JP2015052517A - Infrared sensor manufacturing method and infrared sensor - Google Patents

Infrared sensor manufacturing method and infrared sensor Download PDF

Info

Publication number
JP2015052517A
JP2015052517A JP2013185317A JP2013185317A JP2015052517A JP 2015052517 A JP2015052517 A JP 2015052517A JP 2013185317 A JP2013185317 A JP 2013185317A JP 2013185317 A JP2013185317 A JP 2013185317A JP 2015052517 A JP2015052517 A JP 2015052517A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
pyroelectric
pyroelectric body
infrared sensor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013185317A
Other languages
Japanese (ja)
Inventor
万里夫 木内
Mario Kiuchi
万里夫 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2013185317A priority Critical patent/JP2015052517A/en
Publication of JP2015052517A publication Critical patent/JP2015052517A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing an infrared sensor having an excellent in-plane uniformity of a pyroelectric and a high detection sensitivity.SOLUTION: A method for manufacturing an infrared sensor includes: a pyroelectric substance formation step for forming a pyroelectric substance (a pyroelectric body comprising a lower electrode 21, a pyroelectric film 22, and an upper electrode 23; and an infrared absorber 24) on a semiconductor substrate 1; a through hole formation step for forming a plurality of through holes 25 that penetrate the pyroelectric so as to open an upper part of the semiconductor substrate 1; a support part formation step for performing isotropic etching on the semiconductor substrate 1 via the plurality of through holes 25 to partially form cavities 12 at the upper part of the semiconductor substrate 1, thereby forming support parts 13 that are adjacent to the cavities 12 and support the pyroelectric.

Description

本発明は、焦電体を備えた赤外線センサの製造方法及びこれを用いて製造され得る赤外線センサに関する。特に、本発明は、焦電体の面内均一性に優れ、検出感度の高い赤外線センサを製造することができる方法及びこれを用いて製造され得る赤外線センサに関する。   The present invention relates to a method for manufacturing an infrared sensor including a pyroelectric body and an infrared sensor that can be manufactured using the method. In particular, the present invention relates to a method capable of manufacturing an infrared sensor having excellent in-plane uniformity of pyroelectric material and high detection sensitivity, and an infrared sensor that can be manufactured using the same.

従来より、サーモパイル、ボロメータ、焦電センサなどの、いわゆる熱型赤外線センサが知られている(例えば、特許文献1参照)。   Conventionally, so-called thermal infrared sensors such as a thermopile, a bolometer, and a pyroelectric sensor are known (see, for example, Patent Document 1).

熱型赤外線センサの検出感度を向上させるには、赤外線検出部の熱容量と、赤外線検出部からの熱損失との双方を小さく設計することが肝要である。
例えば、特許文献1に記載の熱型赤外線センサ(半導体装置)は、薄膜で熱容量の小さい熱検出部8の下方に位置する半導体基板(シリコン酸化膜1)に空洞5を形成し、熱伝導の小さい支持部(空洞5間の隔壁)で熱検出部8を支持することにより、熱容量と熱損失の双方を低下させている(特許文献1の図2等)。
In order to improve the detection sensitivity of the thermal infrared sensor, it is important to design both the heat capacity of the infrared detection unit and the heat loss from the infrared detection unit to be small.
For example, a thermal infrared sensor (semiconductor device) described in Patent Document 1 forms a cavity 5 in a semiconductor substrate (silicon oxide film 1) located below a heat detector 8 having a thin film and a small heat capacity, and is capable of conducting heat. By supporting the heat detection unit 8 with a small support (partition between the cavities 5), both heat capacity and heat loss are reduced (FIG. 2 of Patent Document 1).

しかしながら、特許文献1に記載の熱型赤外線センサの製造工程は、先に半導体基板1に空洞5を形成した後、熱検出部8を形成する工程である(特許文献1の図1等)。
上記のように半導体基板に空洞を形成した後に熱検出部を形成する方法では、熱検出部を形成する際に、空洞に起因して半導体基板の温度分布が均一でなくなる。このため、温度分布が不均一な半導体基板上に蒸着等によって形成される熱検出部の面内均一性が悪化するおそれがある。特に、熱検出部が焦電体から構成されている場合、この面内均一性は熱検出部の検出感度に大きな影響を及ぼすことになる。
However, the manufacturing process of the thermal infrared sensor described in Patent Document 1 is a process of forming the heat detection unit 8 after forming the cavity 5 in the semiconductor substrate 1 (FIG. 1 in Patent Document 1).
In the method of forming the heat detection part after forming the cavity in the semiconductor substrate as described above, the temperature distribution of the semiconductor substrate is not uniform due to the cavity when the heat detection part is formed. For this reason, the in-plane uniformity of the heat detection part formed by vapor deposition etc. on a semiconductor substrate with non-uniform temperature distribution may deteriorate. In particular, when the heat detection unit is composed of a pyroelectric material, the in-plane uniformity greatly affects the detection sensitivity of the heat detection unit.

特許第3523588号公報Japanese Patent No. 3523588

本発明は、斯かる従来技術に鑑みてなされたものであり、焦電体を備えた赤外線センサの製造方法及びこれを用いて製造され得る赤外線センサであって、焦電体の面内均一性に優れ、検出感度の高い赤外線センサを製造することができる方法及びこれを用いて製造され得る赤外線センサを提供することを課題とする。   The present invention has been made in view of such prior art, and is a method for manufacturing an infrared sensor including a pyroelectric body, and an infrared sensor that can be manufactured using the method, and includes in-plane uniformity of the pyroelectric body. It is an object of the present invention to provide a method capable of producing an infrared sensor excellent in detection sensitivity and having high detection sensitivity, and an infrared sensor which can be produced using the method.

前記課題を解決するため、本発明は、半導体基板上に焦電体を形成する焦電体形成工程と、前記半導体基板の上方が開放されるように、前記焦電体を貫通する複数の貫通孔を形成する貫通孔形成工程と、前記複数の貫通孔を介して前記半導体基板に等方性エッチングを施し、前記半導体基板の上部に部分的に空洞を形成することで、前記空洞に隣接し前記焦電体を支持する支持部を形成する支持部形成工程とを含むことを特徴とする赤外線センサの製造方法を提供する。   In order to solve the above problems, the present invention provides a pyroelectric body forming step for forming a pyroelectric body on a semiconductor substrate, and a plurality of through holes penetrating the pyroelectric body so that the upper portion of the semiconductor substrate is opened. A through hole forming step of forming a hole, and isotropic etching is performed on the semiconductor substrate through the plurality of through holes to form a cavity partially above the semiconductor substrate, thereby adjacent to the cavity. And a supporting part forming step of forming a supporting part for supporting the pyroelectric body.

本発明によれば、支持部形成工程で半導体基板に空洞を形成する前に、焦電体形成工程で半導体基板上に焦電体を形成することになる。すなわち、半導体基板上に焦電体を形成する際には、半導体基板に空洞が形成されていないため、半導体基板の温度分布を均一化し易い。このため、半導体基板上に形成される焦電体の面内均一性に優れることが期待でき、検出感度の高い赤外線センサを製造することが可能である。
また、本発明によれば、貫通孔形成工程で焦電体を貫通する複数の貫通孔を形成し、支持部形成工程で複数の貫通孔を介して半導体基板に等方性エッチングを施することで、半導体基板の上部に部分的に空洞を形成する。半導体基板の上部においてエッチングされなかった、空洞に隣接する部分は、焦電体を支持する支持部を形成することになる。貫通孔を介して半導体基板に等方性エッチングを施すことで形成される空洞は、等方性エッチングの性質上、貫通孔の下端(半導体基板の上端)を中心として略半球面状に拡がる。従って、空洞に隣接する支持部は上窄まり状になる。すなわち、支持部の上部は水平方向の寸法が小さく、下部に向かうに従い水平方向の寸法が大きくなる形状になる。支持部の上部が焦電体を支持するため、焦電体から半導体基板の支持部への熱損失を抑制できると共に、支持部の下部の寸法が大きくなるため、機械的強度を一定以上に保つことも可能である。
さらに、本発明によれば、焦電体に複数の貫通孔が設けられるため、その分だけ焦電体が軽量化し、支持部に対する負荷が軽減して、支持状態が安定化するという利点もある。
According to the present invention, the pyroelectric body is formed on the semiconductor substrate in the pyroelectric body forming step before the cavity is formed in the semiconductor substrate in the support portion forming step. That is, when the pyroelectric material is formed on the semiconductor substrate, since no cavity is formed in the semiconductor substrate, the temperature distribution of the semiconductor substrate can be easily made uniform. For this reason, it can be expected that the in-plane uniformity of the pyroelectric material formed on the semiconductor substrate is excellent, and an infrared sensor with high detection sensitivity can be manufactured.
According to the present invention, a plurality of through holes penetrating the pyroelectric body are formed in the through hole forming step, and isotropic etching is performed on the semiconductor substrate through the plurality of through holes in the support portion forming step. Thus, a cavity is partially formed in the upper part of the semiconductor substrate. A portion adjacent to the cavity that has not been etched in the upper portion of the semiconductor substrate forms a support portion that supports the pyroelectric material. The cavity formed by performing isotropic etching on the semiconductor substrate through the through hole expands in a substantially hemispherical shape centering on the lower end of the through hole (the upper end of the semiconductor substrate) due to the property of isotropic etching. Therefore, the support portion adjacent to the cavity is constricted. That is, the upper part of the support part has a shape with a small horizontal dimension, and the dimension in the horizontal direction increases toward the lower part. Since the upper part of the support part supports the pyroelectric body, heat loss from the pyroelectric body to the support part of the semiconductor substrate can be suppressed, and the size of the lower part of the support part is increased, so that the mechanical strength is kept above a certain level. It is also possible.
Furthermore, according to the present invention, since the pyroelectric body is provided with a plurality of through holes, the pyroelectric body is reduced in weight by that amount, and there is an advantage that the load on the support portion is reduced and the support state is stabilized. .

好ましくは、前記焦電体形成工程は、前記半導体基板上に焦電体膜を含む焦電体本体を形成する工程と、前記焦電体本体上に赤外線吸収体を形成する工程とを含み、
前記貫通孔形成工程は、前記半導体基板の上方が開放されるように、前記赤外線吸収体及び前記焦電体本体を貫通する複数の貫通孔を形成する。
Preferably, the pyroelectric body forming step includes a step of forming a pyroelectric body including a pyroelectric film on the semiconductor substrate, and a step of forming an infrared absorber on the pyroelectric body.
The through-hole forming step forms a plurality of through-holes penetrating the infrared absorber and the pyroelectric body so that an upper portion of the semiconductor substrate is opened.

斯かる好ましい構成によれば、焦電体膜を含む焦電体本体とは別に赤外線吸収体を形成するため、焦電体による赤外線の吸収・検出を確実に行うことが可能である。   According to such a preferable configuration, since the infrared absorber is formed separately from the pyroelectric body including the pyroelectric film, it is possible to reliably absorb and detect infrared rays by the pyroelectric body.

また、前記課題を解決するため、本発明は、半導体基板と、前記半導体基板上に形成された焦電体とを備え、前記焦電体は、前記半導体基板の上方が開放されるように、前記焦電体を貫通する複数の貫通孔を具備し、前記半導体基板は、その上部に、前記焦電体の複数の貫通孔に連通する空洞と、該空洞に隣接し前記焦電体を支持する上窄まり状の支持部とを具備することを特徴とする赤外線センサとしても提供される。   In order to solve the above-mentioned problem, the present invention includes a semiconductor substrate and a pyroelectric body formed on the semiconductor substrate, and the pyroelectric body is opened so that an upper portion of the semiconductor substrate is opened. A plurality of through holes penetrating the pyroelectric body; and the semiconductor substrate supporting a pyroelectric body adjacent to the cavity and a cavity communicating with the plurality of through holes of the pyroelectric body in an upper portion thereof The present invention is also provided as an infrared sensor characterized by comprising an upper constricted support portion.

本発明によれば、空洞に隣接する支持部は上窄まり状である。すなわち、支持部の上部は水平方向の寸法が小さく、下部に向かうに従い水平方向の寸法が大きくなる形状になる。支持部の上部が焦電体を支持するため、焦電体から半導体基板の支持部への熱損失を抑制できると共に、支持部の下部が寸法が大きくなるため、機械的強度を一定以上に保つことも可能である。
また、本発明によれば、焦電体に複数の貫通孔が設けられるため、その分だけ焦電体が軽量化し、支持部に対する負荷が軽減して、支持状態が安定化するという利点もある。
According to the present invention, the support portion adjacent to the cavity has an upper constricted shape. That is, the upper part of the support part has a shape with a small horizontal dimension, and the dimension in the horizontal direction increases toward the lower part. Since the upper part of the support part supports the pyroelectric body, heat loss from the pyroelectric body to the support part of the semiconductor substrate can be suppressed, and the size of the lower part of the support part becomes large, so that the mechanical strength is kept above a certain level. It is also possible.
Further, according to the present invention, since the pyroelectric body is provided with a plurality of through holes, the pyroelectric body is reduced in weight by that amount, and there is an advantage that the load on the support portion is reduced and the support state is stabilized. .

好ましくは、前記焦電体は、前記半導体基板上に形成された焦電体膜を含む焦電体本体と、前記焦電体本体上に形成された赤外線吸収体とを具備し、前記貫通孔は、前記半導体基板の上方が開放されるように、前記赤外線吸収体及び前記焦電体本体を貫通する。   Preferably, the pyroelectric body includes a pyroelectric body including a pyroelectric film formed on the semiconductor substrate, and an infrared absorber formed on the pyroelectric body, and the through hole Passes through the infrared absorber and the pyroelectric body so that the top of the semiconductor substrate is open.

斯かる好ましい構成によれば、焦電体膜を含む焦電体本体とは別に赤外線吸収体を具備するため、焦電体による赤外線の吸収・検出を確実に行うことが可能である。   According to such a preferable configuration, since the infrared absorber is provided separately from the pyroelectric body including the pyroelectric film, it is possible to reliably absorb and detect infrared rays by the pyroelectric body.

本発明によれば、焦電体の面内均一性に優れ、検出感度の高い赤外線センサを得ることが可能である。   According to the present invention, it is possible to obtain an infrared sensor with excellent in-plane uniformity of pyroelectric material and high detection sensitivity.

図1は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 1 is a diagram for explaining a method of manufacturing an infrared sensor according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 2 is a diagram illustrating a method for manufacturing an infrared sensor according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 3 is a diagram illustrating a method for manufacturing an infrared sensor according to an embodiment of the present invention. 図4は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 4 is a diagram for explaining a method of manufacturing an infrared sensor according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 5 is a diagram for explaining a method of manufacturing an infrared sensor according to an embodiment of the present invention. 図6は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 6 is a diagram for explaining a method of manufacturing an infrared sensor according to an embodiment of the present invention. 図7は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 7 is a diagram illustrating a method for manufacturing an infrared sensor according to an embodiment of the present invention. 図8は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 8 is a diagram illustrating a method for manufacturing an infrared sensor according to an embodiment of the present invention. 図9は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。FIG. 9 is a diagram illustrating a method for manufacturing an infrared sensor according to an embodiment of the present invention.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。
図1〜図9は、本発明の一実施形態に係る赤外線センサの製造方法を説明する図である。各図の(a)、(b)の上側に示す図は平面図を、下側に示す図は上側に示す図のAA線断面図である。
本実施形態に係る赤外線センサ100の製造方法は、半導体基板1上に焦電体(焦電体本体及び赤外線吸収体24)を形成する焦電体形成工程と、半導体基板1の上方が開放されるように、前記焦電体を貫通する複数の貫通孔25を形成する貫通孔形成工程と、複数の貫通孔25を介して半導体基板1に等方性エッチングを施し、半導体基板1の上部に部分的に空洞12を形成することで、空洞12に隣接し前記焦電体を支持する支持部13を形成する支持部形成工程とを含むことを特徴とする。
具体的には、前記焦電体形成工程は、半導体基板1上に焦電体膜22を含む焦電体本体(下部電極21、焦電体膜22、上部電極23)を形成する工程と、前記焦電体本体上に赤外線吸収体24を形成する工程とを含む。また、前記貫通孔形成工程は、半導体基板1の上方が開放されるように、赤外線吸収体24及び前記焦電体本体を貫通する複数の貫通孔25を形成する。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIGS. 1-9 is a figure explaining the manufacturing method of the infrared sensor which concerns on one Embodiment of this invention. In each of the drawings, the upper side of (a) and (b) is a plan view, and the lower side is a cross-sectional view taken along line AA of the upper side.
In the manufacturing method of the infrared sensor 100 according to the present embodiment, the pyroelectric body forming step of forming a pyroelectric body (pyroelectric body and infrared absorber 24) on the semiconductor substrate 1 and the upper side of the semiconductor substrate 1 are opened. As described above, a through hole forming step for forming a plurality of through holes 25 penetrating the pyroelectric body, and isotropic etching is performed on the semiconductor substrate 1 through the plurality of through holes 25, A support portion forming step of forming a support portion 13 adjacent to the cavity 12 and supporting the pyroelectric body by partially forming the cavity 12.
Specifically, the pyroelectric body forming step includes forming a pyroelectric body (lower electrode 21, pyroelectric film 22, upper electrode 23) including the pyroelectric film 22 on the semiconductor substrate 1, and Forming an infrared absorber 24 on the pyroelectric body. In the through hole forming step, a plurality of through holes 25 penetrating the infrared absorber 24 and the pyroelectric body are formed so that the upper portion of the semiconductor substrate 1 is opened.

以下、図1〜図9を参照しつつ、本実施形態に係る赤外線センサ100の製造方法について、焦電体形成工程、貫通孔形成工程、支持部形成工程の順に、より具体的に説明する。   Hereinafter, the manufacturing method of the infrared sensor 100 according to the present embodiment will be described more specifically in the order of the pyroelectric body forming step, the through hole forming step, and the support portion forming step with reference to FIGS.

<焦電体形成工程>
本工程では、まず最初に、図1(a)に示すように、半導体基板1としてのSiウエハを用意する。Siウエハとしては、例えば、5インチで、厚みが約625μmのものを例示できる。そして、図1(b)に示すように、半導体基板1に熱酸化処理を施し、表面に酸化膜11を形成する。酸化膜11の厚みは、例えば、約100nmとされる。なお、以下の図面では、便宜上、酸化膜11の表示を省略する。
<Pyroelectric forming process>
In this step, first, as shown in FIG. 1A, a Si wafer as a semiconductor substrate 1 is prepared. As the Si wafer, for example, one having a thickness of about 625 μm and 5 inches can be exemplified. Then, as shown in FIG. 1B, the semiconductor substrate 1 is subjected to a thermal oxidation process to form an oxide film 11 on the surface. The thickness of the oxide film 11 is about 100 nm, for example. In the following drawings, the display of the oxide film 11 is omitted for convenience.

次に、図2(a)に示すように、半導体基板1上に下部電極21を成膜する。成膜方法としては、例えば、スパッタリングが用いられる。下部電極21としては、例えば、PtとTiの積層電極であって、Ptの厚みが約100nm、Tiの厚みが約20nmのものを例示できる。   Next, as shown in FIG. 2A, a lower electrode 21 is formed on the semiconductor substrate 1. For example, sputtering is used as the film forming method. Examples of the lower electrode 21 include a Pt and Ti laminated electrode having a Pt thickness of about 100 nm and a Ti thickness of about 20 nm.

次に、図2(b)に示すように、下部電極21上に焦電体膜22を成膜する。成膜方法としては、例えば、スパッタリングが用いられる。焦電体膜22としては、例えば、PZTが用いられ、その厚みが約3μmのものを例示できる。   Next, as shown in FIG. 2B, a pyroelectric film 22 is formed on the lower electrode 21. For example, sputtering is used as the film forming method. As the pyroelectric film 22, for example, PZT is used, and the thickness thereof is about 3 μm.

次に、図3(a)に示すように、焦電体膜22上にレジストRを塗布し、フォトリソグラフィによってレジストRを所定のパターンに形成する。次いで、図3(b)に示すように、所定のパターンに形成されたレジストRを介して、焦電体膜22にエッチングを施す。エッチング方法としては、例えば、ウエットエッチングが用いられる。   Next, as shown in FIG. 3A, a resist R is applied on the pyroelectric film 22, and the resist R is formed into a predetermined pattern by photolithography. Next, as shown in FIG. 3B, the pyroelectric film 22 is etched through a resist R formed in a predetermined pattern. As an etching method, for example, wet etching is used.

次に、図4(a)に示すように、レジストRを除去した後、図4(b)に示すように、焦電体膜22上又は下部電極21上に上部電極23を成膜する。成膜方法としては、例えば、スパッタリングが用いられる。上部電極23としては、例えば、AuとTiの積層電極であって、Auの厚みが約300nm、Tiの厚みが約20nmのものを例示できる。   Next, after removing the resist R as shown in FIG. 4A, an upper electrode 23 is formed on the pyroelectric film 22 or the lower electrode 21 as shown in FIG. 4B. For example, sputtering is used as the film forming method. As the upper electrode 23, for example, a stacked electrode of Au and Ti, with a thickness of Au of about 300 nm and a thickness of Ti of about 20 nm can be exemplified.

次に、図5(a)に示すように、上部電極23上にレジストRを塗布し、フォトリソグラフィによってレジストRを所定のパターンに形成する。次いで、図5(b)に示すように、所定のパターンに形成されたレジストRを介して、上部電極23と焦電体膜22の一部にエッチングを施す。エッチング方法としては、例えば、イオンビームエッチングが用いられる。   Next, as shown in FIG. 5A, a resist R is applied on the upper electrode 23, and the resist R is formed into a predetermined pattern by photolithography. Next, as shown in FIG. 5B, the upper electrode 23 and a part of the pyroelectric film 22 are etched through a resist R formed in a predetermined pattern. As an etching method, for example, ion beam etching is used.

次に、図6(a)に示すように、レジストRを除去した後、図6(b)に示すように、上部電極23上、焦電体膜22上又は下部電極21上にレジストRを塗布し、フォトリソグラフィによってレジストRを所定のパターンに形成する。このレジストRのパターンは、後述する貫通孔25に応じたパターンとされる。なお、図6(b)に示すレジストRは、断面矩形上に図示しているが、実際には上部の寸法が下部の寸法よりも大きいリフトオフレジストとされている。   Next, as shown in FIG. 6A, after removing the resist R, as shown in FIG. 6B, the resist R is formed on the upper electrode 23, the pyroelectric film 22 or the lower electrode 21. The resist R is applied to form a predetermined pattern by photolithography. The pattern of the resist R is a pattern corresponding to a through hole 25 described later. Although the resist R shown in FIG. 6B is shown on a rectangular cross section, actually, the resist is a lift-off resist in which the upper dimension is larger than the lower dimension.

次に、図7(a)に示すように、レジストR上又は上部電極23上に赤外線吸収体24を成膜する。成膜方法としては、例えば、真空蒸着が用いられる。赤外線吸収体24としては、例えば、Au又はAlを主成分とする金属膜であり、表面を粗化したり、膜自体を多孔とすることで、赤外線の吸収率を向上したものを例示できる。次いで、図7(b)に示すように、レジストRをその上に成膜された赤外線吸収体24と共に除去する。   Next, as shown in FIG. 7A, an infrared absorber 24 is formed on the resist R or the upper electrode 23. For example, vacuum deposition is used as the film forming method. As the infrared absorber 24, for example, a metal film containing Au or Al as a main component, which can improve the infrared absorption rate by roughening the surface or making the film itself porous can be exemplified. Next, as shown in FIG. 7B, the resist R is removed together with the infrared absorber 24 formed thereon.

以上のようにして、半導体基板1上に焦電体(下部電極21、焦電体膜22、上部電極23からなる焦電体本体、及び赤外線吸収体24)を形成する焦電体形成工程が実行される。   As described above, the pyroelectric body forming step of forming the pyroelectric body (the pyroelectric body including the lower electrode 21, the pyroelectric film 22, the upper electrode 23, and the infrared absorber 24) on the semiconductor substrate 1 is performed. Executed.

<貫通孔形成工程>
本工程では、図8(a)に示すように、赤外線吸収体24上、上部電極23上、焦電体膜22上又は下部電極21上にレジストRを塗布し、フォトリソグラフィによってレジストRを所定のパターンに形成する。具体的には、後述する貫通孔25に対応する部分を除いた部分にレジストRが積層されるようにパターンが形成される。次いで、図8(b)に示すように、所定のパターンに形成されたレジストRを介して、上部電極23、焦電体膜22及び下部電極21にエッチングを施す。エッチング方法としては、例えば、イオンビームエッチングが用いられる。
<Through hole formation process>
In this step, as shown in FIG. 8A, a resist R is applied on the infrared absorber 24, the upper electrode 23, the pyroelectric film 22 or the lower electrode 21, and the resist R is predetermined by photolithography. To form a pattern. Specifically, the pattern is formed so that the resist R is laminated on a portion excluding a portion corresponding to a through hole 25 described later. Next, as shown in FIG. 8B, the upper electrode 23, the pyroelectric film 22 and the lower electrode 21 are etched through a resist R formed in a predetermined pattern. As an etching method, for example, ion beam etching is used.

以上のようにして、半導体基板1の上方が開放されるように、焦電体(下部電極21、焦電体膜22、上部電極23及び赤外線吸収体24)を貫通する複数の貫通孔25を形成する貫通孔形成工程が実行される。   As described above, the plurality of through holes 25 penetrating the pyroelectric body (the lower electrode 21, the pyroelectric film 22, the upper electrode 23, and the infrared absorber 24) so that the upper side of the semiconductor substrate 1 is opened. The through-hole formation process to form is performed.

<支持部形成工程>
本工程では、図9(a)に示すように、複数の貫通孔25を介して半導体基板1に等方性エッチングを施し、半導体基板1の上部に部分的に空洞12を形成することで、空洞12に隣接し、焦電体(下部電極21、焦電体膜22、上部電極23及び赤外線吸収体24)を支持する支持部13を形成する。等方性エッチングとしては、例えば、ニフッ化キセノン(XeF)ガスを利用したドライエッチングが用いられる。エッチング時間、貫通孔25のピッチ、ニフッ化キセノンガスの圧力等を適宜制御することにより、所望する空洞12の形状、ひいては所望する支持部13の形状を得ることができる。空洞12の深さは、例えば、50〜100μm程度とされる。最後に、図9(b)に示すように、レジストRを除去することで、赤外線センサ100が得られる。図9(b)に示す赤外線センサ100において、赤外線吸収体24で赤外線が吸収されて発熱し、その熱が焦電体膜22に伝導することで電荷が発生し、上部電極23A(下部電極21と導通する電極)と、上部電極23Bとから出力されることで、赤外線を検出可能である。
<Supporting part forming step>
In this step, as shown in FIG. 9A, isotropic etching is performed on the semiconductor substrate 1 through the plurality of through holes 25, and the cavity 12 is partially formed in the upper portion of the semiconductor substrate 1, A support portion 13 is formed adjacent to the cavity 12 and supporting the pyroelectric body (lower electrode 21, pyroelectric film 22, upper electrode 23, and infrared absorber 24). As the isotropic etching, for example, dry etching using xenon difluoride (XeF 2 ) gas is used. By appropriately controlling the etching time, the pitch of the through holes 25, the pressure of the xenon difluoride gas, and the like, the desired shape of the cavity 12, and thus the desired shape of the support portion 13 can be obtained. The depth of the cavity 12 is, for example, about 50 to 100 μm. Finally, as shown in FIG. 9B, the infrared sensor 100 is obtained by removing the resist R. In the infrared sensor 100 shown in FIG. 9 (b), infrared rays are absorbed by the infrared absorber 24 to generate heat, and the heat is conducted to the pyroelectric film 22 to generate charges, so that the upper electrode 23A (lower electrode 21) is generated. And the upper electrode 23B, it is possible to detect infrared rays.

以上に説明した本実施形態に係る赤外線センサ100の製造方法によれば、支持部形成工程で半導体基板1に空洞12を形成する前に、焦電体形成工程で半導体基板1上に焦電体を形成することになる。すなわち、半導体基板上1に焦電体を形成する際には、半導体基板1に空洞12が形成されていないため、半導体基板1の温度分布を均一化し易い。このため、半導体基板1上に形成される焦電体の面内均一性に優れることが期待でき、検出感度の高い赤外線センサ100を製造することが可能である。   According to the manufacturing method of the infrared sensor 100 according to the present embodiment described above, the pyroelectric material is formed on the semiconductor substrate 1 in the pyroelectric body forming step before the cavity 12 is formed in the semiconductor substrate 1 in the support portion forming step. Will be formed. That is, when the pyroelectric material is formed on the semiconductor substrate 1, since the cavity 12 is not formed in the semiconductor substrate 1, it is easy to make the temperature distribution of the semiconductor substrate 1 uniform. For this reason, it can be expected that the pyroelectric material formed on the semiconductor substrate 1 is excellent in in-plane uniformity, and the infrared sensor 100 having high detection sensitivity can be manufactured.

また、本実施形態に係る赤外線センサ100の製造方法によれば、貫通孔形成工程で焦電体を貫通する複数の貫通孔25を形成し、支持部形成工程で複数の貫通孔25を介して半導体基板1に等方性エッチングを施することで、半導体基板1の上部に部分的に空洞12を形成する。半導体基板1の上部においてエッチングされなかった、空洞25に隣接する部分は、焦電体を支持する支持部13を形成することになる。貫通孔25を介して半導体基板1に等方性エッチングを施すことで形成される空洞12は、等方性エッチングの性質上、貫通孔25の下端(半導体基板1の上端)を中心として略半球面状に拡がる。従って、図9に示すように、空洞25に隣接する支持部13は上窄まり状になる。すなわち、支持部13の上部は水平方向の寸法が小さく、下部に向かうに従い水平方向の寸法が大きくなる形状になる。支持部13の上部が焦電体を支持するため、焦電体から半導体基板1の支持部13への熱損失を抑制できると共に、支持部13の下部の寸法が大きくなるため、機械的強度を一定以上に保つことも可能である。   Moreover, according to the manufacturing method of the infrared sensor 100 according to the present embodiment, the plurality of through holes 25 penetrating the pyroelectric body are formed in the through hole forming step, and the plurality of through holes 25 are interposed in the support portion forming step. By subjecting the semiconductor substrate 1 to isotropic etching, a cavity 12 is partially formed above the semiconductor substrate 1. A portion adjacent to the cavity 25 that has not been etched in the upper portion of the semiconductor substrate 1 forms a support portion 13 that supports the pyroelectric material. The cavity 12 formed by performing isotropic etching on the semiconductor substrate 1 through the through hole 25 is substantially hemispherical with the lower end of the through hole 25 (the upper end of the semiconductor substrate 1) as the center due to the nature of isotropic etching. Expands into a planar shape. Therefore, as shown in FIG. 9, the support portion 13 adjacent to the cavity 25 is in a constricted shape. That is, the upper portion of the support portion 13 has a shape with a small size in the horizontal direction and a shape in which the size in the horizontal direction becomes larger toward the lower portion. Since the upper portion of the support portion 13 supports the pyroelectric body, heat loss from the pyroelectric body to the support portion 13 of the semiconductor substrate 1 can be suppressed, and the size of the lower portion of the support portion 13 is increased. It is also possible to keep it above a certain level.

さらに、本実施形態に係る赤外線センサ100の製造方法によれば、焦電体に複数の貫通孔25が設けられるため、その分だけ焦電体が軽量化し、支持部13に対する負荷が軽減して、支持状態が安定化するという利点もある。   Furthermore, according to the manufacturing method of the infrared sensor 100 according to the present embodiment, since the pyroelectric body is provided with the plurality of through holes 25, the pyroelectric body is reduced in weight, and the load on the support portion 13 is reduced. There is also an advantage that the supporting state is stabilized.

1・・・半導体基板
12・・・空洞
13・・・支持部
21・・・下部電極
22・・・焦電体膜
23・・・上部電極
24・・・赤外線吸収体
100・・・赤外線センサ
R・・・レジスト
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 12 ... Cavity 13 ... Support part 21 ... Lower electrode 22 ... Pyroelectric film 23 ... Upper electrode 24 ... Infrared absorber 100 ... Infrared sensor R ... resist

Claims (4)

半導体基板上に焦電体を形成する焦電体形成工程と、
前記半導体基板の上方が開放されるように、前記焦電体を貫通する複数の貫通孔を形成する貫通孔形成工程と、
前記複数の貫通孔を介して前記半導体基板に等方性エッチングを施し、前記半導体基板の上部に部分的に空洞を形成することで、前記空洞に隣接し前記焦電体を支持する支持部を形成する支持部形成工程とを含むことを特徴とする赤外線センサの製造方法。
A pyroelectric material forming step of forming a pyroelectric material on a semiconductor substrate;
A through hole forming step of forming a plurality of through holes penetrating the pyroelectric body so that an upper portion of the semiconductor substrate is opened;
A support portion that is adjacent to the cavity and supports the pyroelectric body is formed by performing isotropic etching on the semiconductor substrate through the plurality of through holes and partially forming a cavity in the upper portion of the semiconductor substrate. And a support portion forming step for forming the infrared sensor.
前記焦電体形成工程は、前記半導体基板上に焦電体膜を含む焦電体本体を形成する工程と、前記焦電体本体上に赤外線吸収体を形成する工程とを含み、
前記貫通孔形成工程は、前記半導体基板の上方が開放されるように、前記赤外線吸収体及び前記焦電体本体を貫通する複数の貫通孔を形成することを特徴とする請求項1に記載の赤外線センサの製造方法。
The pyroelectric body forming step includes a step of forming a pyroelectric body including a pyroelectric film on the semiconductor substrate, and a step of forming an infrared absorber on the pyroelectric body.
The said through-hole formation process forms the several through-hole which penetrates the said infrared rays absorber and the said pyroelectric body so that the upper part of the said semiconductor substrate may be open | released, The Claim 1 characterized by the above-mentioned. Infrared sensor manufacturing method.
半導体基板と、
前記半導体基板上に形成された焦電体とを備え、
前記焦電体は、前記半導体基板の上方が開放されるように、前記焦電体を貫通する複数の貫通孔を具備し、
前記半導体基板は、その上部に、前記焦電体の複数の貫通孔に連通する空洞と、該空洞に隣接し前記焦電体を支持する上窄まり状の支持部とを具備することを特徴とする赤外線センサ。
A semiconductor substrate;
Comprising a pyroelectric body formed on the semiconductor substrate,
The pyroelectric body includes a plurality of through holes penetrating the pyroelectric body so that an upper portion of the semiconductor substrate is opened;
The semiconductor substrate includes a cavity communicating with the plurality of through holes of the pyroelectric body and an upper constricted support portion adjacent to the cavity and supporting the pyroelectric body. Infrared sensor.
前記焦電体は、前記半導体基板上に形成された焦電体膜を含む焦電体本体と、前記焦電体本体上に形成された赤外線吸収体とを具備し、
前記貫通孔は、前記半導体基板の上方が開放されるように、前記赤外線吸収体及び前記焦電体本体を貫通することを特徴とする請求項3に記載の赤外線センサ。
The pyroelectric body comprises a pyroelectric body including a pyroelectric film formed on the semiconductor substrate, and an infrared absorber formed on the pyroelectric body.
The infrared sensor according to claim 3, wherein the through hole penetrates the infrared absorber and the pyroelectric body so that an upper portion of the semiconductor substrate is opened.
JP2013185317A 2013-09-06 2013-09-06 Infrared sensor manufacturing method and infrared sensor Pending JP2015052517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185317A JP2015052517A (en) 2013-09-06 2013-09-06 Infrared sensor manufacturing method and infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185317A JP2015052517A (en) 2013-09-06 2013-09-06 Infrared sensor manufacturing method and infrared sensor

Publications (1)

Publication Number Publication Date
JP2015052517A true JP2015052517A (en) 2015-03-19

Family

ID=52701649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185317A Pending JP2015052517A (en) 2013-09-06 2013-09-06 Infrared sensor manufacturing method and infrared sensor

Country Status (1)

Country Link
JP (1) JP2015052517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195466A1 (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Infrared sensor and infrared sensor device equipped with same
FR3119888A1 (en) * 2021-02-18 2022-08-19 Elichens PYROELECTRIC DEVICE COMPRISING A SUBSTRATE WITH A PYROELECTRIC SURFACE LAYER AND METHOD OF REALIZATION

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195466A1 (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Infrared sensor and infrared sensor device equipped with same
FR3119888A1 (en) * 2021-02-18 2022-08-19 Elichens PYROELECTRIC DEVICE COMPRISING A SUBSTRATE WITH A PYROELECTRIC SURFACE LAYER AND METHOD OF REALIZATION
WO2022175618A1 (en) * 2021-02-18 2022-08-25 Elichens Pyroelectric device comprising a substrate having a pyroelectric surface layer, and method for producing same

Similar Documents

Publication Publication Date Title
US7268350B1 (en) Bolometric detector with thermal isolation by constriction and device for detecting infrared radiation that uses such a bolometric detector
US9440847B2 (en) Single silicon wafer micromachined thermal conduction sensor
JP4915440B2 (en) Manufacturing method of semiconductor device
US8703517B2 (en) Method of Manufacturing a Semiconductor Device Including Removing a Reformed Layer
JP5263261B2 (en) Manufacturing method of semiconductor device
JP2015531868A (en) CMOS bolometer
KR20120041943A (en) Acoustic sensor and manufacturing method thereof
US9257587B2 (en) Suspension and absorber structure for bolometer
TWI505723B (en) Mems microphone and manufacturing method of the same
JP2015052517A (en) Infrared sensor manufacturing method and infrared sensor
JP2007206040A (en) Gas sensor and manufacturing method therefor
US9527729B2 (en) Process for fabrication of a micromechanical and/or nanomechanical structure comprising a porous surface
JP3175662B2 (en) Manufacturing method of thermal infrared detecting element
US10301175B2 (en) Method for manufacturing MEMS double-layer suspension microstructure, and MEMS infrared detector
US20060258037A1 (en) Method for producing a component having a semiconductor substrate and component
Goericke et al. Experimentally validated aluminum nitride based pressure, temperature and 3-axis acceleration sensors integrated on a single chip
Xie et al. Reliable low-cost fabrication and characterization methods for micromechanical disk resonators
JP2011226895A (en) Infrared detecting sensor
JP2007043233A (en) Piezoelectric sound wave sensor
JP6548067B2 (en) Gyro sensor
JP2020169109A (en) Method of processing inorganic material substrate, device, and method of manufacturing device
JP6156881B2 (en) Fabrication method of micro mechanical vibration structure
JP6429873B2 (en) Method for manufacturing a microsystem with pixels
KR101509610B1 (en) Microchannel resonator and manufacturing method of the same
TWI447365B (en) Single crystal silicon thermal sensor and its preparation method