JP2015052457A - Detector and detection method of magnetic metal foreign-matter in insulator - Google Patents

Detector and detection method of magnetic metal foreign-matter in insulator Download PDF

Info

Publication number
JP2015052457A
JP2015052457A JP2013183835A JP2013183835A JP2015052457A JP 2015052457 A JP2015052457 A JP 2015052457A JP 2013183835 A JP2013183835 A JP 2013183835A JP 2013183835 A JP2013183835 A JP 2013183835A JP 2015052457 A JP2015052457 A JP 2015052457A
Authority
JP
Japan
Prior art keywords
coil
metal foreign
magnetic
magnetic metal
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013183835A
Other languages
Japanese (ja)
Inventor
綾 水澤
Aya Mizusawa
綾 水澤
啓 高野
Hiroshi Takano
啓 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013183835A priority Critical patent/JP2015052457A/en
Publication of JP2015052457A publication Critical patent/JP2015052457A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a magnetic metal foreign matter from an insulator at a high sensitivity, when a non-magnetic metal part is included in the insulator such as a connection part of a transformer lead wire.SOLUTION: A detector of a magnetic metal foreign matter in an insulator of an embodiment includes: a coil that is disposed so as to cover a part to be inspected of an inspecting object formed of an insulator including a magnetic metal foreign matter and a non-magnetic metal part, and applies a predetermined DC magnetic field to the part to be inspected; a magnetic field detector that is disposed between the part to be inspected and the coil, and detects a distribution state of the DC magnetic field varied by including of the magnetic metal foreign matter in the part to be inspected; and a DC power supply for supplying DC current to the coil.

Description

本発明の実施形態は、絶縁体内部の磁性金属異物検出装置及び検出方法に関する。   Embodiments described herein relate generally to a magnetic metal foreign object detection device and a detection method inside an insulator.

変圧器等の電気機器に使用される絶縁体中に、工具の破片等の磁性金属異物が混入すると、破壊電圧低下の原因となるので、このような磁性金属異物検査は重要である。このような磁性金属異物の代表的な検査手法としてはX線異物検出機を用いる手法と磁気を利用して金属異物を検知する金属検出機を使用する手法とがある。特に、変圧器リード線の接続部においては、リード芯線に巻きつけられている絶縁紙を一度剥がして芯線をボルト締結後、絶縁紙を再度手作業で巻きなおすため、ボルトや工具類から発生した磁性金属異物を巻き込んでしまうリスクが高く、磁性異物検査の必要性が高い。   Such magnetic metal foreign matter inspection is important because magnetic metal foreign matter such as tool fragments mixed in an insulator used in electrical equipment such as a transformer may cause a reduction in breakdown voltage. As a typical inspection method for such magnetic metal foreign matter, there are a method using an X-ray foreign matter detector and a method using a metal detector for detecting a metal foreign matter using magnetism. In particular, in the transformer lead wire connection part, the insulation paper wound around the lead core wire is peeled off once, the core wire is fastened with bolts, and then the insulation paper is manually rewound again, resulting from bolts and tools. There is a high risk of involving magnetic metal foreign matter, and there is a high need for magnetic foreign matter inspection.

金属検出機は電磁石や永久磁石で磁性金属異物からなる被検査物あるいは磁性金属異物を含む被検査物を磁化し、被検査物中に磁性金属異物が存在する事によって生じる磁界の変化を捕らえる事で磁性金属異物の有無を検知するもので、X線異物検出機に比べ装置価格やメンテナンス費用を抑えることができるというメリットを持つ。磁化方式としては大きなコイルで交流磁界中を発生させその中に被検査物を通過させる方法、被検査物に対して永久磁石などを走査させる方法が一般的である。   A metal detector magnetizes an inspection object made of magnetic metal foreign matter or an inspection object containing magnetic metal foreign matter with an electromagnet or a permanent magnet, and captures changes in the magnetic field caused by the presence of the magnetic metal foreign matter in the inspection object. It detects the presence or absence of magnetic metal foreign matter, and has the merit that the apparatus price and maintenance cost can be reduced compared with the X-ray foreign matter detector. As a magnetization method, a method in which an AC magnetic field is generated with a large coil and an object to be inspected is passed therethrough, and a method in which a permanent magnet or the like is scanned with respect to the object to be inspected.

しかしながら、磁気によって金属異物を検知する方法を用いた場合、例えば変圧器リード線の絶縁被覆部分の検査においては、被検査物である絶縁体中に銅線等の非磁性金属部位が存在するので、当該非磁性金属部位に渦電流が発生してしまって印加磁界が弱められてしまい、上記絶縁体中に含まれる磁性金属異物に対する検出感度が低下してしまって磁性金属異物の検出が困難になるという問題があった。   However, when using a method of detecting a metal foreign object by magnetism, for example, in the inspection of the insulation coating portion of the transformer lead wire, there is a nonmagnetic metal part such as a copper wire in the insulator as the object to be inspected. An eddy current is generated in the non-magnetic metal part, the applied magnetic field is weakened, the detection sensitivity for the magnetic metal foreign substance contained in the insulator is lowered, and it is difficult to detect the magnetic metal foreign substance. There was a problem of becoming.

また、変圧器リード線の接続部の中心部分には磁性体のボルト等が存在するため、当該接続部の奥深くまで磁束が浸透するような磁化方式を用いると、ボルトが磁化されてしまうため、磁性金属異物の検出が困難となってしまうという問題があった。   Moreover, since there is a magnetic bolt or the like in the central portion of the connection portion of the transformer lead wire, using a magnetization method in which magnetic flux penetrates deep into the connection portion, the bolt is magnetized, There was a problem that it was difficult to detect magnetic metal foreign matter.

上述のような問題を解決する手段として非磁性金属部位を含む被検査物の全体を磁化し、被検査物中の磁性金属異物の残留磁化を磁気センサで検出するという手法が提案されている(例えば特許文献1参照)。   As a means for solving the above-described problems, a method has been proposed in which the entire object to be inspected including the non-magnetic metal part is magnetized and the residual magnetization of the magnetic metal foreign matter in the object to be detected is detected by a magnetic sensor ( For example, see Patent Document 1).

しかしながら、特許文献1で提案されている手法は、被検査物を磁性金属異物に残留磁化を検出できるレベルまで磁化する必要がある。このような手法を、例えば変圧器リード線の接続部の磁性金属異物の検査に適用しようとした場合、接続部中心付近に位置するボルトまで磁化されてしまい、磁性金属異物の残留磁化のみならずボルトの残留磁化をも検出してしまうため、当該磁性金属異物の検出が困難となる。   However, the technique proposed in Patent Document 1 needs to magnetize the inspection object to a magnetic metal foreign object to a level at which residual magnetization can be detected. When such a method is applied to, for example, inspection of a magnetic metal foreign object at the connection portion of a transformer lead wire, the bolt located near the center of the connection portion is magnetized, and not only the residual magnetization of the magnetic metal foreign material. Since the residual magnetization of the bolt is also detected, it is difficult to detect the magnetic metal foreign matter.

特開平11−72479号JP-A-11-72479

本発明は、変圧器リード線の接続部等の、絶縁体中に非磁性金属部位が含まれている場合において、当該絶縁体から磁性金属異物を高い感度の下に検出することを目的とする。   An object of the present invention is to detect magnetic metal foreign matter from an insulator with high sensitivity when the insulator includes a non-magnetic metal part, such as a connection portion of a transformer lead wire. .

実施形態の絶縁体内部の磁性金属異物検出装置は、磁性金属異物及び非磁性金属部位を含む絶縁体からなる被検査物の被検査部位を覆うようにして配設され、前記被検査部位に対して所定の直流磁界を印加するためのコイルと、前記被検査部位と前記コイルとの間に配設され、前記被検査部位に前記磁性金属異物が含まれることに起因して変化する前記直流磁界の分布状態を検知するための磁界検知装置と、前記コイルに対して直流電流を供給するための直流電源と、を具える。   The magnetic metal foreign object detection device inside the insulator according to the embodiment is disposed so as to cover an inspection site of an inspection object made of an insulator including a magnetic metal foreign material and a nonmagnetic metal site, A coil for applying a predetermined DC magnetic field, and the DC magnetic field that is disposed between the inspection site and the coil and changes due to the magnetic metal foreign matter being contained in the inspection site A magnetic field detection device for detecting a distribution state of the current and a DC power source for supplying a DC current to the coil.

第1の実施形態における磁性体内部の磁性金属異物検出装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the magnetic metal foreign material detection apparatus inside the magnetic body in 1st Embodiment. 図1に示す磁性金属異物検出装置の透過斜視図である。FIG. 2 is a transparent perspective view of the magnetic metal foreign object detection device shown in FIG. 1. 図1及び図2に示す磁性金属異物検出装置による磁性金属異物の検出方法を説明するための図である。It is a figure for demonstrating the detection method of the magnetic metal foreign material by the magnetic metal foreign material detection apparatus shown in FIG.1 and FIG.2. 図1及び図2に示す磁性金属異物検出装置による磁性金属異物の検出方法を説明するための図である。It is a figure for demonstrating the detection method of the magnetic metal foreign material by the magnetic metal foreign material detection apparatus shown in FIG.1 and FIG.2. 図1及び図2に示す磁性金属異物検出装置による磁性金属異物の検出方法を説明するための図である。It is a figure for demonstrating the detection method of the magnetic metal foreign material by the magnetic metal foreign material detection apparatus shown in FIG.1 and FIG.2. 第2の実施形態における磁性体内部の磁性金属異物検出装置の概略構成を示す透過斜視図である。It is a permeation | transmission perspective view which shows schematic structure of the magnetic metal foreign material detection apparatus inside the magnetic body in 2nd Embodiment. 第2の実施形態における磁性体内部の磁性金属異物検出装置の概略構成を示す透過斜視図である。It is a permeation | transmission perspective view which shows schematic structure of the magnetic metal foreign material detection apparatus inside the magnetic body in 2nd Embodiment.

(第1の実施形態)
図1は、本実施形態における磁性体内部の磁性金属異物検出装置の概略構成を示す斜視図であり、図2は、図1に示す磁性金属異物検出装置の透過斜視図である。また、図3〜図5は、図1及び図2に示す磁性金属異物検出装置による磁性金属異物の検出方法を説明するための図である。
(First embodiment)
FIG. 1 is a perspective view showing a schematic configuration of a magnetic metal foreign object detection device inside a magnetic body in the present embodiment, and FIG. 2 is a transparent perspective view of the magnetic metal foreign object detection device shown in FIG. 3 to 5 are diagrams for explaining a magnetic metal foreign object detection method by the magnetic metal foreign object detection device shown in FIGS. 1 and 2.

図1及び図2に示すように、本実施形態の磁性体内部の磁性金属異物検出装置10は、絶縁体からなる被検査物Sの被検査部位STを覆うようにして配設されたコイル(以下、「送信コイル」という)11と、被検査部位STとコイル11との間に配設された磁界検知手段としての追加のコイル(以下、「受信コイル」という)12とを有している。送信コイル11には直流電源13が接続されており、直流電源13から送信コイル11に対して所定の直流電流を印加することにより、送信コイル11から被検査部位STに対して所定の直流磁界が印加されるようになっている。   As shown in FIGS. 1 and 2, the magnetic metal foreign object detection device 10 in the magnetic body according to the present embodiment is provided with a coil (covering the inspection site ST of the inspection object S made of an insulator). (Hereinafter referred to as “transmission coil”) 11 and an additional coil (hereinafter referred to as “reception coil”) 12 as magnetic field detection means disposed between the region to be inspected ST and the coil 11. . A direct current power source 13 is connected to the transmission coil 11, and by applying a predetermined direct current from the direct current power source 13 to the transmission coil 11, a predetermined direct current magnetic field is generated from the transmission coil 11 to the inspection site ST. It is to be applied.

なお、本実施形態及び以下の実施形態における“直流磁界”とは、送信コイル11に対して直流電流が印加されることにより発生した磁界を意味するものである。   The “DC magnetic field” in this embodiment and the following embodiments means a magnetic field generated by applying a direct current to the transmission coil 11.

受信コイル12は、以下に説明する磁性金属異物の検出方法において、被検査物Sの被検査部位ST内に磁性金属異物が含まれることによって生じる直流磁界の分布状態(分布の乱れ)を検知した後、検知した直流磁界に相当する電流あるいは電圧信号を計測するための電流測定器又は電圧測定器14に導線15を介して接続されている。   The receiving coil 12 detects a distribution state (disturbance of distribution) of a direct-current magnetic field generated when the magnetic metal foreign object is included in the inspection site ST of the inspection object S in the magnetic metal foreign object detection method described below. Thereafter, it is connected via a lead 15 to a current measuring device or voltage measuring device 14 for measuring a current or voltage signal corresponding to the detected DC magnetic field.

送信コイル11は被検査物Sの被検査部位STの全体を覆うことが要求され、かつ被検査部位STに対して、以下に説明する検出方法において被検査物S中の磁性金属異物を検出すべく十分な大きさの直流磁界を印加することが要求されるので、そのコイル径及び巻線数は、これらの要求を満足すべく適宜に決定する。   The transmission coil 11 is required to cover the entire inspection site ST of the inspection object S, and detects magnetic metal foreign matter in the inspection object S in the detection method described below for the inspection region ST. Since it is required to apply a sufficiently large DC magnetic field, the coil diameter and the number of windings are appropriately determined to satisfy these requirements.

また、受信コイル12は、以下に説明する磁性金属異物の検出方法において、被検査物Sの被検査部位STの長さ方向(図中のY方向)の全体に亘って走査し、上述した直流磁界の分布状態(分布の乱れ)を検出することが要求されるので、そのコイル径は上記分布状態を十分に検出できるように小さいことが要求され、その巻線数は上記分布状態を十分に検出できるような数とする。   The receiving coil 12 scans over the entire length direction (Y direction in the figure) of the inspection site ST of the inspection object S in the magnetic metal foreign matter detection method described below, and the above-described direct current. Since it is required to detect the distribution state (distribution disorder) of the magnetic field, the coil diameter is required to be small enough to detect the distribution state, and the number of windings is sufficient to detect the distribution state. The number is such that it can be detected.

次に、図1及び図2に示す磁性金属異物検出装置10を用いた場合の磁性金属異物の検出方法について、図3〜図5を参照しながら説明する。なお、本実施形態において、被検査物S(被検査部位ST)は、変圧器リード線の接続部の構成を考慮し、略中央部に磁性金属異物Dを含み、その下方にアルミニウム箔等の非磁性金属部位NMが存在する場合を考える。   Next, a magnetic metal foreign object detection method using the magnetic metal foreign object detection device 10 shown in FIGS. 1 and 2 will be described with reference to FIGS. In the present embodiment, the inspection object S (inspection site ST) includes a magnetic metal foreign substance D at a substantially central portion in consideration of the structure of the connection portion of the transformer lead wire, and an aluminum foil or the like below Consider a case where a non-magnetic metal portion NM exists.

最初に、直流電源13より直流電流を送信コイル11に供給し、図3に示すように、送信コイル11から直流磁界Bを発生させる。このとき、被検査物Sの被検査部位ST中に磁性金属異物Dが存在しないと、受信コイル12で検知する直流磁界Bの、被検査部位STの幅方向(図中のX方向)における直流磁界成分Bxの分布状態は、図4に示すように、被検査部位STの長さ方向(図中のY方向)の一端側から他端側までほぼ一定の値となる。   First, a direct current is supplied from the direct current power source 13 to the transmission coil 11, and a direct current magnetic field B is generated from the transmission coil 11 as shown in FIG. At this time, if the magnetic metal foreign matter D does not exist in the inspection site ST of the inspection object S, the DC magnetic field B detected by the receiving coil 12 is DC in the width direction (X direction in the figure) of the inspection site ST. As shown in FIG. 4, the distribution state of the magnetic field component Bx has a substantially constant value from one end side to the other end side in the length direction (Y direction in the drawing) of the inspected site ST.

したがって、受信コイル12を被検査物Sの被検査部位STの長さ方向(図中のY方向)の全体に亘って走査しても、被検査部位STの幅方向における直流磁界Bの成分Bxの分布状態が一定であることから、当該受信コイル12に電流が流れることがない。   Therefore, even if the receiving coil 12 is scanned over the entire length direction (Y direction in the figure) of the inspection site ST of the inspection object S, the component Bx of the direct current magnetic field B in the width direction of the inspection site ST. Since the distribution state is constant, no current flows through the receiving coil 12.

一方、本実施形態のように、被検査物S(すなわち被検査部位ST)の略中央部に磁性金属異物Dを含む場合は、直流磁界Bが磁性金属異物Dに引きつけられる(図中のZ方向)ので、図5に示すように、被検査部位STの当該磁性金属異物Dが存在する略中央部の、直流磁界の幅方向における成分Bxが局所的に減少することになる。   On the other hand, when the magnetic metal foreign material D is included in the substantially central portion of the inspection object S (that is, the inspection site ST) as in this embodiment, the DC magnetic field B is attracted to the magnetic metal foreign material D (Z in the figure). Therefore, as shown in FIG. 5, the component Bx in the width direction of the DC magnetic field at the substantially central portion where the magnetic metal foreign matter D of the site to be inspected ST is locally reduced.

したがって、受信コイル12を被検査物Sの被検査部位STの長さ方向(図中のY方向)の全体に亘って走査した場合、被検査部位STの長さ方向(図中のY方向)における直流磁界Bの幅方向成分Bxの分布状態がその略中央部において局所的に変化することから、受信コイル12が被検査部位STの略中央部に至ると、上述した直流磁界の幅方向の成分Bxの変化に伴って、受信コイル12に電流が流れるようになる。この結果、この電流を電流測定器14あるいは電圧測定器14で計測することにより、被検査物S中の磁性金属異物Dの検出が可能となる。   Therefore, when the receiving coil 12 is scanned over the entire length direction (Y direction in the drawing) of the inspection site ST of the inspection object S, the length direction (Y direction in the drawing) of the inspection site ST. Since the distribution state of the width direction component Bx of the direct current magnetic field B in FIG. 3 changes locally at the substantially central portion thereof, when the receiving coil 12 reaches the substantially central portion of the region to be inspected ST, As the component Bx changes, a current flows through the receiving coil 12. As a result, by measuring this current with the current measuring device 14 or the voltage measuring device 14, the magnetic metal foreign matter D in the inspection object S can be detected.

なお、本実施形態では、送信コイル11より発生した直流磁界B(の変化)を用いて被検査物S中の磁性金属異物Dを検出するようにしているので、磁性金属異物Dの下方にアルミニウム箔等の非磁性金属部位NMが存在しても、当該非磁性金属部位NMに渦電流が生じることがない。したがって、直流磁界Bの過度の減少を抑制することができ、これによって直流磁界Bの幅方向成分Bxをある程度の大きさに保持することができる。このため、上記磁性金属異物Dの検出に関する磁界強度(Bx)を十分に保持することができるので、十分に高い検出感度の下に、上記磁性金属異物Dを検出することができる。   In the present embodiment, since the magnetic metal foreign matter D in the inspection object S is detected using the DC magnetic field B (change) generated from the transmission coil 11, aluminum is provided below the magnetic metal foreign matter D. Even if a nonmagnetic metal part NM such as a foil is present, eddy current does not occur in the nonmagnetic metal part NM. Accordingly, an excessive decrease in the DC magnetic field B can be suppressed, and thereby the width direction component Bx of the DC magnetic field B can be held to a certain level. For this reason, since the magnetic field intensity (Bx) relating to the detection of the magnetic metal foreign matter D can be sufficiently maintained, the magnetic metal foreign matter D can be detected with sufficiently high detection sensitivity.

また、非磁性金属部位NM中に渦電流が生じないことから、磁性金属異物Dが非磁性金属部位NMに近接して存在する場合においても、上記磁性金属異物Dの検出に関する磁界強度(Bx)を十分に保持することができるので、十分に高い検出感度の下に、上記磁性金属異物Dを検出することができる。   Further, since no eddy current is generated in the nonmagnetic metal part NM, the magnetic field intensity (Bx) relating to the detection of the magnetic metal foreign substance D even when the magnetic metal foreign substance D exists close to the nonmagnetic metal part NM. Since the magnetic metal foreign matter D can be detected with sufficiently high detection sensitivity.

さらに、本実施形態では、磁性金属異物Dの検出に際して、直流磁界Bの、被検査部位STの幅方向(図中のX方向)におけるBxの分布状態を用いているので、変圧器リード線の接続部等のように、内部の奥深くに存在するボルト等の磁性金属体の影響を無視することができる。したがって、被検査物Sにおいて必須の磁性金属体の影響を受けることなく、被検査物S中の金属磁性異物Dの検出を行うことができる。   Furthermore, in the present embodiment, when detecting the magnetic metal foreign matter D, the DC magnetic field B uses the distribution state of Bx in the width direction (X direction in the drawing) of the site ST to be inspected. Like a connection part etc., the influence of magnetic metal bodies, such as a bolt which exists deep inside, can be disregarded. Therefore, it is possible to detect the metallic magnetic foreign substance D in the inspection object S without being affected by the magnetic metal body essential in the inspection object S.

本実施形態では、単一の受信コイル12を被検査物Sの被検査部位STの長さ方向(図中のY方向)に沿って走査させたが、複数の受信コイルを準備し、これらを同時に上記長さ方向に走査させることもできる。また、複数の受信コイルを被検査部位STの周回方向に並べて走査させてもよい。さらに、直流磁界を増大させるべく、送信コイル11のコア内に磁性体を配設することもよい。   In the present embodiment, the single receiving coil 12 is scanned along the length direction (Y direction in the figure) of the inspection site ST of the inspection object S. However, a plurality of receiving coils are prepared, At the same time, scanning in the length direction can be performed. Further, a plurality of receiving coils may be arranged and scanned in the circulation direction of the region to be inspected ST. Furthermore, a magnetic body may be disposed in the core of the transmission coil 11 in order to increase the DC magnetic field.

(第2の実施形態)
図6は、本実施形態における磁性体内部の磁性金属異物検出装置の概略構成を示す透過斜視図である。
(Second Embodiment)
FIG. 6 is a transparent perspective view showing a schematic configuration of the magnetic metal foreign object detection device inside the magnetic body in the present embodiment.

図6に示すように、本実施形態の磁性金属異物検出装置20は、図1〜図3に示す第1の実施形態の磁性金属異物検出装置10において、単一の受信コイル12に代えて、第1の追加のコイル(以下、「第1の受信コイル」という)22−1及び第2の追加のコイル(以下、「第2の受信コイル」という)22−2を配設し、これらを被検査物Sの被検査部位STの略中心部から当該被検査部位STの長さ方向(図中のY方向)に沿って互いに逆向きに走査するように構成した点で相違する。   As shown in FIG. 6, the magnetic metal foreign object detection device 20 of the present embodiment is replaced with a single receiving coil 12 in the magnetic metal foreign object detection device 10 of the first embodiment shown in FIGS. A first additional coil (hereinafter referred to as “first reception coil”) 22-1 and a second additional coil (hereinafter referred to as “second reception coil”) 22-2 are disposed, The difference is that scanning is performed in the opposite directions along the length direction (Y direction in the drawing) of the inspection site ST from the substantially central portion of the inspection site ST of the inspection object S.

第1の実施形態の磁性金属異物検出装置10では、直流磁界Bの幅方向(X方向)成分Bxが当該幅方向(X方向)において均一でなくなると、受信コイル12を走査させた場合おいて、上述した幅方向の直流磁界成分Bxの不均一性に基づいて、磁性金属異物Dが存在しない場合においても受信コイル12内に電流が流れてしまい、磁性金属異物Dの検出を正確に行うことができない場合がある。   In the magnetic metal foreign object detection device 10 of the first embodiment, when the width direction (X direction) component Bx of the DC magnetic field B is not uniform in the width direction (X direction), the receiving coil 12 is scanned. Based on the above-described non-uniformity of the DC magnetic field component Bx in the width direction, even when the magnetic metal foreign matter D does not exist, current flows in the receiving coil 12 and the magnetic metal foreign matter D is accurately detected. May not be possible.

しかしながら、本実施形態では、第1の受信コイル22−1及び第2の受信コイル22−2を準備し、これらの受信コイルを被検査物Sの被検査部位STの略中心部から当該被検査部位STの長さ方向(図中のY方向)に沿って互いに逆向きに走査するようにしているので、上述した幅方向の直流磁界成分Bxの不均一性に基づく第1の受信コイル22−1及び第2の受信コイル22−2に流れる電流はほぼ等しくなり、これら電流の差分をとることにより上記直流磁界成分Bxの不均一性をキャンセルすることができるようになる。したがって、第1の受信コイル22−1及び/又は第2の受信コイル22−2において、磁性金属異物Dに起因した幅方向の直流磁界成分Bxの変化を検出し、当該磁性金属異物Dの検出を正確に行うことができるようになる。   However, in the present embodiment, the first receiving coil 22-1 and the second receiving coil 22-2 are prepared, and these receiving coils are inspected from the substantially central portion of the inspection site ST of the inspection object S. Since scanning is performed in opposite directions along the length direction of the portion ST (Y direction in the figure), the first receiving coil 22-based on the non-uniformity of the DC magnetic field component Bx in the width direction described above. The currents flowing through the first and second receiving coils 22-2 are substantially equal, and by taking the difference between these currents, the non-uniformity of the DC magnetic field component Bx can be canceled. Therefore, the first receiving coil 22-1 and / or the second receiving coil 22-2 detects a change in the DC magnetic field component Bx in the width direction caused by the magnetic metal foreign matter D, and detects the magnetic metal foreign matter D. Can be performed accurately.

なお、その他の特徴及び作用効果については第1の実施形態と同様であるので、本実施形態では説明を省略する。   Since other features and operational effects are the same as in the first embodiment, description thereof is omitted in this embodiment.

(第3の実施形態)
図7は、本実施形態における磁性体内部の磁性金属異物検出装置の概略構成を示す透過斜視図である。
(Third embodiment)
FIG. 7 is a transparent perspective view showing a schematic configuration of the magnetic metal foreign object detection device inside the magnetic body in the present embodiment.

図7に示すように、本実施形態の磁性金属異物検出装置30は、図1〜図3に示す第1の実施形態の磁性金属異物検出装置10において、単一の受信コイル12に代えて、複数の磁気センサ素子32Aを含む磁気センサ32を被検査物Sの被検査部位STの全体に亘って配設している点で相違する。   As shown in FIG. 7, the magnetic metal foreign object detection device 30 of the present embodiment is replaced with a single reception coil 12 in the magnetic metal foreign object detection device 10 of the first embodiment shown in FIGS. The difference is that a magnetic sensor 32 including a plurality of magnetic sensor elements 32A is disposed over the entire inspection site ST of the inspection object S.

第1の実施形態の磁性金属異物検出装置10では、直流磁界Bの幅方向(X方向)成分Bxが当該幅方向(X方向)において均一でなくなると、受信コイル12を走査させた場合おいて、上述した幅方向の直流磁界成分Bxの不均一性に基づいて、磁性金属異物Dが存在しない場合においても受信コイル12内に電流が流れてしまい、磁性金属異物Dの検出を正確に行うことができない場合がある。   In the magnetic metal foreign object detection device 10 of the first embodiment, when the width direction (X direction) component Bx of the DC magnetic field B is not uniform in the width direction (X direction), the receiving coil 12 is scanned. Based on the above-described non-uniformity of the DC magnetic field component Bx in the width direction, even when the magnetic metal foreign matter D does not exist, current flows in the receiving coil 12 and the magnetic metal foreign matter D is accurately detected. May not be possible.

しかしながら、本実施形態では、複数の磁気センサ素子32Aを含む磁気センサ32を被検査物Sの被検査部位STの全体に亘って配設しているので、上述した幅方向の直流磁界成分Bxの不均一性に基づく、磁気センサ32の磁気センサ素子32Aに流れる電流はほぼ等しくなり、これら電流の差分をとることにより上記直流磁界成分Bxの不均一性をキャンセルすることができるようになる。したがって、磁気センサ32において、磁性金属異物Dに起因した幅方向の直流磁界成分Bxの変化を検出し、当該磁性金属異物Dの検出を正確に行うことができるようになる。   However, in this embodiment, since the magnetic sensor 32 including the plurality of magnetic sensor elements 32A is disposed over the entire inspection site ST of the inspection object S, the above-described DC magnetic field component Bx in the width direction described above is provided. Based on the non-uniformity, the currents flowing through the magnetic sensor elements 32A of the magnetic sensor 32 become substantially equal, and the non-uniformity of the DC magnetic field component Bx can be canceled by taking the difference between these currents. Therefore, the magnetic sensor 32 can detect a change in the DC magnetic field component Bx in the width direction caused by the magnetic metal foreign matter D and accurately detect the magnetic metal foreign matter D.

また、磁気センサ32自体が、上述した受信コイル12に比較して高い感度を有するので、上述した差分による検出感度の向上に加えて、磁気センサ32自体による検出感度の向上も図ることができる。   Further, since the magnetic sensor 32 itself has higher sensitivity than the above-described receiving coil 12, in addition to the improvement in detection sensitivity due to the above-described difference, the detection sensitivity by the magnetic sensor 32 itself can be improved.

さらに、磁気センサ32自体が高い検出感度を有するので、第1の実施形態と同様に、例えば磁気センサ32を磁気センサ素子32Aの単体から構成し、被検査部位STの長さ方向(図中Y方向)に走査させた場合においても、第1の実施形態における受信コイル12と比較して、高い感度で幅方向の直流磁界成分Bxの変化を検出することができ、磁性金属異物Dの検出を正確に行うことができるようになる。   Further, since the magnetic sensor 32 itself has a high detection sensitivity, for example, the magnetic sensor 32 is constituted by a single magnetic sensor element 32A, and the length direction of the inspected site ST (Y in the figure), as in the first embodiment. Even in the case of scanning in the direction), it is possible to detect a change in the DC magnetic field component Bx in the width direction with high sensitivity compared to the receiving coil 12 in the first embodiment, and to detect the magnetic metal foreign matter D. It will be possible to do accurately.

なお、その他の特徴及び作用効果については第1の実施形態と同様であるので、本実施形態では説明を省略する。   Since other features and operational effects are the same as in the first embodiment, description thereof is omitted in this embodiment.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment was posted as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,20,30 絶縁体内部の磁性金属異物検出装置
11 コイル(送信コイル)
12 追加のコイル(受信コイル)
13 直流電源
14 電流測定器又は電圧測定器
15 導線
S 被検査物
ST 被検査部位
B 直流磁界
D 金属磁性異物
NM 非磁性金属部位
22−1 第1の追加のコイル(第1の受信コイル)
22−2 第2の追加のコイル(第2の受信コイル)
32 磁気センサ
32A 磁気センサ素子
10, 20, 30 Magnetic metal foreign object detection device inside insulator 11 Coil (transmitting coil)
12 Additional coil (receiver coil)
13 DC power supply 14 Current measuring instrument or voltage measuring instrument 15 Conductor S Inspected object ST Inspected part B DC magnetic field D Metallic foreign material NM Nonmagnetic metal part 22-1 First additional coil (first receiving coil)
22-2 Second additional coil (second receiving coil)
32 Magnetic sensor 32A Magnetic sensor element

Claims (11)

磁性金属異物及び非磁性金属部位を含む絶縁体からなる被検査物の被検査部位を覆うようにして配設され、前記被検査部位に対して所定の直流磁界を印加するためのコイルと、
前記被検査部位と前記コイルとの間に配設され、前記被検査部位に前記磁性金属異物が含まれることに起因して変化する前記直流磁界の分布状態を検知するための磁界検知装置と、
前記コイルに対して直流電流を供給するための直流電源と、
を具えることを特徴とする、絶縁体内部の磁性金属異物検出装置。
A coil for applying a predetermined direct-current magnetic field to the inspected part, which is disposed so as to cover the inspected part of the inspected object including an insulator including a magnetic metal foreign matter and a nonmagnetic metal part;
A magnetic field detection device that is disposed between the inspection site and the coil and detects a distribution state of the DC magnetic field that changes due to the magnetic metal foreign matter included in the inspection site;
A direct current power source for supplying direct current to the coil;
A magnetic metal foreign matter detection device inside an insulator, comprising:
前記磁界検知手段は追加のコイルであって、前記被検査部位の長さ方向の全体に亘って走査するように構成されたことを特徴とする、請求項1に記載の絶縁体内部の磁性金属異物検出装置。   2. The magnetic metal inside an insulator according to claim 1, wherein the magnetic field detection means is an additional coil and is configured to scan over the entire length of the region to be inspected. Foreign object detection device. 前記追加のコイルは同形状の第1のコイルと第2のコイルとを含み、これら第1のコイル及び第2のコイルを前記被検査部位の長さ方向において、その中心部から互いに逆向きに前記長さ方向の全体に亘って走査するように構成されたことを特徴とする、請求項2に記載の絶縁体内部の磁性金属異物検出装置。   The additional coil includes a first coil and a second coil having the same shape, and the first coil and the second coil are opposite to each other in the length direction of the region to be examined from the central portion thereof. The apparatus for detecting a magnetic metal foreign substance inside an insulator according to claim 2, wherein the apparatus is configured to scan over the entire length direction. 前記磁界検知手段は磁気センサであって、前記被検査部位の長さ方向の全体に亘って走査するように構成されたことを特徴とする、請求項1に記載の絶縁体内部の磁性金属異物検出装置。   2. The magnetic metal foreign matter inside an insulator according to claim 1, wherein the magnetic field detection means is a magnetic sensor and is configured to scan over the entire length direction of the inspection site. Detection device. 前記磁界検知手段は複数の磁気センサであって、前記被検査部位の長さ方向の全体に亘って配設されたことを特徴とする、請求項1に記載の絶縁体内部の磁性金属異物検出装置。   2. The magnetic metal foreign object detection in an insulator according to claim 1, wherein the magnetic field detection means is a plurality of magnetic sensors and is arranged over the entire length direction of the part to be inspected. apparatus. 磁性金属異物及び非磁性金属部位を含む絶縁体からなる被検査物の被検査部位を覆うようにしてコイルを配設し、当該コイルに対して直流電源から直流電流を供給することにより、前記コイルから所定の直流磁界を発生させ、当該直流磁界を前記被検査部位に対して印加するステップと、
前記被検査部位と前記コイルとの間に磁界検知装置を配設し、前記被検査部位に前記磁性金属異物が含まれることに起因して変化する前記直流磁界の分布状態を検知するステップと、
を具えることを特徴とする、絶縁体内部の磁性金属異物検出方法。
A coil is disposed so as to cover a portion to be inspected of an inspection object made of an insulator including a magnetic metal foreign matter and a non-magnetic metal portion, and a DC current is supplied to the coil from a DC power source, whereby the coil Generating a predetermined DC magnetic field from and applying the DC magnetic field to the site to be inspected;
Disposing a magnetic field detection device between the inspected part and the coil, and detecting a distribution state of the DC magnetic field that changes due to the magnetic metal foreign matter being included in the inspected part;
A magnetic metal foreign object detection method inside an insulator, comprising:
前記磁界検知手段は追加のコイルであって、前記被検査部位の長さ方向の全体に亘って走査することを特徴とする、請求項6に記載の絶縁体内部の磁性金属異物検出方法。   7. The magnetic metal foreign matter detection method in an insulator according to claim 6, wherein the magnetic field detection means is an additional coil, and scans the entire length of the region to be inspected. 前記追加のコイルは同形状の第1のコイルと第2のコイルとを含み、これら第1のコイル及び第2のコイルを前記被検査部位の長さ方向において、その中心部から互いに逆向きに前記長さ方向の全体に亘って走査することを特徴とする、請求項6に記載の絶縁体内部の磁性金属異物検出方法。   The additional coil includes a first coil and a second coil having the same shape, and the first coil and the second coil are opposite to each other in the length direction of the region to be examined from the central portion thereof. The method according to claim 6, wherein scanning is performed over the entire length direction. 前記磁界検知手段は磁気センサであって、前記被検査部位の長さ方向の全体に亘って走査することを特徴とする、請求項6に記載の絶縁体内部の磁性金属異物検出方法。   7. The magnetic metal foreign matter detection method in an insulator according to claim 6, wherein the magnetic field detection means is a magnetic sensor, and scans the entire length of the region to be inspected. 前記磁界検知手段は複数の磁気センサであって、前記被検査部位の長さ方向の全体に亘って配設することを特徴とする、請求項6に記載の絶縁体内部の磁性金属異物検出方法。   7. The magnetic metal foreign object detection method in an insulator according to claim 6, wherein the magnetic field detection means is a plurality of magnetic sensors and is disposed over the entire length direction of the inspected part. . 前記磁性金属異物の検出は、前記直流磁界の前記被検査部位の幅方向の磁界成分の分布状態を検知することによって行うことを特徴とする、請求項6〜10のいずれか一に記載の磁性金属異物検出方法。   The magnetic metal foreign object is detected by detecting a distribution state of a magnetic field component of the DC magnetic field in a width direction of the site to be inspected, according to claim 6. Metal foreign matter detection method.
JP2013183835A 2013-09-05 2013-09-05 Detector and detection method of magnetic metal foreign-matter in insulator Pending JP2015052457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183835A JP2015052457A (en) 2013-09-05 2013-09-05 Detector and detection method of magnetic metal foreign-matter in insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183835A JP2015052457A (en) 2013-09-05 2013-09-05 Detector and detection method of magnetic metal foreign-matter in insulator

Publications (1)

Publication Number Publication Date
JP2015052457A true JP2015052457A (en) 2015-03-19

Family

ID=52701603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183835A Pending JP2015052457A (en) 2013-09-05 2013-09-05 Detector and detection method of magnetic metal foreign-matter in insulator

Country Status (1)

Country Link
JP (1) JP2015052457A (en)

Similar Documents

Publication Publication Date Title
JP2013205024A (en) Detector for non-destructive examination employing alternating field
JPH01203965A (en) Inspector for material to be inspected made of non-ferromagnetic metal
KR20120091724A (en) Device for detecting lf and lma of wire rope
KR20170120167A (en) Rope damage diagnosis test equipment and rope damage diagnosis test method
KR20150048141A (en) Eddy current flaw detection probe and eddy current flaw inspection apparatus
JPS6132619B2 (en)
US11391697B2 (en) Magnetic body inspection device and magnetic body inspection method
JP2010014659A (en) Flaw detector of wire rope
JP6452880B1 (en) Method and apparatus for inspecting flaws or defects in tubular body
KR101609186B1 (en) Multi directional electromagnetic yoke for inspection of bores
JP2011117872A (en) Eddy current flaw detection probe, and eddy current flaw detection testing apparatus using the same
WO2015190414A1 (en) Nondestructive inspection device
JP4432476B2 (en) Wire rope breakage detector
Brahim et al. Ultrasensitive lightweight magnetic probe for non-destructive inspection of high-voltage overhead lines
CN103439405B (en) Iron core and ferrite core synthesize multifunction electric magnetic measurement sensor and detection method thereof
JP5428006B2 (en) Magnetic foreign matter detector
JP2015052457A (en) Detector and detection method of magnetic metal foreign-matter in insulator
US10151729B2 (en) Apparatus and method for detection of imperfections by detecting changes in flux of a magnetized body
JP2016102660A (en) Apparatus and method for detecting magnetic metal foreign object within insulator
JP6170081B2 (en) Magnetizer for steel pipe, magnetic particle flaw detector
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
JP2008232745A (en) Iron piece detector
Roy et al. A novel E-shaped coil for eddy current testing
GB2466849A (en) Defect detection using magnetic field and particles
JP3223991U (en) Nondestructive inspection equipment