吸収層4との間に緩衝層を設ける場合もある。緩衝層は保護層3と同様に、吸収層4のエッチングやパターン修正時に、緩衝層の下に隣接する多層反射層2の最上層であるSi層を保護するために設けられ、クロム(Cr)の窒素化合物(CrN)で構成されている。   When Si is used for the protective layer 3, a buffer layer may be provided between the protective layer 3 and the absorbing layer 4. Similarly to the protective layer 3, the buffer layer is provided to protect the Si layer, which is the uppermost layer of the multilayer reflective layer 2 adjacent to the buffer layer, when the absorbing layer 4 is etched or the pattern is modified. The nitrogen compound (CrN).

本発明に係る吸収層4は、EUV光に対して吸収率の高いタンタル(Ta)の窒素化合物(TaN)が好ましい。他の材料として、タンタルホウ素窒化物(TaBN)、タンタルシリコン(TaSi)、タンタル(Ta)や、それらの酸化物(TaBON、TaSiO、TaO)等を用いることもできる。   The absorption layer 4 according to the present invention is preferably a tantalum (Ta) nitrogen compound (TaN) having a high absorption rate with respect to EUV light. As other materials, tantalum boron nitride (TaBN), tantalum silicon (TaSi), tantalum (Ta), oxides thereof (TaBON, TaSiO, TaO), or the like can also be used.

また、前記吸収層4として、上層に波長190〜260nmの紫外光に対して反射防止機能を有する低反射層を設けた2層構造とすることもできる。この時、低反射層はマスクの欠陥検査機の検査波長に対して、コントラストを高くし、検査性を向上させる作用効果がある。   The absorbing layer 4 may have a two-layer structure in which an upper layer is provided with a low reflection layer having an antireflection function for ultraviolet light having a wavelength of 190 to 260 nm. At this time, the low reflection layer has an effect of increasing the contrast and improving the inspection property with respect to the inspection wavelength of the mask defect inspection machine.

本発明に係る導電膜5は、一般にはCrNで構成されるが、導電性があれば良く、金属材料からなる材料であれば特に限定するものではない。また、導電膜5は無くても、導電膜としての機能を有する図2(b)、(d)に示す熱伝導層6bを、導電膜5の代替としてもよい。   The conductive film 5 according to the present invention is generally composed of CrN. However, the conductive film 5 is not particularly limited as long as it has electrical conductivity and is made of a metal material. Further, even if the conductive film 5 is not provided, the heat conductive layer 6b shown in FIGS. 2B and 2D having a function as a conductive film may be substituted for the conductive film 5.

上記で説明した本発明に係る反射型マスクブランク(図2参照)を用いて作製した反射型マスクの概略断面図を図3に示す。なお、本発明の反射型マスクブランクを用いて、描画やエッチング加工によりマスクを作製する方法は、通常のマスク作製方法を用いることができる。   FIG. 3 shows a schematic sectional view of a reflective mask produced using the reflective mask blank (see FIG. 2) according to the present invention described above. In addition, the normal mask preparation method can be used for the method of producing a mask by drawing or an etching process using the reflective mask blank of this invention.

以下、図4に示す実施例にて、本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to the embodiment shown in FIG.

図4(a)に示す低熱膨張ガラス基板を基板1に用いて、図4(b)に示す熱伝導層6t、6b、6sとして、無電解めっきにてCuを膜厚500μmで形成した。   The low thermal expansion glass substrate shown in FIG. 4A was used as the substrate 1, and Cu was formed with a film thickness of 500 μm by electroless plating as the heat conductive layers 6t, 6b, 6s shown in FIG.

次に図4(c)に示すように、上記で形成した熱伝導層6t(表面)の上に、SiとMoからなる多層反射層2、Ruからなる保護層3、TaSiからなる吸収層4とを順次積層し、熱伝導層6b(裏面)の上にCrNからなる導電膜5を形成して反射型マスクブランク203を作製した。   Next, as shown in FIG. 4C, on the heat conductive layer 6t (surface) formed as described above, the multilayer reflective layer 2 made of Si and Mo, the protective layer 3 made of Ru, and the absorption layer 4 made of TaSi. Were sequentially laminated, and the conductive film 5 made of CrN was formed on the heat conductive layer 6b (back surface) to produce a reflective mask blank 203.

次に図4(d)に示すように、吸収層4の上にポジ型化学増幅レジスト(FEP171:富士フイルムエレクトロニクスマテリアルズ社製)を膜厚300nmで塗布し、電子線描画機(JBX9000:日本電子社製)によって所定のパターンに描画した。その後110℃、10分の熱処理およびスプレー現像(SFG3000:シグマメルテック社製)して、レジストパターン7を形成した。   Next, as shown in FIG. 4D, a positive chemically amplified resist (FEP171: manufactured by FUJIFILM Electronics Materials) is applied on the absorption layer 4 to a film thickness of 300 nm, and an electron beam drawing machine (JBX9000: Japan). The pattern was drawn in a predetermined pattern. Thereafter, a resist pattern 7 was formed by heat treatment at 110 ° C. for 10 minutes and spray development (SFG3000: manufactured by Sigma Meltech Co., Ltd.).

次に図4(e)に示すように、上記レジストパターン7をマスクとして用いて、CF4プラズマとCl2プラズマによるドライエッチングにて、吸収層4をエッチングした。その後、残ったレジストを剥離洗浄して図4(f)に示すような反射型マスク303を作製した。   Next, as shown in FIG. 4E, the absorption layer 4 was etched by dry etching with CF4 plasma and Cl2 plasma using the resist pattern 7 as a mask. Thereafter, the remaining resist was peeled and washed to produce a reflective mask 303 as shown in FIG.

<比較例1>
基板1に熱伝導層6t、6b、6sを形成せず、基板1の表面に直接、SiとMoからなる多層反射層2、Ruからなる保護層3、TaSiからなる吸収層4とを順次積層し、また、基板1の裏面に直接CrNからなる導電膜5を形成したこと以外は、実施例1と同様にして反射型マスクを作製した。
<Comparative Example 1>
Without forming the heat conductive layers 6t, 6b, 6s on the substrate 1, the multilayer reflective layer 2 made of Si and Mo, the protective layer 3 made of Ru, and the absorption layer 4 made of TaSi are sequentially laminated directly on the surface of the substrate 1. In addition, a reflective mask was produced in the same manner as in Example 1 except that the conductive film 5 made of CrN was directly formed on the back surface of the substrate 1.

<評価>
実施例1及び比較例1で得られた反射型マスクを用いて、それぞれのマスクの表面の熱の放熱性を評価するために、露光機内部と同様の状況を模擬的な作り出し、実験を行った。具体的には、図5に示すように、それぞれのマスクを、摂氏23度に保ったクールプレート10にマスク裏面が接するように置き、マスク表面から約30cmの距離に配置した赤外線ヒーター11により加熱を行い、その際のマスク表面の温度を赤外線放射温度計12によりマスク表面温度を測定した。測定結果を図6に示す。
<Evaluation>
Using the reflective masks obtained in Example 1 and Comparative Example 1, in order to evaluate the heat dissipation of the heat on the surface of each mask, the same situation as the inside of the exposure machine was simulated and experiments were conducted. It was. Specifically, as shown in FIG. 5, each mask is placed so that the back surface of the mask is in contact with a cool plate 10 maintained at 23 degrees Celsius, and heated by an infrared heater 11 disposed at a distance of about 30 cm from the mask surface. The mask surface temperature was measured with the infrared radiation thermometer 12 at that time. The measurement results are shown in FIG.

<比較結果>
実施例1による本発明品は、経過時間に対して温度上昇はほとんど認められず、実験開始時点の表面温度のまま一定に保たれ、温度制御に優れている結果を示した。一方、比較例1による比較例品(従来品)は、経過時間に伴い表面温度が上昇し、約10分経過後で既に50度に達し、約70分経過後では140度を超えて、なお温度上昇が継続していることが分かった。
<Comparison result>
The product of the present invention according to Example 1 showed almost no increase in temperature with respect to the elapsed time, and was kept constant at the surface temperature at the start of the experiment, indicating excellent temperature control results. On the other hand, the comparative example product (conventional product) according to Comparative Example 1 increases in surface temperature with the passage of time, reaches 50 degrees after about 10 minutes, exceeds 140 degrees after about 70 minutes, It was found that the temperature rise continued.

本発明は、EUV光を用いる反射型マスクブランクおよび反射型マスクに有用であり、露光中の発熱に起因するEUV反射率低下やマスク変形を抑制することができ、高品質の半導体デバイスを製造できる。   INDUSTRIAL APPLICABILITY The present invention is useful for a reflective mask blank and a reflective mask that use EUV light, and can suppress a decrease in EUV reflectivity and mask deformation caused by heat generation during exposure, and can manufacture a high-quality semiconductor device. .

1…基板、2…多層反射層、3…保護層、4…吸収層、5…導電膜、6t…表面側の熱伝導層、6b…裏面側の熱伝導層、6s…側面側の熱伝導層、7…レジストパターン、10…クールプレート、11…赤外線ヒーター、12…放射温度計、101…従来の反射型マスクブランク、201、202、203、204…本発明の反射型マスクブランク、301、302、303、304…本発明の反射型マスク   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Multilayer reflection layer, 3 ... Protective layer, 4 ... Absorption layer, 5 ... Conductive film, 6t ... Thermal conduction layer on the surface side, 6b ... Thermal conduction layer on the back side, 6s ... Thermal conduction on the side side Layers 7, resist patterns 10, cool plates 11, infrared heaters 12, radiation thermometers 101, conventional reflective mask blanks 201, 202, 203, 204, reflective mask blanks 301 according to the present invention 301, 302, 303, 304 ... reflective mask of the present invention

Claims (7)

基板の一方の面に、多層反射層、保護層、吸収層を順次積層して成る反射型マスクブランクであって、前記基板は表裏に熱伝導層が形成されていることを特徴とする反射型マスクブランク。   A reflective mask blank comprising a multilayer reflective layer, a protective layer, and an absorbing layer sequentially laminated on one surface of a substrate, wherein the substrate has a heat conductive layer formed on both sides thereof Mask blank. 前記基板は表裏及び側面に熱伝導層が形成されていることを特徴とする請求項1に記載の反射型マスクブランク。   The reflective mask blank according to claim 1, wherein the substrate has heat conductive layers formed on the front and back sides and side surfaces. 前記熱伝導層は、カーボンまたは固体金属を含む材料から成ることを特徴とする請求項1または2に記載の反射型マスクブランク。   The reflective mask blank according to claim 1, wherein the heat conductive layer is made of a material containing carbon or a solid metal. 前記固体金属は、Ag、Cu、Au、Al、Si、Ni、Fe、Pt、W、Cr、Ti、Ru、Ta、Moの少なくとも一つから選ばれることを特徴とする請求項3に記載の反射型マスクブランク。   4. The solid metal according to claim 3, wherein the solid metal is selected from at least one of Ag, Cu, Au, Al, Si, Ni, Fe, Pt, W, Cr, Ti, Ru, Ta, and Mo. Reflective mask blank. 前記熱伝導層の熱伝導率は、50W/(m・K)以上であることを特徴とする請求項1〜4のいずれかに記載の反射型マスクブランク。   The reflective mask blank according to claim 1, wherein the thermal conductivity of the thermal conductive layer is 50 W / (m · K) or more. 前記熱伝導層の膜厚は、0.5μm以上であることを特徴とする請求項1〜5のいずれかに記載の反射型マスクブランク。   The reflective mask blank according to claim 1, wherein the thickness of the heat conductive layer is 0.5 μm or more. 請求項1〜6のいずれかに記載の反射型マスクブランクを用いて作製したことを特徴とする反射型マスク。   A reflective mask produced using the reflective mask blank according to claim 1.
JP2013186246A 2013-09-09 2013-09-09 Reflective mask blank and reflective mask Expired - Fee Related JP6303346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186246A JP6303346B2 (en) 2013-09-09 2013-09-09 Reflective mask blank and reflective mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186246A JP6303346B2 (en) 2013-09-09 2013-09-09 Reflective mask blank and reflective mask

Publications (2)

Publication Number Publication Date
JP2015053433A true JP2015053433A (en) 2015-03-19
JP6303346B2 JP6303346B2 (en) 2018-04-04

Family

ID=52702224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186246A Expired - Fee Related JP6303346B2 (en) 2013-09-09 2013-09-09 Reflective mask blank and reflective mask

Country Status (1)

Country Link
JP (1) JP6303346B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170067154A (en) * 2015-12-07 2017-06-15 주식회사 에스앤에스텍 Blankmask and Photomask for Multi-electron Beam Lithography
JP2018013616A (en) * 2016-07-21 2018-01-25 凸版印刷株式会社 Reflection type mask and manufacturing method of reflection type mask
US11480869B2 (en) * 2019-08-29 2022-10-25 Taiwan Semiconductor Manufacturing Company Ltd. Photomask with enhanced contamination control and method of forming the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992613A (en) * 1995-09-21 1997-04-04 Nikon Corp Temperature conditioner and scanning aligner
JPH09142996A (en) * 1995-11-28 1997-06-03 Nippon Pillar Packing Co Ltd Reflection type mask substrate
JPH09306834A (en) * 1996-03-12 1997-11-28 Canon Inc X-ray projection exposure device and its manufacturing device
JP2006177740A (en) * 2004-12-22 2006-07-06 Nikon Corp Multilayer film mirror and euv exposure apparatus
US20070160916A1 (en) * 2006-01-12 2007-07-12 Asahi Glass Company, Limited Reflective-type mask blank for EUV lithography
JP2009177126A (en) * 2007-12-25 2009-08-06 Nikon Corp Mask blanks, mask, mask holding apparatus, exposure apparatus and method for manufacturing device
JP2012500481A (en) * 2008-08-21 2012-01-05 エーエスエムエル ホールディング エヌ.ブイ. EUV reticle substrate with high thermal conductivity
JP2015018918A (en) * 2013-07-10 2015-01-29 キヤノン株式会社 Reflection type mask, exposure method, and method of manufacturing device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992613A (en) * 1995-09-21 1997-04-04 Nikon Corp Temperature conditioner and scanning aligner
JPH09142996A (en) * 1995-11-28 1997-06-03 Nippon Pillar Packing Co Ltd Reflection type mask substrate
JPH09306834A (en) * 1996-03-12 1997-11-28 Canon Inc X-ray projection exposure device and its manufacturing device
JP2006177740A (en) * 2004-12-22 2006-07-06 Nikon Corp Multilayer film mirror and euv exposure apparatus
US20070160916A1 (en) * 2006-01-12 2007-07-12 Asahi Glass Company, Limited Reflective-type mask blank for EUV lithography
JP2009523311A (en) * 2006-01-12 2009-06-18 旭硝子株式会社 Reflective mask blank for EUV lithography
JP2009177126A (en) * 2007-12-25 2009-08-06 Nikon Corp Mask blanks, mask, mask holding apparatus, exposure apparatus and method for manufacturing device
JP2012500481A (en) * 2008-08-21 2012-01-05 エーエスエムエル ホールディング エヌ.ブイ. EUV reticle substrate with high thermal conductivity
JP2015018918A (en) * 2013-07-10 2015-01-29 キヤノン株式会社 Reflection type mask, exposure method, and method of manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170067154A (en) * 2015-12-07 2017-06-15 주식회사 에스앤에스텍 Blankmask and Photomask for Multi-electron Beam Lithography
KR102093107B1 (en) * 2015-12-07 2020-03-25 (주)에스앤에스텍 Blankmask and Photomask for Multi-electron Beam Lithography
JP2018013616A (en) * 2016-07-21 2018-01-25 凸版印刷株式会社 Reflection type mask and manufacturing method of reflection type mask
US11480869B2 (en) * 2019-08-29 2022-10-25 Taiwan Semiconductor Manufacturing Company Ltd. Photomask with enhanced contamination control and method of forming the same

Also Published As

Publication number Publication date
JP6303346B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
US11036127B2 (en) Reflective mask blank and reflective mask
TWI694304B (en) Reflective mask blank for euv lithography
US8241821B2 (en) Reflective mask blank for EUV lithography, process for producing the same and mask for EUV lithography
KR102631779B1 (en) Reflective mask blank, method of manufacturing a reflective mask, and method of manufacturing a semiconductor device
JP5638769B2 (en) Method for manufacturing reflective mask blank and method for manufacturing reflective mask
TW201351027A (en) Reflective mask
JP6520041B2 (en) Pellicle
JP2017151483A (en) Substrate with multi-layer reflection film for euv lithography, reflection type mask blank for euv lithography, reflection type mask for euv lithography, and manufacturing method of semiconductor device
WO2015037564A1 (en) Substrate with multilayer reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, method for producing reflective mask for euv lithography, and method for manufacturing semiconductor device
JP2014053576A (en) Reflective mask blank for euv lithography, and reflective mask for euv lithography
KR20150037918A (en) Reflective mask blank and method for manufacturing same, method for manufacturing reflective mask, and method for manufacturing semiconductor device
KR20160034315A (en) Substrate with multilayered reflective film, reflective mask blank for euv lithography, reflective mask for euv lithography, process for producing same, and process for producing semiconductor device
US9383637B2 (en) Substrate with multilayer reflective film, reflective mask blank for EUV lithography, method of manufacturing reflective mask for EUV lithography and method of manufacturing semiconductor device
JP6186996B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP6303346B2 (en) Reflective mask blank and reflective mask
JP6845122B2 (en) Reflective mask blank, reflective mask and its manufacturing method, and semiconductor device manufacturing method
TW201800834A (en) Mask blank, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP6223756B2 (en) Multilayer reflective film-coated substrate, reflective mask blank for EUV lithography, reflective mask for EUV lithography, method for manufacturing the same, and method for manufacturing a semiconductor device
JP2014197628A (en) Euv exposure mask and method for manufacturing the same
JP2022183205A (en) Manufacturing method of reflection type mask, reflection type mask blank and semiconductor device
JP6340800B2 (en) EUV exposure mask and manufacturing method thereof
JP2014183075A (en) Reflective mask, and method of manufacturing the same
JP6361283B2 (en) Reflective mask blank and reflective mask
TW201738650A (en) Protective film element capable of reducing radiation heat and avoiding deterioration of the EUV mask surface
TW202129704A (en) Reflective photomask blank and reflective photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6303346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees