JP2015050935A - Power generation element - Google Patents
Power generation element Download PDFInfo
- Publication number
- JP2015050935A JP2015050935A JP2014190452A JP2014190452A JP2015050935A JP 2015050935 A JP2015050935 A JP 2015050935A JP 2014190452 A JP2014190452 A JP 2014190452A JP 2014190452 A JP2014190452 A JP 2014190452A JP 2015050935 A JP2015050935 A JP 2015050935A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- bridge portion
- electrode
- power generation
- weight body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 title claims description 283
- 238000006073 displacement reaction Methods 0.000 claims description 70
- 230000010287 polarization Effects 0.000 claims description 15
- 238000005452 bending Methods 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 8
- 239000003990 capacitor Substances 0.000 claims description 5
- 238000007667 floating Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 239000002699 waste material Substances 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 293
- 238000012986 modification Methods 0.000 description 38
- 230000004048 modification Effects 0.000 description 38
- 230000008602 contraction Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- 230000001133 acceleration Effects 0.000 description 14
- 238000009826 distribution Methods 0.000 description 13
- 238000013461 design Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 230000012447 hatching Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000009499 grossing Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 2
- 102220038239 rs145529594 Human genes 0.000 description 2
- 102200124760 rs587777729 Human genes 0.000 description 2
- 102220027134 rs63750555 Human genes 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
本発明は、発電素子に関し、特に、振動エネルギーを電気エネルギーに変換することにより発電を行う技術に関する。 The present invention relates to a power generation element, and more particularly to a technique for generating power by converting vibration energy into electric energy.
限られた資源を有効利用するために、様々な形態のエネルギーを電気エネルギーに変換して取り出す技術が提案されている。振動エネルギーを電気エネルギーに変換して取り出す技術もそのひとつであり、たとえば、下記の特許文献1には、層状の圧電素子を積層して発電用圧電素子を形成し、この発電用圧電素子を外力によって振動させて発電を行う圧電型の発電素子が開示されている。また、特許文献2には、シリコン基板を用いたMEMS(Micro Electro Mechanical System)構造の発電素子が開示されている。
In order to make effective use of limited resources, techniques for converting various forms of energy into electrical energy and taking them out have been proposed. One technique is to extract vibration energy by converting it into electrical energy. For example, in
これらの発電素子の基本原理は、重錘体の振動により圧電素子に周期的な撓みを生じさせ、圧電素子に加わる応力に基づいて生じる電荷を外部に取り出す、というものである。このような発電素子を、たとえば、自動車、列車、船舶などに搭載しておけば、輸送中に加わる振動エネルギーを電気エネルギーとして取り出すことが可能になる。また、冷蔵庫やエアコンといった振動源に取り付けて発電を行うことも可能である。 The basic principle of these power generation elements is to cause periodic bending of the piezoelectric element due to vibration of the weight body, and to extract the electric charge generated based on the stress applied to the piezoelectric element to the outside. If such a power generation element is mounted on, for example, an automobile, a train, a ship, etc., vibration energy applied during transportation can be taken out as electric energy. It is also possible to generate electricity by attaching it to a vibration source such as a refrigerator or an air conditioner.
従来提案されている一般的な発電素子は、一端を固定した片持ち梁によって重錘体を支持する構造を採り、この重錘体の上下振動によって橋梁部に周期的な撓みを生じさせ、この撓みを圧電素子に伝達して電荷を発生させる方式を採用している。このような方式では、重錘体を上下方向に振動させる振動エネルギーしか利用できないため、十分な発電効率を得ることは困難である。 Conventionally proposed general power generation elements adopt a structure in which a weight body is supported by a cantilever beam with one end fixed, and the vertical vibration of this weight body causes periodic bending in the bridge portion. A method of generating electric charges by transmitting the bending to the piezoelectric element is adopted. In such a system, it is difficult to obtain sufficient power generation efficiency because only vibration energy that vibrates the weight body in the vertical direction can be used.
たとえば、自動車、列車、船舶などの輸送機器では、運行中にランダムな方向から力が加わるため、このような輸送機器に搭載された発電素子の場合、重錘体の振動には様々な方向成分が含まれることになる。ところが上述した従来の発電素子では、これらの振動エネルギーのうち、特定の1軸方向成分しか変換に利用することができないため、電気エネルギーへの変換効率が悪く、発電効率を向上させることは困難である。 For example, in transportation equipment such as automobiles, trains, and ships, force is applied from a random direction during operation, so in the case of a power generation element mounted on such transportation equipment, various directional components are included in the vibration of the weight body. Will be included. However, in the conventional power generation element described above, only one specific axial component of these vibration energies can be used for conversion. Therefore, conversion efficiency to electric energy is poor, and it is difficult to improve power generation efficiency. is there.
そこで本発明は、様々な方向成分を含んだ振動エネルギーを無駄なく電気エネルギーに変換することにより、高い発電効率を得ることが可能な発電素子を提供することを目的とする。 Therefore, an object of the present invention is to provide a power generation element capable of obtaining high power generation efficiency by converting vibration energy containing various directional components into electric energy without waste.
(1) 本発明の第1の態様は、XYZ三次元座標系における各座標軸方向の振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子において、
Y軸に平行な第1の長手方向軸に沿って伸び、可撓性を有する第1の板状橋梁部と、
第1の板状橋梁部に直接もしくは間接的に接続され、X軸に平行な第2の長手方向軸に沿って伸び、可撓性を有する第2の板状橋梁部と、
第2の板状橋梁部に直接もしくは間接的に接続された重錘体と、
第1の板状橋梁部、第2の板状橋梁部および重錘体を収容する装置筐体と、
第1の板状橋梁部の一端を装置筐体に固定する固定部と、
第1の板状橋梁部および第2の板状橋梁部の表面に層状に形成された下層電極と、
下層電極の表面に層状に形成された圧電素子と
圧電素子の表面に局在的に形成された複数の上層電極からなる上層電極群と、
上層電極および下層電極に発生した電荷に基づいて生じる電流を整流して電力を取り出す発電回路と、
を設け、
固定部は、第1の板状橋梁部の根端部を装置筐体に固定し、第1の板状橋梁部の先端部は第2の板状橋梁部の根端部に直接もしくは間接的に接続され、第2の板状橋梁部の先端部に直接もしくは間接的に重錘体が接続されるようにし、
装置筐体を振動させる外力が作用したときに、第1の板状橋梁部および第2の板状橋梁部の撓みにより重錘体が装置筐体内で各座標軸方向に振動するように構成し、
圧電素子が、層方向に伸縮する応力の作用により、厚み方向に分極を生じる性質を有するようにし、
上層電極群は、第1の板状橋梁部の表面に下層電極および圧電素子を介して形成された第1の上層電極群と、第2の板状橋梁部の表面に下層電極および圧電素子を介して形成された第2の上層電極群と、を有しており、
第1の上層電極群は、第1の右脇電極および第1の左脇電極なる2種類の上層電極を有し、これら上層電極のそれぞれは、第1の長手方向軸に沿って伸びるように配置され、圧電素子を挟んで下層電極の所定領域に対向しており、
第1の板状橋梁部に、第1の長手方向軸に沿った第1の中心線と、この第1の中心線に関して右脇と左脇とを定義したときに、第1の右脇電極は、第1の中心線の右脇に、第1の中心線の左脇に食み出すことがないように配置されており、第1の左脇電極は、第1の中心線の左脇に、第1の中心線の右脇に食み出すことがないように配置されており、
第2の上層電極群は、第2の右脇電極および第2の左脇電極なる2種類の上層電極を有し、これら上層電極のそれぞれは、第2の長手方向軸に沿って伸びるように配置され、圧電素子を挟んで下層電極の所定領域に対向しており、
第2の板状橋梁部に、第2の長手方向軸に沿った第2の中心線と、この第2の中心線に関して右脇と左脇とを定義したときに、第2の右脇電極は、第2の中心線の右脇に、第2の中心線の左脇に食み出すことがないように配置されており、第2の左脇電極は、第2の中心線の左脇に、第2の中心線の右脇に食み出すことがないように配置されており、
第1の板状橋梁部および第2の板状橋梁部の上面は、XY平面に平行な所定の共通平面に含まれているようにしたものである。
(1) A first aspect of the present invention is a power generation element that generates power by converting vibration energy in the direction of each coordinate axis in an XYZ three-dimensional coordinate system into electrical energy.
A first plate-like bridge portion extending along a first longitudinal axis parallel to the Y axis and having flexibility;
A second plate-like bridge portion that is connected directly or indirectly to the first plate-like bridge portion, extends along a second longitudinal axis parallel to the X-axis, and has flexibility;
A weight body connected directly or indirectly to the second plate-like bridge portion;
An apparatus housing that houses the first plate-like bridge portion, the second plate-like bridge portion, and the weight body;
A fixing portion for fixing one end of the first plate-like bridge portion to the apparatus housing;
Lower layer electrodes formed in layers on the surfaces of the first plate-like bridge portion and the second plate-like bridge portion;
An upper electrode group consisting of a piezoelectric element formed in a layer on the surface of the lower electrode and a plurality of upper electrodes locally formed on the surface of the piezoelectric element;
A power generation circuit that rectifies the current generated based on the charges generated in the upper layer electrode and the lower layer electrode and extracts power,
Provided,
The fixing portion fixes the root end portion of the first plate-like bridge portion to the apparatus housing, and the tip portion of the first plate-like bridge portion is directly or indirectly on the root end portion of the second plate-like bridge portion. The weight body is connected directly or indirectly to the tip of the second plate-like bridge portion,
When an external force that vibrates the device casing is applied, the weight body is configured to vibrate in each coordinate axis direction within the device casing due to the bending of the first plate-like bridge portion and the second plate-like bridge portion,
The piezoelectric element has the property of causing polarization in the thickness direction by the action of stress that expands and contracts in the layer direction,
The upper layer electrode group includes a first upper layer electrode group formed on the surface of the first plate-like bridge portion via a lower layer electrode and a piezoelectric element, and a lower layer electrode and a piezoelectric element on the surface of the second plate-like bridge portion. A second upper electrode group formed through
The first upper layer electrode group has two types of upper layer electrodes, a first right side electrode and a first left side electrode, and each of these upper layer electrodes extends along the first longitudinal axis. Arranged and opposed to a predetermined region of the lower electrode across the piezoelectric element,
When the first center line along the first longitudinal axis and the right side and the left side with respect to the first center line are defined in the first plate-like bridge portion, the first right side electrode Are arranged on the right side of the first center line so as not to protrude to the left side of the first center line, and the first left side electrode is located on the left side of the first center line. Are arranged so as not to protrude to the right of the first center line,
The second upper layer electrode group has two types of upper layer electrodes, that is, a second right side electrode and a second left side electrode, and each of the upper layer electrodes extends along the second longitudinal axis. Arranged and opposed to a predetermined region of the lower electrode across the piezoelectric element,
When a second center line along the second longitudinal axis and a right side and a left side with respect to the second center line are defined in the second plate-like bridge portion, the second right side electrode Are arranged on the right side of the second center line so as not to protrude to the left side of the second center line, and the second left side electrode is located on the left side of the second center line. Are arranged so as not to protrude to the right of the second center line,
The upper surfaces of the first plate-like bridge portion and the second plate-like bridge portion are included in a predetermined common plane parallel to the XY plane.
(2) 本発明の第2の態様は、上述した第1の態様に係る発電素子において、
第1の板状橋梁部と第2の板状橋梁部とがL字状に配置されるように、第1の板状橋梁部の先端部と第2の板状橋梁部の根端部とが中間接続部を介して接続されており、
第2の板状橋梁部の脇に重錘体が配置されるように、第2の板状橋梁部の先端部と重錘体の隅部とが重錘接続部を介して接続されており、
固定部の下面は装置筐体の底板の上面に固定されており、第1の板状橋梁部、第2の板状橋梁部および重錘体は、外力が作用しない状態において、装置筐体の底板の上方に浮いた宙吊り状態になっており、
第1の板状橋梁部、中間接続部、第2の板状橋梁部、重錘接続部および重錘体の上面は、いずれもXY平面に平行な所定の共通平面に含まれるようにしたものである。
(2) According to a second aspect of the present invention, in the power generation element according to the first aspect described above,
The tip of the first plate bridge and the root end of the second plate bridge so that the first plate bridge and the second plate bridge are arranged in an L shape. Are connected via an intermediate connection,
The tip of the second plate-shaped bridge portion and the corner of the weight body are connected via the weight connection portion so that the weight body is arranged beside the second plate-shaped bridge portion. ,
The lower surface of the fixed portion is fixed to the upper surface of the bottom plate of the apparatus housing, and the first plate-shaped bridge portion, the second plate-shaped bridge portion, and the weight body of the device housing are in a state where no external force acts. It is in a suspended state floating above the bottom plate ,
The upper surfaces of the first plate-like bridge portion, the intermediate connection portion, the second plate-like bridge portion, the weight connection portion and the weight body are all included in a predetermined common plane parallel to the XY plane. It is.
(3) 本発明の第3の態様は、上述した第2の態様に係る発電素子において、
中間接続部が、第1の板状橋梁部の先端部の側面よりも外側に突き出した庇構造部と第2の板状橋梁部の根端部の側面よりも外側に突き出した庇構造部とを有し、
重錘接続部が、第2の板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有するようにしたものである。
(3) A third aspect of the present invention is the power generation element according to the second aspect described above,
An intermediate connecting portion projecting outward from the side surface of the tip portion of the first plate-like bridge portion and an eaves structure portion projecting outward from the side surface of the root end portion of the second plate-like bridge portion; Have
The weight connection part has a ridge structure part protruding outward from the side surface of the tip part of the second plate-like bridge part.
(4) 本発明の第4の態様は、上述した第2または第3の態様に係る発電素子において、
固定部を、X軸に平行な固定部用長手方向軸に沿って伸びる固定部用板状部材によって構成し、この固定部用板状部材の一端に第1の板状橋梁部の根端部が固定されているようにし、
固定部用板状部材、第1の板状橋梁部および第2の板状橋梁部によって構成される構造体が、XY平面上への投影像が「コ」の字状になるようなコの字状構造体をなし、このコの字状構造体によって囲まれた内部領域に板状の重錘体が配置されているようにしたものである。
(4) According to a fourth aspect of the present invention, in the power generation element according to the second or third aspect described above,
The fixing portion is constituted by a fixing portion plate member extending along the fixing portion longitudinal axis parallel to the X axis, and the root end portion of the first plate bridge portion is provided at one end of the fixing portion plate member. Is fixed,
The structure constituted by the plate member for the fixing portion, the first plate-like bridge portion, and the second plate-like bridge portion is such that the projected image on the XY plane has a “U” shape. A character-like structure is formed, and a plate-like weight is arranged in an inner region surrounded by the U-shaped structure.
(5) 本発明の第5の態様は、上述した第2または第3の態様に係る発電素子において、
固定部を、環状構造体によって構成し、この環状構造体によって囲まれた内部領域に第1の板状橋梁部、第2の板状橋梁部および重錘体を配置するようにしたものである。
(5) According to a fifth aspect of the present invention, in the power generation element according to the second or third aspect described above,
The fixing portion is constituted by an annular structure, and the first plate-like bridge portion, the second plate-like bridge portion, and the weight body are arranged in an inner region surrounded by the annular structure. .
(6) 本発明の第6の態様は、上述した第5の態様に係る発電素子における固定部と重錘体との役割を逆転させ、発電素子において固定部として機能していた環状構造体を重錘体として機能させ、発電素子において重錘体として機能していた板状体を固定部として機能させるために、板状体の下面を装置筐体の底板の上面に固定し、環状構造体が、外力が作用しない状態において、装置筐体の底板の上方に浮いた宙吊り状態になるようにしたものである。 (6) According to a sixth aspect of the present invention, there is provided an annular structure that functions as the fixing portion in the power generation element by reversing the roles of the fixing portion and the weight body in the power generation element according to the fifth aspect described above. In order to make the plate-like body functioning as a weight body and functioning as a weight body in the power generation element function as a fixing portion, the lower surface of the plate-like body is fixed to the upper surface of the bottom plate of the apparatus housing, and the annular structure However, in a state where no external force is applied, a suspended state floats above the bottom plate of the apparatus housing.
(7) 本発明の第7の態様は、上述した第5の態様に係る発電素子において、(7) A seventh aspect of the present invention is the power generating element according to the fifth aspect described above,
環状構造体を、第1の板状橋梁部、第2の板状橋梁部および重錘体の周囲を、所定距離を維持して取り囲む構造体とし、重錘体の過剰な変位を制御するストッパ部材としての役割を果たすことができるようにしたものである。 A stopper for controlling an excessive displacement of the weight body, wherein the annular structure is a structure surrounding the first plate-like bridge portion, the second plate-like bridge portion and the weight body while maintaining a predetermined distance. It can play a role as a member.
(8) 本発明の第8の態様は、上述した第1の態様に係る発電素子において、
第2の板状橋梁部と重錘体との間に、第3の板状橋梁部〜第Kの板状橋梁部(但し、K≧3)を設け、
第iの板状橋梁部(但し、1≦i≦K−1)の先端部が第(i+1)の板状橋梁部の根端部に直接もしくは間接的に接続され、第Kの板状橋梁部の先端部が重錘体に直接もしくは間接的に接続されており、
第jの板状橋梁部(但し、1≦j≦K)は、jが奇数の場合はY軸に平行な第jの長手方向軸に沿って伸び、jが偶数の場合はX軸に平行な第jの長手方向軸に沿って伸びているようにしたものである。
(8) According to an eighth aspect of the present invention, in the power generation element according to the first aspect described above,
Between the second plate-like bridge portion and the weight body, a third plate-like bridge portion to a K-th plate-like bridge portion (where K ≧ 3) are provided,
The tip of the i-th plate-like bridge portion (where 1 ≦ i ≦ K−1) is connected directly or indirectly to the root end of the (i + 1) -th plate-like bridge portion, and the K-th plate-like bridge The tip of the part is connected directly or indirectly to the weight body,
The jth plate-like bridge portion (where 1 ≦ j ≦ K) extends along the jth longitudinal axis parallel to the Y axis when j is an odd number, and parallel to the X axis when j is an even number. Extending along the jth longitudinal axis.
(9) 本発明の第9の態様は、上述した第8の態様に係る発電素子において、
第iの板状橋梁部(但し、1≦i≦K−1)の先端部と第(i+1)の板状橋梁部の根端部とが第iの中間接続部を介して接続されており、第Kの板状橋梁部の先端部と重錘体とが重錘接続部を介して接続されており、
第iの中間接続部が、第iの板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有し、重錘接続部が、第Kの板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有するようにしたものである。
(9) According to a ninth aspect of the present invention, in the power generation element according to the eighth aspect described above,
The tip of the i-th plate bridge portion (where 1 ≦ i ≦ K−1) and the root end portion of the (i + 1) -th plate bridge portion are connected via the i-th intermediate connection portion. , The tip of the Kth plate-like bridge portion and the weight body are connected via the weight connection portion,
The i-th intermediate connection portion has a flange structure portion protruding outward from the side surface of the tip portion of the i-th plate-like bridge portion, and the weight connection portion is provided at the tip portion of the K-th plate-like bridge portion. It has an eaves structure part protruding outward from the side surface.
(10) 本発明の第10の態様は、上述した第8または第9の態様に係る発電素子において、
第1の板状橋梁部の根端部から第Kの板状橋梁部の先端部に至るまでの構造体が渦巻状の経路をなし、重錘体が渦巻状の経路に囲まれた中心位置に配置されているようにしたものである。
(10) According to a tenth aspect of the present invention, in the power generation element according to the eighth or ninth aspect described above,
The central position where the structure from the root end of the first plate-like bridge portion to the tip of the K-th plate-like bridge portion forms a spiral path, and the weight body is surrounded by the spiral path It is made to arrange in.
(11) 本発明の第11の態様は、上述した第8〜第10の態様に係る発電素子において、
第3の板状橋梁部〜第Kの板状橋梁部の表面にも、下層電極、圧電素子、上層電極群を設け、発電回路が、これら上層電極および下層電極に発生した電荷からも電力を取り出すことを特徴とする発電素子。
(11) An eleventh aspect of the present invention is the power generation element according to the eighth to tenth aspects described above,
A lower layer electrode, a piezoelectric element, and an upper layer electrode group are also provided on the surfaces of the third plate-shaped bridge portion to the K-th plate-shaped bridge portion. A power generating element characterized by being taken out.
(12) 本発明の第12の態様は、上述した第8〜第11の態様に係る発電素子において、
固定部が、環状構造体によって構成されており、この環状構造体によって囲まれた内部領域に第1の板状橋梁部〜第Kの板状橋梁部および重錘体が配置されているようにしたものである。
(12) A twelfth aspect of the present invention is the power generation element according to the eighth to eleventh aspects described above,
The fixed portion is constituted by an annular structure, and the first plate-shaped bridge portion to the K-th plate-shaped bridge portion and the weight body are arranged in the inner region surrounded by the annular structure. It is a thing.
(13) 本発明の第13の態様は、上述した第12の態様に係る発電素子において、
固定部と重錘体との役割を逆転させ、発電素子において固定部として機能していた環状構造体を重錘体として機能させ、発電素子において重錘体として機能していた板状体を固定部として機能させるために、板状体の下面を装置筐体の底板の上面に固定し、環状構造体が、外力が作用しない状態において、装置筐体の底板の上方に浮いた宙吊り状態になるようにしたものである。
(13) A thirteenth aspect of the present invention is the power generating element according to the twelfth aspect described above,
The roles of the fixed part and the weight body are reversed, the annular structure functioning as the fixed part in the power generation element is functioned as the weight body, and the plate-shaped body functioning as the weight body in the power generation element is fixed. In order to function as a part, the lower surface of the plate-like body is fixed to the upper surface of the bottom plate of the device housing, and the annular structure is suspended in a suspended state above the bottom plate of the device housing in a state where no external force is applied. It is what I did.
(14) 本発明の第14の態様は、上述した第1〜第13の態様に係る発電素子において、
下層電極が第1の板状橋梁部および第2の板状橋梁部の上面に形成され、圧電素子がこの下層電極の上面に形成され、
第1の右脇電極および第1の左脇電極が、第1の板状橋梁部の上面に下層電極および圧電素子を介して形成されており、
第2の右脇電極および第2の左脇電極が、第2の板状橋梁部の上面に下層電極および圧電素子を介して形成されているようにしたものである。
(14) According to a fourteenth aspect of the present invention, in the power generation element according to the first to thirteenth aspects described above,
A lower layer electrode is formed on the upper surface of the first plate-like bridge portion and the second plate-like bridge portion, and a piezoelectric element is formed on the upper surface of the lower layer electrode,
The first right side electrode and the first left side electrode are formed on the upper surface of the first plate-like bridge portion via the lower layer electrode and the piezoelectric element,
The second right side electrode and the second left side electrode are formed on the upper surface of the second plate-like bridge portion via the lower layer electrode and the piezoelectric element.
(15) 本発明の第15の態様は、上述した第1〜第13の態様に係る発電素子において、
下層電極が第1の板状橋梁部および第2の板状橋梁部の上面とともに側面にも形成され、圧電素子がこの下層電極の表面に形成され、
第1の右脇電極および第1の左脇電極が、第1の板状橋梁部の側面に下層電極および圧電素子を介して形成されており、
第2の右脇電極および第2の左脇電極が、第2の板状橋梁部の側面に下層電極および圧電素子を介して形成されているようにしたものである。
(15) According to a fifteenth aspect of the present invention, in the power generation element according to the first to thirteenth aspects described above,
The lower layer electrode is formed on the side surface as well as the upper surface of the first plate-like bridge portion and the second plate-like bridge portion, and the piezoelectric element is formed on the surface of the lower layer electrode,
The first right side electrode and the first left side electrode are formed on the side surface of the first plate-like bridge portion via the lower layer electrode and the piezoelectric element,
The second right side electrode and the second left side electrode are formed on the side surface of the second plate-like bridge portion via the lower layer electrode and the piezoelectric element.
(16) 本発明の第16の態様は、上述した第1〜第13の態様に係る発電素子において、
下層電極が第1の板状橋梁部および第2の板状橋梁部の上面とともに側面にも形成され、圧電素子がこの下層電極の表面に形成され、
第1の右脇電極および第1の左脇電極が、第1の板状橋梁部の上面から側面にかけて下層電極および圧電素子を介して形成されており、
第2の右脇電極および第2の左脇電極が、第2の板状橋梁部の上面から側面にかけて下層電極および圧電素子を介して形成されているようにしたものである。
(16) According to a sixteenth aspect of the present invention, in the power generation element according to the first to thirteenth aspects described above,
The lower layer electrode is formed on the side surface as well as the upper surface of the first plate-like bridge portion and the second plate-like bridge portion, and the piezoelectric element is formed on the surface of the lower layer electrode,
The first right side electrode and the first left side electrode are formed from the upper surface to the side surface of the first plate-like bridge portion through the lower layer electrode and the piezoelectric element,
The second right side electrode and the second left side electrode are formed through the lower layer electrode and the piezoelectric element from the upper surface to the side surface of the second plate-like bridge portion.
(17) 本発明の第17の態様は、上述した第1〜第16の態様に係る発電素子において、
第1の上層電極群が、第1の板状橋梁部の根端部近傍に配置された第1の根端部側電極群と、第1の板状橋梁部の先端部近傍に配置された第1の先端部側電極群とを有し、
第2の上層電極群が、第2の板状橋梁部の根端部近傍に配置された第2の根端部側電極群と、第2の板状橋梁部の先端部近傍に配置された第2の先端部側電極群とを有し、
第1の根端部側電極群、第1の先端部側電極群、第2の根端部側電極群、第2の先端部側電極群のそれぞれが、右脇電極および左脇電極なる2種類の上層電極を有するようにしたものである。
(17) According to a seventeenth aspect of the present invention, in the power generation element according to the first to sixteenth aspects described above,
The first upper layer electrode group is disposed in the vicinity of the first root end side electrode group disposed in the vicinity of the root end portion of the first plate-like bridge portion, and the tip portion of the first plate-like bridge portion. A first tip side electrode group,
The second upper layer electrode group is disposed in the vicinity of the second root end side electrode group disposed in the vicinity of the root end portion of the second plate-shaped bridge portion, and in the vicinity of the distal end portion of the second plate-shaped bridge portion. A second tip side electrode group,
Each of the first root end side electrode group, the first tip end side electrode group, the second root end side electrode group, and the second tip end side electrode group is a right side electrode and a left side electrode 2 It has a kind of upper layer electrode.
(18) 本発明の第18の態様は、上述した第1〜第17の態様に係る発電素子において、(18) According to an eighteenth aspect of the present invention, in the power generation element according to the first to seventeenth aspects described above,
各板状橋梁部、重錘体および固定部、ならびに、これら各部材間を接続する接続部がある場合は当該接続部が、同一の板状部材を加工することによって得られる一体構造体によって構成されているようにしたものである。 Each plate-like bridge part, weight body and fixing part, and when there is a connection part connecting these members, the connection part is constituted by an integral structure obtained by processing the same plate-like member It is what has been done.
(19) 本発明の第19の態様は、上述した第1〜第18の態様に係る発電素子において、
発電回路が、容量素子と、各上層電極に発生した正電荷を容量素子の正極側へ導くために各上層電極から容量素子の正極側へ向かう方向を順方向とする正電荷用整流素子と、各上層電極に発生した負電荷を容量素子の負極側へ導くために容量素子の負極側から各上層電極へ向かう方向を順方向とする負電荷用整流素子と、を有し、振動エネルギーから変換された電気エネルギーを容量素子により平滑化して供給するようにしたものである。
(19) According to a nineteenth aspect of the present invention, in the power generation element according to the first to eighteenth aspects described above,
The power generation circuit includes a capacitive element and a positive charge rectifying element having a forward direction from each upper layer electrode toward the positive electrode side of the capacitive element to guide the positive charge generated in each upper electrode to the positive electrode side of the capacitive element; A negative charge rectifying element whose forward direction is from the negative electrode side of the capacitive element to each upper layer electrode in order to guide the negative charge generated in each upper layer electrode to the negative electrode side of the capacitive element, and converts from vibration energy The electric energy is smoothed and supplied by a capacitive element.
(20) 本発明の第20の態様は、上述した第1〜第19の態様に係る発電素子を複数組用意して組み合わせ、個々の発電素子によって取り出された電力を外部に供給する発電装置を構成したものである。 (20) According to a twentieth aspect of the present invention, there is provided a power generation device that prepares and combines a plurality of power generation elements according to the first to nineteenth aspects described above and supplies the electric power extracted by each power generation element to the outside. It is composed.
(21) 本発明の第21の態様は、上述した第20の態様に係る発電装置において、
一部の発電素子におけるX軸方向もしくはY軸方向またはその双方が、別な一部の発電素子におけるこれらの方向と異なる向きに配置されているようにしたものである。
(21) According to a twenty-first aspect of the present invention, in the power generation device according to the twentieth aspect described above,
In some power generation elements, the X-axis direction and / or the Y-axis direction are arranged in directions different from those directions in another partial power generation element.
(22) 本発明の第22の態様は、上述した第21の態様に係る発電装置において、
4組の発電素子を組み合わせ、第1の発電素子のX軸方向およびY軸方向を基準としたときに、第2の発電素子はY軸方向が逆転する向きに配置され、第3の発電素子はX軸方向が逆転する向きに配置され、第4の発電素子はX軸方向およびY軸方向の双方が逆転する向きに配置されているようにしたものである。
(22) According to a twenty-second aspect of the present invention, in the power generating device according to the twenty-first aspect described above,
When the four power generation elements are combined and the X-axis direction and the Y-axis direction of the first power generation element are used as a reference, the second power generation element is arranged in the direction in which the Y-axis direction is reversed, and the third power generation element Is arranged in a direction in which the X-axis direction is reversed, and the fourth power generation element is arranged in a direction in which both the X-axis direction and the Y-axis direction are reversed.
(23) 本発明の第23の態様は、上述した第20〜第22の態様に係る発電装置において、
複数の発電素子の重錘体が、それぞれ異なる共振周波数を有するようにしたものである。
(23) According to a twenty-third aspect of the present invention, in the power generation device according to the twentieth to twenty-second aspects described above,
The weight bodies of the plurality of power generation elements have different resonance frequencies.
(24) 本発明の第24の態様は、上述した第23の態様に係る発電装置において、
重錘体のXY平面への投影像の面積が互いに異なるように設定するか、Z軸方向に関する厚みが互いに異なるように設定するか、または、その双方の設定を行うことにより、複数の発電素子の重錘体の質量が異なるようにしたものである。
(24) According to a twenty-fourth aspect of the present invention, in the power generation apparatus according to the twenty-third aspect described above,
By setting the areas of the projected images of the weights on the XY plane to be different from each other, setting the thicknesses in the Z-axis direction to be different from each other, or setting both, a plurality of power generation elements The mass of the weight body is made different.
(25) 本発明の第25の態様は、上述した第23または第24の態様に係る発電装置において、
複数の発電素子の第1の板状橋梁部もしくは第2の板状橋梁部またはその双方について、XY平面への投影像の面積が互いに異なるように設定するか、Z軸方向に関する厚みが互いに異なるように設定するか、または、その双方の設定を行うことにより、複数の発電素子の重錘体の共振周波数が異なるようにしたものである。
(25) According to a twenty-fifth aspect of the present invention, in the power generation device according to the twenty-third or twenty-fourth aspect described above,
The first plate-like bridge portion and / or the second plate-like bridge portion of the plurality of power generating elements are set so that the projected image areas on the XY plane are different from each other, or the thicknesses in the Z-axis direction are different from each other. The resonance frequency of the weight bodies of the plurality of power generating elements is made different by setting as described above or by setting both of them.
本発明に係る発電素子では、片持ち梁を構成する板状橋梁部に層状の圧電素子が形成され、その表面に、右脇電極および左脇電極なる2種類の上層電極が局在的に形成される。ここで、右脇電極および左脇電極は、中心線の両脇に配置されているため、板状橋梁部の水平方向および垂直方向の撓みに応じて効率的に電荷を生成することができる。このため、垂直方向および水平方向の両方向成分を含んだ振動エネルギーを無駄なく電気エネルギーに変換することができ、高い発電効率を得ることが可能になる。 In the power generation element according to the present invention, a layered piezoelectric element is formed on a plate-like bridge portion constituting a cantilever, and two types of upper layer electrodes, a right side electrode and a left side electrode, are locally formed on the surface. Is done. Here, since the right side electrode and the left side electrode are arranged on both sides of the center line, charges can be efficiently generated according to the horizontal and vertical deflections of the plate-like bridge portion. For this reason, vibration energy including both vertical and horizontal components can be converted into electric energy without waste, and high power generation efficiency can be obtained.
また、XYZ三次元座標系において、Y軸に平行な方向に沿って配置された第1の板状橋梁部と、X軸に平行な方向に沿って配置された第2の板状橋梁部とを用いる実施形態によれば、第1および第2の板状橋梁部に形成された右脇電極および左脇電極によってX軸方向およびY軸方向の振動エネルギーを電気エネルギーに変換することができ、更に、Z軸方向の振動エネルギーを電気エネルギーに変換することができる。このため、XYZ三次元座標系における全座標軸方向の成分を含んだ振動エネルギーを無駄なく電気エネルギーに変換することができ、更に高い発電効率を得ることが可能になる。 Further, in the XYZ three-dimensional coordinate system, a first plate-like bridge portion arranged along a direction parallel to the Y-axis, and a second plate-like bridge portion arranged along a direction parallel to the X-axis According to the embodiment using, vibration energy in the X-axis direction and the Y-axis direction can be converted into electric energy by the right side electrode and the left side electrode formed in the first and second plate-like bridge portions, Furthermore, vibration energy in the Z-axis direction can be converted into electric energy. Therefore, vibration energy including components in all coordinate axis directions in the XYZ three-dimensional coordinate system can be converted into electric energy without waste, and higher power generation efficiency can be obtained.
以下、本発明を図示する実施形態に基づいて説明する。 Hereinafter, the present invention will be described based on the illustrated embodiments.
<<< §1. 第1の実施形態(2軸発電型) >>>
図1は、本発明の第1の実施形態に係る発電素子を構成する基本構造体の平面図(上段の図(a) )および側面図(下段の図(b) )である。図1(a) に示すとおり、この基本構造体は、固定部10、板状橋梁部20、重錘体30によって構成されている。図1(b) の側面図には、この固定部10の下面が、装置筐体の底板40の上面に固定されている状態が示されている。なお、ここでは便宜上、装置筐体については詳細な図示は省略し、図1(b) において、底板40の一部分をハッチングを施して示すにとどめるが、実際には、この基本構造体の全体を収容するような装置筐体が設けられる。
<<< §1. First embodiment (two-axis power generation type) >>
FIG. 1 is a plan view (upper view (a)) and a side view (lower view (b)) of a basic structure constituting a power generating element according to the first embodiment of the present invention. As shown in FIG. 1A, this basic structure is composed of a fixed
板状橋梁部20は、図の左端が固定部10によって固定されており、右端には重錘体30が接続されている。この板状橋梁部20は片持ち梁として機能し、重錘体30を装置筐体の底板40の上方に宙吊り状態に保持する役割を果たす。以下、板状橋梁部20の固定部10側の端(図の左端)を根端部と呼び、重錘体30側の端(図の右端)を先端部と呼ぶことにする。
The plate-
この板状橋梁部20は、可撓性を有しているため、外力の作用により撓みが生じる。このため、外部から装置筐体に振動が加えられると、この振動エネルギーによって重錘体30に力が加わり、この力は板状橋梁部20の先端部に作用する。板状橋梁部20の根端部は固定されているため、板状橋梁部20には撓みが生じ、重錘体30が装置筐体内で振動することになる。
Since the plate-
ここでは、振動方向を説明する便宜上、装置筐体が静止した状態において、重錘体30の重心位置に原点Oをとり、図示のとおり、XYZ三次元座標系を定義する。すなわち、図1(a) の平面図においては、図の下方にX軸、図の右方にY軸、紙面垂直上方にZ軸を定義する。図1(b) の側面図においては、図の上方にZ軸、図の右方にY軸、紙面垂直上方にX軸がそれぞれ定義されることになる。本願における以降の各図においても、同様の方向に各座標軸を定義することにする。
Here, for convenience of explaining the vibration direction, the origin O is set at the center of gravity of the
また、説明の便宜上、上述した三次元座標系のXY平面が水平面となり、Z軸が鉛直軸となるような向きに、装置筐体が振動源(たとえば、車両)に取り付けられているものとしよう。したがって、本願において、基本構造体に関して、一般に「上」と言った場合はZ軸正方向を意味し、一般に「下」と言った場合はZ軸負方向を意味する(もちろん、「図の上方」や「図の下方」と言った場合は、当該図における上方や下方を意味する)。 For convenience of explanation, it is assumed that the apparatus housing is attached to a vibration source (for example, a vehicle) in such a direction that the XY plane of the three-dimensional coordinate system described above is a horizontal plane and the Z axis is a vertical axis. . Therefore, in the present application, regarding the basic structure, generally, “up” means the positive direction of the Z axis, and generally “down” means the negative direction of the Z axis (of course, “upward in the figure”). "Or" downward in the figure "means above or below in the figure).
図2(a) は、図1に示す基本構造体において、固定部10の位置を基準として、重錘体30がX軸正方向の変位Δx(+)を生じたときの変形状態を示す平面図である。このような変位は、重錘体30に対してX軸正方向の加速度が作用したときに生じることになる。重錘体30は図の下方に変位するため、板状橋梁部20の図における上辺側はY軸方向に関して伸び、板状橋梁部20の図における下辺側はY軸方向に関して縮むことになる。別言すれば、図に破線で示す中心線より図における上側部分はY軸方向に関して伸び、図における下側部分はY軸方向に関して縮むことになる。
FIG. 2A is a plan view showing a deformed state when the
図2(a) は、X軸正方向の変位Δx(+)が生じたときの状態であるが、X軸負方向の変位Δx(−)が生じたときときは、重錘体30は図の上方に変位することになり、板状橋梁部20の各部の伸縮状態は図2(a) に示す状態を反転したものになる。したがって、装置筐体に対して、X軸方向の振動成分をもった振動エネルギーが加わると、基本構造体の形状は、図2(a) に示す状態とその反転状態とを交互に繰り返しながら変形し、重錘体30は装置筐体内でX軸方向(水平方向)に振動することになる。
FIG. 2A shows a state when a displacement Δx (+) in the X-axis positive direction occurs. When the displacement Δx (−) in the X-axis negative direction occurs, the
一方、図2(b) は、図1に示す基本構造体において、固定部10の位置を基準として、重錘体30がZ軸正方向の変位Δz(+)を生じたときの変形状態を示す側面図である。このような変位は、重錘体30に対してZ軸正方向の加速度が作用したときに生じることになる。重錘体30は図の上方に変位するため、板状橋梁部20の図における上面側はY軸方向に関して縮み、板状橋梁部20の図における下面側はY軸方向に関して伸びることになる。別言すれば、板状橋梁部20の上層部分はY軸方向に関して縮み、下層部分はY軸方向に関して伸びることになる。
On the other hand, FIG. 2B shows a deformation state when the
図2(b) は、Z軸正方向の変位Δz(+)が生じたときの状態であるが、Z軸負方向の変位Δz(−)が生じたときときは、重錘体30は図の下方に変位することになり、板状橋梁部20の各部の伸縮状態は図2(b) に示す状態を反転したものになる。したがって、装置筐体に対して、Z軸方向の振動成分をもった振動エネルギーが加わると、基本構造体の形状は、図2(b) に示す状態とその反転状態とを交互に繰り返しながら変形し、重錘体30は装置筐体内でZ軸方向(上下方向)に振動することになる。
FIG. 2B shows a state when a displacement Δz (+) in the positive direction of the Z-axis is generated. When the displacement Δz (−) in the negative direction of the Z-axis is generated, the
なお、ここでは、Y軸方向の変位Δy(+),Δy(−)が生じたときの変形状態の図示は省略する。もちろん、重錘体30に対してY軸方向の加速度が作用すると、板状橋梁部20は全体的にY軸方向に伸びたり、あるいは縮んだりし、重錘体30はY軸方向に変位することになる。ただ、加えられる振動エネルギーの量が同じ場合、Y軸方向の変位Δy(+),Δy(−)の量は、X軸方向の変位Δx(+),Δx(−)の量やZ軸方向の変位Δz(+),Δz(−)の量に比べて小さい。すなわち、Y軸方向の振動エネルギーによって生じる板状橋梁部20の伸縮の量は、X軸もしくはZ軸方向の振動エネルギーによって生じる板状橋梁部20の伸縮の量に比べて小さい。
Here, the illustration of the deformation state when the displacements Δy (+) and Δy (−) in the Y-axis direction occur is omitted. Of course, when acceleration in the Y-axis direction acts on the
これは、重錘体30のX軸方向の振動やZ軸方向の振動が、図2(a) ,(b) に示すように、板状橋梁部20を所定方向に曲げる変形動作によって行われるのに対し、Y軸方向の振動は、板状橋梁部20を全体的に引き伸ばしたり圧縮したりする変形動作によって行われるため、機械的な変形効率が低いためと考えられる。
This is performed by a deformation operation in which the vibration in the X-axis direction and the vibration in the Z-axis direction of the
このような理由から、この第1の実施形態に係る発電素子は、重錘体30のX軸方向の振動やZ軸方向の振動に基づいて発電を行う2軸発電型の素子として設計されており、Y軸方向の振動については考慮していない。もちろん、実際には、Y軸方向の振動エネルギーが加わった場合にも発電は可能であるが、その発電効率は、X軸やZ軸方向の振動エネルギーが加わった場合に比べてかなり低いものになる。
For this reason, the power generation element according to the first embodiment is designed as a two-axis power generation element that generates power based on vibration in the X-axis direction and vibration in the Z-axis direction of the
なお、ここに示す実施例の場合、固定部10、板状橋梁部20、重錘体30からなる基本構造体は、いずれもシリコン基板から切り出した一体構造体によって構成している。この実施例の場合、板状橋梁部20はX軸方向の幅が1mm、Y軸方向の長さが4mm、Z軸方向の厚みが0.5mm程度のビーム構造を有している。また、重錘体30は、X軸方向の幅が5mm、Y軸方向の幅が3mm、Z軸方向の厚みが0.5mm、固定部10は、X軸方向の幅が5mm、Y軸方向の幅が2mm、Z軸方向の厚みが1mmである。
In the case of the embodiment shown here, the basic structure composed of the fixing
もちろん、各部の寸法は任意に設定することができる。要するに、板状橋梁部20は、図2に示すような変形が可能な可撓性を有するのに適した寸法に設定すればよく、重錘体30は、外部からの振動エネルギーによって板状橋梁部20に図2に示すような変形を生じさせるのに十分な質量を有する寸法に設定すればよく、固定部10は、この基本構造体全体を装置筐体の底板40に堅固に固着できる寸法に設定すればよい。
Of course, the dimension of each part can be set arbitrarily. In short, the plate-
なお、図2(b) に示すように、固定部10の厚みは、板状橋梁部20および重錘体30の厚みよりも大きく設定し、重錘体30が装置筐体内で宙吊り状態となり、上下方向に振動できる空間が確保されるようにする。前述したように、この基本構造体は、装置筐体内に収容されることになるが、装置筐体の内壁面(たとえば、図2(b) に示す底板40の上面)と重錘体30との間の空隙寸法を所定値に設定し、装置筐体の内壁面が重錘体30の過度の変位を制限する制御部材として機能するようにするのが好ましい。そうすれば、重錘体30に過度の加速度(板状橋梁部20が破損するような加速度)が加わった場合でも、重錘体30の過度の変位を制限することができ、板状橋梁部20が破損する事態を避けることができる。但し、空隙寸法が狭すぎると、エアーダンピングの影響を受け、発電効率が低下するので注意を要する。
As shown in FIG. 2 (b), the thickness of the fixing
以上、図1および図2を参照しながら、第1の実施形態に係る発電素子の構成要素となる基本構造体の構造および変形動作を説明したが、発電素子は、この基本構造体に、更に、いくつかの要素を付加することにより構成される。 As described above, the structure and the deformation operation of the basic structure that is a component of the power generation element according to the first embodiment have been described with reference to FIGS. 1 and 2. , Constructed by adding several elements.
図3(a) は、この第1の実施形態に係る発電素子の平面図、図3(b) は、これをYZ平面で切断した側断面図である。図3(b) の側断面図に示すとおり、図1(b) に示す基本構造体(固定部10,板状橋梁部20,重錘体30)の上面には、全面にわたって層状の下層電極E0が形成され、更にその上面には、全面にわたって層状の圧電素子50が形成されている。そして、この圧電素子50の上面には、局在的に形成された複数の上層電極からなる上層電極群が形成されている。
FIG. 3A is a plan view of the power generating element according to the first embodiment, and FIG. 3B is a side sectional view of the power generating element cut along the YZ plane. As shown in the side sectional view of FIG. 3 (b), the upper surface of the basic structure (fixing
ここに示す実施例の場合、上層電極群は、図3(a) に示すとおり、6枚の上層電極E11〜E23(図におけるハッチングは、電極形成領域を明瞭に示すために付したものであり、断面を示すものではない)によって構成されている。図3(b) の側断面図では、このうち、YZ切断面に位置する上層電極E12,E22のみが現れている。なお、図3(a) は、この発電素子を上方から見た平面図であるため、基本構造体の全面を覆う圧電素子50が見えていることになるが、便宜上、この図3(a) には、固定部10,板状橋梁部20,重錘体30の位置を括弧書きの符号で示してある。
In the case of the embodiment shown here, the upper electrode group is composed of six upper electrode electrodes E11 to E23 (the hatching in the figure is given to clearly show the electrode formation region, as shown in FIG. 3 (a)). , Not showing a cross section). In the side cross-sectional view of FIG. 3B, only the upper layer electrodes E12 and E22 located on the YZ cut surface appear. 3 (a) is a plan view of the power generation element as viewed from above, so that the
ここでは、図3(a) に示されている6枚の上層電極E11〜E23のうち、重錘体30側に形成された3枚の電極E11,E12,E13を重錘体側電極群と呼び、固定部10側に形成された3枚の電極E21,E22,E23を固定部側電極群と呼ぶことにする。更に、重錘体側電極群については、中央に配置された電極E12を中央電極、その両脇に配置された電極E11,E13をそれぞれ右脇電極,左脇電極と呼ぶことにする。同様に、固定部側電極群についても、中央に配置された電極E22を中央電極、その両脇に配置された電極E21,E23をそれぞれ右脇電極,左脇電極と呼ぶことにする。
Here, among the six upper layer electrodes E11 to E23 shown in FIG. 3 (a), the three electrodes E11, E12, E13 formed on the
なお、本願における「右脇」,「左脇」なる文言は、中央電極の両脇に配置された一対の電極を相互に区別するために用いているものであり、便宜上、板状橋梁部の上面をその根端部側から見た場合の左右を意味している。もちろん、板状橋梁部の上面をその先端部側から見ると左右は逆転することになるが、本願では、常に板状橋梁部の上面を根端部側から見た場合の左右を基準として、「右脇」,「左脇」なる文言を用いることにする。 Note that the terms “right side” and “left side” in the present application are used to distinguish a pair of electrodes arranged on both sides of the central electrode from each other. It means right and left when the top surface is viewed from the root end side. Of course, when the top surface of the plate-like bridge part is viewed from the tip side, the left and right will be reversed, but in this application, always the left and right when viewing the top surface of the plate-like bridge part from the root end side, We will use the words “right side” and “left side”.
ここに示す実施例の場合、基本構造体(固定部10,板状橋梁部20,重錘体30)は、シリコン基板によって構成されている。また、下層電極E0や上層電極E11〜E23としては、金属などの一般的な導電材料を用いて形成すればよい。ここに示す実施例の場合、厚み300nm程度の薄膜状の金属層(チタン膜と白金膜との二層からなる金属層)により下層電極E0および上層電極E11〜E23を形成している。一方、圧電素子50としては、PZT(チタン酸ジルコン酸鉛)やKNN(ニオブ酸カリウムナトリウム)などを薄膜状にしたものを用いればよい。ここに示す実施例の場合、厚み2μm程度の薄膜状の圧電素子を形成している。
In the case of the embodiment shown here, the basic structure (fixing
図3(b) に示すとおり、この発電素子には、更に、発電回路60が備わっている。図3(b) では、この発電回路60を単なるブロックで示すが、具体的な回路図は後述する。図示のとおり、この発電回路60と、下層電極E0および6枚の上層電極E11〜E23との間には配線が施されており、各上層電極E11〜E23で発生した電荷は、この配線を介して発電回路60によって取り出される。実際には、各配線は、各上層電極E11〜E23とともに、圧電素子50の上面に形成された導電性パターンによって形成することができる。また、基本構造体をシリコン基板によって構成した場合、発電回路60は、このシリコン基板上(たとえば、固定部10の部分)に形成することが可能である。
As shown in FIG. 3 (b), this power generation element further includes a
なお、図3では、装置筐体の図示は省略されているが(図3(b) に示す底板40が装置筐体の一部を構成することになる)、実際には、図3(b) に示されている構造体全体は、図示されていない装置筐体内に収容されている。
In FIG. 3, the device casing is not shown (the
結局、この第1の実施形態に係る発電素子は、振動エネルギーを電気エネルギーに変換することにより発電を行う機能をもった発電素子であり、所定の長手方向軸(図示の例の場合はY軸)に沿って伸び、可撓性を有する板状橋梁部20と、この板状橋梁部20の一端(先端部)に接続された重錘体30と、板状橋梁部20および重錘体30を収容する装置筐体と、板状橋梁部20の他端(根端部)を装置筐体(図示の例の場合は底板40の上面)に固定する固定部10と、板状橋梁部20の表面に層状に形成された下層電極E0と、この下層電極E0の表面に層状に形成された圧電素子50と、この圧電素子50の表面に局在的に形成された複数の上層電極E11〜E23からなる上層電極群と、上層電極E11〜E23および下層電極E0に発生した電荷に基づいて生じる電流を整流して電力を取り出す発電回路60と、を備えていることになる。
After all, the power generation element according to the first embodiment is a power generation element having a function of generating power by converting vibration energy into electric energy, and has a predetermined longitudinal axis (in the illustrated example, the Y axis). ), A flexible plate-
前述したとおり、このような構造をもった発電素子では、装置筐体を振動させる外力が作用すると、板状橋梁部20の撓みにより重錘体30が装置筐体内で振動する。そして、この板状橋梁部20の撓みは、圧電素子50に伝達され、圧電素子50にも同様の撓みが生じることになる。ここで、圧電素子50は、層方向に伸縮する応力の作用により、厚み方向に分極を生じる性質を有しているため、その上面および下面に電荷が発生することになる。発生した電荷は上層電極E11〜E23および下層電極E0から取り出される。
As described above, in the power generating element having such a structure, when an external force that vibrates the apparatus housing acts, the
ここに示す実施例の場合、層方向に伸ばす応力が作用すると、上面側に正電荷、下面側に負電荷が生じ、逆に、層方向に縮める応力が作用すると、上面側に負電荷、下面側に正電荷が生じる圧電素子50を用いている。もちろん、圧電素子によっては、これと全く逆の分極特性を有するものもあり、本発明に係る発電素子には、いずれの分極特性を有する圧電素子を用いてもかまわない。
In the case of the embodiment shown here, when a stress extending in the layer direction is applied, a positive charge is generated on the upper surface side, and a negative charge is generated on the lower surface side. Conversely, when a stress contracting in the layer direction is applied, a negative charge is generated on the upper surface side. A
続いて、この発電素子の具体的な発電動作をみてみよう。図3(a) に示す実施例の場合、上層電極群は、板状橋梁部20の重錘体30との接続部分近傍に配置された重錘体側電極群E11〜E13と、板状橋梁部20の固定部10との接続部分近傍に配置された固定部側電極群E21〜E23とに分けられる。そして、重錘体側電極群は、中央電極E12、右脇電極E11、左脇電極E13という3種類の電極によって構成され、固定部側電極群も、中央電極E22、右脇電極E21、左脇電極E23という3種類の電極によって構成されている。
Next, let's look at the specific power generation operation of this power generation element. In the case of the embodiment shown in FIG. 3 (a), the upper electrode group includes weight body side electrode groups E11 to E13 arranged in the vicinity of the connection portion of the
この6枚の上層電極E11〜E23は、いずれも板状橋梁部20の長手方向軸(Y軸)に沿って伸びるように配置され、圧電素子50を挟んで下層電極E0の所定領域に対向している。別言すれば、下層電極E0および圧電素子50は共通であるが、6枚の上層電極E11〜E23は、それぞれ局在的に個別に配置されているため、6個の個別の発電体がそれぞれ特定の位置に配置されていることになる。
The six upper layer electrodes E11 to E23 are all arranged so as to extend along the longitudinal axis (Y axis) of the plate-
ここで、中央電極E12,E22は、板状橋梁部20の上面側の、長手方向軸(Y軸)に沿った中心線の位置(Y軸を圧電素子50の上面まで平行移動した線の位置)に配置されており、重錘体30がZ軸方向に振動しているときに効率的に電荷を取り出すことを意図して設けられた電極である。
Here, the center electrodes E12 and E22 are positions of the center line along the longitudinal axis (Y axis) on the upper surface side of the plate-like bridge portion 20 (the position of the line translated from the Y axis to the upper surface of the piezoelectric element 50). ), And an electrode provided with the intention of efficiently extracting charges when the
また、右脇電極E11は、中央電極E12の一方の脇(根端部側から見たときに右脇)に配置されており、左脇電極E13は、中央電極E12の他方の脇(根端部側から見たときに左脇)に配置されている。同様に、右脇電極E21は、中央電極E22の一方の脇(根端部側から見たときに右脇)に配置されており、左脇電極E23は、中央電極E22の他方の脇(根端部側から見たときに左脇)に配置されている。これらの各脇電極は、重錘体30がX軸方向に振動しているときに効率的に電荷を取り出すことを意図して設けられた電極である。
The right side electrode E11 is disposed on one side of the central electrode E12 (right side when viewed from the root end side), and the left side electrode E13 is the other side (root end) of the central electrode E12. It is arranged on the left side) when viewed from the section side. Similarly, the right side electrode E21 is disposed on one side of the central electrode E22 (right side when viewed from the root end side), and the left side electrode E23 is disposed on the other side (root) of the central electrode E22. It is arranged on the left side when viewed from the end side. Each of these side electrodes is an electrode that is intended to efficiently extract electric charges when the
図4は、図3に示す発電素子において、下層電極E0を共通電極として、重錘体30に各座標軸方向の変位が生じたときに、各上層電極E11〜E23および下層電極E0に生じる電荷の極性を示す表である。表における符号「+」は正電荷の発生を示し、符号「−」は負電荷の発生を示している。また、符号「0」は、電荷の発生が全くないか、もしくは、符号「+」や符号「−」で示す場合に比べて少量の電荷しか発生しない状態を示している。実用上、符号「0」に相当する欄における発生電荷は有意な量ではないため、以下の説明では無視することにする。
FIG. 4 shows the electric charge generated in the upper layer electrodes E11 to E23 and the lower layer electrode E0 when displacement in the coordinate axis direction occurs in the
重錘体30に各座標軸方向の変位が生じると、板状橋梁部20に図2(a) ,(b) に示すような撓みが生じる。一方、圧電素子50は、上述したとおり、層方向に伸ばす応力が作用すると、上面側に正電荷、下面側に負電荷が生じ、層方向に縮める応力が作用すると、上面側に負電荷、下面側に正電荷が生じる分極特性を有している。これらの点を踏まえれば、図4に示す表が得られることは容易に理解できよう。
When displacement in the direction of each coordinate axis occurs in the
たとえば、X軸正方向の変位Δx(+)が生じたときは、図2(a) に示すような変形が生じるため、右脇電極E11,E21の直下の圧電素子は長手方向に縮み、右脇電極E11,E21には負電荷が発生する。一方、左脇電極E13,E23の直下の圧電素子は長手方向に伸び、左脇電極E13,E23には正電荷が発生する。このとき、中心線上に配置されている中央電極E12,E22の直下の圧電素子は、その半身が伸び半身が縮むため、発生電荷は相殺され、中央電極E12,E22に電荷は発生しない。これに対して、下層電極E0には、各上層電極E11,E13,E21,E23に発生した電荷と逆極性の電荷が発生することになるが、これら各上層電極の発生電荷の総和は0になるため、下層電極E0の発生電荷も0になる。 For example, when a displacement Δx (+) in the positive direction of the X-axis occurs, deformation as shown in FIG. 2A occurs, so that the piezoelectric elements immediately below the right side electrodes E11 and E21 contract in the longitudinal direction, Negative charges are generated in the side electrodes E11 and E21. On the other hand, the piezoelectric elements directly under the left side electrodes E13 and E23 extend in the longitudinal direction, and positive charges are generated in the left side electrodes E13 and E23. At this time, the piezoelectric elements directly below the center electrodes E12 and E22 arranged on the center line are expanded in half and contracted, so that the generated charges are canceled and no charges are generated in the center electrodes E12 and E22. On the other hand, the lower layer electrode E0 generates charges having the opposite polarity to the charges generated in the upper layer electrodes E11, E13, E21, and E23, but the sum of the generated charges of these upper layer electrodes is 0. Therefore, the generated charge of the lower layer electrode E0 is also zero.
また、Z軸正方向の変位Δz(+)が生じたときは、図2(b) に示すような変形が生じるため、6枚の上層電極E11〜E23の直下のすべての圧電素子は長手方向に縮み、すべての上層電極に負電荷が発生する。これに対して、下層電極E0には、各上層電極E11〜E23に発生した電荷(負電荷)の総和に等しい逆極性の電荷(正電荷)が発生することになる。図4の表において、変位Δz(+)の行の下層電極E0の欄に記されている「++++++」なる符号は、このような状態を示すものである。 Further, when a displacement Δz (+) in the positive direction of the Z-axis occurs, deformation as shown in FIG. 2B occurs, so that all the piezoelectric elements immediately below the six upper layer electrodes E11 to E23 are in the longitudinal direction. And the negative charge is generated in all upper layer electrodes. On the other hand, in the lower electrode E0, a charge (positive charge) having a reverse polarity equal to the sum of charges (negative charges) generated in the upper layer electrodes E11 to E23 is generated. In the table of FIG. 4, the symbol “++++++” written in the column of the lower layer electrode E0 in the row of displacement Δz (+) indicates such a state.
一方、Y軸正方向の変位Δy(+)が生じたときは、6枚の上層電極E11〜E23の直下のすべての圧電素子は長手方向に伸びるため、すべての上層電極に正電荷が生じる。ただ、前述したとおり、重錘体30に対してY軸方向の加速度が作用したときのY軸方向の変位Δy(+)の量は、X軸方向の加速度が作用したときのX軸方向の変位Δx(+)の量やZ軸方向の加速度が作用したときのZ軸方向の変位Δz(+)の量に比べると小さいため、正電荷の発生量も僅かなものになる。そこで、図4の表では、Δy(+)の欄すべてに符号「0」を記し、有意な発電が行われないことを示してある。
On the other hand, when the displacement Δy (+) in the Y-axis positive direction occurs, all the piezoelectric elements immediately below the six upper layer electrodes E11 to E23 extend in the longitudinal direction, so that positive charges are generated in all the upper layer electrodes. However, as described above, the amount of displacement Δy (+) in the Y-axis direction when the acceleration in the Y-axis direction is applied to the
なお、図4の表は、重錘体30に対して、各座標軸の正方向への変位Δx(+),Δy(+),Δz(+)が生じたときの各上層電極の発生電荷を示すものであるが、各座標軸の負方向への変位Δx(−),Δy(−),Δz(−)が生じたときは、図4の表の符号を逆転させた結果が得られる。通常、外部から振動エネルギーが与えられると、重錘体30は装置筐体内で振動することになるので、当該振動の周期に同期して、図4に示す表の符号は反転し、また、電荷の発生量も周期的に増減することになる。
In the table of FIG. 4, the charge generated in each upper electrode when the displacement Δx (+), Δy (+), Δz (+) in the positive direction of each coordinate axis is generated with respect to the
実際には、外部から与えられる振動エネルギーは、XYZ三次元座標系における各座標軸方向成分を有するものになるので、重錘体30の変位は、Δx(±),Δy(±),Δz(±)を合成したものになり、しかも時々刻々と変化してゆくことになる。このため、たとえば、変位Δx(+)とΔz(+)とが同時に生じると、図4の表に示すとおり、上層電極E13やE23には、正電荷と負電荷との双方が発生することになり、上層電極E13やE23に発生した一部の電荷は相殺されてしまい、有効に取り出すことはできない。
Actually, since the vibration energy given from the outside has components in the coordinate axis directions in the XYZ three-dimensional coordinate system, the displacement of the
このように、重錘体30の振動形態によっては、必ずしも100%効率的な発電が行われるわけではないが、全体としてみれば、重錘体30のX軸方向の振動エネルギーとZ軸方向の振動エネルギーとの双方を取り出して発電が可能になる。このように、重錘体30の振動エネルギーのうち、2軸方向成分を利用した発電が可能になる点が、本発明の第1の実施形態に係る発電素子の特徴であり、そのような特徴により、様々な方向成分を含んだ振動エネルギーをできるだけ無駄なく電気エネルギーに変換し、高い発電効率を得る、という目的が達成されることになる。
Thus, although 100% efficient power generation is not necessarily performed depending on the vibration mode of the
発電回路60は、これら上層電極E11〜E23および下層電極E0に発生した電荷に基づいて生じる電流を整流して電力を取り出す役割を果たす。ここに示す実施例の場合、下層電極E0は共通電極として基準電位を確保する機能を果たすことになるので、実際は、上層電極E11〜E23から流れ出る電流と、上層電極E11〜E23に流れ込む電流とを別個に集めて蓄電を行えばよい。
The
図5は、図3に示す発電素子に用いられている発電回路60の具体的な構成を示す回路図である。ここで、P11〜P23は、圧電素子50の一部分を示しており、それぞれ上層電極E11〜E23の直下に位置する部分に相当する。また、回路図上に白丸で示すE0は下層電極,E11〜E23は上層電極に対応する。D11(+)〜D13(−)は、整流素子(ダイオード)であり、符号(+)が付された各整流素子は、各上層電極に発生した正電荷を取り出す役割を果たし、符号(−)が付された各整流素子は、各上層電極に発生した負電荷を取り出す役割を果たす。同様に、D0(+)およびD0(−)も、整流素子(ダイオード)であり、下層電極E0に発生した正および負電荷を取り出す役割を果たす。
FIG. 5 is a circuit diagram showing a specific configuration of the
一方、Cfは平滑用の容量素子(コンデンサ)であり、その正極端子(図の上方端子)には取り出された正電荷が供給され、負極端子(図の下方端子)には取り出された負電荷が供給される。上述したとおり、重錘体30の振動により発生する電荷の量は振動に応じた周期で増減するため、各整流素子を流れる電流は脈流になる。容量素子Cfは、この脈流を平滑化する役割を果たす。重錘体30の振動が安定した定常時には、容量素子Cfのインピーダンスはほとんど無視しうる。
On the other hand, Cf is a smoothing capacitive element (capacitor). The positive charge taken out is supplied to the positive terminal (upper terminal in the figure) and the negative charge taken out to the negative terminal (lower terminal in the figure). Is supplied. As described above, since the amount of electric charge generated by the vibration of the
容量素子Cfに並列接続されているZLは、本発電素子によって発電された電力の供給を受ける機器の負荷を示している。発電効率を向上させるためには、負荷ZLのインピーダンスと圧電素子50の内部インピーダンスとを整合させておくのが好ましい。したがって、電力供給を受ける機器が予め想定されている場合は、当該機器の負荷ZLのインピーダンスに整合した内部インピーダンスをもつ圧電素子を採用して本発電素子の設計を行うようにするのが好ましい。
ZL connected in parallel to the capacitive element Cf indicates a load of a device that receives supply of electric power generated by the power generation element. In order to improve the power generation efficiency, it is preferable to match the impedance of the load ZL with the internal impedance of the
結局、発電回路60は、容量素子Cfと、各上層電極E11〜E23に発生した正電荷を容量素子Cfの正極側へ導くために各上層電極E11〜E23から容量素子Cfの正極側へ向かう方向を順方向とする正電荷用整流素子D11(+)〜D23(+)と、各上層電極E11〜E23に発生した負電荷を容量素子Cfの負極側へ導くために容量素子Cfの負極側から各上層電極E11〜E23へ向かう方向を順方向とする負電荷用整流素子D11(−)〜D23(−)と、を有し、振動エネルギーから変換された電気エネルギーを容量素子Cfにより平滑化して負荷ZLに供給する機能を果たすことになる。
Eventually, the
なお、図5の回路図を見ればわかるように、負荷ZLには、正電荷用整流素子D11(+)〜D13(+)で取り出された正電荷と、負電荷用整流素子D11(−)〜D13(−)で取り出された負電荷とが供給されることになる。したがって、原理的には、個々の瞬間において、各上層電極E11〜E23に発生する正電荷の総量と負電荷の総量とが等しくなるようにすれば、最も効率的な発電が可能になる。別言すれば、ある瞬間において発生する正電荷の総量と負電荷の総量とが不均衡な場合、両者の等しい分だけが負荷ZLで電力として利用される。 As can be seen from the circuit diagram of FIG. 5, the load ZL includes positive charges extracted by the positive charge rectifier elements D11 (+) to D13 (+) and negative charge rectifier elements D11 (−). The negative charge taken out at ~ D13 (-) is supplied. Therefore, in principle, the most efficient power generation is possible if the total amount of positive charges and the total amount of negative charges generated in the upper layer electrodes E11 to E23 are equal at each moment. In other words, when the total amount of positive charges and the total amount of negative charges generated at a certain moment is unbalanced, only the equal amount of both is used as power by the load ZL.
もちろん、実際には、圧電素子で発生した電荷は平滑用容量素子Cfに一時的に蓄積されるので、実際に行われる発電動作の挙動は、瞬時の現象ではなく、時間平均をとった現象として捉えるべきものになり、正確な解析を行うには複雑なパラメータ設定が必要になる。ただ、一般論としては、個々の瞬間において、各上層電極E11〜E23に発生する正電荷の総量と負電荷の総量とが等しくなるようにするのが、効率的な発電を行う上で好ましい。 Of course, in practice, the electric charge generated in the piezoelectric element is temporarily stored in the smoothing capacitor element Cf, so that the behavior of the actual power generation operation is not an instantaneous phenomenon but a phenomenon that takes a time average. In order to perform accurate analysis, complicated parameter settings are required. However, as a general theory, it is preferable for efficient power generation that the total amount of positive charges and the total amount of negative charges generated in the upper layer electrodes E11 to E23 are equal at each moment.
ここに示す実施例の場合、図3に示す上層電極において、右脇電極E11と左脇電極E13は、YZ平面に関して面対称をなし、同様に、右脇電極E21と左脇電極E23は、YZ平面に関して面対称をなしている。このような対称構造を採用すれば、重錘体30がX軸方向に振動した場合、これら4枚の上層電極に関しては、発生する正電荷の総量と負電荷の総量とが等しくなることを意味する。右脇電極と左脇電極という一対の電極を中央電極の両脇に配置するメリットは、このように、X軸方向の振動に関しては、正電荷の総量と負電荷の総量とを等しくする効果が得られる点にある。
In the case of the embodiment shown here, in the upper layer electrode shown in FIG. 3, the right side electrode E11 and the left side electrode E13 are plane-symmetric with respect to the YZ plane, and similarly, the right side electrode E21 and the left side electrode E23 are YZ It is plane-symmetric with respect to the plane. By adopting such a symmetrical structure, when the
最後にもうひとつ、外部から与えられる振動に基づいて効率的な発電を行うための条件を挙げておく。それは、重錘体30の共振周波数を外部から与えられる振動周波数と一致させることである。一般に、振動系には、その固有の構造に応じて一義的に定まる共振周波数が存在し、外部から与えられる振動の周波数が当該共振周波数に一致していると、振動子を最も効率的に振動させることができるようになり、その振幅も最大になる。したがって、外部から与えられる振動の周波数が予め想定されている場合(たとえば、特定の車両に搭載して用いることが予め定まっており、当該車両から加えられる周波数が既知である場合)、発電素子の構造設計の段階で、当該周波数に共振周波数が合致するような設計を行うのが好ましい。
Finally, I will list another condition for efficient power generation based on externally applied vibration. That is to make the resonance frequency of the
<<< §2. 第1の実施形態の変形例 >>>
ここでは、§1で述べた第1の実施形態に係る2軸発電型の発電素子の変形例をいくつか述べておく。
<<< §2. Modified example of the first embodiment >>
Here, some modified examples of the two-axis power generation element according to the first embodiment described in §1 will be described.
<2−1 上層電極の数の変形例>
図6は、図3に示す発電素子の変形例を示す平面図である。両者の相違は上層電極の数およびその長さのみである。すなわち、図3に示す発電素子の場合、前述したとおり、合計6組の上層電極E11〜E23が形成されていたのに対して、図6に示す発電素子の場合、合計3組の上層電極E31〜E33のみが形成されている。その他の構造についての相違はないため、図6の変形例についての詳細な構造説明は省略する(もちろん、発電回路は図5に示すものの代わりに、3組の上層電極E31〜E33に対して整流素子を接続して電力を取り出すものを用いることになる)。
<2-1 Modification of Number of Upper Layer Electrodes>
FIG. 6 is a plan view showing a modification of the power generating element shown in FIG. The only difference between them is the number of upper layer electrodes and their length. That is, in the case of the power generation element shown in FIG. 3, a total of six sets of upper layer electrodes E11 to E23 are formed as described above, whereas in the case of the power generation element shown in FIG. Only ~ E33 is formed. Since there is no difference with respect to other structures, a detailed structural description of the modification of FIG. 6 is omitted (of course, the power generation circuit rectifies three sets of upper layer electrodes E31 to E33 instead of the one shown in FIG. 5). It will be used to connect the elements and extract power).
ここで、図3に示す発電素子の場合、上層電極群は、板状橋梁部20の重錘体30との接続部分近傍に配置された重錘体側電極群E11〜E13と、板状橋梁部20の固定部10との接続部分近傍に配置された固定部側電極群E21〜E23とによって構成されており、その長手方向(Y軸方向)に関する長さは、接続部分近傍に配置するのに必要な長さに設定されている。これに対して、図6に示す変形例における3組の上層電極E31〜E33は、図3に示す例における重錘体側電極群E11〜E13と固定部側電極群E21〜E23とをそれぞれ相手側方向に伸ばして連結し融合したものに相当する。このため、上層電極E31〜E33は、板状橋梁部20と同じ長さを有している。
Here, in the case of the power generation element shown in FIG. 3, the upper layer electrode group includes weight body side electrode groups E11 to E13 disposed in the vicinity of the connection portion of the
図7は、図6に示す発電素子の重錘体30に各座標軸方向の変位が生じたときに、各上層電極E31〜E33に生じる電荷の極性を示す表である。図3に示す発電素子について図4の表が得られることを考えれば、図6に示す発電素子について図7の表が得られることは、容易に理解できよう。したがって、図6に示す発電素子についても、図5に示す回路に準じた発電回路を用意しておけば、各上層電極E31〜E33に発生した電荷を電力として取り出すことができる。
FIG. 7 is a table showing the polarities of charges generated in the upper layer electrodes E31 to E33 when displacement in the direction of each coordinate axis occurs in the
実際には、重錘体30が図2(a) に示すようにX軸方向に振動した場合や図2(b) に示すようにZ軸方向に振動した場合、板状橋梁部20に生じる長手方向(Y軸方向)に関する伸縮応力は、図2に「伸」や「縮」の文字が記載されている部分、すなわち、重錘体30との接続部分近傍および固定部10との接続部分近傍に集中することになる。図3に示す実施例は、これらの応力集中部にのみ上層電極E11〜E23を配置した例であり、最も効率的な電極配置を行った例ということになる。これに対して、図6に示す実施例は、応力が集中しない部分も含めた全域にわたって上層電極を配置した例であり、単位電極面積に対する発電量は必ずしも効率的なものになっていないが、電極数を低減することが可能になる。
Actually, when the
いずれの実施例も、上層電極は、中央電極、右脇電極、左脇電極なる3種類の電極によって構成されており、§1で述べたとおり、重錘体30のZ軸方向に関する振動エネルギーとX軸方向に関する振動エネルギーに基づく発電が可能になり、しかもX軸方向に関する振動に関しては、発生する正電荷の総量と負電荷の総量とをできるだけ均衡に保つ効果が得られる。
In any of the embodiments, the upper electrode is composed of three types of electrodes, that is, the center electrode, the right side electrode, and the left side electrode. As described in §1, the vibration energy in the Z-axis direction of the
<2−2 上層電極を側面配置する変形例>
図3に示す実施例も図5に示す実施例も、いずれも下層電極E0が板状橋梁部20の上面に形成され、圧電素子50がこの下層電極E0の上面に形成され、更に、中央電極、右脇電極および左脇電極という3種類の上層電極が、板状橋梁部20の上面に下層電極E0および圧電素子50を介して形成されているが、上層電極のうち、右脇電極および左脇電極については、その全部もしくは一部を、板状橋梁部20の側面に下層電極E0および圧電素子50を介して形成するようにしてもよい。
<2-2 Modification Example of Side Positioning of Upper Layer Electrode>
In both the embodiment shown in FIG. 3 and the embodiment shown in FIG. 5, the lower layer electrode E0 is formed on the upper surface of the plate-
図8は、本発明に係る発電素子における上層電極の配置態様のバリエーションを示す正断面図である。図8(a) は、図3に示す実施例の板状橋梁部20を、図の切断線8−8に沿って切った断面を示す正断面図である。図示のとおり、板状橋梁部20の上面に下層電極E0および圧電素子50が積層され、更にその上面に、3種類の上層電極E21,E22,E23が配置されている。したがって、圧電素子50の分極現象は、図の上下方向に生じることになる。図5に示す実施例の上層電極の配置も同様である。
FIG. 8 is a front sectional view showing a variation of the arrangement mode of the upper layer electrode in the power generation element according to the present invention. FIG. 8A is a front sectional view showing a cross section of the plate-
これに対して、図8(b) に示す実施例は、右脇電極および左脇電極を側面に配置したものである。すなわち、この実施例では、下層電極E0Bが板状橋梁部20の上面とともに側面にも形成され、圧電素子50Bがこの下層電極E0Bの表面に形成されている。すなわち、正断面図において、下層電極E0Bも圧電素子50Bも「コ」の字型の形状をなし、板状橋梁部20の上面から左右両側面にかけて一体形成されている。そして、上層電極群を構成する3種類の電極の配置は、中央電極E22Bが、板状橋梁部20の上面に下層電極E0Bおよび圧電素子50Bを介して形成されている点に変わりはないが、右脇電極E21Bおよび左脇電極E23Bは、板状橋梁部20の側面に下層電極E0Bおよび圧電素子50Bを介して形成されている。図8(b) には、固定部側電極群E21B〜E23Bのみが示されているが、重錘体側電極群E11B〜E13Bの配置も同様である。
On the other hand, in the embodiment shown in FIG. 8 (b), the right side electrode and the left side electrode are arranged on the side surface. That is, in this embodiment, the lower layer electrode E0B is formed on the side surface as well as the upper surface of the plate-
この場合、圧電素子50Bの各部分は、その厚み方向に分極現象を生じることになるので、板状橋梁部20の上面に形成された部分については図の上下方向に分極現象が生じ、板状橋梁部20の側面に形成された部分については図の左右方向に分極現象が生じる。したがって、板状橋梁部20の各部に生じた応力により、6枚の上層電極E11B〜E13B,E21B〜E23Bのいずれにも所定極性の電荷が発生することになる。図2(a) に示す板状橋梁部20の各部の伸縮状態は、その側面においても変わりはないので、結局、図5に示す発電回路60と同様の回路を用意しておけば、発生した電荷に基づく電力の取り出しが可能である。
In this case, since each portion of the
図8(a) に示す実施例に比べて、図8(b) に示す実施例は、各上層電極の面積が広くなるため、上層電極群に発生する電荷の量も多くなる。したがって、前者に比べて後者の方が、発電効率は高まるが、後者の場合、板状橋梁部20の上面だけでなく側面にも下層電極、圧電素子、上層電極を形成する必要があるため、製造コストは高騰することになる。
Compared with the embodiment shown in FIG. 8 (a), the embodiment shown in FIG. 8 (b) has a larger area of each upper electrode, and therefore the amount of charge generated in the upper electrode group also increases. Therefore, the latter has higher power generation efficiency than the former, but in the latter case, it is necessary to form a lower layer electrode, a piezoelectric element, and an upper layer electrode not only on the upper surface but also on the side surface of the plate-
一方、図8(c) に示す実施例は、右脇電極および左脇電極を、上面から側面にかけて連続するように配置したものである。この実施例でも、図8(b) に示す実施例と同様に、下層電極E0Cが板状橋梁部20の上面とともに側面にも形成され、圧電素子50Cがこの下層電極E0Cの表面に形成されている。したがって、正断面図において、下層電極E0Cおよび圧電素子50Cは「コ」の字型の形状をなし、板状橋梁部20の上面から左右両側面にかけて一体形成されている。
On the other hand, in the embodiment shown in FIG. 8 (c), the right side electrode and the left side electrode are arranged so as to be continuous from the upper surface to the side surface. Also in this embodiment, as in the embodiment shown in FIG. 8B, the lower layer electrode E0C is formed on the side surface together with the upper surface of the plate-
ここで、上層電極群を構成する3種類の電極の配置は、中央電極E22Cが、板状橋梁部20の上面に下層電極E0Cおよび圧電素子50Cを介して形成されている点に変わりはないが、右脇電極E21Cおよび左脇電極E23Cは、板状橋梁部20の上面から側面にかけて下層電極E0Cおよび圧電素子50Cを介して形成されている。図8(c) には、固定部側電極群E21C〜E23Cのみが示されているが、重錘体側電極群E11C〜E13Cの配置も同様である。
Here, the arrangement of the three types of electrodes constituting the upper layer electrode group is the same in that the center electrode E22C is formed on the upper surface of the plate-
上述したとおり、圧電素子50Bの各部分は、その厚み方向に分極現象を生じることになるので、図8(c) に示す実施例の場合も、板状橋梁部20の各部に生じた応力により、6枚の上層電極E11C〜E13C,E21C〜E23Cのいずれにも所定極性の電荷が発生することになり、図5に示す発電回路60と同様の回路を用意しておけば、発生した電荷に基づく電力の取り出しが可能である。
As described above, each part of the
図8(b) に示す実施例に比べて、図8(c) に示す実施例では、右脇電極および左脇電極の面積を更に広く確保することができるため、上層電極群に発生する電荷の量もそれだけ多くなり、発電効率を更に高めることができる。ただ、右脇電極および左脇電極を、上面から側面にかけて形成する必要があるため、製造コストは更に高騰することになる。 Compared with the embodiment shown in FIG. 8 (b), in the embodiment shown in FIG. 8 (c), the area of the right side electrode and the left side electrode can be secured more widely. As a result, the power generation efficiency can be further increased. However, since it is necessary to form the right side electrode and the left side electrode from the upper surface to the side surface, the manufacturing cost is further increased.
もちろん、図8(a) 〜図8(c) に示す実施例における上層電極の配置形態を部分ごとに組み合わせることも可能である。図8(d) は、右半分については図8(b) に示す配置形態を採用し、左半分については図8(c) に示す配置形態を採用したものである。また、この実施例では、圧電素子を一体構造とせずに2つの部分51D,52Dに分けて形成している。
Of course, it is also possible to combine the arrangement form of the upper electrode in the embodiment shown in FIGS. 8 (a) to 8 (c) for each part. In FIG. 8 (d), the arrangement shown in FIG. 8 (b) is adopted for the right half, and the arrangement shown in FIG. 8 (c) is adopted for the left half. In this embodiment, the piezoelectric element is not formed as an integral structure, but is divided into two
具体的には、この図8(d) に示す実施例では、下層電極E0Dが板状橋梁部20の上面とともに側面にも形成され、その表面に、圧電素子51D,52Dが形成されている。圧電素子51Dは、下層電極E0Dの右側面を覆う位置に形成され、圧電素子52Dは、下層電極E0Dの上面および左側面を覆う位置に形成されている。そして、上層電極群を構成する3種類の電極の配置は、中央電極E22Dが、板状橋梁部20の上面に下層電極E0Dおよび圧電素子52Dを介して形成されおり、右脇電極E21Dは、板状橋梁部20の右側面に下層電極E0Dおよび圧電素子51Dを介して形成されており、左脇電極E23Dは、板状橋梁部20の上面から側面にかけて下層電極E0Dおよび圧電素子52Dを介して形成されている。
Specifically, in the embodiment shown in FIG. 8D, the lower layer electrode E0D is formed on the side surface as well as the upper surface of the plate-
このように、右脇電極および左脇電極は、必ずしも左右対称となるようにする必要はないが、X軸方向に関する振動に関して発生する正電荷の総量と負電荷の総量とをできるだけ均衡に保つためには、図8(a) 〜(c) に示す実施例のように、左右対称となるようにするのが好ましい。 As described above, the right side electrode and the left side electrode do not necessarily have to be symmetrical. However, in order to keep the total amount of positive charges and the total amount of negative charges generated with respect to vibration in the X-axis direction as balanced as possible. For this, it is preferable that the left and right are symmetrical as in the embodiment shown in FIGS. 8 (a) to 8 (c).
また、圧電素子は、必ずしも一体構造にする必要はなく、図8(d) に示すように、各上層電極に応じた位置にそれぞれ別個独立したものを配置するようにしてもかまわないが、実用上は、一体構造とした方が製造プロセスは容易になる。同様に、下層電極も、各上層電極に応じた位置にそれぞれ別個独立したものを配置するようにしてもかまわないが、実用上は、一体構造とした方が製造プロセスは容易になる。 In addition, the piezoelectric element does not necessarily have an integral structure, and as shown in FIG. 8 (d), independent elements may be arranged at positions corresponding to the upper layer electrodes. Above, the manufacturing process becomes easier with a single structure. Similarly, the lower layer electrodes may be arranged separately and independently at positions corresponding to the upper layer electrodes. However, practically, the manufacturing process is easier when the single layer structure is used.
以上、図3に示す実施例(正断面図が図8(a) に相当)についてのバリエーションとして、図8(b) 〜(d) の実施例を述べたが、もちろん、図5に示す実施例についても同様のバリエーションが可能である。また、後述する第2の実施形態についても、上層電極の配置態様に関して、同様のバリエーションが可能である。 As described above, the embodiment shown in FIGS. 8B to 8D is described as a variation of the embodiment shown in FIG. 3 (the front sectional view corresponds to FIG. 8A). Of course, the embodiment shown in FIG. Similar variations are possible for the examples. Further, the second embodiment to be described later can be similarly modified with respect to the arrangement mode of the upper layer electrode.
<<< §3. 第2の実施形態(3軸発電型) >>>
続いて、本発明の第2の実施形態を説明する。§1で述べた第1の実施形態は、重錘体30に作用したX軸方向の振動エネルギーとZ軸方向の振動エネルギーとを電気エネルギーに変換することにより発電を行う2軸発電型の発電素子であるが、ここで述べる第2の実施形態は、更に、Y軸方向の振動エネルギーを電気エネルギーに変換する機能をもった3軸発電型の発電素子である。
<<< §3. Second embodiment (3-axis power generation type) >>
Subsequently, a second embodiment of the present invention will be described. The first embodiment described in §1 is a two-axis power generation type that generates power by converting vibration energy in the X-axis direction and vibration energy in the Z-axis direction that acted on the
もちろん、第1の実施形態の場合も、Y軸方向の振動エネルギーを電気エネルギーに変換することは可能であるが、前述したとおり、その変換効率は非常に低く、X軸もしくはZ軸方向の振動エネルギーの変換効率に比べると無視しうる程度のものである。ここで述べる第2の実施形態は、基本的に、第1の実施形態における板状橋梁部を2組用意し、これらを互いに直交する方向に組み合わせることにより、重錘体がX軸,Y軸,Z軸のいずれの方向に振動した場合でも、その振動エネルギーを効率的に電気エネルギーに変換できるようにしたものである。 Of course, in the case of the first embodiment as well, it is possible to convert vibration energy in the Y-axis direction into electric energy. However, as described above, the conversion efficiency is very low, and vibration in the X-axis or Z-axis direction. Compared to energy conversion efficiency, it is negligible. In the second embodiment described here, basically, two sets of plate-like bridge portions in the first embodiment are prepared, and these are combined in directions orthogonal to each other, so that the weight body is X-axis and Y-axis. The vibration energy can be efficiently converted into electric energy when the vibration is generated in any direction of the Z axis.
図9は、本発明の第2の実施形態に係る発電素子を構成する基本構造体100の平面図(上段の図(a) )および側断面図(下段の図(b) )である。図9(a) に示すとおり、この基本構造体100は、固定部用板状部材110、第1の板状橋梁部120、中間接続部125、第2の板状橋梁部130、重錘接続部140、重錘体150という各部分を有している渦巻型の構造体である。
FIG. 9 is a plan view (upper view (a)) and a side sectional view (lower view (b)) of the
ここでは、振動方向を説明する便宜上、重錘体150が静止している状態において、この重錘体150の重心位置に原点Oをとり、図示のとおり、XYZ三次元座標系を定義する。すなわち、図9(a) の平面図においては、図の下方にX軸、図の右方にY軸、紙面垂直上方にZ軸を定義する。図9(b) の側断面図においては、図の上方にZ軸、図の右方にY軸、紙面垂直上方にX軸がそれぞれ定義されることになる。図9(b) の側断面図は、図9(a) の平面図に示されている基本構造体100を、YZ平面で切断した図に相当する。なお、図9(a) では図示が省略されているが、実際には、この基本構造体100は、装置筐体内に収容される。図9(b) には、この装置筐体の一部をなす底板200が描かれており、固定部用板状部材110の下面が底板200の上面に固着されている状態が示されている。
Here, for convenience of explaining the vibration direction, the origin O is set at the center of gravity of the
固定部用板状部材110は、第1の実施形態における固定部10と同等の機能を果たし、第1の板状橋梁部120の根端部(図の左端)を装置筐体の底板200に固定する構成要素である。一方、第1の板状橋梁部120の先端部(図の右端)には、中間接続部125を介して、第2の板状橋梁部130の根端部が接続され、第2の板状橋梁部130の先端部には、重錘接続部140を介して重錘体150が接続されている。重錘体150は、図9(a) に示すとおり、振動子として機能する十分な質量をもった矩形状の構造体であり、渦巻き状に配置された構成要素110,120,125,130,140によって支持された状態になっている。
The
図9(b) には、第1の板状橋梁部120および中間接続部125は現れていないが、第1の板状橋梁部120、中間接続部125、第2の板状橋梁部130、重錘接続部140、重錘体150は、いずれも同じ厚み(Z軸方向の寸法)を有している。これに対して、固定部用板状部材110は、下方に余分な厚み部分を有している。このため、図9(b) に示すように、固定部用板状部材110の下面を底板200の上面に固定した状態において、第1の板状橋梁部120、中間接続部125、第2の板状橋梁部130、重錘接続部140、重錘体150は、いずれも底板200の上面から浮き上がった状態となり、重錘体150は宙吊り状態に保持される。
In FIG. 9 (b), the first plate-
ここで、少なくとも第1の板状橋梁部120および第2の板状橋梁部130は、可撓性を有しているため、外力の作用により撓みが生じる。このため、外部から装置筐体に振動が加えられると、この振動エネルギーによって重錘体150に力が加わり、重錘体150が装置筐体内で振動することになる。たとえば、装置筐体を、XY平面が水平面となり、Z軸が鉛直軸となるような向きに、車両等の振動源に取り付ければ、振動源から加わる垂直方向および水平方向の振動により、重錘体150に対して、XYZ各座標軸方向の振動エネルギーが加えられることになる。
Here, at least the first plate-
結局、図9に示す基本構造体100は、それぞれ可撓性をもった第1の板状橋梁部120と第2の板状橋梁部130とがL字状に配置されるように、第1の板状橋梁部120の先端部と第2の板状橋梁部130の根端部とが中間接続部125を介して接続され、更に、第2の板状橋梁部130の脇に重錘体150が配置されるように、第2の板状橋梁部130の先端部と重錘体150の隅部とが重錘接続部140を介して接続された構造を有している。しかも、第1の板状橋梁部120の根端部は、固定部として機能する固定部用板状部材110によって装置筐体の底板200の上面に固定されているため、第1の板状橋梁部120、第2の板状橋梁部130および重錘体150は、外力が作用しない状態において、装置筐体の底板200の上方に浮いた宙吊り状態になっている。
After all, in the
特に、図9に示す基本構造体100では、固定部が、X軸に平行な固定部用長手方向軸L0に沿って伸びる固定部用板状部材110によって構成され、この固定部用板状部材110の一端に第1の板状橋梁部120の根端部が固定されている。しかも、第1の板状橋梁部120は、Y軸に平行な第1の長手方向軸Lyを中心としてY軸方向に伸びるように配置され、第2の板状橋梁部130は、X軸に平行な第2の長手方向軸Lxを中心としてX軸方向に伸びるように配置されている。このため、固定部用板状部材110、第1の板状橋梁部120および第2の板状橋梁部130によって構成される構造体が、XY平面上への投影像が「コ」の字状になるようなコの字状構造体をなし、このコの字状構造体によって囲まれた内部領域に板状の重錘体150が配置された構造になっている。
In particular, in the
このような基本構造体100は、量産化に適した構造を有している。すなわち、図9(a) の平面図を見ればわかるとおり、この基本構造体100は、平面的には、矩形の板状部材に「コ」の字状の空隙部Vをエッチングなどによって形成し、全体的に渦巻き型の構造体を作成する工程により量産可能である。
Such a
たとえば、ここに示す実施例は、一辺5mm角のシリコン基板を用意し、0.3mm程度の幅をもった溝をエッチングにより形成することにより「コ」の字状の空隙部Vを形成し、0.5mm程度の幅をもった「コ」の字状の構造体により、固定部用板状部材110、第1の板状橋梁部120、中間接続部125、第2の板状橋梁部130、重錘接続部140を形成したものである。また、各部の厚みに関しては、第1の板状橋梁部120、中間接続部125、第2の板状橋梁部130、重錘接続部140、重錘体150については、厚みを0.5mmとし、固定部用板状部材110については、厚みを1mmとした。
For example, in the embodiment shown here, a silicon substrate having a side of 5 mm square is prepared, and a groove having a width of about 0.3 mm is formed by etching, thereby forming a “U” -shaped void V, A "U" -shaped structure having a width of about 0.5 mm is used to fix the
もちろん、各部の寸法は任意に設定することができる。要するに、第1の板状橋梁部120および第2の板状橋梁部130は、重錘体150がある程度の振幅をもって各座標軸方向に振動可能になるような可撓性を有する寸法に設定すればよく、重錘体150は、外部からの振動エネルギーによって発電に必要な振動を生じるのに十分な質量を有する寸法に設定すればよく、固定部用板状部材110は、この基本構造体100全体を装置筐体の底板200に堅固に固着できる寸法に設定すればよい。
Of course, the dimension of each part can be set arbitrarily. In short, if the first plate-
以上、図9を参照しながら、第2の実施形態に係る発電素子の構成要素となる基本構造体100の構造を説明したが、発電素子は、この基本構造体100に、更に、いくつかの要素を付加することにより構成される。
As described above, the structure of the
図10(a) は、この第2の実施形態に係る発電素子の平面図(装置筐体については図示を省略した)、図10(b) は、これをYZ平面で切断した側断面図である(装置筐体も図示した)。図10(b) に示すとおり、基本構造体100の上面には、全面にわたって層状の下層電極E00が形成され、更にその上面には、全面にわたって層状の圧電素子300が形成されている。そして、この圧電素子300の上面には、局在的に形成された複数の上層電極からなる上層電極群が形成されている(図10(b) は、YZ平面での断面図であるので、切断面の奥に配置されている3枚の上層電極Ex1,Ex2,Ez1のみが図に現れている)。
FIG. 10 (a) is a plan view of the power generating element according to the second embodiment (the device casing is not shown), and FIG. 10 (b) is a side cross-sectional view taken along the YZ plane. Yes (device housing is also shown). As shown in FIG. 10B, a layered lower layer electrode E00 is formed over the entire upper surface of the
下層電極や上層電極としては、第1の実施形態と同様に、金属などの一般的な導電材料を用いて形成すればよい。ここに示す実施例の場合、厚み300nm程度の薄膜状の金属層(チタン膜と白金膜との二層からなる金属層)により下層電極E00および上層電極群を形成している。また、圧電素子300としては、PZT(チタン酸ジルコン酸鉛)やKNN(ニオブ酸カリウムナトリウム)などを厚み2μm程度の薄膜状にしたものを用いている。
The lower layer electrode and the upper layer electrode may be formed using a general conductive material such as a metal as in the first embodiment. In the example shown here, the lower layer electrode E00 and the upper layer electrode group are formed of a thin metal layer (a metal layer composed of two layers of a titanium film and a platinum film) having a thickness of about 300 nm. The
図10(b) に示されているとおり、この実施例の場合、底板200とカバー400とによって装置筐体が構成され、基本構造体100は、この装置筐体内に収容されている。上述したとおり、基本構造体100は、固定部用板状部材110によって、底板200の上面に固定されており、重錘体150は、装置筐体内で宙吊り状態になっている。カバー400は、天板410と側板420とによって構成され、重錘体150は、このカバー400の内部空間内で変位し、振動することになる。
As shown in FIG. 10 (b), in the case of this embodiment, an apparatus casing is constituted by the
なお、重錘体150の上面と天板410の下面との距離、重錘体150の下面と底板200の上面との距離を、適切な寸法に設定しておけば、天板410および底板200をストッパ部材として機能させることができる。すなわち、装置筐体の内壁面が重錘体150の過度の変位を制限する制御部材として機能するので、重錘体150に過度の加速度(各板状橋梁部120,130が破損するような加速度)が加わった場合でも、重錘体150の過度の変位を制限することができ、板状橋梁部120,130が破損する事態を避けることができる。但し、天板410と重錘体150との空隙寸法や、底板200と重錘体150との空隙寸法が狭すぎると、エアーダンピングの影響を受け、発電効率が低下するので注意を要する。
If the distance between the upper surface of the
ここに示す実施例の場合、上層電極群は、図10(a) に示すとおり、12枚の上層電極Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4(図におけるハッチングは、電極形成領域を明瞭に示すために付したものであり、断面を示すものではない)によって構成されている。なお、図10(a) は、この発電素子を上方から見た平面図であるため、基本構造体の全面を覆う圧電素子300が見えていることになるが、便宜上、この図10(a) には、固定部用板状部材110,第1の板状橋梁部120,第2の板状橋梁部130,重錘接続部140,重錘体150の位置を括弧書きの符号で示してある。
In the case of the embodiment shown here, the upper layer electrode group consists of 12 upper layer electrodes Ex1 to Ex4, Ey1 to Ey4, Ez1 to Ez4 (hatching in the figure clearly shows the electrode formation region as shown in FIG. 10 (a)). It is given for the sake of illustration and does not show a cross section). 10 (a) is a plan view of the power generating element as viewed from above, and thus the
第1の板状橋梁部120の上方に配置されている6枚の上層電極の役割は、基本的には、図3に示す板状橋梁部20の上方に配置されている6枚の上層電極の役割と同じである。同様に、第2の板状橋梁部130の上方に配置されている6枚の上層電極の役割も、基本的には、図3に示す板状橋梁部20の上方に配置されている6枚の上層電極の役割と同じである。
The role of the six upper layer electrodes arranged above the first plate-
ここで、符号xを含んだ4枚の上層電極Ex1〜Ex4(第2の板状橋梁部130上に第2の長手方向軸Lxに沿って伸びるように配置された左右の脇電極)と、符号yを含んだ4枚の上層電極Ey1〜Ey4(第1の板状橋梁部120上に第1の長手方向軸Lyに沿って伸びるように配置された左右の脇電極)は、主として、重錘体150の水平方向(X軸およびY軸方向)の振動エネルギーに基づいて発生する電荷を取り出す役割を果たすために設けられた電極であり、符号zを含んだ4枚の上層電極Ez1〜Ez4(第1の板状橋梁部120の第1の長手方向軸Ly上および第2の板状橋梁部130の第2の長手方向軸Lx上に配置された中央電極)は、主として、重錘体150の垂直方向(Z軸方向)の振動エネルギーに基づいて発生する電荷を取り出す役割を果たすために設けられた電極である。
Here, four upper layer electrodes Ex1 to Ex4 (left and right side electrodes arranged on the second plate-
ここでは、図10(a) に示されている12枚の上層電極のうち、第1の板状橋梁部120の先端部に形成された3枚の電極を、それぞれ第1の先端部側右脇電極Ey1,第1の先端部側中央電極Ez3,第1の先端部側左脇電極Ey2と呼び、第1の板状橋梁部120の根端部に形成された3枚の電極を、それぞれ第1の根端部側右脇電極Ey3,第1の根端部側中央電極Ez4,第1の根端部側左脇電極Ey4と呼び、第2の板状橋梁部130の先端部に形成された3枚の電極を、それぞれ第2の先端部側右脇電極Ex1,第2の先端部側中央電極Ez1,第2の先端部側左脇電極Ex2と呼び、第2の板状橋梁部130の根端部に形成された3枚の電極を、それぞれ第2の根端部側右脇電極Ex3,第2の根端部側中央電極Ez2,第2の根端部側左脇電極Ex4と呼ぶことにする。
Here, of the twelve upper layer electrodes shown in FIG. 10 (a), three electrodes formed at the tip of the first plate-
ここでも、「右脇」,「左脇」なる文言は、各板状橋梁部120,130の上面をその根端部側から見た場合の左右を意味するものである。中央電極Ez3,Ez4は、第1の板状橋梁部120の中心線をなす第1の長手方向軸Ly(Y軸に平行な中心軸)上に配置されており、左右の脇電極Ey1〜Ey4は、その左右両脇に第1の長手方向軸Lyに関して対称をなすように配置されている。同様に、中央電極Ez1,Ez2は、第2の板状橋梁部130の中心線をなす第2の長手方向軸Lx(X軸に平行な中心軸)上に配置されており、左右の脇電極Ex1〜Ex4は、その左右両脇に第2の長手方向軸Lxに関して対称をなすように配置されている。
Here, the terms “right side” and “left side” mean the left and right when the upper surfaces of the plate-
図10(b) に示すとおり、この発電素子には、更に、発電回路500が備わっている。図10(b) では、この発電回路500を単なるブロックで示すが、具体的な回路図は後述する。図示のとおり、この発電回路500と、下層電極E00および12枚の上層電極Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4との間には配線が施されており、各上層電極で発生した電荷は、この配線を介して発電回路500によって取り出される。実際には、各配線は、各上層電極とともに、圧電素子300の上面に形成された導電性パターンによって形成することができる。また、基本構造体をシリコン基板によって構成した場合、発電回路500は、このシリコン基板上(たとえば、固定部用板状部材110の部分)に形成することが可能である。
As shown in FIG. 10 (b), this power generation element further includes a
結局、この第2の実施形態に係る発電素子は、XYZ三次元座標系における各座標軸方向の振動エネルギーを電気エネルギーに変換することにより発電を行う発電素子であり、Y軸に平行な第1の長手方向軸Lyに沿って伸び、可撓性を有する第1の板状橋梁部120と、この第1の板状橋梁部120に(中間接続部125を介して)接続され、X軸に平行な第2の長手方向軸Lxに沿って伸び、可撓性を有する第2の板状橋梁部130と、この第2の板状橋梁部130に(重錘接続部140を介して)接続された重錘体150と、第1の板状橋梁部120、第2の板状橋梁部130および重錘体150を収容する装置筐体400と、第1の板状橋梁部120の一端を装置筐体400に固定する固定部(固定部用板状部材110)と、第1の板状橋梁部120および第2の板状橋梁部130の表面に層状に形成された下層電極E00と、この下層電極E00の表面に層状に形成された圧電素子300と、この圧電素子300の表面に局在的に形成された複数の上層電極からなる上層電極群Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4と、各上層電極および下層電極に発生した電荷に基づいて生じる電流を整流して電力を取り出す発電回路500と、を備えていることになる。
Eventually, the power generating element according to the second embodiment is a power generating element that generates power by converting vibration energy in the direction of each coordinate axis in the XYZ three-dimensional coordinate system into electric energy. A first plate-
前述したとおり、このような構造をもった発電素子では、装置筐体400を振動させる外力が作用すると、各板状橋梁部120,130の撓みにより重錘体150が装置筐体400内で振動する。そして、この各板状橋梁部120,130の撓みは、圧電素子300に伝達され、圧電素子300にも同様の撓みが生じる。圧電素子300は、層方向に伸縮する応力の作用により、厚み方向に分極を生じる性質を有しているため、その上面および下面に電荷が発生し、発生した電荷は上層電極Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4および下層電極E00から取り出される。
As described above, in the power generation element having such a structure, when an external force that vibrates the
ここに示す実施例の場合、§1で述べた実施例と同様に、層方向に伸ばす応力が作用すると、上面側に正電荷、下面側に負電荷が生じ、逆に、層方向に縮める応力が作用すると、上面側に負電荷、下面側に正電荷が生じる圧電素子300を用いている。もちろん、この第2の実施形態の場合も、どのような分極特性を有する圧電素子を用いてもかまわない。
In the case of the embodiment shown here, as in the embodiment described in §1, when a stress that extends in the layer direction acts, a positive charge is generated on the upper surface side, a negative charge is generated on the lower surface side, and conversely, a stress that contracts in the layer direction. Is used, the
続いて、この発電素子の具体的な発電動作をみてみよう。図11は、図9に示す基本構造体100の重錘体150がX軸正方向の変位Δx(+)を生じたときの各上層電極形成位置の伸縮状態を示す平面図である。同様に、図12は、Y軸正方向の変位Δy(+)を生じたときの伸縮状態を示す平面図、図13は、Z軸正方向の変位Δz(+)を生じたときの伸縮状態を示す平面図である。このような変位は、重錘体150に対して各座標軸の正方向の加速度が作用したときに生じることになり、当該変位により、各板状橋梁部120,130は撓みを生じて、基本構造体100は変形する。ただ、図11〜図13では、図示の便宜上、基本構造体100の変位状態の描写は省略し、各上層電極形成位置の伸縮状態を矢印で示す(両端に矢が付された矢印は伸びる状態、互いに向かい合う一対の矢印は縮む状態を示している)。
Next, let's look at the specific power generation operation of this power generation element. FIG. 11 is a plan view showing a stretched state of each upper layer electrode formation position when the
重錘体150がX軸正方向の変位Δx(+)を生じた場合、図11に示すとおり、渦巻き状の基本構造体100の外側に配置された第2の先端部側右脇電極Ex1,第2の根端部側右脇電極Ex3,第1の先端部側右脇電極Ey1には、いずれも長手方向に伸びる応力が作用するが、第1の根端部側右脇電極Ey3には、長手方向に縮む応力が作用する。一方、渦巻き状の基本構造体100の内側に配置された第2の先端部側左脇電極Ex2,第2の根端部側左脇電極Ex4,第1の先端部側左脇電極Ey2には、いずれも長手方向に縮む応力が作用するが、第1の根端部側左脇電極Ey4には、長手方向に伸びる応力が作用する。
When the
第1の根端部側右脇電極Ey3は、渦巻き状の基本構造体100の外側に位置する電極であるにもかかわらず、他の外側に位置する右脇電極Ex1,Ex3,Ey1とは伸縮状態が逆転し、第1の根端部側右脇電極Ey4は、渦巻き状の基本構造体100の内側に位置する電極であるにもかかわらず、他の内側に位置する左脇電極Ex2,Ex4,Ey2とは伸縮状態が逆転している。この第1の板状橋梁部120の根端部おいて伸縮逆転が生じる理由を説明するには、複雑な理論展開が必要になるため、ここでは説明を省略するが、本願発明者は、コンピュータを用いた構造力学上のシミュレーションを実行することにより、図示のような伸縮応力が発生することを確認している(後述する図19参照)。
Although the first root end side right side electrode Ey3 is an electrode located outside the spiral
なお、中心線上に配置された4枚の中央電極Ez1〜Ez4については、右半分と左半分とでわずかな逆の応力が作用することになるので、全体としては応力が均衡して伸縮は生じないものと考えることができる。 In addition, about four center electrodes Ez1-Ez4 arrange | positioned on a centerline, since a slightly reverse stress will act on a right half and a left half, as a whole, a stress balances and expansion-contraction arises. It can be considered that there is nothing.
図11は、X軸正方向の変位Δx(+)が生じたときの状態であるが、X軸負方向の変位Δx(−)が生じたときときは、重錘体150は逆方向に変位することになり、各部の伸縮状態は図11に示す状態を反転したものになる。したがって、装置筐体400に対して、X軸方向の振動成分をもった振動エネルギーが加わると、基本構造体100の各部には、図11に示す伸縮状態とその反転状態とが交互に繰り返し生じることになる。
FIG. 11 shows a state when a displacement Δx (+) in the X-axis positive direction occurs. When a displacement Δx (−) in the X-axis negative direction occurs, the
一方、重錘体150がY軸正方向の変位Δy(+)を生じた場合、図12に示すとおり、渦巻き状の基本構造体100の外側に配置された第2の根端部側右脇電極Ex3,第1の先端部側右脇電極Ey1,第1の根端部側右脇電極Ey3には、いずれも長手方向に縮む応力が作用するが、第2の先端部側右脇電極Ex1には、長手方向に伸びる応力が作用する。一方、渦巻き状の基本構造体100の内側に配置された第2の根端部側左脇電極Ex4,第1の先端部側左脇電極Ey2,第1の根端部側左脇電極Ey4には、いずれも長手方向に伸びる応力が作用するが、第2の先端部側左脇電極Ex2には、長手方向に縮む応力が作用する。
On the other hand, when the
第2の先端部側右脇電極Ex1は、渦巻き状の基本構造体100の外側に位置する電極であるにもかかわらず、他の外側に位置する右脇電極Ex3,Ey1,Ey3とは伸縮状態が逆転し、第2の先端部側左脇電極Ex2は、渦巻き状の基本構造体100の内側に位置する電極であるにもかかわらず、他の内側に位置する左脇電極Ex4,Ey2,Ey4とは伸縮状態が逆転している。この第2の板状橋梁部130の先端部おいて伸縮逆転が生じる理由を説明するには、複雑な理論展開が必要になるため、ここでは説明を省略するが、本願発明者は、コンピュータを用いた構造力学上のシミュレーションを実行することにより、図示のような伸縮応力が発生することを確認している(後述する図20参照)。
The second tip side right side electrode Ex1 is an electrode located outside the spiral
この場合も、中心線上に配置された4枚の中央電極Ez1〜Ez4については、右半分と左半分とでわずかな逆の応力が作用することになるので、全体としては応力が均衡して伸縮は生じないものと考えることができる。 Also in this case, the four central electrodes Ez1 to Ez4 arranged on the center line are subjected to slight reverse stresses in the right half and the left half, so that the stress is balanced and stretched as a whole. It can be considered that does not occur.
図12は、Y軸正方向の変位Δy(+)が生じたときの状態であるが、Y軸負方向の変位Δy(−)が生じたときときは、重錘体150は逆方向に変位することになり、各部の伸縮状態は図12に示す状態を反転したものになる。したがって、装置筐体400に対して、Y軸方向の振動成分をもった振動エネルギーが加わると、基本構造体100の各部には、図12に示す伸縮状態とその反転状態とが交互に繰り返し生じることになる。
FIG. 12 shows a state when a displacement Δy (+) in the Y-axis positive direction occurs. When a displacement Δy (−) in the Y-axis negative direction occurs, the
最後に、重錘体150がZ軸正方向の変位Δz(+)を生じた場合は、図13に示すとおり、第1の板状橋梁部120の先端部側の3枚の電極Ey1,Ey2,Ez3および第2の板状橋梁部130の先端部側の3枚の電極Ex1,Ex2,Ez1には、長手方向に伸びる応力が作用するが、第1の板状橋梁部120の根端部側の3枚の電極Ey3,Ey4,Ez4および第2の板状橋梁部130の根端部側の3枚の電極Ex3,Ex4,Ez2には、長手方向に縮む応力が作用する。このような応力が作用する理由についての詳細な説明は省略するが、本願発明者は、コンピュータを用いた構造力学上のシミュレーションを実行することにより、図示のような伸縮応力が発生することを確認している(後述する図21参照)。
Finally, when the
図13は、Z軸正方向の変位Δz(+)が生じたときの状態であるが、Z軸負方向の変位Δz(−)が生じたときときは、重錘体150は逆方向に変位することになり、各部の伸縮状態は図13に示す状態を反転したものになる。したがって、装置筐体400に対して、Z軸方向の振動成分をもった振動エネルギーが加わると、基本構造体100の各部には、図13に示す伸縮状態とその反転状態とが交互に繰り返し生じることになる。
FIG. 13 shows a state when a displacement Δz (+) in the positive direction of the Z-axis is generated. When the displacement Δz (−) in the negative direction of the Z-axis is generated, the
図14は、図10に示す発電素子において、下層電極E00を基準電位にして、重錘体150に各座標軸方向の変位が生じたときに、各上層電極Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4に生じる電荷の極性を示す表である。表における符号「+」は正電荷の発生を示し、符号「−」は負電荷の発生を示している。また、符号「0」は、電荷の発生が全くないか、もしくは、符号「+」や符号「−」で示す場合に比べて少量の電荷しか発生しない状態を示している。実用上、符号「0」に相当する欄における発生電荷は有意な量ではないため、以下の説明では無視することにする。
FIG. 14 shows the power generation element shown in FIG. 10 with the lower layer electrode E00 as a reference potential and when the
上述したとおり、重錘体150に各座標軸方向の変位が生じると、各板状橋梁部120,130の各部には、図11〜図13に示すような伸縮応力が加わることになる。一方、圧電素子300は、層方向に伸ばす応力が作用すると、上面側に正電荷、下面側に負電荷が生じ、層方向に縮める応力が作用すると、上面側に負電荷、下面側に正電荷が生じる分極特性を有している。これらの点を踏まえれば、図14に示す表が得られることは容易に理解できよう。
As described above, when displacement in the direction of each coordinate axis occurs in the
たとえば、図14の第1行目の「変位Δx(+)」の各欄の結果は、図11に示す伸縮分布において、伸びる部分の上層電極欄に「+」、縮む部分の上層電極欄に「−」、全体としては伸縮が生じない部分の上層電極欄に「0」を記したものである。同様に、第2行目の「変位Δy(+)」の各欄の結果は、図12に示す伸縮分布に応じたものになっており、第3行目の「変位Δz(+)」の各欄の結果は、図13に示す伸縮分布に応じたものになっている。 For example, the result of each column of “displacement Δx (+)” in the first row in FIG. 14 is “+” in the upper electrode column of the expanding portion and the upper electrode column of the contracting portion in the stretch distribution shown in FIG. "-", "0" is written in the upper electrode column where no expansion or contraction occurs as a whole. Similarly, the result of each column of “displacement Δy (+)” in the second row corresponds to the expansion / contraction distribution shown in FIG. 12, and the result of “displacement Δz (+)” in the third row. The results in each column correspond to the stretch distribution shown in FIG.
この図14の表は、重錘体150に対して、各座標軸の正方向への変位Δx(+),Δy(+),Δz(+)が生じたときの各上層電極の発生電荷を示すものであるが、各座標軸の負方向への変位Δx(−),Δy(−),Δz(−)が生じたときは、図14の表の符号を逆転させた結果が得られる。通常、外部から振動エネルギーが与えられると、重錘体150は装置筐体400内で振動することになるので、当該振動の周期に同期して、図14に示す表の符号は反転し、また、電荷の発生量も周期的に増減することになる。
The table of FIG. 14 shows the charge generated in each upper layer electrode when displacement Δx (+), Δy (+), Δz (+) in the positive direction of each coordinate axis occurs with respect to the
実際には、外部から与えられる振動エネルギーは、XYZ三次元座標系における各座標軸方向成分を有するものになるので、重錘体150の変位は、Δx(±),Δy(±),Δz(±)を合成したものになり、しかも時々刻々と変化してゆくことになる。このため、たとえば、変位Δx(+)とΔy(+)とが同時に生じたり、変位Δx(+)とΔz(+)とが同時に生じたりすると、図14の表に示すとおり、上層電極Ex3やEy2には、正電荷と負電荷との双方が発生することになり、一部の電荷は相殺されてしまい、有効に取り出すことはできない。
Actually, since the vibration energy given from the outside has a component in each coordinate axis direction in the XYZ three-dimensional coordinate system, the displacement of the
このように、重錘体150の振動形態によっては、必ずしも100%効率的な発電が行われるわけではないが、全体としてみれば、重錘体150のX軸方向の振動エネルギー、Y軸方向の振動エネルギー、Z軸方向の振動エネルギーという3軸方向のエネルギーを取り出して発電が可能になる。このように、重錘体150の3軸すべての振動エネルギーを利用した発電が可能になる点が、本発明の第2の実施形態に係る発電素子の特徴であり、そのような特徴により、様々な方向成分を含んだ振動エネルギーをできるだけ無駄なく電気エネルギーに変換し、高い発電効率を得る、という目的が達成されることになる。
As described above, depending on the vibration mode of the
発電回路500は、各上層電極Ex1〜Ez4および下層電極E00に発生した電荷に基づいて生じる電流を整流して電力を取り出す役割を果たす。ここに示す実施例の場合、下層電極E00は共通電極として基準電位を確保する機能を果たすことになるので、実際は、各上層電極Ex1〜Ez4から流れ出る電流と、各上層電極Ex1〜Ez4に流れ込む電流とを別個に集めて蓄電を行えばよい。
The
図15は、図10に示す発電素子に用いられている発電回路500の具体的な構成を示す回路図である。基本的な回路構成は、図5に示す発電回路60と同様である。すなわち、Px1〜Px4,Py1〜Py4,Pz1〜Pz4は、圧電素子300の一部分を示しており、それぞれ上層電極Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4の直下に位置する部分に相当する。また、回路図上に白丸で示すE00は下層電極,Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4は上層電極に対応する。
FIG. 15 is a circuit diagram showing a specific configuration of the
Dx1(+)〜Dz34(−)は、整流素子(ダイオード)であり、符号(+)が付された各整流素子は、各上層電極に発生した正電荷を取り出す役割を果たし、符号(−)が付された各整流素子は、各上層電極に発生した負電荷を取り出す役割を果たす。 Dx1 (+) to Dz34 (−) are rectifier elements (diodes), and each rectifier element with a symbol (+) plays a role of taking out a positive charge generated in each upper layer electrode. Each of the rectifying elements marked with serves to take out a negative charge generated in each upper layer electrode.
なお、上層電極Ex1〜Ex4,Ey1〜Ey4には、それぞれ独立した正負一対の整流素子Dx1(+),Dx1(−)等が接続されているのに対して、上層電極Ez1,Ez3には、両者に共通した正負一対の整流素子Dz13(+),Dz13(−)が接続され、上層電極Ez2,Ez4には、両者に共通した正負一対の整流素子Dz24(+),Dz24(−)が接続されている。これは、図14の表を見ればわかるとおり、上層電極Ez1,Ez3には常に同じ極性の電荷しか発生することがなく、上層電極Ez2,Ez4にも常に同じ極性の電荷しか発生することがないため、それぞれ共通した整流素子を利用できるためである。 The upper layer electrodes Ex1 to Ex4 and Ey1 to Ey4 are connected to a pair of independent positive and negative rectifier elements Dx1 (+), Dx1 (−), etc., whereas the upper layer electrodes Ez1 and Ez3 have A pair of positive and negative rectifier elements Dz13 (+) and Dz13 (-) common to both are connected, and a pair of positive and negative rectifier elements Dz24 (+) and Dz24 (-) common to both are connected to the upper layer electrodes Ez2 and Ez4. Has been. As can be seen from the table of FIG. 14, the upper layer electrodes Ez1 and Ez3 always generate charges of the same polarity, and the upper layer electrodes Ez2 and Ez4 always generate charges of the same polarity. This is because a common rectifying element can be used.
一方、Cfは平滑用の容量素子(コンデンサ)であり、その正極端子(図の上方端子)には取り出された正電荷が供給され、負極端子(図の下方端子)には取り出された負電荷が供給される。図5に示す発電回路60と同様に、容量素子Cfは、発生電荷に基づく脈流を平滑化する役割を果たし、重錘体150の振動が安定した定常時には、容量素子Cfのインピーダンスはほとんど無視しうる。なお、図5に示す発電回路60では、下層電極E0に発生した電荷を取り出すために、整流素子D0(+)およびD0(−)を用いているが、図15に示す発電回路500では、容量素子Cfの両端子を、抵抗素子Rd1,Rd2を介して下層電極E00に接続する構成を採用している。このような構成でも、上下両層電極に発生した電荷の取り出しが可能である。
On the other hand, Cf is a smoothing capacitive element (capacitor). The positive charge taken out is supplied to the positive terminal (upper terminal in the figure) and the negative charge taken out to the negative terminal (lower terminal in the figure). Is supplied. Similar to the
ここでも、容量素子Cfに並列接続されているZLは、本発電素子によって発電された電力の供給を受ける機器の負荷を示している。抵抗素子Rd1,Rd2の抵抗値は、この負荷ZLのインピーダンスに比べて十分に大きくなるように設定する。図5に示す発電回路60と同様に、発電効率を向上させるためには、負荷ZLのインピーダンスと圧電素子300の内部インピーダンスとを整合させておくのが好ましい。したがって、電力供給を受ける機器が予め想定されている場合は、当該機器の負荷ZLのインピーダンスに整合した内部インピーダンスをもつ圧電素子を採用して本発電素子の設計を行うようにするのが好ましい。
Again, ZL connected in parallel to the capacitive element Cf indicates the load of the device that receives the supply of power generated by the power generation element. The resistance values of the resistance elements Rd1, Rd2 are set so as to be sufficiently larger than the impedance of the load ZL. Similar to the
結局、発電回路500は、容量素子Cfと、各上層電極Ex1〜Ez4に発生した正電荷を容量素子Cfの正極側へ導くために各上層電極Ex1〜Ez4から容量素子Cfの正極側へ向かう方向を順方向とする正電荷用整流素子Dx1(+)〜Dz34(+)と、各上層電極Ex1〜Ez4に発生した負電荷を容量素子Cfの負極側へ導くために容量素子Cfの負極側から各上層電極Ex1〜Ez4へ向かう方向を順方向とする負電荷用整流素子Dx1(−)〜Dz34(−)と、を有し、振動エネルギーから変換された電気エネルギーを容量素子Cfにより平滑化して負荷ZLに供給する機能を果たすことになる。
Eventually, the
なお、この図15に示す回路においても、負荷ZLには、正電荷用整流素子Dx1(+)〜Dz24(+)で取り出された正電荷と、負電荷用整流素子Dx1(−)〜Dz24(−)で取り出された負電荷とが供給されることになる。したがって、原理的には、個々の瞬間において、各上層電極Ex1〜Ez4に発生する正電荷の総量と負電荷の総量とが等しくなるようにすれば、最も効率的な発電が可能になる。 Also in the circuit shown in FIG. 15, the load ZL includes positive charges extracted by the positive charge rectifying elements Dx1 (+) to Dz24 (+) and negative charge rectifying elements Dx1 (−) to Dz24 ( The negative charge taken out in (−) is supplied. Therefore, in principle, the most efficient power generation is possible if the total amount of positive charges and the total amount of negative charges generated at the upper layer electrodes Ex1 to Ez4 are equal at each moment.
前述したとおり、図10に示す上層電極のうち、左右の脇電極はいずれも長手方向軸LxもしくはLyを中心軸として対称となるように配置されている。このような対称構造を採用すれば、重錘体150がX軸方向に振動した場合は、図11に示すように、同一箇所に配置された一対の左右脇電極に発生する正電荷の総量と負電荷の総量とがほぼ等しくなる。同様に、重錘体150がY軸方向に振動した場合も、図12に示すように、同一箇所に配置された一対の左右脇電極に発生する正電荷の総量と負電荷の総量とがほぼ等しくなる。このように、右脇電極と左脇電極という一対の電極を中央電極の両脇に配置するメリットは、X軸方向の振動およびY軸方向の振動に関しては、正電荷の総量と負電荷の総量とを等しくする効果が得られる点にある。
As described above, of the upper layer electrodes shown in FIG. 10, the left and right side electrodes are arranged so as to be symmetric with respect to the longitudinal axis Lx or Ly as the central axis. If such a symmetrical structure is adopted, when the
もちろん、この第2の実施形態においても、基本構造体100の固有の構造に基づいて定まる重錘体150の共振周波数が、外部から与えられる振動周波数に一致した場合に最も効率的な発電が可能になる。したがって、外部から与えられる振動の周波数が予め想定されている場合、基本構造体100の構造設計の段階で、当該周波数に共振周波数が合致するような設計を行うのが好ましい。
Of course, also in the second embodiment, the most efficient power generation is possible when the resonance frequency of the
<<< §4. 第2の実施形態を利用した発電装置 >>>
ここでは、§3で述べた第2の実施形態に係る発電素子(図10に示す素子)を複数組用意することにより、更に効率的な発電を可能にする実施形態を述べる。なお、本願では、用語として区別する便宜上、§1で述べた第1の実施形態、§2で述べたその変形例、§3で述べた第2の実施形態に示す1組の装置を「発電素子」と呼び、この「発電素子」を複数組用い、個々の発電素子によって取り出された電力を外部に供給する機能をもった装置を「発電装置」と呼ぶことにする。
<<< §4. Power generation device using second embodiment >>>
Here, an embodiment that enables more efficient power generation by preparing a plurality of sets of power generation elements (elements shown in FIG. 10) according to the second embodiment described in §3 will be described. In the present application, for the sake of distinction as terms, the set of devices shown in the first embodiment described in §1, the modified example described in §2, and the second embodiment described in §3 is referred to as “power generation”. A device having a function of supplying a plurality of sets of “power generation elements” and supplying the electric power extracted by each power generation element to the outside will be referred to as “power generation device”.
図16は、図10に示す発電素子を4組用いた発電装置の基本構造体1000の構造を示す平面図である(平面形状を明確に示すため、構造体内部の部分にハッチングを施して示す)。この基本構造体1000は、4組の基本構造体100A,100B,100C,100Dを融合させたものである。個々の基本構造体100A,100B,100C,100Dは、いずれも図9に示す基本構造体100と同等の構造をなし、それぞれ固定部用板状部材110,第1の板状橋梁部120,第2の板状橋梁部130,重錘体150の各部を有している。
FIG. 16 is a plan view showing the structure of the
図16では、基本構造体100A,100B,100C,100Dの各部についても、それぞれ符号の末尾にA〜Dを付して示してある。たとえば、基本構造体100Aは、固定部用板状部材110A,第1の板状橋梁部120A,第2の板状橋梁部130A,重錘体150Aの各部を有している。ただ、図の上下に隣接する基本構造体については、一対の固定部用板状部材110を融合した構造としている。このため、基本構造体100Aの固定部用板状部材110Aと基本構造体100Bの固定部用板状部材110Bとは、実際には融合して1つの固定部用板状部材110ABを構成しており、同様に、基本構造体100Cの固定部用板状部材110Cと基本構造体100Dの固定部用板状部材110Dとは、実際には融合して1つの固定部用板状部材110CDを構成している。
In FIG. 16, each part of the
もちろん、実際の発電装置は、図16に示す基本構造体1000に、更に、下層電極、圧電素子、上層電極、発電回路を付加することによって実現される。具体的には、たとえば、この基本構造体1000の上面全面に共通の下層電極を形成し、その上面全面に共通の圧電素子を形成し、更にその上面の所定箇所に局在的に複数の個別上層電極を形成すればよい(もちろん、下層電極や圧電素子を部分ごとに独立した構成にしてもかまわない)。
Of course, an actual power generation apparatus is realized by adding a lower layer electrode, a piezoelectric element, an upper layer electrode, and a power generation circuit to the
ここで、発電回路については、4組の発電素子を融合した回路とし、4組の発電素子から取り出した発生電荷をまとめて出力できるようにすればよい。具体的には、図15に示す発電回路500において、整流素子は個々の発電素子の上層電極にそれぞれ接続するようにするが、容量素子Cfについては、4組の発電素子について共通するものを1つ設けるようにし、すべての発電素子から得られた電力エネルギーをここに蓄積できるようにする。また、4組の発電素子の下層電極E00は相互に接続して、同電位となるようにしておく。もちろん、抵抗素子Rd1,Rd2も、4組の発電素子で共通のものを用いればよい。
Here, the power generation circuit may be a circuit in which four sets of power generation elements are integrated so that the generated charges taken out from the four sets of power generation elements can be output collectively. Specifically, in the
図10に示す1組の発電素子は、12枚の上層電極から集めた電荷に基づいて発電を行うことになるが、これを4組用いて構成される発電装置は、合計48枚の上層電極から集めた電荷に基づいて発電を行うことができる。 One set of power generation elements shown in FIG. 10 generates power based on the electric charge collected from 12 upper layer electrodes, and a power generation device configured by using four sets of them generates a total of 48 upper layer electrodes. Power generation can be performed based on the charge collected from the battery.
なお、複数組の発電素子を組み合わせて発電装置を構成する際には、一部の発電素子におけるX軸方向もしくはY軸方向またはその双方が、別な一部の発電素子におけるこれらの方向と異なる向きに配置されているようにするのが好ましい。そのような配置を採用すれば、個々の瞬間において、各上層電極に発生する正電荷の総量と負電荷の総量とをできるだけ等しくする効果が得られ、より効率的な発電が可能になる。 When a power generation device is configured by combining a plurality of power generation elements, the X-axis direction and / or the Y-axis direction of some power generation elements are different from these directions of another power generation element. It is preferable to arrange them in the direction. By adopting such an arrangement, the effect of making the total amount of positive charges and the total amount of negative charges generated in each upper layer electrode as equal as possible is obtained at each moment, and more efficient power generation becomes possible.
たとえば、図16に示す基本構造体1000の場合、図に個々の基本構造体100A〜100Dについての座標軸(図9に示す基本構造体100として定義されたX軸およびY軸)が描かれているが、それぞれ向きの組み合わせが異なっていることがわかる。
For example, in the case of the
すなわち、基本構造体100Aは、図9に示す基本構造体100を反時計回りに90°回転させたものに対応し、この基本構造体100Aを基準にすると、基本構造体100Bは、図の上下方向に関する鏡像体になっている。また、図の左半分に示されている基本構造体100A,Bを基準にすると、図の右半分に示されている基本構造体100C,Dは、図の左右方向に関する鏡像体になっている。
That is, the
結局、図16に示す基本構造体1000を用いて構成された発電装置は、4組の発電素子を有し、第1の発電素子(基本構造体100Aを用いた素子)のX軸方向およびY軸方向を基準としたときに、第2の発電素子(基本構造体100Bを用いた素子)はY軸方向が逆転する向きに配置され、第3の発電素子(基本構造体100Dを用いた素子)はX軸方向が逆転する向きに配置され、第4の発電素子(基本構造体100Cを用いた素子)はX軸方向およびY軸方向の双方が逆転する向きに配置されていることになる。結果的に、第1の発電素子および第4の発電素子のZ軸方向は、紙面垂直上方に向かう方向になるのに対して、第2の発電素子および第3の発電素子のZ軸方向は、紙面垂直下方に向かう方向になる。
After all, the power generation device configured using the
このように、4組の発電素子について相補的な配置を採用して発電装置を構成しておけば、ある特定方向に加速度が作用して、各発電素子の重錘体が当該特定方向に変位した場合でも、個々の発電素子について定義された座標系の向きが異なるため、各座標系に関する変位方向は相補的なものになる。このため、ある1つの発電素子の特定の上層電極に正電荷が生成された場合、別な1つの発電素子の対応する上層電極には負電荷が生成されることになる。したがって、4組の発電素子全体として見れば、発生する正電荷の総量と負電荷の総量とを等しくする効果が得られることになる。 In this way, if the power generation device is configured by adopting a complementary arrangement for the four power generation elements, acceleration acts in a specific direction, and the weight body of each power generation element is displaced in the specific direction. Even in this case, since the directions of the coordinate systems defined for the individual power generation elements are different, the displacement directions for the respective coordinate systems are complementary. For this reason, when a positive charge is generated in a specific upper layer electrode of one power generation element, a negative charge is generated in a corresponding upper layer electrode of another power generation element. Therefore, when viewed as the entire four sets of power generating elements, an effect of equalizing the total amount of positive charges generated and the total amount of negative charges can be obtained.
ところで、既に述べたとおり、外部から与えられる振動に基づいて効率的な発電を行うためには、重錘体150の共振周波数を外部から与えられる振動周波数と一致させるのが好ましい。したがって、本発明に係る発電素子を、たとえば、特定の車両に搭載して用いることが予め定まっており、当該車両から加えられる周波数fが既知である場合には、基本構造体100の構造設計を行う段階で、重錘体150の共振周波数が当該車両から加えられる周波数fに合致するような設計を行っておくのが好ましい。
By the way, as described above, in order to perform efficient power generation based on externally applied vibration, it is preferable to make the resonance frequency of the
しかしながら、本発明に係る発電素子を一般的な汎用品として提供する場合には、そのような専用品としての設計を行うことはできないので、最も一般的と考えられる振動周波数fを定め、共振周波数が当該周波数fに一致するような設計を行わざるを得ない。実際の利用環境においては、この共振周波数fに近い周波数をもった振動が加えられれば効率的な発電が可能であるが、外部振動の周波数が共振周波数fから離れれば離れるほど、発電効率が低下することは否めない。 However, in the case where the power generating element according to the present invention is provided as a general general-purpose product, it is impossible to design such a dedicated product. Therefore, the most common vibration frequency f is determined and the resonance frequency is determined. Must be designed to match the frequency f. In an actual usage environment, efficient power generation is possible if vibration having a frequency close to the resonance frequency f is applied, but the power generation efficiency decreases as the frequency of the external vibration increases away from the resonance frequency f. I cannot deny it.
そこで、幅広い振動周波数に対応した発電を可能にするためには、上述したように、複数組の発電素子を組み合わせて発電装置を構成するようにし、かつ、複数の発電素子の重錘体が、それぞれ異なる共振周波数を有するようなアプローチを採用することが可能である。 Therefore, in order to enable power generation corresponding to a wide range of vibration frequencies, as described above, a plurality of power generation elements are combined to form a power generation apparatus, and the weight bodies of the plurality of power generation elements are It is possible to adopt an approach that has different resonance frequencies.
発電素子ごとに共振周波数を変える具体的な方法のひとつは、それぞれの重錘体の質量を変えることである。図17は、図16に示す発電装置の変形例に係る発電装置の基本構造体の構造を示す平面図である(平面形状を明確に示すため、構造体内部の部分にハッチングを施して示す)。この変形例では、4組の発電素子の各重錘体の質量に、その平面的な面積を変えることによりバリエーションをもたせている。 One specific method of changing the resonance frequency for each power generating element is to change the mass of each weight body. FIG. 17 is a plan view showing the structure of the basic structure of the power generation apparatus according to the modification of the power generation apparatus shown in FIG. 16 (in order to clearly show the planar shape, the portion inside the structure is hatched). . In this modified example, variations are given to the masses of the respective weight bodies of the four sets of power generating elements by changing the planar area thereof.
この図17に示す基本構造体2000は、4組の基本構造体100E,100F,100G,100Hを融合させたものである。個々の基本構造体100E,100F,100G,100Hは、いずれも基本的には図9に示す基本構造体100と同等の構造をなすので、ここではその各部についても、それぞれ符号110,120,130,150の末尾にE〜Hを付して示してある(図16に示す例と同様に、固定部用板状部材110EFおよび110GHは共用になっている)。
A
図16に示す基本構造体1000の場合、4組の基本構造体の各重錘体150A,150B,150C,150Dの大きさ(質量)は同じであるが、図17に示す基本構造体2000の場合、4組の基本構造体の各重錘体150E,150F,150G,150Hの大きさ(質量)は、150E>150F>150G>150Hの順に小さくなっている。具体的には、各重錘体150E,150F,150G,150Hは、いずれも同じ厚みをもった板状部材であるが、図17に示すとおり、XY平面への投影像の面積は互いに異なるように設定されており、それぞれの質量は異なる。
In the case of the
もちろん、各重錘体の厚み(Z軸方向の寸法)を変えることにより、それぞれの質量を変えるようにしてもかまわない。要するに、重錘体のXY平面への投影像の面積が互いに異なるように設定するか、Z軸方向に関する厚みが互いに異なるように設定するか、または、その双方の設定を行うことにより、複数の発電素子の重錘体の質量が異なるようにすればよい。 Of course, each mass may be changed by changing the thickness (dimension in the Z-axis direction) of each weight body. In short, by setting the areas of the projected images of the weight bodies on the XY plane to be different from each other, setting the thicknesses in the Z-axis direction to be different from each other, or setting both of them, a plurality of settings can be made. What is necessary is just to make it the mass of the weight body of an electric power generation element differ.
重錘体の共振周波数は、その質量に応じて異なる。したがって、重錘体150E,150F,150G,150Hの質量をそれぞれmE,mF,mG,mHとすれば(図17の例の場合は、mE>mF>mG>mH)、その共振周波数fE,fF,fG,fHはそれぞれ異なることになる。
The resonance frequency of the weight body varies depending on its mass. Therefore, if the masses of the
発電素子ごとに重錘体の共振周波数を変える別な方法は、それぞれの板状橋梁部の構造を変えることである。具体的には、複数の発電素子の第1の板状橋梁部もしくは第2の板状橋梁部またはその双方について、XY平面への投影像の面積が互いに異なるように設定するか、Z軸方向に関する厚みが互いに異なるように設定するか、または、その双方の設定を行うようにすればよい。そのような設定を行っても、重錘体150E,150F,150G,150Hの共振周波数fE,fF,fG,fHをそれぞれ異ならせることができる。
Another method of changing the resonance frequency of the weight body for each power generating element is to change the structure of each plate-like bridge portion. Specifically, the first plate-like bridge portion and / or the second plate-like bridge portion of the plurality of power generating elements are set so that the areas of the projected images on the XY plane are different from each other, or in the Z-axis direction For example, the thicknesses may be set to be different from each other, or both may be set. Even if such setting is performed, the resonance frequencies fE, fF, fG, and fH of the
このように、4組の発電素子の各重錘体の共振周波数をそれぞれ異ならせると、幅広い振動周波数に対応した発電が可能になる。たとえば、上例の場合、4通りの共振周波数fE,fF,fG,fHが設定されるため、外部から与えられる振動の周波数がこれらのうちのいずれかに近接していれば、当該近接周波数を共振周波数とする発電素子に関しては効率的な発電が期待できる。 As described above, when the resonance frequencies of the respective weight bodies of the four sets of power generation elements are made different from each other, it is possible to generate power corresponding to a wide range of vibration frequencies. For example, in the case of the above example, four resonance frequencies fE, fF, fG, and fH are set. Therefore, if the frequency of the vibration given from the outside is close to any of these, the proximity frequency is Efficient power generation can be expected for a power generation element having a resonance frequency.
もちろん、特定の車両に搭載して利用することが予め決まっており、当該車両から加えられる周波数fが既知である場合は、4組の発電素子の各重錘体の共振周波数をいずれもfに設定するのが最も好ましい。しかしながら、一般的な汎用品として提供する発電装置の場合は、どのような振動環境で利用されるかを特定することはできない。その場合は、最も一般的と考えられる振動周波数の予想範囲を設定し、当該予想範囲内に4通りの共振周波数fE,fF,fG,fHが分布するように、各発電素子の基本構造体を設計すればよい。 Of course, if the frequency f applied from the vehicle is known to be mounted and used in a specific vehicle, the resonance frequency of each weight body of the four sets of power generating elements is set to f. Most preferably, it is set. However, in the case of a power generation device provided as a general general-purpose product, it cannot be specified in which vibration environment it is used. In that case, an expected range of the vibration frequency that is considered to be the most general is set, and the basic structure of each power generating element is set so that four resonance frequencies fE, fF, fG, and fH are distributed within the expected range. Just design.
<<< §5. 第2の実施形態の変形例 >>>
ここでは、§3で述べた第2の実施形態に係る3軸発電型の発電素子の変形例をいくつか述べておく。
<<< §5. Modified example of the second embodiment >>
Here, some modifications of the three-axis power generation element according to the second embodiment described in §3 will be described.
<5−1 上層電極の数の変形例>
§2−1では、図3に示す2軸発電型の発電素子における6枚の上層電極E11〜E23の代わりに、図6に示すような3枚の上層電極E31〜E33を用いる変形例を示した。このように、上層電極の数を変える変形例は、図10に示す3軸発電型の発電素子についても可能である。
<5-1 Modification of Number of Upper Layer Electrodes>
§2-1 shows a modification in which three upper layer electrodes E31 to E33 as shown in FIG. 6 are used in place of the six upper layer electrodes E11 to E23 in the two-axis power generation element shown in FIG. It was. Thus, the modification which changes the number of upper layer electrodes is possible also about the triaxial power generation type power generation element shown in FIG.
具体的には、図10(a) において、第1の板状橋梁部120に形成されている6枚の上層電極のうち、第1の長手方向軸Ly上に配置されている一対の中央電極Ez3,Ez4を細長い1本の中央電極に融合し、その右脇に配置されている一対の右脇電極Ey1,Ey3を細長い1本の右脇電極に融合し、左脇に配置されている一対の左脇電極Ey2,Ey4を細長い1本の左脇電極に融合すればよい。そうすれば、第1の板状橋梁部120には、図6に示す変形例の板状橋梁部20に形成されている上層電極と同様に、Y軸に平行な方向に伸びる3本の細長い上層電極が配置されることになる。同じように、図10(a) において、第2の板状橋梁部130に形成されている6枚の上層電極についても、X軸に平行な方向に伸びる3本の細長い上層電極に置き換えることができる。
Specifically, in FIG. 10A, of the six upper layer electrodes formed on the first plate-
結局、このような変形例では、上層電極の数は6枚にまで減らされることになるが、基本構造体100の構成に変わりはない。すなわち、この変形例における基本構造体100においても、固定部として機能する固定部用板状部材110により、第1の板状橋梁部120の根端部が装置筐体の底板200に固定され、第1の板状橋梁部120の先端部は第2の板状橋梁部130の根端部に接続され、第2の板状橋梁部130の先端部には重錘体150が接続されることになり、装置筐体を振動させる外力が作用したときに、第1の板状橋梁部120および第2の板状橋梁部130の撓みにより重錘体150が装置筐体内で各座標軸方向に振動する点は、図10に示す発電素子と全く同じである。
After all, in such a modification, the number of upper layer electrodes is reduced to six, but the configuration of the
しかも、圧電素子300は、層方向に伸縮する応力の作用により、厚み方向に分極を生じる性質を有しており、上層電極群の構成は、第1の板状橋梁部120の表面に下層電極E00および圧電素子300を介して形成された第1の上層電極群と、第2の板状橋梁部130の表面に下層電極E00および圧電素子300を介して形成された第2の上層電極群と、を有している点も、図10に示す発電素子と全く同じである。
Moreover, the
ここで、第1の板状橋梁部120に形成された第1の上層電極群は、第1の中央電極(図10(a) に示す電極Ez3とEz4を融合させたもの)、第1の右脇電極(図10(a) に示す電極Ey1とEy3を融合させたもの)、第1の左脇電極(図10(a) に示す電極Ey2とEy4を融合させたもの)、という3種類の上層電極を有し、これら上層電極のそれぞれは、第1の長手方向軸Lyに沿って伸びるように配置され、圧電素子300を挟んで下層電極E00の所定領域に対向しており、第1の中央電極は、第1の板状橋梁部120の上面側の、第1の長手方向軸Lyに沿った中心線の位置に配置されており、第1の右脇電極は、第1の中央電極の一方の脇に配置されており、第1の左脇電極は、第1の中央電極の他方の脇に配置されていることになる。
Here, the first upper-layer electrode group formed on the first plate-
また、第2の板状橋梁部130に形成された第2の上層電極群は、第2の中央電極(図10(a) に示す電極Ez1とEz2を融合させたもの)、第2の右脇電極(図10(a) に示す電極Ex1とEx3を融合させたもの)、第2の左脇電極(図10(a) に示す電極Ex2とEx4を融合させたもの)、という3種類の上層電極を有し、これら上層電極のそれぞれは、第2の長手方向軸Lxに沿って伸びるように配置され、圧電素子300を挟んで下層電極E00の所定領域に対向しており、第2の中央電極は、第2の板状橋梁部130の上面側の、第2の長手方向軸Lxに沿った中心線の位置に配置されており、第2の右脇電極は、第2の中央電極の一方の脇に配置されており、第2の左脇電極は、第2の中央電極の他方の脇に配置されていることになる。
The second upper electrode group formed on the second plate-
このように、図10に示す3軸発電型の発電素子における12枚の上層電極を融合して、6枚の上層電極に置き換えた変形例においても、上層電極は、中央電極、右脇電極、左脇電極なる3種類の電極によって構成されているため、X軸方向もしくはY軸方向に関する振動に関しては、発生する正電荷の総量と負電荷の総量とをできるだけ均衡に保つ効果が得られる。 Thus, even in a modification in which the 12 upper electrodes in the triaxial power generation element shown in FIG. 10 are fused and replaced with 6 upper electrodes, the upper electrode includes the center electrode, the right side electrode, Since the left side electrode is composed of three types of electrodes, the effect of keeping the total amount of positive charges and the total amount of negative charges as balanced as possible with respect to vibration in the X-axis direction or the Y-axis direction can be obtained.
もっとも、実用上は、図10に示すように12枚の上層電極を用いる実施例を採用する方が、上述した6枚の上層電極を用いる変形例を採用するよりも好ましい。これは、前者の方が後者に比べて高い発電効率が得られるためである。以下にその理由を説明する。 However, in practice, it is more preferable to adopt the embodiment using 12 upper electrodes as shown in FIG. 10 than adopting the above-described modification using the 6 upper electrodes. This is because the former provides higher power generation efficiency than the latter. The reason will be described below.
図10に示す12枚の上層電極を用いる実施例では、互いに直交するようにL字型に配置された2組の板状橋梁部120,130が用いられている。これら板状橋梁部120,130は、いずれも単体として捉えれば、図3に示す板状橋梁部20と同等の構成をなし、上面側に配置された6枚の上層電極を有する。しかしながら、重錘体が変位したときに各部に生じる伸縮応力の挙動は若干異なってくる。
In the embodiment using twelve upper layer electrodes shown in FIG. 10, two sets of plate-
すなわち、図3に示す板状橋梁部20の場合、重錘体30がX軸正方向に変位すると、図2(a) に示すように、板状橋梁部20の左脇(図の上方側)は、固定部10側も重錘体30側も伸びており、板状橋梁部20の右脇(図の下方側)は、固定部10側も重錘体30側も縮んでいる。このように、板状橋梁部20の同じ側面の伸縮状態が、固定部10側と重錘体30側とで同じであるため、図3(a) に示す一対の右脇電極E11,E21を融合して、図6に示す右脇電極E31に置き換え、図3(a) に示す一対の左脇電極E13,E23を融合して、図6に示す左脇電極E33に置き換えても、融合対象となる一対の電極の発生電荷の極性が同じであるため、電荷が相殺されて消滅することはない。
That is, in the case of the plate-
ところが、図10に示す2組の板状橋梁部120,130の場合、重錘体150がX軸正方向に変位すると、図11に示すように、第1の板状橋梁部120の右脇に配置された第1の先端部側右脇電極Ey1および第1の根端部側右脇電極Ey3は、互いに伸縮状態が逆転している。このため、両者を融合して細長い1本の電極に置き換えてしまうと、異なる極性の電荷による相互相殺が起こってしまう。第1の板状橋梁部120の左脇に配置された第1の先端部側左脇電極Ey2および第1の根端部側左脇電極Ey4についても同様である。
However, in the case of the two pairs of plate-
また、図10に示す2組の板状橋梁部120,130の場合、重錘体150がY軸正方向に変位すると、図12に示すように、第2の板状橋梁部130の右脇に配置された第2の先端部側右脇電極Ex1および第2の根端部側右脇電極Ex3は、互いに伸縮状態が逆転している。このため、両者を融合して細長い1本の電極に置き換えてしまうと、異なる極性の電荷による相互相殺が起こってしまう。第2の板状橋梁部130の左脇に配置された第2の先端部側左脇電極Ex2および第2の根端部側左脇電極Ex4についても同様である。
Further, in the case of the two pairs of plate-
このような点から、実用上は、図10(a) に示す実施例のように、合計12枚の電気的に独立した上層電極を配置し、第1の上層電極群を、第1の板状橋梁部120の根端部近傍に配置された第1の根端部側電極群(Ey3,Ey4,Ez4)と、第1の板状橋梁部120の先端部近傍に配置された第1の先端部側電極群(Ey1,Ey2,Ez3)とによって構成し、第2の上層電極群を、第2の板状橋梁部130の根端部近傍に配置された第2の根端部側電極群(Ex3,Ex4,Ez2)と、第2の板状橋梁部130の先端部近傍に配置された第2の先端部側電極群(Ex1,Ex2,Ez1)とによって構成し、第1の根端部側電極群、第1の先端部側電極群、第2の根端部側電極群、第2の先端部側電極群のそれぞれが、中央電極、右脇電極、左脇電極なる3種類の上層電極を有するようにするのが好ましい。
From such a point, practically, a total of 12 electrically independent upper layer electrodes are arranged as in the embodiment shown in FIG. 10 (a), and the first upper layer electrode group is used as the first plate. The first root end side electrode group (Ey3, Ey4, Ez4) disposed in the vicinity of the root end portion of the
このように、図10に示す3軸発電型の発電素子の動作挙動は、図3に示す2軸発電型の発電素子の動作挙動とは若干異なっており、図3に示す板状橋梁部20を単に2本組み合わせたものではない。すなわち、図11および図12に示すように、重錘体のX軸方向およびY軸方向の変位に対して、板状橋梁部の同じ脇側であるのに、伸縮態様が逆転する部分が存在する。
As described above, the operation behavior of the triaxial power generation element shown in FIG. 10 is slightly different from the operation behavior of the biaxial power generation element shown in FIG. 3, and the plate-
また、図3に示す2軸発電型の発電素子では、Y軸方向の振動エネルギーが加わった場合、X軸方向もしくはZ軸方向の振動エネルギーが加わった場合に比べて、発電効率は極めて小さくなってしまうが(前述したとおり、Y軸方向の振動は、板状橋梁部20を全体的に引き伸ばしたり圧縮したりする変形動作によって行われるため、機械的な変形効率が低いためと考えられる)、図10に示す3軸発電型の発電素子では、図11および図12に示すとおり、X軸方向もしくはY軸方向の振動エネルギーが加わった場合、いずれの場合も、8枚の上層電極Ex1〜Ex4,Ey1〜Ey4のすべてから、十分な効率で電荷の抽出が可能になる。
In the two-axis power generation element shown in FIG. 3, when the vibration energy in the Y-axis direction is applied, the power generation efficiency is extremely small as compared with the case where the vibration energy in the X-axis direction or the Z-axis direction is applied. However, as described above, the vibration in the Y-axis direction is performed by a deformation operation that stretches or compresses the plate-
このような点から、図10に示す12枚の上層電極を用いる3軸発電型の発電素子は、非常に発電効率の高い発電素子ということができる。 From such a point, it can be said that the triaxial power generation type power generation element using 12 upper electrodes shown in FIG. 10 is a power generation element with very high power generation efficiency.
<5−2 上層電極を側面配置する変形例>
§2−2では、図8を参照しながら、図3に示す第1の実施形態に係る発電素子における上層電極の配置態様のバリエーションを説明した。これらのバリエーションは、図10に示す第2の実施形態に係る発電素子についても同様に適用可能である。
<5-2 Variation of Disposing Upper Side Electrode on Side>
In §2-2, the variation of the arrangement mode of the upper layer electrode in the power generating element according to the first embodiment shown in FIG. 3 was described with reference to FIG. These variations are also applicable to the power generation element according to the second embodiment shown in FIG.
図10(b) の側断面図には、第2の板状橋梁部130の上面に下層電極E00を配置し、その上面に圧電素子300を配置し、その上面に右脇電極Ex1,中央電極Ez1,左脇電極Ex2を配置した実施例が示されている。この実施例は、図8(a) に示すバリエーションを採用したものである。
In the side sectional view of FIG. 10 (b), the lower layer electrode E00 is disposed on the upper surface of the second plate-shaped
すなわち、この実施例では、下層電極E00が第1の板状橋梁部120および第2の板状橋梁部130の上面に形成され(実際には、下層電極E00は、基本構造体100の上面全面に形成されている)、圧電素子300がこの下層電極E00の上面に形成されている。そして、更に、第1の中央電極Ez3,Ez4、第1の右脇電極Ey1,Ey3および第1の左脇電極Ey2,Ey4が、第1の板状橋梁部120の上面に下層電極E00および圧電素子300を介して形成されており、第2の中央電極Ez1,Ez2、第2の右脇電極Ex1,Ex3および第2の左脇電極Ex2,Ex4が、第2の板状橋梁部130の上面に下層電極E00および圧電素子300を介して形成されている。
That is, in this embodiment, the lower layer electrode E00 is formed on the upper surfaces of the first plate-
これに対して、図8(b) に示すバリエーションを採用した場合は、下層電極E00を第1の板状橋梁部120および第2の板状橋梁部130の上面とともに側面にも形成するようにし、圧電素子300をこの下層電極E00の表面に形成するようにする。そして、第1の中央電極Ez3,Ez4を、第1の板状橋梁部120の上面に下層電極E00および圧電素子300を介して形成し、第1の右脇電極Ey1,Ey3および第1の左脇電極Ey2,Ey4を、第1の板状橋梁部120の側面に下層電極E00および圧電素子300を介して形成すればよい。同様に、第2の中央電極Ez1,Ez2を、第2の板状橋梁部130の上面に下層電極E00および圧電素子300を介して形成し、第2の右脇電極Ex1,Ex3および第2の左脇電極Ex2,Ex4を、第2の板状橋梁部130の側面に下層電極E00および圧電素子300を介して形成すればよい。
On the other hand, when the variation shown in FIG. 8B is adopted, the lower layer electrode E00 is formed on the side surfaces as well as the upper surfaces of the first plate-
一方、図8(c) に示すバリエーションを採用した場合は、下層電極E00を第1の板状橋梁部120および第2の板状橋梁部130の上面とともに側面にも形成するようにし、圧電素子300を、この下層電極E00の表面に形成するようにする。そして、第1の中央電極Ez3,Ez4を、第1の板状橋梁部120の上面に下層電極E00および圧電素子300を介して形成し、第1の右脇電極Ey1,Ey3および第1の左脇電極Ey2,Ey4を、第1の板状橋梁部120の上面から側面にかけて下層電極E00および圧電素子300を介して形成すればよい。同様に、第2の中央電極Ez1,Ez2を、第2の板状橋梁部130の上面に下層電極E00および圧電素子300を介して形成し、第2の右脇電極Ex1,Ex3および第2の左脇電極Ex2,Ex4を、第2の板状橋梁部130の上面から側面にかけて下層電極E00および圧電素子300を介して形成すればよい。
On the other hand, when the variation shown in FIG. 8C is adopted, the lower layer electrode E00 is formed on the side surfaces as well as the upper surfaces of the first plate-
もちろん、この第2の実施形態に係る発電素子について、図8(a) 〜図8(c) に示す実施例における上層電極の配置形態を部分ごとに組み合わせることも可能であり、たとえば、図8(d) に例示するような形態を採用することも可能である。 Of course, with respect to the power generating element according to the second embodiment, it is also possible to combine the upper electrode arrangement forms in the examples shown in FIGS. 8 (a) to 8 (c) for each part. It is also possible to adopt the form exemplified in (d).
また、圧電素子300は、必ずしも一体構造にする必要はなく、各上層電極に応じた位置にそれぞれ別個独立したものを配置するようにしてもかまわない。ただ、実用上は、一体構造とした方が製造プロセスは容易になる。同様に、下層電極E00も、各上層電極に応じた位置にそれぞれ別個独立したものを配置するようにしてもかまわないが、実用上は、一体構造とした方が製造プロセスは容易になる。
In addition, the
<5−3 環状構造体からなる固定部>
ここでは、§3で述べた図10に示す変形例として、固定部を環状構造体によって構成した例を述べる。図18は、この変形例に係る発電装置の基本構造体100Iの構造を示す平面図およびこれをYZ平面で切断した側断面図(図(b) )である。図18(a) は平面図であるが、平面形状を明確に示すため、構造体内部の部分にハッチングを施して示し、12枚の上層電極の位置を矩形で示す。
<5-3 Fixing part made of annular structure>
Here, as a modified example shown in FIG. 10 described in §3, an example in which the fixing portion is configured by an annular structure will be described. FIG. 18 is a plan view showing the structure of the basic structure 100I of the power generation device according to this modification, and a side sectional view (FIG. (B)) cut along the YZ plane. FIG. 18 (a) is a plan view, but in order to clearly show the planar shape, the portion inside the structure is hatched, and the positions of the 12 upper electrodes are indicated by rectangles.
図10に示す実施例では、第1の板状橋梁部120の一端を装置筐体の底板200に固定する固定部として、X軸に平行な長手方向軸L0に沿って伸びる固定部用板状部材110を用いていた。これに対して、図18に示す変形例では、環状構造体110Iを固定部として用いている。この環状構造体110Iは、図示のとおり、左辺110I1,下辺110I2,右辺110I3,上辺110I4という4辺をもった矩形枠状の構造体であり、図18(b) に示すように、その下面全面が装置筐体の底板200Iの上面に固着されている。
In the embodiment shown in FIG. 10, as a fixing portion for fixing one end of the first plate-
一方、環状構造体110Iの左辺110I1の図の下端近傍には、第1の板状橋梁部120Iの根端部が接続されている。そして、この第1の板状橋梁部120Iの先端部は、中間接続部125Iを介して、第2の板状橋梁部130Iの根端部に接続されており、第2の板状橋梁部130Iの先端部は重錘接続部140Iを介して重錘体150Iに接続されている。結局、この変形例の場合、固定部が、環状構造体110Iによって構成されており、この環状構造体110Iによって囲まれた内部領域に、第1の板状橋梁部120I、第2の板状橋梁部130Iおよび重錘体150Iが配置された構造となっている。
On the other hand, the root end portion of the first plate-like bridge portion 120I is connected to the vicinity of the lower end of the left side 110I1 of the
このように、第1の板状橋梁部120I、第2の板状橋梁部130I、重錘体150Iの周囲を、環状構造体110Iが所定距離を維持して取り囲む構造を採用すると、環状構造体110Iが、第1の板状橋梁部120I、第2の板状橋梁部130I、重錘体150Iの過剰な変位を制御するストッパ部材としての役割を果たすことになる。すなわち、重錘体150に過度の加速度(各板状橋梁部120I,130Iが破損するような加速度)が加わった場合でも、各部の過度の変位を制限することができるので、板状橋梁部120I,130Iが破損する事態を避けることができる。
As described above, when the structure in which the
<5−4 庇構造部の付加>
図18に示す変形例のもう一つの特徴は、中間接続部125Iが、第1の板状橋梁部120Iの先端部の側面よりも外側に突き出した庇構造部α1と第2の板状橋梁部130Iの根端部の側面よりも外側に突き出した庇構造部α2とを有し、重錘接続部140Iが、第2の板状橋梁部130Iの先端部の側面よりも外側に突き出した庇構造部α3を有する点である。なお、これら庇構造部α1,α2,α3を設けたため、環状構造体110Iの内側部分には、これら庇構造部α1,α2,α3に対応した位置に凹部が形成されている。
<5-4 Addition of heel structure>
Another feature of the modification shown in FIG. 18 is that the
本願発明者は、図示のような庇構造部α1,α2,α3を設けた構造を採用すると、発電素子の発電効率を更に向上させることができることを発見した。これは、この庇構造部α1,α2,α3を設けた構造を採用すると、各上層電極の形成位置における伸縮応力を更に高めることができるためである。これを、コンピュータを用いた構造力学上のシミュレーション結果に基づいて示そう。 The inventor of the present application has found that the power generation efficiency of the power generation element can be further improved by adopting the structure provided with the saddle structure portions α1, α2, α3 as shown in the figure. This is because if the structure provided with the flange structures α1, α2, and α3 is employed, the stretching stress at the position where each upper electrode is formed can be further increased. Let's show this based on the simulation results of structural mechanics using a computer.
図19(a) は、図10に示す発電素子の基本構造体について、重錘体150がX軸正方向の変位Δx(+)を生じたときの各板状橋梁部120,130に生じる応力の大きさを示す応力分布図である。一方、図19(b) は、図18に示す発電素子(庇構造部α1,α2,α3を設けた構造を採用する素子)の基本構造体について、重錘体150がX軸正方向の変位Δx(+)を生じたときの各板状橋梁部に生じる応力の大きさを示す応力分布図である。いずれの分布図も、所定の変位量が生じたときに、中程度の伸張応力、強い伸張応力、中程度の収縮応力、強い収縮応力が作用する領域に、それぞれ固有のハッチングを施して示したものである(各図右上の凡例参照)。
FIG. 19 (a) shows the stress generated in the plate-
同様に、図20は、図10に示す発電素子の基本構造体(図(a) )および図18に示す発電素子の基本構造体(図(b) )について、重錘体150がY軸正方向の変位Δy(+)を生じたときの各板状橋梁部に生じる応力の大きさを示す応力分布図であり、図21は、図10に示す発電素子の基本構造体(図(a) )および図18に示す発電素子の基本構造体(図(b) )について、重錘体150がZ軸正方向の変位Δz(+)を生じたときの各板状橋梁部に生じる応力の大きさを示す応力分布図である。
Similarly, FIG. 20 shows that the
図19(a) ,(b) および図20(a) ,(b) の応力分布図を参照すると、重錘体150が、X軸方向やY軸方向に変位したときには、左右の脇電極Ex1〜Ex4,Ey1〜Ey4の形成位置に比較的大きな伸縮応力が発生していることがわかる。一方、図21(a) ,(b) の応力分布図を参照すると、重錘体150がZ軸方向に変位したときには、すべての上層電極Ex1〜Ex4,Ey1〜Ey4,Ez1〜Ez4の形成位置に比較的大きな伸縮応力が発生していることがわかる。したがって、図10に示す12枚の上層電極の配置が理想的な配置になっていることが理解できよう。
Referring to the stress distribution diagrams of FIGS. 19 (a) and 19 (b) and FIGS. 20 (a) and 20 (b), when the
しかも、図19〜図21において、上段の図(a) と下段の図(b) とを比較すると、概して、下段の図(b) に示す応力分布図の方が比較的大きな伸縮応力が発生していることがわかる。これは、図18(a) に示すように、庇構造部α1,α2,α3を設けた構造を採用すると、第1の板状橋梁部120Iの根端部および先端部ならびに第2の板状橋梁部130Iの根端部および先端部に効率的に応力を集中させることができ、発電素子の発電効率を更に向上させることができることを意味する。したがって、実用上は、図18(a) に示すように、庇構造部α1,α2,α3を設けた構造を採用するのが好ましい。
In addition, in FIGS. 19 to 21, when comparing the upper diagram (a) and the lower diagram (b), in general, the stress distribution diagram shown in the lower diagram (b) generates a relatively large stretching stress. You can see that As shown in FIG. 18 (a), when a structure provided with eaves structural portions α1, α2, α3 is employed, the root end portion and the tip end portion of the first plate-like bridge portion 120I and the second plate-like shape are used. This means that stress can be efficiently concentrated on the root end portion and the tip end portion of the
<5−5 環状重錘体>
続いて、重錘体を外側に設け、環状構造とした変形例を述べておく。この変形例は、図18に示した変形例における固定部(環状構造体110I)と重錘体(150I)との役割を逆転させたものである。すなわち、図18に示した変形例において固定部として機能していた環状構造体110Iを重錘体として機能させ、重錘体150Iとして機能していた板状体を固定部として機能させるようにしたものである。そのためには、図18において重錘体150Iとして機能していた板状体の下面を装置筐体の底板の上面に固定し、図18において固定部として機能していた環状構造体110Iが、外力が作用しない状態において、装置筐体の底板の上方に浮いた宙吊り状態になるようにすればよい。
<5-5 Annular weight>
Subsequently, a modification example in which a weight body is provided on the outer side to form an annular structure will be described. In this modification, the roles of the fixed portion (
図22に、このような役割を逆転させた変形例に係る発電素子の基本構造体100Jの構造を示す平面図(図(a) )およびこれをYZ平面で切断した側断面図(図(b) )を示す。それぞれ上段に図(a) として示す平面図だけを比較すると、図18に示す基本構造体100Iと図22に示す基本構造体100Jとは、全く同じ構造のように見えるが、下段に図(b) として示す側断面図を比較すると、両者の構造の違いがよく理解できよう。 FIG. 22 is a plan view (FIG. (A)) showing a structure of a basic structure 100J of a power generating element according to a modified example in which such a role is reversed, and a side sectional view (FIG. (B)) cut along the YZ plane. )) Comparing only the plan view shown in FIG. 18A in the upper stage, the basic structure 100I shown in FIG. 18 and the basic structure 100J shown in FIG. Comparing the cross-sectional side views shown as), you can understand the difference in structure between the two.
図22に示す基本構造体100Jの場合、中央に配置された板状の部材150Jが板状固定部となり、他の部分に比べて厚みが大きい部分になる。そして、この板状固定部150Jの下面が、装置筐体の底板200Jの上面に固着される。一方、図22(a) に示すように、この板状固定部150Jの右上隅部には、固定端接続部140Jを介して、第1の板状橋梁部130Jの根端部(図の上端)が接続されている。また、この第1の板状橋梁部130Jの先端部(図の下端)には、中間接続部125Jを介して、第2の板状橋梁部120Jの根端部(図の右端)が接続されており、更に、この第2の板状橋梁部120Jの先端部(図の左端)には、環状重錘体110Jが接続されている。
In the case of the basic structure 100J shown in FIG. 22, the plate-
環状重錘体110Jは、図22(a) に示すとおり、左辺110J1,下辺110J2,右辺110J3,上辺110J4という4辺をもった矩形枠状の構造体であり、図22(b) に示すように、装置筐体の底板200Jの上方に浮いた状態となるように宙吊りになっている。
As shown in FIG. 22 (a), the
これまで述べてきた実施例では、重錘体が基本構造体の内側位置に配置されていたが、図22に示す変形例の場合、環状重錘体110Jが基本構造体100Jの外側位置に配置されることになる。このように外側に環状重錘体を配置する構造を採ると、一般的に、重錘体の質量を大きく確保することが容易になるので、重錘体の質量を大きくして発電効率を高める上では有利である。
In the embodiments described so far, the weight body is arranged at the inner position of the basic structure body. However, in the modification shown in FIG. 22, the
<5−6 渦巻状の構造体>
ここでは、板状橋梁部の数を更に増やし、渦巻状の構造体を構成した変形例を述べておく。図23は、この変形例に係る発電装置の基本構造体100Kの構造を示す平面図である。この図においても、平面形状を明確に示すため、構造体内部の部分にハッチングを施して示し、24枚の上層電極の位置を矩形で示す。この変形例は、図18に示す変形例における重錘接続部140Iの代わりに、第3の板状橋梁部140K,中間接続部145K,第4の板状橋梁部150K,重錘接続部160Kを介して重錘体170Kを支持する構造が採用されている。
<5-6 Spiral structure>
Here, a modified example in which the number of plate-like bridge portions is further increased to constitute a spiral structure will be described. FIG. 23 is a plan view showing a structure of a
具体的には、図示のとおり、左辺110K1,下辺110K2,右辺110K3,上辺110K4という4辺をもった矩形枠状の環状構造体110Kが固定部として用いられており、その下面全面が装置筐体の底板の上面に固着されている。一方、環状構造体110Kの左辺110K1の図の下端近傍には、第1の板状橋梁部120Kの根端部が接続されている。そして、この第1の板状橋梁部120Kの先端部は、中間接続部125Kを介して、第2の板状橋梁部130Kの根端部に接続されており、第2の板状橋梁部130Kの先端部は中間接続部135Kを介して第3の板状橋梁部140Kの根端部に接続されており、第3の板状橋梁部140Kの先端部は中間接続部145Kを介して第4の板状橋梁部150Kの根端部に接続されており、第4の板状橋梁部150Kの先端部は重錘接続部160Kを介して重錘体170Kに接続されている。
Specifically, as shown in the drawing, a rectangular frame-shaped
結局、この変形例の場合、固定部が、環状構造体110Kによって構成されており、この環状構造体110Kによって囲まれた内部領域に、第1の板状橋梁部120K、第2の板状橋梁部130K、第3の板状橋梁部140K、第4の板状橋梁部150K、重錘体170Kが配置された構造となっている。ここで、第1の板状橋梁部120Kおよび第3の板状橋梁部140Kは、Y軸に平行な第1および第3の長手方向軸に沿って伸びており、第2の板状橋梁部130Kおよび第4の板状橋梁部150Kは、X軸に平行な第2および第4の長手方向軸に沿って伸びている。かくして、重錘体170Kは、4本の板状橋梁部120K,130K,140K,150Kを渦巻状に連結させて構成される構造体によって支持されることになる。
After all, in the case of this modification, the fixing portion is constituted by the
この4本の板状橋梁部120K,130K,140K,150Kの上面に下層電極を形成し、その上面に圧電素子を配置し、更にその上面の所定箇所に局在的に上層電極群を設ける点は、これまでの実施例と同様である。図示の例の場合、4本の板状橋梁部120K,130K,140K,150Kのそれぞれについて、根端部および先端部に3枚の上層電極を配置しており、合計24枚の上層電極が形成されている。
The lower electrode is formed on the upper surface of the four plate-
これまで述べてきた実施例よりも構造が複雑になるが、この変形例では、発電回路が、合計24枚の上層電極および共通の下層電極に発生した電荷から電力を取り出すことができるため、発電効率を向上させることができる。 Although the structure is more complicated than the embodiments described so far, in this modification, the power generation circuit can extract power from the charges generated in the total of 24 upper layer electrodes and common lower layer electrodes. Efficiency can be improved.
図23には、4本の板状橋梁部120K,130K,140K,150Kを設ける例を示したが、もちろん、3本の板状橋梁部120K,130K,140Kのみを設けて、第3の板状橋梁部140Kの先端部に、直接もしくは間接的に重錘体を接続するようにしてもかまわない。また、5本以上の板状橋梁部を連結した先に重錘体を接続するようにしてもかまわない。
FIG. 23 shows an example in which four plate-
一般論として述べれば、基本的な実施例として述べた第1の板状橋梁部および第2の板状橋梁部を有する構造体において、第2の板状橋梁部と重錘体との間に、更に、第3の板状橋梁部〜第Kの板状橋梁部を設け、合計K本の板状橋梁部を連結した先に重錘体を接続するようにしてもかまわない(但し、K≧3)。このとき、第iの板状橋梁部(但し、1≦i≦K−1)の先端部が第(i+1)の板状橋梁部の根端部に直接もしくは間接的に接続され、第Kの板状橋梁部の先端部が重錘体に直接もしくは間接的に接続されており、第jの板状橋梁部(但し、1≦j≦K)は、jが奇数の場合はY軸に平行な第jの長手方向軸に沿って伸び、jが偶数の場合はX軸に平行な第jの長手方向軸に沿って伸びているようにする。 In general terms, in the structure having the first plate-like bridge portion and the second plate-like bridge portion described as the basic embodiment, between the second plate-like bridge portion and the weight body. Further, a third plate-shaped bridge portion to a K-th plate-shaped bridge portion may be provided, and a weight body may be connected to a point where a total of K plate-shaped bridge portions are connected (however, K ≧ 3). At this time, the tip of the i-th plate bridge portion (where 1 ≦ i ≦ K−1) is directly or indirectly connected to the root end portion of the (i + 1) -th plate bridge portion, and the Kth The tip of the plate-like bridge portion is directly or indirectly connected to the weight body, and the j-th plate-like bridge portion (where 1 ≦ j ≦ K) is parallel to the Y axis when j is an odd number. Extending along the jth longitudinal axis, and when j is an even number, it extends along the jth longitudinal axis parallel to the X axis.
また、第1の板状橋梁部の根端部から第Kの板状橋梁部の先端部に至るまでの構造体が渦巻状の経路をなし、重錘体がこの渦巻状の経路に囲まれた中心位置に配置されているようにすれば、図23に示す例のように、限られた空間内に効率的にK本の板状橋梁部と重錘体とを配置することができるようになる。図23に示す例は、上述の一般論において、K=4に設定した例ということになる。 Further, the structure from the root end portion of the first plate-like bridge portion to the tip end portion of the K-th plate-like bridge portion forms a spiral path, and the weight body is surrounded by the spiral path. As shown in FIG. 23, the K plate bridges and the weight bodies can be efficiently arranged in a limited space as in the example shown in FIG. become. The example shown in FIG. 23 is an example in which K = 4 is set in the above general theory.
この図23に示す例のように、固定部を環状構造体110Kによって構成し、この環状構造体110Kによって囲まれた内部領域に第1の板状橋梁部〜第Kの板状橋梁部および重錘体が配置されている構成を採れば、すべての構造を環状構造体110K内に効率的に収容することができる。
As shown in the example shown in FIG. 23, the fixing portion is constituted by the
このような構造体を利用し、第3の板状橋梁部〜第Kの板状橋梁部の表面にも、下層電極、圧電素子、上層電極群を設けるようにすれば、発電回路は、これら上層電極および下層電極に発生した電荷からも電力を取り出すことができ、発電効率を向上させることができる。 If such a structure is used and a lower layer electrode, a piezoelectric element, and an upper layer electrode group are provided on the surfaces of the third plate-shaped bridge portion to the K-th plate-shaped bridge portion, the power generation circuit can generate these circuits. Electric power can be taken out from the charges generated in the upper layer electrode and the lower layer electrode, and the power generation efficiency can be improved.
なお、図23に示す変形例においても、各中間接続部125K,135K,145Kおよび重錘接続部160Kが、各板状橋梁部120K,130K,140Kおよび150Kの先端部の側面よりも外側に突き出した庇構造部を有する構造を採っているため、各上層電極の形成位置における伸縮応力を高める効果が得られる。
23, the
すなわち、一般論で述べれば、第iの板状橋梁部(但し、1≦i≦K−1)の先端部と第(i+1)の板状橋梁部の根端部とが第iの中間接続部を介して接続されており、第Kの板状橋梁部の先端部と重錘体とが重錘接続部を介して接続されている構造を採用した場合、第iの中間接続部が、第iの板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有し、重錘接続部が、第Kの板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有するようにすれば、各上層電極の形成位置における伸縮応力を高める効果が得られ、より効率的な発電を行うことが可能になる。 That is, in general terms, the tip of the i-th plate bridge portion (where 1 ≦ i ≦ K−1) and the root end portion of the (i + 1) -th plate bridge portion are the i-th intermediate connection. Are connected to each other, and when the structure in which the tip of the Kth plate-like bridge portion and the weight body are connected via the weight connection portion is adopted, the i-th intermediate connection portion is A cage structure portion that protrudes outward from the side surface of the tip portion of the i-th plate bridge portion, and the weight connection portion protrudes outward from the side surface of the tip portion of the K-th plate bridge portion. If it has a structure part, the effect which raises the expansion-contraction stress in the formation position of each upper layer electrode will be acquired, and it will become possible to perform more efficient electric power generation.
もちろん、この図23に示す変形例においても、§5−5で述べた変形例と同様に、環状構造体110Kを重錘体として用い、重錘体170Kを固定部として用い、役割を逆転させることも可能である。
Of course, also in the modified example shown in FIG. 23, as in the modified example described in §5-5, the
<5−7 補助重錘体の付加>
最後に、重錘体の質量を調整するための工夫を施した変形例を述べておく。既に述べたとおり、外部から与えられる振動に基づいて効率的な発電を行う上では、重錘体の共振周波数を外部から与えられる振動周波数に一致させておくのが好ましい。たとえば、特定の車両に搭載して用いるための専用の発電素子の場合は、構造設計の段階から、当該車両から加えられる周波数に共振周波数が合致するような設計を行うのが好ましい。発電素子の共振周波数を変えるには、重錘体の質量を調整する方法を採るのが最も簡単である。ここでは、個々の発電素子の重錘体の質量を調整するために、補助重錘体を付加する実施例を述べておく。
<5-7 Addition of auxiliary weight>
Finally, a modified example will be described in which a device for adjusting the mass of the weight body is provided. As already described, in order to perform efficient power generation based on externally applied vibration, it is preferable to make the resonance frequency of the weight body coincide with the externally applied vibration frequency. For example, in the case of a dedicated power generation element to be used by being mounted on a specific vehicle, it is preferable to design from the structural design stage so that the resonance frequency matches the frequency applied from the vehicle. The simplest way to change the resonance frequency of the power generating element is to adjust the mass of the weight body. Here, an embodiment in which an auxiliary weight body is added in order to adjust the mass of the weight body of each power generating element will be described.
図24は、図18に示す発電素子の基本構造体100Iに補助重錘体150Lを付加することにより、重錘体全体の質量を調整した変形例を示す平面図(図(a) )およびこれをYZ平面で切断した側断面図(図(b) )である。図24(a) の平面図に示すとおり、この変形例に係る基本構造体100Lを上方から見たときの構造は、図18(a) に示す基本構造体100Iの構造と全く同じであり、ここでは、各部に図18(a) に示す基本構造体100Iの各部と同じ符号を付して示してある。
FIG. 24 is a plan view (FIG. 24A) showing a modification in which the mass of the entire weight body is adjusted by adding the
一方、図24(b) の側断面図を見ればわかるとおり、この変形例に係る基本構造体100Lでは、重錘体150Iの下面に補助重錘体150Lが固着されており、重錘体150Iと補助重錘体150Lとの集合体が、この基本構造体100Lにおける重錘体として機能することになる。別言すれば、補助重錘体150Lを付加することにより、この基本構造体100Lにおける重錘体の質量を増加させ、共振周波数を下げることが可能になる。補助重錘体150Lの質量は、材質(比重)や寸法(Z軸方向の厚みやXY平面への投影像の面積)を変えることにより調整することが可能であるので、補助重錘体150Lの材質や寸法を適宜決めてやれば、この基本構造体100Lの共振周波数を任意の値に調整することが可能になる。
On the other hand, as can be seen from the side sectional view of FIG. 24 (b), in the
このように、補助重錘体を付加して共振周波数を調整する方法は、もちろん、これまで述べてきたいずれの実施例についても適用可能である。図25は、図22に示す発電素子の基本構造体に補助重錘体110M1〜110M4を付加することにより、重錘体全体の質量を調整した変形例を示す平面図(図(a) )およびこれをYZ平面で切断した側断面図(図(b) )である。図25(a) の平面図に示すとおり、この変形例に係る基本構造体100Mを上方から見たときの構造は、図22(a) に示す基本構造体100Jの構造と全く同じであり、ここでは、各部に図22(a) に示す基本構造体100Jの各部と同じ符号を付して示してある。 As described above, the method of adjusting the resonance frequency by adding the auxiliary weight body is of course applicable to any of the embodiments described so far. FIG. 25 is a plan view (FIG. 25 (a)) showing a modification in which the mass of the entire weight body is adjusted by adding auxiliary weight bodies 110M1 to 110M4 to the basic structure of the power generation element shown in FIG. This is a sectional side view (Fig. (B)) cut along the YZ plane. As shown in the plan view of FIG. 25 (a), the structure when the basic structure 100M according to this modification is viewed from above is exactly the same as the structure of the basic structure 100J shown in FIG. 22 (a). Here, the same reference numerals as those of the basic structure 100J shown in FIG.
この図25に示す実施例の場合、中央の板状部材150Jが装置筐体に固定された固定部となり、周囲の環状構造体110J(4辺110J1〜110J4からなる矩形状の枠)が重錘体として機能する。ここでは、この環状構造体110Jの下面に補助重錘体を固着することにより質量を増加させている。すなわち、図25(b) の側断面図を見ればわかるとおり、この変形例に係る基本構造体100Mでは、環状構造体の各辺110J1〜110J4の下面に、それぞれ補助重錘体110M1〜110M4が固着されており、環状重錘体110Jと補助重錘体110M1〜110M4との集合体が、この基本構造体100Mにおける重錘体として機能することになる。したがって、やはり重錘体の質量を増加させ、共振周波数を下げることが可能になる。
In the case of the embodiment shown in FIG. 25, the central plate-
図示の例の場合、環状重錘体110Jの4辺110J1〜110J4のすべてに補助重錘体110M1〜110M4を設けているが、特定の辺の下面のみに補助重錘体を設けるようにしてもかまわない。ただ、重錘体全体の重心を原点Oの近傍に位置させ、バランスよい安定した振動を行わせる上では、図示の例のように、4辺110J1〜110J4のすべてに均等に補助重錘体を付加するのが好ましい。補助重錘体の質量の調整は、Z軸方向の厚みを変えることにより行うことができる。
In the illustrated example, the auxiliary weight bodies 110M1 to 110M4 are provided on all four sides 110J1 to 110J4 of the
補助重錘体としては、様々な材料のものを用いることができるので、質量調整の必要性に応じて適切な材料を選択することが可能である。たとえば、微調整を行う必要がある場合は、アルミニウムやガラスなど、比重の小さな材料を利用すればよいし、大幅に質量を増加させる必要がある場合は、タングステンなど、比重の大きな材料を利用すればよい。 Since various materials can be used as the auxiliary weight body, it is possible to select an appropriate material according to the necessity of mass adjustment. For example, if it is necessary to make fine adjustments, use a material with a low specific gravity such as aluminum or glass. If it is necessary to increase the mass significantly, use a material with a high specific gravity such as tungsten. That's fine.
実用上は、図18に示す基本構造体100Iや図22に示す基本構造体100Jを用いて、最も一般的な利用環境に適した標準的な共振周波数を有する汎用製品を量産しておき、この汎用製品に、それぞれ適切な質量をもった補助重錘体を付加して、図24に示す基本構造体100Lや図25に示す基本構造体100Mを構成して、個々の利用環境に最適な共振周波数をもったオーダーメイド製品を提供するようにすればよい。そうすれば、汎用製品の量産化によりコストダウンを図りつつ、個々の利用環境に最適なオーダーメイド製品を提供することができる。
In practical use, a general-purpose product having a standard resonance frequency suitable for the most general usage environment is mass-produced using the basic structure 100I shown in FIG. 18 and the basic structure 100J shown in FIG. An auxiliary weight body having an appropriate mass is added to a general-purpose product to form a
なお、図24および図25に示す例では、いずれも元の重錘体の下面に補助重錘体を設けた例を示したが、補助重錘体は元の重錘体の上面や側面に設けることも可能である。ただ、補助重錘体を元の重錘体の下面に設けるようにすれば、装置筐体の底板との間に形成された空間内に収容することができるので、省スペース化を図る上では、図示の例のように、元の重錘体の下面に設けるのが好ましい。 In the examples shown in FIGS. 24 and 25, the auxiliary weight body is provided on the lower surface of the original weight body. However, the auxiliary weight body is provided on the upper surface and the side surface of the original weight body. It is also possible to provide it. However, if the auxiliary weight body is provided on the lower surface of the original weight body, the auxiliary weight body can be accommodated in a space formed between the bottom plate of the device housing, so that space saving can be achieved. As in the illustrated example, it is preferably provided on the lower surface of the original weight body.
以上、重錘体に補助重錘体を付加し、共振周波数を利用環境の周波数に合わせることにより発電効率を向上させる方法を示したが、非共振で利用する場合であっても、補助重錘体を付加することにより重錘体全体の質量が増加することになるので、やはり発電効率を向上させる効果が得られる。 As described above, the method for improving the power generation efficiency by adding the auxiliary weight body to the weight body and adjusting the resonance frequency to the frequency of the usage environment has been described. Since the mass of the entire weight body is increased by adding the body, the effect of improving the power generation efficiency can be obtained.
10:固定部
20:板状橋梁部
30:重錘体
40:装置筐体の底板
50,50B,50C:圧電素子
51D,52D:圧電素子
60:発電回路
100,100A〜100M:基本構造体
110,110AB〜110GH:固定部用板状部材
110I,110K:環状構造体
110I1〜110I4:環状構造体の各辺
110J:環状重錘体
110J1〜110J4:環状重錘体の各辺
110K:環状構造体
110K1〜110K4:環状構造体の各辺
110M1〜110M4:補助重錘体
120,120A〜120K:第1の板状橋梁部
120J:第2の板状橋梁部
125,125I,125J,125K:中間接続部
130,130A〜130K:第2の板状橋梁部
130J:第1の板状橋梁部
135K:中間接続部
140,140I:重錘接続部
140J:固定端接続部
140K:第3の板状橋梁部
145K:中間接続部
150,150A〜150I:重錘体
150J:板状固定部
150K:第4の板状橋梁部
150L:補助重錘体
160K:重錘接続部
170K:重錘体
200,200I,200J:装置筐体の底板
300:圧電素子
400:装置筐体のカバー
410:装置筐体の天板
420:装置筐体の側板
500:発電回路
1000:発電装置の基本構造体
2000:発電装置の基本構造体
Cf:容量素子(コンデンサ)
D11(+)〜D13(+):正電荷用整流素子(ダイオード)
D11(−)〜D13(−):負電荷用整流素子(ダイオード)
D0(+),Dx1(+)〜Dz24(+):正電荷用整流素子(ダイオード)
D0(−),Dx1(−)〜Dz24(−):負電荷用整流素子(ダイオード)
E0,E0B,E0C,E0D,E00:下層電極
E11:重錘体側の右脇電極
E12:重錘体側の中央電極
E13:重錘体側の左脇電極
E21,E21B,E21C,E21D:固定部側の右脇電極
E22,E22B,E22C,E22D:固定部側の中央電極
E23,E23B,E23C,E23D:固定部側の左脇電極
E31:右脇電極
E32:中央電極
E33:左脇電極
Ex1:第2の先端部側右脇電極
Ex2:第2の先端部側左脇電極
Ex3:第2の根端部側右脇電極
Ex4:第2の根端部側左脇電極
Ey1:第1の先端部側右脇電極
Ey2:第1の先端部側左脇電極
Ey3:第1の根端部側右脇電極
Ey4:第1の根端部側左脇電極
Ez1:第2の先端部側中央電極
Ez2:第2の根端部側中央電極
Ez3:第1の先端部側中央電極
Ez4:第1の根端部側中央電極
L0:固定部用長手方向軸
Lx:第2の長手方向軸(中心線)
Ly:第1の長手方向軸(中心線)
O:三次元座標系の原点
P11〜P23:圧電素子50の各部分
Px1〜Pz4:圧電素子300の各部分
Rd1,Rd2:抵抗素子
V:空隙部
X:三次元座標系の座標軸
Δx(+):X軸正方向の変位
Y:三次元座標系の座標軸
Δy(+):Y軸正方向の変位
Z:三次元座標系の座標軸
Δz(+):Z軸正方向の変位
ZL:負荷
α1〜α3:庇構造部
10: fixed part 20: plate-like bridge part 30: weight body 40: bottom plates 50, 50B, 50C of the device housing: piezoelectric elements 51D, 52D: piezoelectric elements 60: power generation circuits 100, 100A to 100M: basic structure 110 , 110AB to 110GH: plate member 110I for fixed part, 110K: annular structure 110I1 to 110I4: each side 110J of the annular structure: annular weight 110J1 to 110J4: each side 110K of the annular weight: annular structure 110K1 to 110K4: Sides 110M1 to 110M4 of the annular structure: auxiliary weight bodies 120, 120A to 120K: first plate-like bridge portion 120J: second plate-like bridge portions 125, 125I, 125J, 125K: intermediate connection Portions 130, 130A to 130K: second plate-like bridge portion 130J: first plate-like bridge portion 135K: intermediate connection portions 140, 140I: heavy Connection portion 140J: Fixed end connection portion 140K: Third plate-like bridge portion 145K: Intermediate connection portions 150, 150A to 150I: Weight body 150J: Plate-like fixing portion 150K: Fourth plate-like bridge portion 150L: Auxiliary weight Weight body 160K: Weight connection portion 170K: Weight bodies 200, 200I, 200J: Bottom plate 300 of the apparatus housing 300: Piezoelectric element 400: Cover 410 of the apparatus housing: Top plate 420 of the apparatus housing: Side plate of the apparatus housing 500: Power generation circuit 1000: Basic structure of power generation device 2000: Basic structure of power generation device Cf: Capacitance element (capacitor)
D11 (+) to D13 (+): Positive charge rectifier (diode)
D11 (-) to D13 (-): negative charge rectifier (diode)
D0 (+), Dx1 (+) to Dz24 (+): Positive charge rectifier (diode)
D0 (−), Dx1 (−) to Dz24 (−): negative charge rectifier (diode)
E0, E0B, E0C, E0D, E00: Lower layer electrode E11: Right side electrode on the weight side E12: Center electrode on the weight side E13: Left side electrode E21, E21B, E21C, E21D on the weight side Right side electrodes E22, E22B, E22C, E22D: Center electrode E23, E23B, E23C, E23D on the fixed part side: Left side electrode E31 on the fixed part side: Right side electrode E32: Center electrode E33: Left side electrode Ex1: Second Tip side right side electrode Ex2: second tip side left side electrode Ex3: second root end side right side electrode Ex4: second root end side left side electrode Ey1: first tip side Right side electrode Ey2: First tip side left side electrode Ey3: First root end side right side electrode Ey4: First root end side left side electrode Ez1: Second tip side central electrode Ez2: Second root end side center electrode Ez3: first tip end side center Pole EZ4: first root end side central electrode L0: longitudinal axis Lx fixed part: second longitudinal axis (center line)
Ly: first longitudinal axis (center line)
O: origin P11 to P23 of the three-dimensional coordinate system: parts Px1 to Pz4 of the piezoelectric element 50: parts Rd1, Rd2 of the piezoelectric element 300: resistance element V: gap X: coordinate axis Δx (+) of the three-dimensional coordinate system : X-axis positive displacement Y: Three-dimensional coordinate system coordinate axis Δy (+): Y-axis positive displacement Z: Three-dimensional coordinate system coordinate Δz (+): Z-axis positive displacement ZL: Load α1 α3: ridge structure
Claims (25)
Y軸に平行な第1の長手方向軸に沿って伸び、可撓性を有する第1の板状橋梁部と、
前記第1の板状橋梁部に直接もしくは間接的に接続され、X軸に平行な第2の長手方向軸に沿って伸び、可撓性を有する第2の板状橋梁部と、
前記第2の板状橋梁部に直接もしくは間接的に接続された重錘体と、
前記第1の板状橋梁部、前記第2の板状橋梁部および前記重錘体を収容する装置筐体と、
前記第1の板状橋梁部の一端を前記装置筐体に固定する固定部と、
前記第1の板状橋梁部および前記第2の板状橋梁部の表面に層状に形成された下層電極と、
前記下層電極の表面に層状に形成された圧電素子と
前記圧電素子の表面に局在的に形成された複数の上層電極からなる上層電極群と、
前記上層電極および前記下層電極に発生した電荷に基づいて生じる電流を整流して電力を取り出す発電回路と、
を備え、
前記固定部は、前記第1の板状橋梁部の根端部を前記装置筐体に固定し、前記第1の板状橋梁部の先端部は前記第2の板状橋梁部の根端部に直接もしくは間接的に接続され、前記第2の板状橋梁部の先端部に前記重錘体が直接もしくは間接的に接続されており、
前記装置筐体を振動させる外力が作用したときに、前記第1の板状橋梁部および前記第2の板状橋梁部の撓みにより前記重錘体が前記装置筐体内で各座標軸方向に振動するように構成され、
前記圧電素子は、層方向に伸縮する応力の作用により、厚み方向に分極を生じる性質を有し、
前記上層電極群は、前記第1の板状橋梁部の表面に前記下層電極および前記圧電素子を介して形成された第1の上層電極群と、前記第2の板状橋梁部の表面に前記下層電極および前記圧電素子を介して形成された第2の上層電極群と、を有しており、
前記第1の上層電極群は、第1の右脇電極および第1の左脇電極なる2種類の上層電極を有し、これら上層電極のそれぞれは、前記第1の長手方向軸に沿って伸びるように配置され、前記圧電素子を挟んで前記下層電極の所定領域に対向しており、
前記第1の板状橋梁部に、前記第1の長手方向軸に沿った第1の中心線と、この第1の中心線に関して右脇と左脇とを定義したときに、前記第1の右脇電極は、前記第1の中心線の右脇に、前記第1の中心線の左脇に食み出すことがないように配置されており、前記第1の左脇電極は、前記第1の中心線の左脇に、前記第1の中心線の右脇に食み出すことがないように配置されており、
前記第2の上層電極群は、第2の右脇電極および第2の左脇電極なる2種類の上層電極を有し、これら上層電極のそれぞれは、前記第2の長手方向軸に沿って伸びるように配置され、前記圧電素子を挟んで前記下層電極の所定領域に対向しており、
前記第2の板状橋梁部に、前記第2の長手方向軸に沿った第2の中心線と、この第2の中心線に関して右脇と左脇とを定義したときに、前記第2の右脇電極は、前記第2の中心線の右脇に、前記第2の中心線の左脇に食み出すことがないように配置されており、前記第2の左脇電極は、前記第2の中心線の左脇に、前記第2の中心線の右脇に食み出すことがないように配置されており、
前記第1の板状橋梁部および前記第2の板状橋梁部の上面は、XY平面に平行な所定の共通平面に含まれていることを特徴とする発電素子。 A power generating element that generates power by converting vibration energy in each coordinate axis direction into electric energy in an XYZ three-dimensional coordinate system,
A first plate-like bridge portion extending along a first longitudinal axis parallel to the Y axis and having flexibility;
A second plate-like bridge portion connected directly or indirectly to the first plate-like bridge portion, extending along a second longitudinal axis parallel to the X axis, and having flexibility;
A weight body connected directly or indirectly to the second plate-like bridge portion;
An apparatus housing for housing the first plate-like bridge portion, the second plate-like bridge portion, and the weight body;
A fixing portion for fixing one end of the first plate-like bridge portion to the device housing;
A lower layer electrode formed in layers on the surfaces of the first plate-like bridge portion and the second plate-like bridge portion;
A piezoelectric element formed in a layer on the surface of the lower electrode, and an upper electrode group consisting of a plurality of upper electrodes locally formed on the surface of the piezoelectric element;
A power generation circuit that rectifies a current generated based on charges generated in the upper layer electrode and the lower layer electrode to extract electric power;
With
The fixing portion fixes a root end portion of the first plate-like bridge portion to the apparatus housing, and a tip portion of the first plate-like bridge portion is a root end portion of the second plate-like bridge portion. Directly or indirectly, and the weight body is directly or indirectly connected to the tip of the second plate-like bridge portion,
When an external force that vibrates the device casing is applied, the weight body vibrates in each coordinate axis direction within the device casing due to bending of the first plate-like bridge portion and the second plate-like bridge portion. Configured as
The piezoelectric element has the property of causing polarization in the thickness direction by the action of stress that expands and contracts in the layer direction,
The upper layer electrode group includes a first upper layer electrode group formed on the surface of the first plate-like bridge portion via the lower layer electrode and the piezoelectric element, and a surface of the second plate-like bridge portion. And a second upper layer electrode group formed via the lower layer electrode and the piezoelectric element,
The first upper layer electrode group has two types of upper layer electrodes, ie, a first right side electrode and a first left side electrode, and each of these upper layer electrodes extends along the first longitudinal axis. Arranged so as to face a predetermined region of the lower electrode across the piezoelectric element,
Said first plate-like bridge portions, the first center line along the first longitudinal axis, when defining the right side and Left side with respect to the first center line, said first The right side electrode is arranged on the right side of the first center line so as not to protrude to the left side of the first center line, and the first left side electrode is It is arranged on the left side of the center line of 1 so as not to protrude to the right side of the first center line,
The second upper layer electrode group has two types of upper layer electrodes, a second right side electrode and a second left side electrode, and each of these upper layer electrodes extends along the second longitudinal axis. Arranged so as to face a predetermined region of the lower electrode across the piezoelectric element,
Said second plate-like bridge portions, and the second center line along the second longitudinal axis, when defining the right side and Left side with respect to the second center line, the second The right side electrode is arranged on the right side of the second center line so as not to protrude to the left side of the second center line, and the second left side electrode is It is arranged on the left side of the center line of 2 so as not to protrude to the right side of the second center line,
The power generating element, wherein upper surfaces of the first plate-like bridge portion and the second plate-like bridge portion are included in a predetermined common plane parallel to the XY plane.
第1の板状橋梁部と第2の板状橋梁部とがL字状に配置されるように、第1の板状橋梁部の先端部と第2の板状橋梁部の根端部とが中間接続部を介して接続されており、
第2の板状橋梁部の脇に重錘体が配置されるように、第2の板状橋梁部の先端部と重錘体の隅部とが重錘接続部を介して接続されており、
固定部の下面は装置筐体の底板の上面に固定されており、前記第1の板状橋梁部、前記第2の板状橋梁部および前記重錘体は、外力が作用しない状態において、前記装置筐体の底板の上方に浮いた宙吊り状態になっており、
前記第1の板状橋梁部、前記中間接続部、前記第2の板状橋梁部、前記重錘接続部および前記重錘体の上面は、いずれもXY平面に平行な所定の共通平面に含まれることを特徴とする発電素子。 The power generating element according to claim 1 ,
The tip of the first plate bridge and the root end of the second plate bridge so that the first plate bridge and the second plate bridge are arranged in an L shape. Are connected via an intermediate connection,
The tip of the second plate-shaped bridge portion and the corner of the weight body are connected via the weight connection portion so that the weight body is arranged beside the second plate-shaped bridge portion. ,
The lower surface of the fixed portion is fixed to the upper surface of the bottom plate of the apparatus housing, and the first plate-like bridge portion, the second plate-like bridge portion, and the weight body are It is in a suspended state floating above the bottom plate of the device housing ,
The upper surfaces of the first plate-like bridge portion, the intermediate connection portion, the second plate-like bridge portion, the weight connection portion, and the weight body are all included in a predetermined common plane parallel to the XY plane. A power generating element.
中間接続部が、第1の板状橋梁部の先端部の側面よりも外側に突き出した庇構造部と第2の板状橋梁部の根端部の側面よりも外側に突き出した庇構造部とを有し、
重錘接続部が、第2の板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有することを特徴とする発電素子。 The power generating element according to claim 2 ,
An intermediate connecting portion projecting outward from the side surface of the tip portion of the first plate-like bridge portion and an eaves structure portion projecting outward from the side surface of the root end portion of the second plate-like bridge portion; Have
The power generation element, wherein the weight connection portion includes a flange structure portion protruding outward from a side surface of a tip portion of the second plate-like bridge portion.
固定部が、X軸に平行な固定部用長手方向軸に沿って伸びる固定部用板状部材によって構成され、この固定部用板状部材の一端に第1の板状橋梁部の根端部が固定されており、
固定部用板状部材、第1の板状橋梁部および第2の板状橋梁部によって構成される構造体が、XY平面上への投影像が「コ」の字状になるようなコの字状構造体をなし、このコの字状構造体によって囲まれた内部領域に板状の重錘体が配置されていることを特徴とする発電素子。 In the electric power generating element according to claim 2 or 3 ,
The fixing part is constituted by a fixing part plate member extending along a fixing part longitudinal axis parallel to the X axis, and one end of the fixing part plate member has a root end part of the first plate-like bridge part. Is fixed,
The structure constituted by the plate member for the fixing portion, the first plate-like bridge portion, and the second plate-like bridge portion is such that the projected image on the XY plane has a “U” shape. A power generating element comprising a character-like structure and a plate-like weight arranged in an inner region surrounded by the U-shaped structure.
固定部が、環状構造体によって構成されており、この環状構造体によって囲まれた内部領域に第1の板状橋梁部、第2の板状橋梁部および重錘体が配置されていることを特徴とする発電素子。 In the electric power generating element according to claim 2 or 3 ,
The fixing portion is constituted by an annular structure, and the first plate-like bridge portion, the second plate-like bridge portion, and the weight body are arranged in an inner region surrounded by the annular structure. A characteristic power generation element.
環状構造体が、第1の板状橋梁部、第2の板状橋梁部および重錘体の周囲を、所定距離を維持して取り囲む構造をなし、重錘体の過剰な変位を制御するストッパ部材としての役割を果たすことを特徴とする発電素子。 The annular structure has a structure surrounding the first plate-shaped bridge portion, the second plate-shaped bridge portion and the weight body while maintaining a predetermined distance, and a stopper that controls excessive displacement of the weight body A power generation element characterized by acting as a member.
第2の板状橋梁部と重錘体との間に、第3の板状橋梁部〜第Kの板状橋梁部(但し、K≧3)を設け、
第iの板状橋梁部(但し、1≦i≦K−1)の先端部が第(i+1)の板状橋梁部の根端部に直接もしくは間接的に接続され、第Kの板状橋梁部の先端部が重錘体に直接もしくは間接的に接続されており、
第jの板状橋梁部(但し、1≦j≦K)は、jが奇数の場合はY軸に平行な第jの長手方向軸に沿って伸び、jが偶数の場合はX軸に平行な第jの長手方向軸に沿って伸びていることを特徴とする発電素子。 The power generating element according to claim 1 ,
Between the second plate-like bridge portion and the weight body, a third plate-like bridge portion to a K-th plate-like bridge portion (where K ≧ 3) are provided,
The tip of the i-th plate-like bridge portion (where 1 ≦ i ≦ K−1) is connected directly or indirectly to the root end of the (i + 1) -th plate-like bridge portion, and the K-th plate-like bridge The tip of the part is connected directly or indirectly to the weight body,
The jth plate-like bridge portion (where 1 ≦ j ≦ K) extends along the jth longitudinal axis parallel to the Y axis when j is an odd number, and parallel to the X axis when j is an even number. A power generating element extending along the jth longitudinal axis.
第iの板状橋梁部(但し、1≦i≦K−1)の先端部と第(i+1)の板状橋梁部の根端部とが第iの中間接続部を介して接続されており、第Kの板状橋梁部の先端部と重錘体とが重錘接続部を介して接続されており、
前記第iの中間接続部が、前記第iの板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有し、前記重錘接続部が、前記第Kの板状橋梁部の先端部の側面よりも外側に突き出した庇構造部を有することを特徴とする発電素子。 The power generating element according to claim 8 ,
The tip of the i-th plate bridge portion (where 1 ≦ i ≦ K−1) and the root end portion of the (i + 1) -th plate bridge portion are connected via the i-th intermediate connection portion. , The tip of the Kth plate-like bridge portion and the weight body are connected via the weight connection portion,
The i-th intermediate connection part has a flange structure part protruding outward from the side surface of the tip part of the i-th plate bridge part, and the weight connection part is the K-th plate bridge part. A power generating element characterized by having an eaves structure portion projecting outward from the side surface of the tip portion.
第1の板状橋梁部の根端部から第Kの板状橋梁部の先端部に至るまでの構造体が渦巻状の経路をなし、重錘体が前記渦巻状の経路に囲まれた中心位置に配置されていることを特徴とする発電素子。 The power generation element according to claim 8 or 9 ,
The structure from the root of the first plate-like bridge portion to the tip of the K-th plate-like bridge portion forms a spiral path, and the weight body is surrounded by the spiral path. A power generating element arranged at a position.
第3の板状橋梁部〜第Kの板状橋梁部の表面にも、下層電極、圧電素子、上層電極群を設け、発電回路が、これら上層電極および下層電極に発生した電荷からも電力を取り出すことを特徴とする発電素子。 In the electric power generating element in any one of Claims 8-10 ,
A lower layer electrode, a piezoelectric element, and an upper layer electrode group are also provided on the surfaces of the third plate-shaped bridge portion to the K-th plate-shaped bridge portion. A power generating element characterized by being taken out.
固定部が、環状構造体によって構成されており、この環状構造体によって囲まれた内部領域に第1の板状橋梁部〜第Kの板状橋梁部および重錘体が配置されていることを特徴とする発電素子。 In the electric power generating element in any one of Claims 8-11 ,
The fixing portion is constituted by an annular structure, and the first plate-shaped bridge portion to the K-th plate-shaped bridge portion and the weight body are arranged in an inner region surrounded by the annular structure. A characteristic power generation element.
下層電極が第1の板状橋梁部および第2の板状橋梁部の上面に形成され、圧電素子がこの下層電極の上面に形成され、
第1の右脇電極および第1の左脇電極が、第1の板状橋梁部の上面に前記下層電極および前記圧電素子を介して形成されており、
第2の右脇電極および第2の左脇電極が、第2の板状橋梁部の上面に前記下層電極および前記圧電素子を介して形成されていることを特徴とする発電素子。 In the electric power generating element in any one of Claims 1-13 ,
A lower layer electrode is formed on the upper surface of the first plate-like bridge portion and the second plate-like bridge portion, and a piezoelectric element is formed on the upper surface of the lower layer electrode,
The first right side electrode and the first left side electrode are formed on the upper surface of the first plate-like bridge portion via the lower layer electrode and the piezoelectric element,
The power generating element, wherein the second right side electrode and the second left side electrode are formed on the upper surface of the second plate-like bridge portion via the lower layer electrode and the piezoelectric element.
下層電極が第1の板状橋梁部および第2の板状橋梁部の上面とともに側面にも形成され、圧電素子がこの下層電極の表面に形成され、
第1の右脇電極および第1の左脇電極が、第1の板状橋梁部の側面に前記下層電極および前記圧電素子を介して形成されており、
第2の右脇電極および第2の左脇電極が、第2の板状橋梁部の側面に前記下層電極および前記圧電素子を介して形成されていることを特徴とする発電素子。 In the electric power generating element in any one of Claims 1-13 ,
The lower layer electrode is formed on the side surface as well as the upper surface of the first plate-like bridge portion and the second plate-like bridge portion, and the piezoelectric element is formed on the surface of the lower layer electrode,
The first right side electrode and the first left side electrode are formed on the side surface of the first plate-like bridge portion via the lower layer electrode and the piezoelectric element,
A power generating element, wherein a second right side electrode and a second left side electrode are formed on a side surface of a second plate-like bridge portion via the lower layer electrode and the piezoelectric element.
下層電極が第1の板状橋梁部および第2の板状橋梁部の上面とともに側面にも形成され、圧電素子がこの下層電極の表面に形成され、
第1の右脇電極および第1の左脇電極が、第1の板状橋梁部の上面から側面にかけて前記下層電極および前記圧電素子を介して形成されており、
第2の右脇電極および第2の左脇電極が、第2の板状橋梁部の上面から側面にかけて前記下層電極および前記圧電素子を介して形成されていることを特徴とする発電素子。 In the electric power generating element in any one of Claims 1-13 ,
The lower layer electrode is formed on the side surface as well as the upper surface of the first plate-like bridge portion and the second plate-like bridge portion, and the piezoelectric element is formed on the surface of the lower layer electrode,
The first right side electrode and the first left side electrode are formed from the upper surface to the side surface of the first plate-like bridge portion via the lower layer electrode and the piezoelectric element,
The power generating element, wherein the second right side electrode and the second left side electrode are formed from the upper surface to the side surface of the second plate-like bridge portion via the lower layer electrode and the piezoelectric element.
第1の上層電極群が、第1の板状橋梁部の根端部近傍に配置された第1の根端部側電極群と、第1の板状橋梁部の先端部近傍に配置された第1の先端部側電極群とを有し、
第2の上層電極群が、第2の板状橋梁部の根端部近傍に配置された第2の根端部側電極群と、第2の板状橋梁部の先端部近傍に配置された第2の先端部側電極群とを有し、
前記第1の根端部側電極群、前記第1の先端部側電極群、前記第2の根端部側電極群、前記第2の先端部側電極群のそれぞれが、右脇電極および左脇電極なる2種類の上層電極を有することを特徴とする発電素子。 In the electric power generating element in any one of Claims 1-16 ,
The first upper layer electrode group is disposed in the vicinity of the first root end side electrode group disposed in the vicinity of the root end portion of the first plate-like bridge portion, and the tip portion of the first plate-like bridge portion. A first tip side electrode group,
The second upper layer electrode group is disposed in the vicinity of the second root end side electrode group disposed in the vicinity of the root end portion of the second plate-shaped bridge portion, and in the vicinity of the distal end portion of the second plate-shaped bridge portion. A second tip side electrode group,
Each of the first root end side electrode group, the first tip end side electrode group, the second root end side electrode group, and the second tip end side electrode group includes a right side electrode and a left side electrode group. A power generating element having two types of upper layer electrodes serving as side electrodes.
各板状橋梁部、重錘体および固定部、ならびに、これら各部材間を接続する接続部がある場合は当該接続部が、同一の板状部材を加工することによって得られる一体構造体によって構成されていることを特徴とする発電素子。 Each plate-like bridge part, weight body and fixing part, and when there is a connection part connecting these members, the connection part is constituted by an integral structure obtained by processing the same plate-like member A power generating element characterized by being made.
発電回路が、容量素子と、各上層電極に発生した正電荷を前記容量素子の正極側へ導くために各上層電極から前記容量素子の正極側へ向かう方向を順方向とする正電荷用整流素子と、各上層電極に発生した負電荷を前記容量素子の負極側へ導くために前記容量素子の負極側から各上層電極へ向かう方向を順方向とする負電荷用整流素子と、を有し、振動エネルギーから変換された電気エネルギーを前記容量素子により平滑化して供給することを特徴とする発電素子。 In the electric power generating element in any one of Claims 1-18 ,
A positive charge rectifying element in which the power generation circuit has a forward direction from each upper layer electrode to the positive electrode side of the capacitive element in order to guide the positive charge generated in the capacitive element and each upper layer electrode to the positive electrode side of the capacitive element. And a negative charge rectifying element having a forward direction from the negative electrode side of the capacitive element to each upper layer electrode to guide the negative charge generated in each upper layer electrode to the negative electrode side of the capacitive element, A power generating element characterized in that electric energy converted from vibration energy is supplied by being smoothed by the capacitor element.
一部の発電素子におけるX軸方向もしくはY軸方向またはその双方が、別な一部の発電素子におけるこれらの方向と異なる向きに配置されていることを特徴とする発電装置。 The power generator according to claim 20 ,
An X-axis direction and / or a Y-axis direction in a part of the power generation elements is arranged in a direction different from these directions in another part of the power generation elements.
4組の発電素子を有し、第1の発電素子のX軸方向およびY軸方向を基準としたときに、第2の発電素子はY軸方向が逆転する向きに配置され、第3の発電素子はX軸方向が逆転する向きに配置され、第4の発電素子はX軸方向およびY軸方向の双方が逆転する向きに配置されていることを特徴とする発電装置。 The power generator according to claim 21 ,
The four power generation elements are provided, and the second power generation element is arranged in the direction in which the Y axis direction is reversed when the X axis direction and the Y axis direction of the first power generation element are used as a reference. The element is arranged in a direction in which the X-axis direction is reversed, and the fourth power generation element is arranged in a direction in which both the X-axis direction and the Y-axis direction are reversed.
複数の発電素子の重錘体が、それぞれ異なる共振周波数を有することを特徴とする発電装置。 In the electric power generating apparatus in any one of Claims 20-22 ,
A power generating device, wherein the weight bodies of the plurality of power generating elements have different resonance frequencies.
重錘体のXY平面への投影像の面積が互いに異なるように設定するか、Z軸方向に関する厚みが互いに異なるように設定するか、または、その双方の設定を行うことにより、複数の発電素子の重錘体の質量が異なるようにしたことを特徴とする発電装置。 The power generator according to claim 23 ,
By setting the areas of the projected images of the weights on the XY plane to be different from each other, setting the thicknesses in the Z-axis direction to be different from each other, or setting both, a plurality of power generation elements A power generator characterized by having different masses of weights.
複数の発電素子の第1の板状橋梁部もしくは第2の板状橋梁部またはその双方について、XY平面への投影像の面積が互いに異なるように設定するか、Z軸方向に関する厚みが互いに異なるように設定するか、または、その双方の設定を行うことにより、複数の発電素子の重錘体の共振周波数が異なるようにしたことを特徴とする発電装置。 The power generator according to claim 23 or 24 ,
The first plate-like bridge portion and / or the second plate-like bridge portion of the plurality of power generating elements are set so that the projected image areas on the XY plane are different from each other, or the thicknesses in the Z-axis direction are different from each other. The power generation apparatus is characterized in that the resonance frequencies of the weight bodies of the plurality of power generation elements are made different by setting the two or both of them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014190452A JP5694597B2 (en) | 2014-09-18 | 2014-09-18 | Power generation element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014190452A JP5694597B2 (en) | 2014-09-18 | 2014-09-18 | Power generation element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014084407A Division JP5674973B1 (en) | 2014-04-16 | 2014-04-16 | Power generation element |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015020365A Division JP5775644B2 (en) | 2015-02-04 | 2015-02-04 | Power generation element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015050935A true JP2015050935A (en) | 2015-03-16 |
JP5694597B2 JP5694597B2 (en) | 2015-04-01 |
Family
ID=52700496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014190452A Active JP5694597B2 (en) | 2014-09-18 | 2014-09-18 | Power generation element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5694597B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5996078B1 (en) * | 2015-10-19 | 2016-09-21 | 株式会社トライフォース・マネジメント | Power generation element |
JP2017079583A (en) * | 2016-08-17 | 2017-04-27 | 株式会社トライフォース・マネジメント | Power generating element |
JP2017201883A (en) * | 2017-06-29 | 2017-11-09 | 株式会社トライフォース・マネジメント | Power generating element |
JP2018050458A (en) * | 2017-10-30 | 2018-03-29 | 株式会社トライフォース・マネジメント | Power generation element |
CN110165936A (en) * | 2019-05-23 | 2019-08-23 | 哈尔滨工业大学 | A kind of covering flutter Exciting-simulator system piezoelectric harvester of microminiature wing |
JPWO2018142714A1 (en) * | 2017-01-31 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Power generator |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5529328B1 (en) | 2013-09-04 | 2014-06-25 | 株式会社トライフォース・マネジメント | Power generation element |
JP5821158B1 (en) * | 2015-04-09 | 2015-11-24 | 株式会社トライフォース・マネジメント | Compound sensor device |
JP5887457B2 (en) * | 2015-10-29 | 2016-03-16 | 株式会社トライフォース・マネジメント | Power generation element |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008145256A (en) * | 2006-12-08 | 2008-06-26 | Tdk Corp | Angular velocity sensor element and angular velocity sensor system |
JP2008537847A (en) * | 2005-03-24 | 2008-09-25 | エール大学 | Energy harvesting equipment |
JP3158583U (en) * | 2010-01-26 | 2010-04-08 | 株式会社ワコー | Sensor that detects both acceleration and angular velocity |
JP2010273408A (en) * | 2009-05-19 | 2010-12-02 | Emprie Technology Development LLC | Power device, method of generating power, and method of manufacturing the power device |
JP4767369B1 (en) * | 2010-01-07 | 2011-09-07 | パナソニック株式会社 | Piezoelectric power generation element and power generation method using piezoelectric power generation element |
WO2012090452A1 (en) * | 2010-12-28 | 2012-07-05 | パナソニック株式会社 | Angular velocity sensor |
US20130154439A1 (en) * | 2011-12-16 | 2013-06-20 | Electronics And Telecommunications Research Institute | Energy harvesting devices and methods of fabricating the same |
JP2013143874A (en) * | 2012-01-11 | 2013-07-22 | Kohei Hayamizu | Power generation device |
JP2014033478A (en) * | 2010-12-01 | 2014-02-20 | Murata Mfg Co Ltd | Piezoelectric generator |
JP2014039405A (en) * | 2012-08-17 | 2014-02-27 | Taiyo Yuden Co Ltd | Oscillating power generator |
-
2014
- 2014-09-18 JP JP2014190452A patent/JP5694597B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008537847A (en) * | 2005-03-24 | 2008-09-25 | エール大学 | Energy harvesting equipment |
JP2008145256A (en) * | 2006-12-08 | 2008-06-26 | Tdk Corp | Angular velocity sensor element and angular velocity sensor system |
JP2010273408A (en) * | 2009-05-19 | 2010-12-02 | Emprie Technology Development LLC | Power device, method of generating power, and method of manufacturing the power device |
JP4767369B1 (en) * | 2010-01-07 | 2011-09-07 | パナソニック株式会社 | Piezoelectric power generation element and power generation method using piezoelectric power generation element |
JP3158583U (en) * | 2010-01-26 | 2010-04-08 | 株式会社ワコー | Sensor that detects both acceleration and angular velocity |
JP2014033478A (en) * | 2010-12-01 | 2014-02-20 | Murata Mfg Co Ltd | Piezoelectric generator |
WO2012090452A1 (en) * | 2010-12-28 | 2012-07-05 | パナソニック株式会社 | Angular velocity sensor |
US20130154439A1 (en) * | 2011-12-16 | 2013-06-20 | Electronics And Telecommunications Research Institute | Energy harvesting devices and methods of fabricating the same |
JP2013143874A (en) * | 2012-01-11 | 2013-07-22 | Kohei Hayamizu | Power generation device |
JP2014039405A (en) * | 2012-08-17 | 2014-02-27 | Taiyo Yuden Co Ltd | Oscillating power generator |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5996078B1 (en) * | 2015-10-19 | 2016-09-21 | 株式会社トライフォース・マネジメント | Power generation element |
JP2017079500A (en) * | 2015-10-19 | 2017-04-27 | 株式会社トライフォース・マネジメント | Power generating element |
US10284119B2 (en) | 2015-10-19 | 2019-05-07 | Tri-Force Management Corporation | Power generating element |
US10547253B2 (en) | 2015-10-19 | 2020-01-28 | Tri-Force Management Corporation | Power generating element |
JP2017079583A (en) * | 2016-08-17 | 2017-04-27 | 株式会社トライフォース・マネジメント | Power generating element |
JPWO2018142714A1 (en) * | 2017-01-31 | 2019-11-14 | パナソニックIpマネジメント株式会社 | Power generator |
JP2017201883A (en) * | 2017-06-29 | 2017-11-09 | 株式会社トライフォース・マネジメント | Power generating element |
JP2018050458A (en) * | 2017-10-30 | 2018-03-29 | 株式会社トライフォース・マネジメント | Power generation element |
CN110165936A (en) * | 2019-05-23 | 2019-08-23 | 哈尔滨工业大学 | A kind of covering flutter Exciting-simulator system piezoelectric harvester of microminiature wing |
Also Published As
Publication number | Publication date |
---|---|
JP5694597B2 (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5529328B1 (en) | Power generation element | |
JP5694597B2 (en) | Power generation element | |
JP5775644B2 (en) | Power generation element | |
JP5674973B1 (en) | Power generation element | |
JP5833790B2 (en) | Power generation element | |
WO2012105368A1 (en) | Piezoelectric power-generation apparatus | |
JP6187957B1 (en) | Power generation element | |
JP6987414B2 (en) | Power generation element | |
JP2019047545A (en) | Power generation element | |
JP5887457B2 (en) | Power generation element | |
JP6088107B2 (en) | Power generation element | |
JP6186525B2 (en) | Power generation element | |
JP6538806B2 (en) | Power generation element | |
JP6251836B2 (en) | Power generation element | |
JP6671660B2 (en) | Power generation element | |
JP6274546B1 (en) | Power generation element | |
JP6232624B1 (en) | Power generation element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20141210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5694597 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |