JP2015052144A - Oriented electromagnetic steel sheet for transformer iron core and manufacturing method thereof - Google Patents

Oriented electromagnetic steel sheet for transformer iron core and manufacturing method thereof Download PDF

Info

Publication number
JP2015052144A
JP2015052144A JP2013185532A JP2013185532A JP2015052144A JP 2015052144 A JP2015052144 A JP 2015052144A JP 2013185532 A JP2013185532 A JP 2013185532A JP 2013185532 A JP2013185532 A JP 2013185532A JP 2015052144 A JP2015052144 A JP 2015052144A
Authority
JP
Japan
Prior art keywords
steel sheet
magnetic domain
width
electrical steel
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013185532A
Other languages
Japanese (ja)
Other versions
JP6160376B2 (en
Inventor
重宏 ▲高▼城
重宏 ▲高▼城
Shigehiro Takagi
花澤 和浩
Kazuhiro Hanazawa
和浩 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013185532A priority Critical patent/JP6160376B2/en
Publication of JP2015052144A publication Critical patent/JP2015052144A/en
Application granted granted Critical
Publication of JP6160376B2 publication Critical patent/JP6160376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oriented electromagnetic steel sheet applied to a magnetic domain subdivision treatment by an electron beam, excellent in iron loss and capable of reducing noise when made to a transformer because magnetostriction is small and variation of magnetostriction in a coil is also small.SOLUTION: A reflux magnetic domain area is formed to a direction across a rolling direction of the steel sheet and in a position which does not overlap an irradiated position without deflecting an electron beam to a steel sheet rolling direction, while making the reflux magnetic domain area continuous with length: 200 mm or more, and a width of the reflux magnetic domain area: d(μm) satisfy 0.8d≤d≤1.2dwhere d(μm): an average value of the width of the reflux magnetic domain area in the direction across the rolling direction is set.

Description

本発明は、変圧器鉄心などの用途に供される方向性電磁鋼板であって、磁区細分化処理が施されて鉄損に優れると共に、コイル内での磁性、特に透磁率のばらつきが小さいため、変圧器に組んだ後の低鉄損化に有利な方向性電磁鋼板とその製造方法に関するものである。   The present invention is a grain-oriented electrical steel sheet that is used for applications such as transformer cores, and is subjected to magnetic domain subdivision processing and is excellent in iron loss, and also has a small variation in magnetism, particularly permeability, in a coil. The present invention relates to a grain-oriented electrical steel sheet that is advantageous for reducing iron loss after being assembled in a transformer, and a method for manufacturing the grain-oriented electrical steel sheet.

変圧器使用における主要課題は、1.エネルギ使用効率改善、2.ノイズ低減である。ここで、変圧器で生じるエネルギ損失としては、主に導線に生じる銅損と、鉄心に生じる鉄損とがある。このうち、鉄損は、方向性電磁鋼板の結晶方位先鋭化や被膜張力増大などによって大きく改善されてきた。例えば、特許文献1には、最終冷延前の焼鈍条件を適正化することによって、磁束密度と鉄損に優れた方向性電磁鋼板を製造する方法が示されている。   The main issues in using transformers are: 1. Improvement of energy usage efficiency Noise reduction. Here, the energy loss that occurs in the transformer mainly includes copper loss that occurs in the conductor and iron loss that occurs in the iron core. Among these, the iron loss has been greatly improved by sharpening the crystal orientation of the grain-oriented electrical steel sheet or increasing the film tension. For example, Patent Document 1 discloses a method of manufacturing a grain-oriented electrical steel sheet having excellent magnetic flux density and iron loss by optimizing the annealing conditions before final cold rolling.

さらに、近年においては、最終焼鈍後に、プラズマ炎やレーザ等を照射することによって、鉄損を劇的に改善する技術が確立されている。
例えば、特許文献2には、2次再結晶後の鋼板に対してプラズマアークを照射することにより、照射前には0.80W/kg以上あった鉄損W17/50を、0.65W/kg以下に低減する技術が示されている。また、特許文献3には、電子ビーム照射によって鋼板面に形成された磁区不連続部の平均幅と、被膜厚とを適正化することによって、鉄損が低く、騒音が小さいトランス用素材を得る技術が示されている。
Furthermore, in recent years, a technique has been established that dramatically improves iron loss by irradiating a plasma flame or laser after the final annealing.
For example, in Patent Document 2, the iron loss W 17/50 that was 0.80 W / kg or more before irradiation is 0.65 W / kg or less by irradiating a plasma arc to the steel sheet after secondary recrystallization. The technique to reduce is shown. In Patent Document 3, a transformer material with low iron loss and low noise is obtained by optimizing the average width and film thickness of magnetic domain discontinuities formed on the steel plate surface by electron beam irradiation. Technology is shown.

ここで、変圧器の騒音には、鉄心の磁歪、接合部の電磁振動および筐体の共振が影響するとされている(非特許文献1および特許文献4参照)。このうち磁歪は、方向性電磁鋼板の磁区構造を由来としており、ランセット磁区と呼ばれる励磁方向以外の方向を向いた磁区(補助磁区の一種)が励磁方向の磁歪原因とされていて、磁歪低減のためには、被膜張力増大によって補助磁区を可能な限り低減する方法が有効であると言われている。   Here, it is assumed that the magnetostriction of the iron core, the electromagnetic vibration of the joint, and the resonance of the housing affect the noise of the transformer (see Non-Patent Document 1 and Patent Document 4). Among these, magnetostriction is derived from the domain structure of grain-oriented electrical steel sheets, and the domain (or type of auxiliary domain) that faces in a direction other than the excitation direction called a lancet magnetic domain is the cause of magnetostriction in the excitation direction. Therefore, it is said that a method of reducing the auxiliary magnetic domain as much as possible by increasing the film tension is effective.

また、ランセット磁区のような補助磁区は、レーザなどで熱歪みを導入した部分にも存在する(以下、還流磁区という)ことが知られている。興味深いことに、両者の励磁における磁化挙動は異なっていて、ランセット磁区は励磁に伴って増大する一方で、還流磁区は消失する傾向にある。従って、両者のバランスをとることで、磁歪を極限まで低減することが可能であると言われている(非特許文献2参照)。   In addition, it is known that auxiliary magnetic domains such as lancet magnetic domains also exist in portions where thermal strain is introduced by a laser or the like (hereinafter referred to as reflux magnetic domains). Interestingly, the magnetization behavior of the two is different, and the lancet domain increases with excitation, while the reflux domain tends to disappear. Therefore, it is said that the magnetostriction can be reduced to the limit by balancing the two (see Non-Patent Document 2).

なお、レーザ照射した方向性電磁鋼板の低磁歪材およびその製造方法については、例えば、特許文献5や特許文献6などに示されている。   In addition, the low magnetostrictive material of the grain-oriented electrical steel sheet irradiated with laser and the manufacturing method thereof are disclosed in, for example, Patent Document 5 and Patent Document 6.

特開2012−1741号公報JP 2012-1741 A 特開2011−246782号公報JP 2011-246782 A 特開2012−52230号公報JP 2012-52230 A 特許第4840535号公報Japanese Patent No. 4840535 特許第4216488号公報Japanese Patent No. 4216488 特開2002−69594号公報JP 2002-69594 A 特開平4−264345号公報JP-A-4-264345 特開平2−118022号公報Japanese Patent Laid-Open No. 2-118022 特開平5−43944号公報Japanese Patent Laid-Open No. 5-43944 特公平6−21358号公報Japanese Patent Publication No. 6-21358

川崎製鉄技報Vol.29, No.3, p.164Kawasaki Steel Technical Report Vol.29, No.3, p.164 日本応用磁気学会誌Vol.25、No.12, p.1618Journal of Japan Society of Applied Magnetics Vol.25, No.12, p.1618

レーザや電子ビーム(以下、単にビームともいう)による局所的な歪みは、圧延方向を横切る方向(以下、幅方向ともいう)に対して、圧延方向に周期的に繰返し施すことで、磁歪を大きく変えることができるが、幅方向においては同一の品質が得られにくいという問題があった。特に、近年要求されている生産性向上の観点から、1000mmを超える幅の鋼板を、できるだけ少ない発振器や電子銃で処理しようとした場合には、レーザや電子ビームの照射幅が増大して、鋼板幅方向の品質の同一性保持はいっそう困難になる。   Local distortion caused by a laser or an electron beam (hereinafter also simply referred to as a beam) increases the magnetostriction by periodically and repeatedly applying it in the rolling direction with respect to the direction crossing the rolling direction (hereinafter also referred to as the width direction). Although it can be changed, there is a problem that it is difficult to obtain the same quality in the width direction. In particular, from the viewpoint of improving productivity that has been demanded in recent years, when trying to process a steel plate with a width exceeding 1000 mm with as few oscillators or electron guns as possible, the irradiation width of the laser or electron beam increases, and the steel plate It becomes more difficult to maintain the same quality in the width direction.

ここで、電子ビーム照射の場合は、電子ビームを偏向すればするほど電子ビーム径が増大し、偏向照射中心部と異なるビーム性状となってしまう。また、レーザ照射の場合は、偏向幅位置に応じて焦点距離を調整したレンズを設置することによって、ある程度の均一な歪み導入部が得られるものの、電子ビーム照射と同様に、図1に示すように、偏向の端部では鋼板に対し斜めにビームを入射するため、ビーム形状が多少歪む現象が生じる。また、レーザ照射の場合には、鋼板の反射率が変わることによる変動も無視できない。   Here, in the case of electron beam irradiation, as the electron beam is deflected, the diameter of the electron beam increases, resulting in a beam property different from that of the central portion of the deflection irradiation. Further, in the case of laser irradiation, a uniform distortion introducing portion can be obtained by installing a lens whose focal length is adjusted according to the deflection width position. However, as with electron beam irradiation, as shown in FIG. In addition, since the beam is obliquely incident on the steel plate at the deflection end, a phenomenon that the beam shape is somewhat distorted occurs. Moreover, in the case of laser irradiation, the fluctuation | variation by the reflectance of a steel plate changing cannot be disregarded.

このようなコイルの位置によって異なるビーム性状は、透磁率のばらつき要因になる。そして、特に透磁率のばらつきが大きい場合に、変圧器の鉄損が劣化する傾向を発明者らは見出したのである。
図2は、変圧器に組んだ方向性電磁鋼板単板の透磁率ばらつき:σが、ビルディングファクターにおよぼす影響を示したものである。ここで、ビルディングファクターとは、鉄心に組まれる前の方向性電磁鋼板単板時の鉄損に対する、鉄心に組んだ後の変圧器の鉄損の割合を示すものであり、以後B.F.と記す。
また、方向性電磁鋼板の単板の磁性ばらつきは、鉄心に組まれる直前の斜角剪断された試料20枚の中央部において測定したSST測定による透磁率μ17/50の標準偏差σ(H/m)とした。
さらに、変圧器鉄損は、ラボ実験用の三相三脚の積み鉄心型の変圧器を模擬したモデル変圧器を用いて評価を行った。モデル変圧器の外形は500mm角で、幅:100mmの鋼板20枚(4枚積層)で構成した。三相は120°位相をずらして励磁を行い、磁束密度:1.7Tにおいて、鉄損測定を行った。
図2中、丸2点は、いずれも単板平均鉄損:0.87W/kg、平均透磁率:0.040H/mのものを使って鉄心を作製し、また立て菱形2点は、いずれも単板平均鉄損:0.74W/kg、平均透磁率:0.022H/mのものを使って鉄心を作製した。
Such a beam property that varies depending on the position of the coil causes variation in magnetic permeability. The inventors have found that the iron loss of the transformer tends to deteriorate particularly when the variation in magnetic permeability is large.
FIG. 2 shows the effect of variation in permeability: σ of the grain-oriented electrical steel sheet assembled on the transformer on the building factor. Here, the building factor indicates the ratio of the iron loss of the transformer after being assembled to the iron core to the iron loss when the grain-oriented electrical steel sheet is single-sheeted before being assembled to the iron core, and is hereinafter referred to as BF.
In addition, the magnetic variation of a single sheet of grain- oriented electrical steel sheet is represented by the standard deviation σ (H / H) of the permeability μ 17/50 measured by SST measurement at the central part of 20 samples subjected to oblique shearing just before being assembled to the iron core. m).
Furthermore, transformer iron loss was evaluated using a model transformer simulating a three-phase tripod stacking iron core type transformer for laboratory experiments. The external shape of the model transformer is 500mm square, and it is composed of 20 steel plates (4 sheets laminated) with a width of 100mm. The three phases were excited by shifting the phase by 120 °, and the iron loss was measured at a magnetic flux density of 1.7T.
In Fig. 2, each of the two circles is an iron core made of a single plate with an average iron loss of 0.87 W / kg and an average permeability of 0.040 H / m. An iron core was manufactured using a plate average iron loss: 0.74 W / kg and an average permeability: 0.022 H / m.

以上の測定結果から、B.F.低減のためには、透磁率ばらつきを低減することが有効であることが明らかとなった。このメカニズムについて、現在のところ、透磁率が不均一であると、磁束は透磁率の高い部分を選択しながら流れるので、結果、磁路長が増大することになって、損失が増大するものと考えている。   From the above measurement results, it has been clarified that it is effective to reduce the magnetic permeability variation in order to reduce BF. As for this mechanism, if the magnetic permeability is not uniform at present, the magnetic flux flows while selecting a portion having a high magnetic permeability, and as a result, the magnetic path length increases and the loss increases. thinking.

電子ビーム照射において、偏向端部のビーム形状変化を抑制する方法としては、例えばスティングマトール(特許文献7参照)の導入、集束距離に応じたコイル電流調整(特許文献8、以下ダイナミックフォーカッシング技術)、デフォーカス照射する方法(特許文献9参照)、鋼板を湾曲矯正する方法(特許文献10参照)などが有効であることが知られている。   In electron beam irradiation, as a method of suppressing the beam shape change at the deflection end, for example, introduction of Sting Mator (see Patent Document 7), coil current adjustment according to the focusing distance (Patent Document 8, hereinafter dynamic focusing technique) ), A method of defocusing irradiation (see Patent Document 9), a method of correcting the curvature of a steel sheet (see Patent Document 10), and the like are known to be effective.

しかしながら、スティングマトール技術(特許文献7)は、ある1つの偏向状態において、ビーム形状を補正することができるものの、直線状に偏向走査させたすべての状態において補正できるものではなく、静的な使用に限定されている。   However, although the Sting-Mart technique (Patent Document 7) can correct the beam shape in a certain deflection state, it cannot be corrected in all the states in which deflection scanning is performed linearly. Limited to use.

また、偏向照射幅が増大すると、ダイナミックフォーカッシング技術(特許文献8)を適用したとしても、全幅均一なビームを作ることが困難である。というのは、偏向照射幅が大きい場合、偏向中心と端部でビーム径差が大きくなるため、特に偏向走査速度が大きい場合には、偏向照射中の短時間に収束コイル電流を大幅に変化させる必要があるが、コイルの固有インピーダンスの影響などによって急激な電流変化は物理的に困難だからである。   Further, when the deflection irradiation width is increased, it is difficult to produce a beam having a uniform width even when the dynamic focusing technique (Patent Document 8) is applied. This is because when the deflection irradiation width is large, the difference in beam diameter between the deflection center and the end becomes large. Therefore, particularly when the deflection scanning speed is large, the focusing coil current is greatly changed in a short time during the deflection irradiation. Although it is necessary, a sudden current change is physically difficult due to the influence of the intrinsic impedance of the coil.

さらに、特許文献9に示された方法は、ビームをデフォーカスするものであるため、磁気特性がばらつくおそれがある。また、ビーム径は、小さい方が鉄損低減に有利との従来知見がある。   Furthermore, since the method disclosed in Patent Document 9 defocuses the beam, the magnetic characteristics may vary. Further, there is a conventional knowledge that a smaller beam diameter is advantageous for reducing iron loss.

また、鋼板を湾曲矯正するという特許文献10に示された方法は、鋼板に歪みや割れが発生するリスクが増大するばかりでなく、複雑な設備導入が必要になるため、現実的な方法ではない。   Further, the method disclosed in Patent Document 10 for correcting the curvature of a steel sheet is not a realistic method because it not only increases the risk of distortion and cracking in the steel sheet, but also requires the introduction of complex equipment. .

本発明は、上記した現状に鑑み開発されたもので、電子ビームによる磁区細分化処理が施された方向性電磁鋼板であって、鉄損に優れると共に、磁歪が小さくかつコイル内での磁歪ばらつきも小さいため、変圧器としたときの騒音を低くすることができる方向性電磁鋼板を、その製造方法と共に提案することを目的とする。   The present invention has been developed in view of the above-described situation, and is a grain-oriented electrical steel sheet that has been subjected to magnetic domain subdivision treatment with an electron beam, and has excellent iron loss, small magnetostriction, and magnetostriction variation within a coil. Therefore, it is an object of the present invention to propose a grain-oriented electrical steel sheet that can reduce noise when used as a transformer, together with its manufacturing method.

前掲した特許文献7〜10は、結局、偏向中心部と端部とで電子ビームの行路長:Δ(mm)が異なるために、フォーカスのされ方が異なるという考えに基づくものである。ここでΔ(mm)は、以下で表される。
Δ=WD×[{1+(L/(2WD))2}0.5−1]
WD(mm):偏向コイル中心から鋼板までの距離
The above-mentioned Patent Documents 7 to 10 are based on the idea that since the path length: Δ (mm) of the electron beam is different between the deflection center portion and the end portion, the way of focusing is different. Here, Δ (mm) is expressed as follows.
Δ = WD × [{1+ (L / (2WD)) 2 } 0.5 −1]
WD (mm): Distance from deflection coil center to steel plate

これに対して、発明者らは、電子ビームによる磁区細分化処理効果に及ぼす、ビーム偏向の影響について鋭意検討した。その結果、おどろくべきことに、偏向端部で生じるビーム径増大は行路長:Δ(mm)のみによって支配されるのではなく、偏向動作自体によってもたらされることを知見したのである。
それを傍証する実験結果を以下に示す。
On the other hand, the inventors diligently studied the influence of beam deflection on the magnetic domain fragmentation effect by the electron beam. As a result, it was surprisingly found that the increase in beam diameter occurring at the deflection end is not governed only by the path length: Δ (mm), but by the deflection operation itself.
The experimental results to prove this are shown below.

図3に示すように、収束コイル中心から鋼板までのビーム行路長が一定になるようにRD:320mm、TD:60mmの方向性電磁鋼板をTD方向に6枚並べて設置し、ビーム照射後の鉄損を調べた。その調査結果を図4に示すが、図4の結果によれば、鉄損は、偏向中心部(幅方向位置:180mm)近傍で最も低い値となって、行路長:Δ(=550mm)は同じであっても偏向量が増大するほど劣化していた。   As shown in Fig. 3, six directional magnetic steel sheets with RD: 320mm and TD: 60mm are placed side by side in the TD direction so that the beam path length from the center of the focusing coil to the steel sheet is constant. I examined the loss. FIG. 4 shows the result of the investigation. According to the result of FIG. 4, the iron loss is the lowest value near the deflection center (width direction position: 180 mm), and the path length: Δ (= 550 mm) is Even if they were the same, they deteriorated as the deflection amount increased.

ここに、偏向によって、ビームが不均一になる詳細なメカニズムを定量的に記述することは困難であるが、非点収差などの偏向収差の影響があるものと考えられる。   Here, it is difficult to quantitatively describe the detailed mechanism by which the beam becomes non-uniform due to deflection, but it is considered that there is an influence of deflection aberration such as astigmatism.

上記結果に基づき、発明者らは、幅方向に均一なビームとするためには、偏向量を抑制することが重要であるとの考えに到った。
図5に示すのは、電子線の偏向走査の様子である。従来の方法においては、電子銃から出た電子が偏向コイルによって幅方向にのみ偏向され、S1→P→E1のような照射が鋼板上で行われる。これに対して、発明者らは、電子ビームを圧延方向にも偏向させることによって、圧延方向にも幅方向にも偏向させない状態で電子ビームが鋼板に到達するビーム位置(図中P)を、走査領域外部とし、図中、点Qを偏向走査中心とすることを考え付いた。
ここでビーム偏向走査中の偏向角の変化量:η(deg.)を(最大偏向角-最小偏向角)、OP間距離をw(mm)、PQ間距離をR(mm)、偏向量(S1−E1間距離、S2−E2間距離)をL(mm)とすると、点S2(あるいはE2)における偏向角P−O−S2(P−O−E2)、すなわち最大偏向角は以下のように求められる。
∠P-O-S2=Cos−1 (w/(w2+R2+L2/4)0.5)
また、点Qにおける偏向角P−O−Qすなわち最小偏向角は以下のように求められる。
∠P-O-Q=Cos−1 (w/(w2+R2)0.5)
したがって、
η=Cos−1 (w/(w2+R2+L2/4)0.5)- Cos−1 (w/(w2+R2)0.5)
となる。
Based on the above results, the inventors have come to the idea that it is important to suppress the amount of deflection in order to obtain a uniform beam in the width direction.
FIG. 5 shows an electron beam deflection scan. In the conventional method, electrons emitted from the electron gun are deflected only in the width direction by the deflection coil, and irradiation such as S1 → P → E1 is performed on the steel plate. On the other hand, the inventors deflected the electron beam also in the rolling direction, so that the beam position (P in the figure) where the electron beam reaches the steel plate without being deflected in either the rolling direction or the width direction, It has been considered that the point Q is the center of deflection scanning in the figure outside the scanning region.
Here, the amount of change in deflection angle during beam deflection scanning: η (deg.) (Maximum deflection angle−minimum deflection angle), the distance between OPs is w (mm), the distance between PQs is R (mm), and the deflection amount ( When the distance between S1-E1 and the distance between S2-E2 is L (mm), the deflection angle P-O-S2 (PO-E2) at point S2 (or E2), that is, the maximum deflection angle is as follows. Is required.
∠PO-S2 = Cos -1 (w / (w 2 + R 2 + L 2/4) 0.5)
Further, the deflection angle P-O-Q at the point Q, that is, the minimum deflection angle is obtained as follows.
∠POQ = Cos −1 (w / (w 2 + R 2 ) 0.5 )
Therefore,
η = Cos -1 (w / ( w 2 + R 2 + L 2/4) 0.5) - Cos -1 (w / (w 2 + R 2) 0.5)
It becomes.

図6にw=600mm、L=200mmとして計算した、偏向角の変化量におよぼすPO間距離(シフト量)R(mm)の影響を示す。Rを増大するほど、偏向角の変化量は少なくてすむことが確認された。
これより、発明者らは、偏向走査中心位置を、圧延方向にも幅方向にも偏向させない状態で電子ビームが鋼板に到達するビーム位置(図中P)からシフトすることによって、偏向角の変動を抑制し、偏向走査領域内での磁性ばらつきを抑制できるのではないかと考えた。
FIG. 6 shows the influence of the PO distance (shift amount) R (mm) on the deflection angle variation calculated with w = 600 mm and L = 200 mm. It was confirmed that the amount of change in the deflection angle is smaller as R is increased.
From this, the inventors changed the deflection angle by shifting the deflection scanning center position from the beam position (P in the figure) where the electron beam reaches the steel plate in a state where the deflection scanning center position is not deflected in either the rolling direction or the width direction. It was thought that the magnetic variation in the deflection scanning region could be suppressed.

そこで、発明者らは、偏向角の変動を抑制し、還流磁区領域に諸条件を設けることによって、偏向走査領域内での磁性ばらつきを効果的に抑制できるものと考え、さらに詳細な実験を行い、本発明を完成させた。
本発明は上記知見に立脚するものである。
Therefore, the inventors considered that variation in the magnetic field in the deflection scanning region can be effectively suppressed by suppressing fluctuations in the deflection angle and providing various conditions in the return magnetic domain region, and conducted more detailed experiments. The present invention has been completed.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.圧延方向を横切る方向に対して形成され、かつ圧延方向に対して周期的に形成された還流磁区領域を有する方向性電磁鋼板において、
上記還流磁区領域は、長さが200mm以上で連続し、かつ該還流磁区領域の幅:d(μm)が、
0.8d≦d≦1.2d
(μm):還流磁区領域の幅の、上記圧延方向を横切る方向での平均値
である変圧器鉄心用方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. In the grain-oriented electrical steel sheet having a reflux domain region formed with respect to the direction crossing the rolling direction and periodically formed with respect to the rolling direction,
The return magnetic domain region is continuous at a length of 200 mm or more, and the width of the return magnetic domain region: d (μm)
0.8d 0 ≦ d ≦ 1.2d 0,
d 0 (μm): A grain-oriented electrical steel sheet for a transformer core, which is an average value in the direction across the rolling direction of the width of the reflux magnetic domain region.

2.前記還流磁区領域の幅:d(μm)が、還流磁区領域の幅の、前記圧延方向を横切る方向での平均値:d(μm)と、さらに
0.9d≦d≦1.1d
の関係を満足する前記1に記載の変圧器鉄心用方向性電磁鋼板。
2. The width of the reflux magnetic domain region: d (μm) is the average value of the width of the reflux magnetic domain region in the direction crossing the rolling direction: d 0 (μm),
0.9d 0 ≦ d ≦ 1.1d 0 ,
2. The grain-oriented electrical steel sheet for transformer cores according to 1 above, which satisfies the above relationship.

3.前記の圧延方向に対して周期的に形成された複数の還流磁区領域からなる還流磁区群が、試料全幅にn(≧1)個存在する方向性電磁鋼板において、i番目の還流磁区群における、1つの還流磁区領域の長さをYi(i=1〜n)(mm)とし、コイル全幅をZ(mm)、上記還流磁区が圧延方向を横切る方向と圧延直角方向の傾角をθ(deg.)としたとき、
1.05Z≧Σ(i=1〜n)Yi×cosθ≧Z
の関係を満足する前記1または2に記載の変圧器鉄心用方向性電磁鋼板。
3. In a grain-oriented electrical steel sheet in which n (≧ 1) number of reflux magnetic domain groups formed of a plurality of reflux magnetic domain regions periodically formed with respect to the rolling direction are present in the i-th reflux magnetic domain group, The length of one reflux magnetic domain region is Yi (i = 1 to n) (mm), the entire coil width is Z (mm), and the tilt angle between the direction in which the reflux magnetic domain crosses the rolling direction and the direction perpendicular to the rolling is θ (deg. )
1.05Z ≧ Σ (i = 1 to n) Yi × cos θ ≧ Z
3. The grain-oriented electrical steel sheet for transformer cores according to 1 or 2, which satisfies the above relationship.

4.前記還流磁区領域の圧延方向の周期的間隔が鋼板の平均結晶粒径以下である前記1〜3の何れかに記載の変圧器鉄心用方向性電磁鋼板。 4). The directional electrical steel sheet for transformer cores according to any one of 1 to 3, wherein a periodic interval in the rolling direction of the reflux magnetic domain region is equal to or less than an average crystal grain size of the steel sheet.

5.前記1〜4の何れかに記載の変圧器鉄心用方向性電磁鋼板を製造する方法であって、還流磁区の導入が、電子ビームを常時、圧延方向に偏向させた状態で、鋼板幅方向へ偏向走査させるものである変圧器鉄心用方向性電磁鋼板の製造方法。 5. 5. A method for producing a directional electrical steel sheet for a transformer core according to any one of 1 to 4 above, wherein the introduction of the reflux magnetic domain is in a state where the electron beam is always deflected in the rolling direction, in the steel sheet width direction. A method for producing a directional electrical steel sheet for a transformer core, which is deflected and scanned.

6.前記電子ビームの偏向走査において、以下の式(1)で表される偏向角変動量:η(deg.)を、8(deg.)以下とする前記5に記載の変圧器鉄心用方向性電磁鋼板の製造方法。
η=Cos−1(w/(w2+R2+L2/4)0.5)−Cos−1(w/(w2+R2)0.5)・・・(1)
但し、w(mm):偏向コイル中心と鋼板との距離、R(mm):シフト量、L(mm):偏向量である
6). 6. In the deflection scanning of the electron beam, the directional electromagnetic wave for a transformer core as described in 5 above, wherein a deflection angle fluctuation amount represented by the following formula (1): η (deg.) Is 8 (deg.) Or less. A method of manufacturing a steel sheet.
η = Cos -1 (w / ( w 2 + R 2 + L 2/4) 0.5) -Cos -1 (w / (w 2 + R 2) 0.5) ··· (1)
Where w (mm) is the distance between the center of the deflection coil and the steel plate, R (mm) is the shift amount, and L (mm) is the deflection amount.

7.前記電子ビームの電子銃の加速電圧が40kV以上300kV以下である前記5または6に記載の変圧器鉄心用方向性電磁鋼板の製造方法。 7). 7. The method for producing a directional electrical steel sheet for a transformer core according to 5 or 6, wherein an acceleration voltage of the electron gun of the electron beam is 40 kV or more and 300 kV or less.

8.前記電子ビームの圧延方向の走査間隔を、鋼板の平均結晶粒径以下とする前記5〜7の何れかに記載の変圧器鉄心用方向性電磁鋼板の製造方法。 8). 8. The method for producing a directional electrical steel sheet for a transformer core according to any one of 5 to 7, wherein a scanning interval in the rolling direction of the electron beam is equal to or less than an average crystal grain size of the steel sheet.

本発明によれば、幅方向に均一なビームを用いて方向性電磁鋼板を加工することができるため、コイル全体で均一な磁気特性とすることができるだけでなく、変圧器鉄心として使用した場合の鉄損を抑制することができるため、変圧器の使用エネルギ効率が向上し、産業上有用である。   According to the present invention, the grain-oriented electrical steel sheet can be processed using a uniform beam in the width direction, so that not only can the magnetic properties be uniform throughout the coil, but also when used as a transformer core. Since iron loss can be suppressed, the energy use efficiency of the transformer is improved, which is industrially useful.

収束レンズを通した電子ビームの偏向の端部の様子を示した図である。It is the figure which showed the mode of the edge part of the deflection | deviation of the electron beam which passed through the convergence lens. 変圧器に組んだ方向性電磁鋼板単板の透磁率ばらつき:σが、ビルディングファクターにおよぼす影響を示した図である。It is the figure which showed the influence which the magnetic permeability dispersion | variation: (sigma) of the grain-oriented electrical steel sheet assembled in a transformer has on a building factor. 収束コイルから鋼板までのビーム行路長が一定になるように方向性電磁鋼板を並べたことを説明する図である。It is a figure explaining having arranged the directional electromagnetic steel plate so that the beam path length from a convergence coil to a steel plate may become fixed. 図3に示した並びにおけるビーム照射後の鋼板の鉄損を調べた結果を示す図である。It is a figure which shows the result of having investigated the iron loss of the steel plate after the beam irradiation in the arrangement | sequence shown in FIG. 電子線の偏向走査の様子を示した図である。It is the figure which showed the mode of deflection scanning of an electron beam. シフト量:Rと偏向角変動量:ηとの関係を示した図である。It is the figure which showed the relationship between shift amount: R and deflection angle variation | change_quantity: (eta). 試料に電子ビームを照射する要領を示した図である。It is the figure which showed the point which irradiates an electron beam to a sample. 還流磁区幅変化率と透磁率変化率との関係を示した図である。It is the figure which showed the relationship between a return magnetic domain width change rate and a magnetic permeability change rate. 偏向角変動量:ηと磁性ばらつき:σとの関係を示した図である。It is the figure which showed the relationship between deflection angle variation | change_quantity: (eta) and magnetic variation: (sigma). 磁性ばらつき:σとビルディングファクター:B.F.との関係を示した図である。It is the figure which showed the relationship between magnetic variation: (sigma) and building factor: BF.

以下、本発明を具体的に説明する。
本発明は、電子ビーム照射を行う方向性電磁鋼板について、コイル全幅における鉄損と鉄損ばらつき、さらには磁歪と磁歪ばらつきを低減するものである。
以下、本発明にかかる種々の条件の限定理由を述べる。
Hereinafter, the present invention will be specifically described.
The present invention is intended to reduce iron loss and iron loss variation, and magnetostriction and magnetostriction variation in the entire width of the coil for the grain-oriented electrical steel sheet that performs electron beam irradiation.
Hereinafter, reasons for limiting various conditions according to the present invention will be described.

還流磁区の幅d(mm):試料全幅にて0.8d≦d≦1.2d、0.9d≦d≦1.1d
(mm):還流磁区領域の幅の、鋼板圧延方向を横切る方向での平均値
方向性電磁鋼板にレーザや電子ビームを照射すると、主磁区とは異なる磁区(以下、還流磁区)が形成される。還流磁区は、レーザ・電子ビームの走査線上に沿って生じるが、これと直角の方向に広がっている幅をd(mm)とする。偏向走査したビーム性状が均一でない場合、特にビーム径が変化する場合には、鋼板への入射エネルギ密度が変わるため、dが幅方向で不均一になる。
まず発明者らは、透磁率におよぼす還流磁区幅の影響を調べた。図7に示すように、RD:320mm、TD:30mmの方向性電磁鋼板を、その偏向走査の幅方向中心と圧延方向にも幅方向にも偏向させない状態で電子ビームが鋼板に到達するビーム位置(図中P)との最短距離fが変わるように置き、電子ビームを幅方向に平行に線間隔を5mmとして照射して、照射後の磁気特性を調べた。ここで、照射前の試料は全て同等の磁性(B、W17/50、μ17/50)のものを選んだ。図8に、透磁率の変化率(f=0となるように設置した試料の透磁率に対する、f≠0となるようにfを変化させて設置した試料の透磁率の変化率)におよぼす還流磁区幅変化率(f=0となるように設置した試料の試料幅方向中心部の還流磁区幅に対する、f≠0となるようにfを変化させて設置した試料の試料幅方向中心部の還流磁区幅の変化率)の影響を示す。
これより、還流磁区幅の変化率が、20%以下であれば透磁率の変化率を10%以下に、さらに10%以下であれば透磁率の変化率を5%以下と極めて小さくできることがわかった。従って、還流磁区の幅:d(mm)は、試料全幅にて0.8d≦d≦1.2dとすることが、肝要であって、0.9d≦d≦1.1dとすることが好ましい。
なお、還流磁区幅の、鋼板圧延方向を横切る方向での平均値:dは、図5における点Qを偏向走査中心とした照射の例では、E2〜S2方向での還流磁区幅の平均値となる。そして、E2〜S2方向でのそれぞれの位置での還流磁区幅dを、そのdに対して上記の範囲とすることが肝要となる。また、還流磁区は、結晶方位によって観察しにくいことがあるので、Goss方位の潜り角βが2、3°程度となる場所でdを測るのが良い。
The width of closure domains d (mm): 0.8d in Samples entire width 0 ≦ d ≦ 1.2d 0, 0.9d 0 ≦ d ≦ 1.1d 0,
d 0 (mm): Average value of the width of the reflux magnetic domain in the direction transverse to the rolling direction of the steel sheet When a directional electromagnetic steel sheet is irradiated with a laser or an electron beam, a magnetic domain different from the main magnetic domain (hereinafter referred to as the reflux magnetic domain) is formed. Is done. The reflux magnetic domain occurs along the scanning line of the laser / electron beam, and the width spreading in the direction perpendicular to this is d (mm). When the beam properties subjected to deflection scanning are not uniform, particularly when the beam diameter changes, the incident energy density to the steel plate changes, and therefore d is not uniform in the width direction.
First, the inventors examined the influence of the reflux domain width on the magnetic permeability. As shown in FIG. 7, the beam position at which the electron beam reaches the steel sheet in the state where the directional electromagnetic steel sheet of RD: 320 mm and TD: 30 mm is not deflected in the width direction center of the deflection scan and in the rolling direction and the width direction. The shortest distance f with respect to (P in the figure) was changed, and an electron beam was irradiated parallel to the width direction with a line interval of 5 mm, and the magnetic characteristics after irradiation were examined. Here, the samples before irradiation were all selected to have the same magnetism (B 8 , W 17/50 , μ 17/50 ). FIG. 8 shows a reflux effect on the magnetic permeability change rate (the change rate of the magnetic permeability of the sample installed by changing f so that f ≠ 0 with respect to the magnetic permeability of the sample installed so that f = 0). Percentage change in magnetic domain width (return of sample center in the sample width direction of the sample installed by changing f so that f ≠ 0 with respect to the reflux domain width of the sample center in the sample width direction of the sample installed so that f = 0 This shows the influence of the change rate of the magnetic domain width.
From this, it can be seen that if the rate of change of the reflux magnetic domain width is 20% or less, the rate of change of magnetic permeability can be reduced to 10% or less, and if the rate of change is 10% or less, the rate of change of magnetic permeability can be extremely small to 5% or less. It was. Thus, closure domain width: d (mm) is be a 0.8d 0 ≦ d ≦ 1.2d 0 at sample full width, a essential, it is preferable to 0.9d 0 ≦ d ≦ 1.1d 0 .
The average value of the reflux magnetic domain width in the direction transverse to the rolling direction of the steel sheet: d 0 is the average value of the reflux magnetic domain width in the E2 to S2 directions in the example of irradiation with the point Q in FIG. It becomes. Then, a reflux magnetic domain width d at the respective position in the E2~S2 direction, it is important to the above range with respect to the d 0. In addition, since the reflux magnetic domain may be difficult to observe depending on the crystal orientation, it is preferable to measure d at a place where the Goss orientation divergence angle β is about 2 or 3 °.

1つの連続した還流磁区の長さ:X≧200mm:
Xは、電子ビームの鋼板上走査長さとほぼ一致する。走査長さが小さい場合には、偏向角が小さくビーム性状の変化が小さいことから、本発明効果が小さくなるため、後述する実施例で効果が認められた200mm以上の範囲で、鋼板に対して連続して付与されるものとする。
Length of one continuous reflux domain: X ≧ 200mm:
X substantially coincides with the scanning length of the electron beam on the steel plate. When the scanning length is small, the deflection angle is small and the change in the beam property is small, so the effect of the present invention is small, and in the range of 200 mm or more where the effect was recognized in the examples described later, It shall be given continuously.

1.05Z≧Σ(i=1〜n)Yi×cosθ≧Z
Yi(i=1〜n)(mm):i番目の還流磁区群における、1つの還流磁区領域の長さ、Z(mm):試料(鋼板コイル)幅、θ(deg.):上記還流磁区が圧延方向を横切る方向と圧延直角方向の傾角、
上記関係式は、還流磁区の総長と試料幅の関係について制限を加えたものである。試料幅に対して、還流磁区幅の総長が小さい場合は、鋼板の幅方向で磁区細分化が不十分となる領域があることを意味しているから、幅方向で磁性ばらつきが生じる要因となる。一方、過度に大きい場合には、重複領域が出現することを意味しているが、重複領域は歪みが過度に導入されており、そうでない部分とやや磁性が異なることから、重複領域は少ないほうが良く、具体的には5%以内とする。従って、1.05Z≧Σ(i=1〜n)Yi×cosθ≧Zなる関係式を満足することが好ましい。なお、以下、b=Σ(i=1〜n)Yi×cosθとする。
1.05Z ≧ Σ (i = 1 to n) Yi × cos θ ≧ Z
Yi (i = 1 to n) (mm): length of one reflux domain in the i-th reflux domain group, Z (mm): sample (steel plate coil) width, θ (deg.): The reflux domain The inclination of the direction transverse to the rolling direction and the direction perpendicular to the rolling direction,
The above relational expression is a limitation on the relationship between the total length of the reflux magnetic domains and the sample width. When the total length of the reflux magnetic domain width is smaller than the sample width, it means that there is a region where the magnetic domain subdivision is insufficient in the width direction of the steel sheet, which causes a magnetic variation in the width direction. . On the other hand, if it is excessively large, it means that an overlapping area appears, but since the overlapping area is introduced with excessive distortion and slightly different in magnetism from the other parts, the overlapping area should be smaller. More specifically, it should be within 5%. Therefore, it is preferable that the relational expression 1.05Z ≧ Σ (i = 1 to n) Yi × cos θ ≧ Z is satisfied. Hereinafter, it is assumed that b = Σ (i = 1 to n) Yi × cos θ.

η≦8 (deg.)
偏向角の差が小さいほど、幅方向のビームの均一性が増す。具体的には、後述する実施例に基づき、8deg.以下であるとビームの均一性は格段に向上する。
前述したように、ηは、以下の式で表される。
η=Cos−1 (w/(w2+R2+L2/4)0.5)- Cos−1 (w/(w2+R2)0.5)
また、図6に示したように、Rを増大するほど、偏向角の変化量は少なくてすむことが確認されている。
これより、発明者らは、鋼板上の偏向走査中心位置を圧延方向にも幅方向にも偏向させない状態で電子ビームが鋼板に到達するビーム位置(図5中Pで示される点)からシフトする、すなわちR≠0を満足することがビーム照射位置として重要であるとの結論に至った。従って、本発明では、上記還流磁区領域は、電子ビームを偏向せずに照射される位置と重ならない位置で形成されたものとすることが重要である。
η ≦ 8 (deg.)
The smaller the deflection angle difference, the more uniform the beam in the width direction. Specifically, the uniformity of the beam is remarkably improved when it is 8 deg. Or less based on an example described later.
As described above, η is expressed by the following equation.
η = Cos -1 (w / ( w 2 + R 2 + L 2/4) 0.5) - Cos -1 (w / (w 2 + R 2) 0.5)
Further, as shown in FIG. 6, it has been confirmed that the amount of change in the deflection angle is smaller as R is increased.
Accordingly, the inventors shift from the beam position (point indicated by P in FIG. 5) where the electron beam reaches the steel plate in a state where the deflection scanning center position on the steel plate is not deflected in either the rolling direction or the width direction. That is, it was concluded that satisfying R ≠ 0 is important as the beam irradiation position. Therefore, in the present invention, it is important that the reflux magnetic domain region is formed at a position that does not overlap the position irradiated with the electron beam without being deflected.

電子ビームの発生条件としては、
加速電圧(Va):40〜300kV
同一加速電圧のもとでは、ビームの高速化に伴い、適正出力が増大して、低鉄損化に好ましくないビーム径の増大が生じるが、ビーム径増大の抑制には、高加速電圧化が最も有効である。ここに、Vaが40kV未満であると、ビーム径を絞ることが難しくなって鉄損低減効果が小さくなる一方で、Vaが300kV超であると、フィラメントなどの装置寿命が短くなるだけでなく、X線漏洩防止のために装置が過度に巨大化して、メンテナンス性・生産性が低下してしまう。
さらに加速電圧は、より高いほど物質を透過し、被膜での局所的なエネルギ集中を抑制することができるので、被膜の損傷を効果的に抑制するため、より好ましい範囲は、60〜200kVである。
The electron beam generation conditions are as follows:
Acceleration voltage (Va): 40-300kV
Under the same acceleration voltage, as the beam speed increases, the appropriate output increases, causing an increase in the beam diameter that is undesirable for lowering iron loss. Most effective. Here, if Va is less than 40 kV, it is difficult to reduce the beam diameter and the effect of reducing iron loss is reduced. On the other hand, if Va is more than 300 kV, not only the life of the device such as a filament is shortened, In order to prevent X-ray leakage, the apparatus becomes excessively large, and maintenance and productivity are reduced.
Furthermore, the higher the accelerating voltage is, the more the material can permeate and the local energy concentration in the film can be suppressed. Therefore, in order to effectively suppress the damage to the film, the more preferable range is 60 to 200 kV. .

RD線間隔:4〜30mm
電子ビームは、直線状あるいは点列状に鋼板の幅端部から、もう一方の幅端部へ照射し、これを圧延方向に周期的に繰返して行う。この繰返し間隔(RD線間隔、本発明では単に線間隔ともいう)は、4〜30mmであることが好ましい。線間隔が狭いと、鋼中に形成される歪領域が過度に大きくなって、鉄損(ヒステリシス損)と共に、磁気歪みも劣化するだけでなく、処理時間が増えるために、生産性が低下する。一方、線間隔が広すぎると、いくら深さ方向に還流磁区を拡大しても、磁区細分化効果が乏しくなって鉄損が改善しないからである。
RD line spacing: 4-30mm
The electron beam is radiated from the width end of the steel plate to the other width end in a straight line or a point sequence, and this is periodically repeated in the rolling direction. The repetition interval (RD line interval, also simply referred to as a line interval in the present invention) is preferably 4 to 30 mm. If the line spacing is narrow, the strain area formed in the steel becomes excessively large, and not only the iron loss (hysteresis loss) but also the magnetostriction deteriorates, and the processing time increases, so the productivity decreases. . On the other hand, if the line spacing is too wide, no matter how much the reflux magnetic domain is expanded in the depth direction, the magnetic domain refinement effect is poor and iron loss is not improved.

また、単一結晶粒内の磁区は、その結晶粒内に還流磁区が存在する場合に良く磁区細分化されることから、望ましくは、RD線間隔は素材の圧延方向平均結晶粒径よりも小さいことがのぞましい。なお、圧延方向の平均結晶粒径D(μm)は、i番目の結晶粒の圧延方向最大長さをDi、面積率をSiとして、D=Σ(i=1〜N)Si×Diと定義する。RD線間隔がDよりも大きい場合には、鉄損が十分に低くならないだけでなく、変圧器鉄損低減に有利とされる還流磁区の絶対量が減少するため、B.F.が比較的大きくなる。   In addition, since the magnetic domains in a single crystal grain are well subdivided when a reflux magnetic domain exists in the crystal grain, the RD line interval is desirably smaller than the average grain size in the rolling direction of the material. I want to see that. The average grain size D (μm) in the rolling direction is defined as D = Σ (i = 1 to N) Si × Di, where Di is the maximum length in the rolling direction of the i-th crystal grain and Si is the area ratio. To do. When the RD line interval is larger than D, not only the iron loss is not sufficiently reduced, but also the absolute amount of the return magnetic domain, which is advantageous for reducing the transformer iron loss, is reduced, so that BF is relatively large.

線角度:60°から120°
本発明では、鋼板の幅端部からもう一方の幅端部への直線状あるいは点列状の照射において、始点から終点に向かう照射方向は、圧延方向を横切れば問題はないが、圧延方向から60°から120°の方向とするのが好ましい。望ましくは90°である。90°から大きくずれると、歪み導入部の体積が過度に増大してしまうため、ヒステリシス損が劣化するからである。
Line angle: 60 ° to 120 °
In the present invention, the irradiation direction from the start point to the end point has no problem in the irradiation from the width end to the other width end of the steel plate, as long as it crosses the rolling direction. The direction is preferably from 60 ° to 120 °. 90 ° is desirable. This is because when the angle is greatly deviated from 90 °, the volume of the strain introduction portion is excessively increased, so that the hysteresis loss is deteriorated.

加工室圧力:3Pa以下
加工室圧力が3Paより高いと、電子銃から発生した電子が散乱されて、地鉄に還流磁区を形成するための電子のエネルギが減少するために、十分な磁区細分化がなされず、鉄損が改善しないおそれがあるので、加工室圧力は3Pa以下が好ましい。なお、加工室圧力の下限値は特に制限されないが、設備の過度な負担を考えると0.02Pa程度である。
Processing chamber pressure: 3 Pa or less When the processing chamber pressure is higher than 3 Pa, electrons generated from the electron gun are scattered and the energy of the electrons for forming the return magnetic domain in the ground iron is reduced. Therefore, the processing chamber pressure is preferably 3 Pa or less. The lower limit value of the processing chamber pressure is not particularly limited, but is about 0.02 Pa considering the excessive burden on the equipment.

電子線照射パタン:
電子ビームは、電子線を走査させて、通板される鋼板に直線状あるいは点列状に分布される歪を与えていく。このとき、歪を導入する電子線の平均走査速度は30m/s以上とするのが良い。走査速度が30m/sより小さいと、高い生産性を達成できない。より好ましくは、60m/s以上である。
Electron beam irradiation pattern:
The electron beam scans the electron beam to give a strain distributed in a straight line or a point sequence to the steel sheet to be passed. At this time, the average scanning speed of the electron beam for introducing strain is preferably 30 m / s or more. If the scanning speed is less than 30 m / s, high productivity cannot be achieved. More preferably, it is 60 m / s or more.

なお、本発明において、上述した工程や製造条件以外については、従来公知の電子ビーム照射方法および方向性電磁鋼板の製造方法を適宜使用することができる。   In addition, in this invention, conventionally well-known electron beam irradiation methods and the manufacturing method of grain-oriented electrical steel sheet can be used suitably except the process and manufacturing conditions mentioned above.

板厚:0.23mmのコイルを用いて磁区細分化処理を実施し、ついで、SST磁気測定を実施した。
SST磁気測定の試料は、各条件とも、圧延方向長さ:320mm×幅:100mmのサイズで、鋼板幅方向に10枚、圧延方向に7枚の計70枚切り出した。
また、磁区細分化処理の線角度は90°、加工室圧力は0.1Paとした。なお、試験No.14のもののみ、線間隔を平均結晶粒径よりも大きくした。
電子ビームの照射条件、SST磁気測定の結果およびB.F.をそれぞれ表1に記載する。
Magnetic domain refinement processing was performed using a coil having a thickness of 0.23 mm, and then SST magnetic measurement was performed.
Samples for SST magnetism measurement were cut in a length of 320 mm × width: 100 mm in each condition, and a total of 70 samples were cut out in the width direction of the steel plate and 10 in the rolling direction.
The linear angle of the magnetic domain refinement treatment was 90 °, and the processing chamber pressure was 0.1 Pa. In addition, Test No. For only 14, the line spacing was larger than the average grain size.
Table 1 shows the electron beam irradiation conditions, SST magnetic measurement results, and BF.

Figure 2015052144
Figure 2015052144

表1に示した結果を、図9および図10に併せて示す。
図9より、ηが8(deg.)以下で特に透磁率のばらつきが減少することが分かる。また、図10より、本実施例においても、透磁率のばらつきが小さいほど、B.F.が改善されていることが分かる。
The results shown in Table 1 are also shown in FIGS.
From FIG. 9, it can be seen that when η is 8 (deg.) Or less, variation in magnetic permeability is particularly reduced. FIG. 10 also shows that the BF is improved in the present embodiment as the variation in the magnetic permeability is smaller.

Claims (8)

圧延方向を横切る方向に対して形成され、かつ圧延方向に対して周期的に形成された還流磁区領域を有する方向性電磁鋼板において、
上記還流磁区領域は、長さが200mm以上で連続し、かつ該還流磁区領域の幅:d(μm)が、
0.8d≦d≦1.2d
(μm):還流磁区領域の幅の、上記圧延方向を横切る方向での平均値
である変圧器鉄心用方向性電磁鋼板。
In the grain-oriented electrical steel sheet having a reflux domain region formed with respect to the direction crossing the rolling direction and periodically formed with respect to the rolling direction,
The return magnetic domain region is continuous at a length of 200 mm or more, and the width of the return magnetic domain region: d (μm)
0.8d 0 ≦ d ≦ 1.2d 0,
d 0 (μm): A grain-oriented electrical steel sheet for a transformer core, which is an average value in the direction across the rolling direction of the width of the reflux magnetic domain region.
前記還流磁区領域の幅:d(μm)が、還流磁区領域の幅の、前記圧延方向を横切る方向での平均値:d(μm)と、さらに
0.9d≦d≦1.1d
の関係を満足する請求項1に記載の変圧器鉄心用方向性電磁鋼板。
The width of the reflux magnetic domain region: d (μm) is the average value of the width of the reflux magnetic domain region in the direction crossing the rolling direction: d 0 (μm),
0.9d 0 ≦ d ≦ 1.1d 0 ,
The grain-oriented electrical steel sheet for transformer cores of Claim 1 which satisfies the relationship of these.
前記の圧延方向に対して周期的に形成された複数の還流磁区領域からなる還流磁区群が、試料全幅にn(≧1)個存在する方向性電磁鋼板において、i番目の還流磁区群における、1つの還流磁区領域の長さをYi(i=1〜n)(mm)とし、コイル全幅をZ(mm)、上記還流磁区が圧延方向を横切る方向と圧延直角方向の傾角をθ(deg.)としたとき、
1.05Z≧Σ(i=1〜n)Yi×cosθ≧Z
の関係を満足する請求項1または2に記載の変圧器鉄心用方向性電磁鋼板。
In a grain-oriented electrical steel sheet in which n (≧ 1) number of reflux magnetic domain groups formed of a plurality of reflux magnetic domain regions periodically formed with respect to the rolling direction are present in the i-th reflux magnetic domain group, The length of one reflux magnetic domain region is Yi (i = 1 to n) (mm), the total coil width is Z (mm), and the tilt angle between the direction in which the reflux magnetic domain crosses the rolling direction and the direction perpendicular to the rolling is θ (deg. )
1.05Z ≧ Σ (i = 1 to n) Yi × cos θ ≧ Z
The grain-oriented electrical steel sheet for transformer cores of Claim 1 or 2 which satisfies the relationship of these.
前記還流磁区領域の圧延方向の周期的間隔が鋼板の平均結晶粒径以下である請求項1〜3の何れかに記載の変圧器鉄心用方向性電磁鋼板。   The directional electrical steel sheet for a transformer core according to any one of claims 1 to 3, wherein a periodic interval in the rolling direction of the reflux magnetic domain region is equal to or less than an average crystal grain size of the steel sheet. 請求項1〜4の何れかに記載の変圧器鉄心用方向性電磁鋼板を製造する方法であって、還流磁区の導入が、電子ビームを常時、圧延方向に偏向させた状態で、鋼板幅方向へ偏向走査させるものである変圧器鉄心用方向性電磁鋼板の製造方法。   A method for producing a directional electrical steel sheet for a transformer core according to any one of claims 1 to 4, wherein the introduction of the reflux magnetic domain is such that the electron beam is always deflected in the rolling direction, and the width direction of the steel sheet. Method for producing a directional electrical steel sheet for transformer cores that is deflected and scanned. 前記電子ビームの偏向走査において、以下の式(1)で表される偏向角変動量:η(deg.)を、8(deg.)以下とする請求項5に記載の変圧器鉄心用方向性電磁鋼板の製造方法。
η=Cos−1(w/(w2+R2+L2/4)0.5)−Cos−1(w/(w2+R2)0.5)・・・(1)
但し、w(mm):偏向コイル中心と鋼板との距離、R(mm):シフト量、L(mm):偏向量である
6. The directionality for a transformer core according to claim 5, wherein in the deflection scanning of the electron beam, the deflection angle fluctuation amount η (deg.) Represented by the following formula (1) is 8 (deg.) Or less. A method for producing electrical steel sheets.
η = Cos -1 (w / ( w 2 + R 2 + L 2/4) 0.5) -Cos -1 (w / (w 2 + R 2) 0.5) ··· (1)
Where w (mm) is the distance between the center of the deflection coil and the steel plate, R (mm) is the shift amount, and L (mm) is the deflection amount.
前記電子ビームの電子銃の加速電圧が40kV以上300kV以下である請求項5または6に記載の変圧器鉄心用方向性電磁鋼板の製造方法。   The method for producing a grain-oriented electrical steel sheet for a transformer core according to claim 5 or 6, wherein an acceleration voltage of the electron gun of the electron beam is 40 kV or more and 300 kV or less. 前記電子ビームの圧延方向の走査間隔を、鋼板の平均結晶粒径以下とする請求項5〜7の何れかに記載の変圧器鉄心用方向性電磁鋼板の製造方法。
The method for producing a grain-oriented electrical steel sheet for a transformer core according to any one of claims 5 to 7, wherein a scanning interval in the rolling direction of the electron beam is equal to or less than an average crystal grain size of the steel sheet.
JP2013185532A 2013-09-06 2013-09-06 Directional electrical steel sheet for transformer core and method of manufacturing the same Active JP6160376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185532A JP6160376B2 (en) 2013-09-06 2013-09-06 Directional electrical steel sheet for transformer core and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185532A JP6160376B2 (en) 2013-09-06 2013-09-06 Directional electrical steel sheet for transformer core and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017000262A Division JP2017106117A (en) 2017-01-04 2017-01-04 Oriented electromagnetic steel sheet for transformer iron core and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2015052144A true JP2015052144A (en) 2015-03-19
JP6160376B2 JP6160376B2 (en) 2017-07-12

Family

ID=52701365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185532A Active JP6160376B2 (en) 2013-09-06 2013-09-06 Directional electrical steel sheet for transformer core and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6160376B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159390A1 (en) * 2017-02-28 2018-09-07 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method therefor
CN111902894A (en) * 2018-03-30 2020-11-06 杰富意钢铁株式会社 Iron core for transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439852A (en) * 1990-06-05 1992-02-10 Kawasaki Steel Corp Electron beam irradiating method
JP2012036442A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Oriented electromagnetic steel plate
JP2012180543A (en) * 2011-02-28 2012-09-20 Jfe Steel Corp Method for improving core loss in grain-oriented electromagnetic steel sheet
WO2013094218A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439852A (en) * 1990-06-05 1992-02-10 Kawasaki Steel Corp Electron beam irradiating method
JP2012036442A (en) * 2010-08-06 2012-02-23 Jfe Steel Corp Oriented electromagnetic steel plate
JP2012180543A (en) * 2011-02-28 2012-09-20 Jfe Steel Corp Method for improving core loss in grain-oriented electromagnetic steel sheet
WO2013094218A1 (en) * 2011-12-22 2013-06-27 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet, and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159390A1 (en) * 2017-02-28 2018-09-07 Jfeスチール株式会社 Grain-oriented electrical steel sheet and production method therefor
JP6432713B1 (en) * 2017-02-28 2018-12-05 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN110352255A (en) * 2017-02-28 2019-10-18 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacturing method
RU2717034C1 (en) * 2017-02-28 2020-03-17 ДжФЕ СТИЛ КОРПОРЕЙШН Textured electrical steel sheet and method of its production
CN110352255B (en) * 2017-02-28 2021-09-21 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US11387025B2 (en) 2017-02-28 2022-07-12 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method therefor
CN111902894A (en) * 2018-03-30 2020-11-06 杰富意钢铁株式会社 Iron core for transformer
US11961659B2 (en) 2018-03-30 2024-04-16 Jfe Steel Corporation Iron core for transformer

Also Published As

Publication number Publication date
JP6160376B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6176282B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US10465259B2 (en) Grain-oriented electrical steel sheet and production method therefor
US10535453B2 (en) Grain-oriented electrical steel sheet and method for manufacturing the same
JP6169695B2 (en) Oriented electrical steel sheet
KR102292915B1 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
JP6160376B2 (en) Directional electrical steel sheet for transformer core and method of manufacturing the same
JP6015723B2 (en) Manufacturing method of grain-oriented electrical steel sheet for low noise transformer cores
JP2016166419A (en) Method for producing grain oriented silicon steel sheet
CN111886662A (en) Iron core for transformer
JP2017106117A (en) Oriented electromagnetic steel sheet for transformer iron core and manufacturing method therefor
JP5533415B2 (en) Electron beam irradiation method
JP5594440B1 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JPWO2020255552A1 (en) Directional electrical steel sheet and its manufacturing method
JP7287506B2 (en) Oriented electrical steel sheet
WO2021132378A1 (en) Grain-oriented electromagnetic steel sheet and production method therefor
JP5867126B2 (en) Iron loss improvement method and apparatus for grain-oriented electrical steel sheet
JP2013072094A (en) Method and apparatus for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R150 Certificate of patent or registration of utility model

Ref document number: 6160376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250