JP2015050888A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2015050888A
JP2015050888A JP2013182737A JP2013182737A JP2015050888A JP 2015050888 A JP2015050888 A JP 2015050888A JP 2013182737 A JP2013182737 A JP 2013182737A JP 2013182737 A JP2013182737 A JP 2013182737A JP 2015050888 A JP2015050888 A JP 2015050888A
Authority
JP
Japan
Prior art keywords
coil
resonance
inductance
power
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013182737A
Other languages
Japanese (ja)
Other versions
JP5978184B2 (en
Inventor
敏範 濱本
Toshinori Hamamoto
敏範 濱本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EASY MEASURE CO Ltd
Original Assignee
EASY MEASURE CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EASY MEASURE CO Ltd filed Critical EASY MEASURE CO Ltd
Priority to JP2013182737A priority Critical patent/JP5978184B2/en
Publication of JP2015050888A publication Critical patent/JP2015050888A/en
Application granted granted Critical
Publication of JP5978184B2 publication Critical patent/JP5978184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable easy installation work of a non-contact power supply device on site in a state of power supply efficiency raised to the maximum by the adjustment of a resonance frequency.SOLUTION: A resonance circuit 13 connected to a power reception coil 12 includes a capacitor 15 and a resonance coil 16. The inductance L3 of the resonance coil 16 is set sufficiently larger than the inductance L2 of the power reception coil 12, so that the inductance L2 of the power reception coil 12 is almost negligible in regard to an inductance value that determines a resonance frequency in relation to the capacitance C of the capacitor 15. Thus, by the adjustment of the capacitance C of the capacitor 15 only in relation to the inductance L3 of the resonance coil 16 before an operator goes to a site, the setting of a necessary resonance frequency can be set in order to raise the power supply efficiency to the maximum.

Description

本発明は非接触給電装置に関し、特に、同心上に設置された送電コイルおよび受電コイルにより電磁誘導を利用して電力を供給する非接触給電装置に用いて好適なものである。   The present invention relates to a non-contact power supply device, and is particularly suitable for use in a non-contact power supply device that supplies power using electromagnetic induction by a power transmission coil and a power reception coil installed concentrically.

タービンやモータなど回転機械の監視制御においては、回転するロータの応力や温度を計測し、その計測データをリアルタイムで制御監視装置に伝送することが必要である。ロータなどの回転体の場合、電力の供給に従来はスリップリングやトロリー方式の接触型が主に用いられてきた。しかし、これらの方式のシステムは高価であり、接触部の機械的摩耗の問題もあることから、近年では電磁誘導を利用した非接触型の給電方式が用いられてきている。   In monitoring and control of rotating machines such as turbines and motors, it is necessary to measure stress and temperature of a rotating rotor and transmit the measurement data to a control and monitoring device in real time. In the case of a rotating body such as a rotor, conventionally, a contact type of a slip ring or a trolley type has been mainly used for supplying electric power. However, these types of systems are expensive, and there is a problem of mechanical wear of the contact portion. In recent years, a non-contact type power feeding method using electromagnetic induction has been used.

一般的に、電磁誘導を利用して回転体に対して電力を供給する非接触給電装置は、図2に示すように構成されている。すなわち、従来の一般的な非接触給電装置は、回転体100の外周において同心上に設置される送電コイル101および受電コイル102と、送電コイル101に対して交流電力を供給する送電用発振器103と、受電コイル102のインンダクタンスに対して同調する容量を有するコンデンサを備えた共振回路104と、受電コイル102から共振回路104を通して供給される交流電力を整流して直流電力に変換する整流回路105とを備えている。なお、送電コイル101に対して同調用のコンデンサを接続したものも存在する(例えば、特許文献1参照)。   In general, a non-contact power supply device that supplies electric power to a rotating body using electromagnetic induction is configured as shown in FIG. That is, the conventional general non-contact power feeding apparatus includes a power transmission coil 101 and a power receiving coil 102 that are concentrically installed on the outer periphery of the rotating body 100, and a power transmission oscillator 103 that supplies AC power to the power transmission coil 101. A resonance circuit 104 including a capacitor having a capacity that is tuned to the inductance of the power receiving coil 102; a rectifying circuit 105 that rectifies AC power supplied from the power receiving coil 102 through the resonance circuit 104 and converts the AC power into DC power; It has. In addition, there is one in which a tuning capacitor is connected to the power transmission coil 101 (see, for example, Patent Document 1).

特開2000−14053号公報JP 2000-14053 A

電磁誘導を利用した非接触給電装置において、できるだけ効率よく電力の供給を行うためには、送電コイル101に供給される交流電力の周波数と、受電コイル102のインンダクタンスおよび共振回路104が備えるコンデンサの容量で定まる共振周波数との値が同一もしくはそれに近くなるように調整する必要がある。そのためには、共振回路104が備えるコンデンサの容量を適切な値に調整することが重要となる。   In a non-contact power feeding apparatus using electromagnetic induction, in order to supply power as efficiently as possible, the frequency of the AC power supplied to the power transmission coil 101, the inductance of the power receiving coil 102, and the capacitor included in the resonance circuit 104 It is necessary to adjust so that the value of the resonance frequency determined by the capacitance is the same or close to it. For this purpose, it is important to adjust the capacitance of the capacitor included in the resonance circuit 104 to an appropriate value.

しかしながら、大型のタービンやモータのように巨大な設備に非接触給電装置を設置する場合、タービンやモータがある現場において送電コイル101や受電コイル102を回転体100に巻き付け、その現場においてコンデンサの容量Cの値も調整しなければならない。この場合、共振周波数の値は、回転体100に巻き付ける受電コイル102の径の大きさや、当該受電コイル102のインンダクタンスの値、使用する鉄心の透磁率など多くの要素の影響を受けて変わってしまう。   However, when the non-contact power supply apparatus is installed in a huge facility such as a large turbine or motor, the power transmission coil 101 or the power receiving coil 102 is wound around the rotating body 100 at the site where the turbine or motor is present, and the capacitance of the capacitor is measured at the site. The value of C must also be adjusted. In this case, the value of the resonance frequency varies depending on many factors such as the diameter of the power receiving coil 102 wound around the rotating body 100, the inductance value of the power receiving coil 102, and the permeability of the iron core used. End up.

そのため、給電の最大効率を得るのに必要な値にコンデンサの容量を調整するためには、様々な容量のコンデンサを接続しては共振周波数を測定してみるといった試行錯誤的な作業が必要となり、現場での非接触給電装置の設置作業が非常に煩雑になるという問題があった。   Therefore, in order to adjust the capacitance of the capacitor to the value necessary to obtain the maximum efficiency of power supply, trial and error work such as connecting the capacitors of various capacities and measuring the resonance frequency is required. There is a problem that the installation work of the non-contact power feeding apparatus on the site becomes very complicated.

本発明は、このような問題を解決するために成されたものであり、共振周波数を調整して給電効率を最大限に上げた状態で非接触給電装置を現場で設置する作業を容易に行うことができるようにすることを目的とする。   The present invention has been made to solve such a problem, and easily performs an operation of installing a non-contact power feeding apparatus on site in a state where the resonance frequency is adjusted and the power feeding efficiency is maximized. The purpose is to be able to.

上記した課題を解決するために、本発明の非接触給電装置は、同心上に設置される送電コイルおよび受電コイルと、受電コイルに接続された共振回路とを備え、当該共振回路は、コンデンサと、当該コンデンサと共振する共振用コイルとを備えており、受電コイルのインダクタンスに対して共振用コイルのインダクタンスを十分に大きな値に設定している。   In order to solve the above-described problem, a contactless power supply device of the present invention includes a power transmission coil and a power reception coil that are installed concentrically, and a resonance circuit connected to the power reception coil. And a resonance coil that resonates, and the inductance of the resonance coil is set to a sufficiently large value with respect to the inductance of the power receiving coil.

上記のように構成した本発明によれば、受電コイルのインダクタンスに対して共振用コイルのインダクタンスが十分に大きな値に設定されているため、共振回路内のコンデンサの容量との関係で共振周波数を定めるインダクタンスに関して、受電コイルのインダクタンスは殆ど無視することができる。すなわち、受電コイルの径の大きさ、受電コイルのインンダクタンスの値、鉄心の透磁率などの影響を受けて共振周波数が変わってしまうことがなく、受電コイルとは別に設けた共振用コイルのインダクタンスとコンデンサの容量とによって共振周波数が定まる。   According to the present invention configured as described above, since the inductance of the resonance coil is set to a sufficiently large value relative to the inductance of the power receiving coil, the resonance frequency is set in relation to the capacitance of the capacitor in the resonance circuit. Regarding the inductance to be determined, the inductance of the receiving coil can be almost ignored. That is, the resonance frequency does not change under the influence of the diameter of the receiving coil, the inductance value of the receiving coil, the magnetic permeability of the iron core, etc. The inductance of the resonance coil provided separately from the receiving coil The resonance frequency is determined by the capacitance of the capacitor.

このため、共振用コイルのインダクタンスとの関係だけでコンデンサの容量を調整することにより、給電効率を最大限に上げるために必要な共振周波数の設定を行うことができる。これにより、作業者が現場に向かう前に、共振回路が備えるコンデンサの容量と共振用コイルのインダクタンスの調整を行って共振周波数を設定しておけば、現場では共振回路を受電コイルに接続するだけの作業で済む。したがって、共振周波数を調整して給電効率を最大限に上げた状態で非接触給電装置を現場で設置する作業を容易に行うことができるようになる。   For this reason, by adjusting the capacitance of the capacitor only in relation to the inductance of the resonance coil, it is possible to set the resonance frequency necessary to maximize the power supply efficiency. As a result, if the resonance frequency is set by adjusting the capacitance of the capacitor provided in the resonance circuit and the inductance of the resonance coil before the worker goes to the site, the resonance circuit is simply connected to the receiving coil at the site. This is all you need to do. Therefore, it is possible to easily perform the work of installing the non-contact power feeding apparatus on site with the resonance frequency adjusted to maximize the power feeding efficiency.

本実施形態による非接触給電装置の構成例を示す図である。It is a figure which shows the structural example of the non-contact electric power feeder by this embodiment. 従来の非接触給電装置の構成例を示す図である。It is a figure which shows the structural example of the conventional non-contact electric power supply.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による非接触給電装置の構成例を示す図である。なお、図1に示す非接触給電装置は、その構成を模式的に示すものであって、大きさや形状を正確に反映したものではない。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration example of the contactless power feeding device according to the present embodiment. In addition, the non-contact electric power feeder shown in FIG. 1 shows the structure typically, and does not reflect a magnitude | size and a shape correctly.

図1に示すように、本実施形態の非接触給電装置は、例えばタービンのロータのような回転体100の外周において同心上に設置される送電コイル11および受電コイル12と、受電コイル12に接続された共振回路13と、受電コイル12から共振回路13を通して供給される交流電力を整流して直流電力に変換する整流回路14とを備えている。   As shown in FIG. 1, the contactless power feeding device of the present embodiment is connected to the power receiving coil 12 and the power transmitting coil 11 and the power receiving coil 12 that are installed concentrically on the outer periphery of a rotating body 100 such as a rotor of a turbine. And a rectifier circuit 14 that rectifies AC power supplied from the power receiving coil 12 through the resonance circuit 13 and converts the AC power into DC power.

送電コイル11には、当該送電コイル11に対して交流電力を供給するための送電用発振器20が接続される。この送電コイル11は、電磁誘導を利用して受電コイル12に電力を給電する。受電コイル12は、電磁誘導を利用して送電コイル11より電力を受電する。受電コイル12は、例えば回転体100の外周表面に巻き付けられ、共振回路13および整流回路14は、例えば回転体100の外周表面に設置される。   A power transmission oscillator 20 for supplying AC power to the power transmission coil 11 is connected to the power transmission coil 11. The power transmission coil 11 supplies power to the power receiving coil 12 using electromagnetic induction. The power receiving coil 12 receives power from the power transmitting coil 11 using electromagnetic induction. The power receiving coil 12 is wound around the outer peripheral surface of the rotating body 100, for example, and the resonance circuit 13 and the rectifier circuit 14 are installed on the outer peripheral surface of the rotating body 100, for example.

共振回路13は、送電用発振器20から送電コイル11に給電する交流電力の周波数と略一致する共振周波数を受電コイル12側に発生させるための回路であり、コンデンサ15と、当該コンデンサ15と共振する共振用コイル16とを備えて構成される。   The resonance circuit 13 is a circuit for generating, on the power receiving coil 12 side, a resonance frequency that substantially matches the frequency of the AC power supplied from the power transmission oscillator 20 to the power transmission coil 11, and resonates with the capacitor 15. And a resonance coil 16.

本実施形態では、共振用コイル16をトロイダルコイルにより構成している。そして、このトロイダルコイルに2組の接続端子を設け、その1組をコンデンサ15を介して受電コイル12に接続するとともに、もう1組を整流回路14に接続している。   In this embodiment, the resonance coil 16 is constituted by a toroidal coil. The toroidal coil is provided with two sets of connection terminals, one set is connected to the power receiving coil 12 via the capacitor 15, and the other set is connected to the rectifier circuit 14.

また、本実施形態では、共振用コイル16の巻数を受電コイル12の巻数に対して十分に大きな値に設定することにより、受電コイル12のインダクタンスL2に対して共振用コイル16のインダクタンスL3を十分に大きな値に設定している。例えば、受電コイル12の巻数を1回とする一方、共振用コイル16の巻数をn回(n>>1)とする。   Further, in the present embodiment, by setting the number of turns of the resonance coil 16 to a sufficiently large value with respect to the number of turns of the power receiving coil 12, the inductance L 3 of the resonance coil 16 is sufficiently larger than the inductance L 2 of the power receiving coil 12. Is set to a large value. For example, the number of turns of the power receiving coil 12 is 1, and the number of turns of the resonance coil 16 is n (n >> 1).

このように構成することにより、共振回路13におけるコンデンサ15の容量Cとの関係で共振周波数を定めるインダクタンスの値に関して、共振用コイル16のインダクタンスL3と比べて受電コイル12のインダクタンスL2の値は殆ど無視することができる。   With this configuration, the inductance L2 of the power receiving coil 12 is almost the same as the inductance L3 of the resonance coil 16 with respect to the inductance value that determines the resonance frequency in relation to the capacitance C of the capacitor 15 in the resonance circuit 13. Can be ignored.

すなわち、ロータの外周に現場で巻き付ける受電コイル12の径の大きさ、受電コイル12のインンダクタンスL2の値、鉄心の透磁率などの影響を受けて共振回路13の共振周波数が変わってしまうことがなく、受電コイル12とは別に設けた共振用コイル16のインダクタンスL3の値とコンデンサの容量Cの値とによって共振周波数が定まる。   That is, the resonance frequency of the resonance circuit 13 may change due to the influence of the size of the receiving coil 12 wound around the outer periphery of the rotor, the value of the inductance L2 of the receiving coil 12, the magnetic permeability of the iron core, and the like. The resonance frequency is determined by the value of the inductance L3 of the resonance coil 16 provided separately from the power receiving coil 12 and the value of the capacitance C of the capacitor.

このため、共振用コイル16のインダクタンスL3との関係だけでコンデンサ15の容量Cを調整することにより、給電効率を最大限に上げるために必要な共振周波数の設定を行うことができる。例えば、送電コイル11に給電する交流電力の周波数がf[kHz]である場合、共振用コイル16のインダクタンスL3とコンデンサ15の容量Cとにより定まる共振周波数f[kHz]をfと略一致するようにコンデンサ15の容量Cを調整すればよい。 For this reason, by adjusting the capacitance C of the capacitor 15 only by the relationship with the inductance L3 of the resonance coil 16, it is possible to set the resonance frequency necessary to maximize the power supply efficiency. For example, when the frequency of the AC power supplied to the power transmission coil 11 is f 1 [kHz], the resonance frequency f 2 [kHz] determined by the inductance L3 of the resonance coil 16 and the capacitance C of the capacitor 15 is abbreviated as f 1. What is necessary is just to adjust the capacity | capacitance C of the capacitor | condenser 15 so that it may correspond.

これにより、作業者が現場に向かう前に、共振回路13が備えるコンデンサ15の容量Cと共振用コイル16のインダクタンスL3の調整を行って共振周波数を設定しておけば、現場では共振回路13を受電コイル12に接続するだけの作業で済む。したがって、共振周波数を調整して給電効率を最大限に上げた状態で非接触給電装置を現場で設置する作業を容易に行うことができるようになる。また、本実施形態では、受電コイル12の巻数を1回としているので、現場でロータの外周に受電コイル12を巻き付ける作業も極めて簡単に行うことができる。   As a result, before the operator goes to the site, if the resonance frequency is set by adjusting the capacitance C of the capacitor 15 provided in the resonance circuit 13 and the inductance L3 of the resonance coil 16, the resonance circuit 13 is set on the site. Only the work of connecting to the power receiving coil 12 is sufficient. Therefore, it is possible to easily perform the work of installing the non-contact power feeding apparatus on site with the resonance frequency adjusted to maximize the power feeding efficiency. Moreover, in this embodiment, since the winding number of the receiving coil 12 is set to 1 time, the operation | work which winds the receiving coil 12 around the outer periphery of a rotor on the spot can also be performed very easily.

ここで、受電コイル12のインダクタンスL2と共振用コイル16のインダクタンスL3との比が大きければ大きいほど、共振回路13の共振周波数は受電コイル12のインダクタンス変動の影響を受けにくくなる。例えば、共振用コイル16のインダクタンスL3は、受電コイル12のインダクタンスL2のおよそ10倍以上の値に設定するのが望ましい。   Here, the larger the ratio between the inductance L2 of the power receiving coil 12 and the inductance L3 of the resonance coil 16, the less the resonance frequency of the resonance circuit 13 is affected by the inductance fluctuation of the power receiving coil 12. For example, it is desirable to set the inductance L3 of the resonance coil 16 to a value that is approximately 10 times or more the inductance L2 of the power receiving coil 12.

すなわち、受電側における受電コイル12および共振用コイル16の合成インダクタンスをL=(L2+L3)とすると、受電側の共振周波数fは、
=1/2π√(LC)・・・(1)
である。そして、受電側の共振周波数fが送電側の発振周波数f(上述した送電コイル11に給電する交流電力の周波数fに相当)と一致したときに、受電ゲインは最大となる。
That is, if the combined inductance of the power receiving coil 12 and the resonance coil 16 in the power receiving side is L = (L2 + L3), the resonant frequency f r of the power receiving side,
f r = 1 / 2π√ (LC) (1)
It is. When the resonance frequency f r of the power receiving side is matched with the transmission side of the oscillation frequency f o (corresponding to the frequency f 1 of the AC power to power transmitting coil 11 described above), the power receiving gain is maximized.

これに対して、共振周波数fが発信周波数fに対してずれがあると、そのずれの大きさに応じて受電ゲインが減少する。受電コイル12および共振用コイル16の周辺の磁性体の配置の違いによってインダクタンスのQ値が影響を受けるため、受電ゲインの減少の仕方は装置の設置状態で変わり得るが、概ね5%ずれると、受電ゲインは最大値の約1/2となることを実験で確認している。 In contrast, the resonance frequency f r is a deviation with respect to the oscillation frequency f o, the power receiving gain is decreased in accordance with the magnitude of the deviation. Since the Q value of the inductance is affected by the difference in the arrangement of the magnetic material around the power receiving coil 12 and the resonance coil 16, the method of reducing the power receiving gain can vary depending on the installation state of the device. Experiments have confirmed that the power reception gain is about ½ of the maximum value.

仮に、受電ゲインの低下が1/2までを実用範囲と考えて、受電側の合成インダクタンスLを(1)式に当てはめると、L3≧10*L2であれば、受電側のインダクタンスがL=(L2+L3)のときの共振周波数fとL=L3のときの共振周波数fとのずれは5%以下となり、現場での共振周波数の調整なしでも実用範囲で使用することが可能となる。 Assuming that the decrease in the power receiving gain is up to 1/2, and applying the combined inductance L on the power receiving side to the equation (1), if L3 ≧ 10 * L2, the power receiving side inductance is L = ( L2 + L3) deviation becomes less than 5% of the resonance frequency f 2 at the resonance frequency f r and L = L3 when the, it is possible to use in a practical range without adjustment of the resonance frequency in the field.

なお、ここでは共振周波数fの発信周波数fに対するずれが5%以下である場合を実用範囲として想定したが、この数値は単なる一例に過ぎない。より厳密な制御が望まれる場合やQ値が高い環境では、受電コイル12のインダクタンスL2と共振用コイル16のインダクタンスL3との比率を10倍よりももっと大きく設定すればよい。逆に、共振周波数fの発信周波数fに対するずれの許容量が5%より大きい場合やQ値が低い環境では、受電コイル12のインダクタンスL2と共振用コイル16のインダクタンスL3との比率を10倍よりも小さく設定することが可能である。 Here, it is assumed when the deviation with respect to the oscillation frequency f o of the resonance frequency f r is 5% or less as a practical range, this number is merely an example. In a case where more strict control is desired or in an environment where the Q value is high, the ratio between the inductance L2 of the power receiving coil 12 and the inductance L3 of the resonance coil 16 may be set larger than 10 times. Conversely, the deviation of the tolerance is greater than 5% or if Q is lower value environment for the oscillation frequency f o of the resonant frequency f r, the ratio of the inductance L2 of the power reception coil 12 and the inductance L3 resonance coil 16 10 It is possible to set it smaller than twice.

なお、上記実施形態では、受電コイル12の巻数を1回とする例について説明したが、本発明はこれに限定されない。すなわち、共振用コイル16のインダクタンスL3と比べて受電コイル12のインダクタンスL2の値が殆ど無視できるほど、受電コイル12のインダクタンスL2に対して共振用コイル16のインダクタンスL3が十分に大きな値となればよく、受電コイル12の巻数を複数回としてもよい。   In the above-described embodiment, the example in which the number of turns of the power receiving coil 12 is one has been described, but the present invention is not limited to this. That is, if the inductance L3 of the resonance coil 16 is sufficiently large with respect to the inductance L2 of the receiving coil 12 so that the value of the inductance L2 of the receiving coil 12 is almost negligible compared to the inductance L3 of the resonance coil 16. In addition, the number of turns of the power receiving coil 12 may be plural.

ちなみに、コイルのインダクタンスの大きさは、コイルの巻数の2乗に比例するととともに、コイルの断面積に比例する。ここで、タービンのロータのように巨大な設備に受電コイル12を巻き付ける場合、受電コイル12の断面積は必然的に大きくなる。一方、共振用コイル16の断面積は小さくなる。よって、受電コイル12のインダクタンスL2に対して共振用コイル16のインダクタンスL3を十分に大きな値とするためには、受電コイル12の巻数を少なくする一方で共振用コイル16の巻数を多くすることにより、その巻数の差によってL2<<L3となるようにすることが必要である。   Incidentally, the magnitude of the inductance of the coil is proportional to the square of the number of turns of the coil and proportional to the cross-sectional area of the coil. Here, when the power receiving coil 12 is wound around a huge facility such as a rotor of a turbine, the cross-sectional area of the power receiving coil 12 inevitably increases. On the other hand, the cross-sectional area of the resonance coil 16 is reduced. Therefore, in order to make the inductance L3 of the resonance coil 16 sufficiently large with respect to the inductance L2 of the power reception coil 12, the number of turns of the power reception coil 12 is reduced while the number of turns of the resonance coil 16 is increased. Therefore, it is necessary to satisfy L2 << L3 due to the difference in the number of turns.

また、上記実施形態では、タービンのロータに非接触給電装置を設置する例について説明したが、非接触給電装置を設置する機器や設備はこれ以外のものであってもよい。その場合、非接触給電装置を設置する機器や設備は回転体であってもよいし、回転体でなくてもよい。ただし、通常は設置の作業が煩雑で困難な機器や設備に設置する場合が最も有用である。   Moreover, although the said embodiment demonstrated the example which installs a non-contact electric power feeder in the rotor of a turbine, the apparatus and installation which install a non-contact electric power feeder may be other than this. In that case, the device or facility for installing the non-contact power feeding device may be a rotating body or may not be a rotating body. However, it is usually most useful when installed in equipment or facilities where installation is complicated and difficult.

また、上記実施形態では、共振用コイル16の一例としてトロイダルコイルを用いる例について説明したが、本発明はこれに限定されない。ただ、トロイダルコイルは、発生する磁束が外部に漏れないためコイル効率がとても良い、インダクタンスの安定性が良いという特徴がある。したがって、共振周波数をより的確な値に設定しやすいという点で、トロイダルコイルを用いるのが好ましい。   Moreover, although the said embodiment demonstrated the example which uses a toroidal coil as an example of the coil 16 for resonance, this invention is not limited to this. However, the toroidal coil is characterized in that the generated magnetic flux does not leak to the outside, so that the coil efficiency is very good and the inductance is stable. Therefore, it is preferable to use a toroidal coil in that the resonance frequency can be easily set to a more accurate value.

その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, each of the above-described embodiments is merely an example of implementation in carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.

11 送電コイル
12 受電コイル
13 共振回路
14 整流回路
15 コンデンサ
16 共振用コイル(トロイダルコイル)
DESCRIPTION OF SYMBOLS 11 Power transmission coil 12 Power receiving coil 13 Resonance circuit 14 Rectifier circuit 15 Capacitor 16 Resonance coil (toroidal coil)

Claims (3)

同心上に設置される送電コイルおよび受電コイルと、
上記受電コイルに接続された共振回路とを備え、
上記共振回路は、コンデンサと、当該コンデンサと共振する共振用コイルとを備えており、
上記受電コイルのインダクタンスに対して上記共振用コイルのインダクタンスを十分に大きな値に設定したことを特徴とする非接触給電装置。
A power transmission coil and a power reception coil installed concentrically;
A resonance circuit connected to the power receiving coil,
The resonance circuit includes a capacitor and a resonance coil that resonates with the capacitor.
A non-contact power feeding apparatus, wherein an inductance of the resonance coil is set to a sufficiently large value with respect to an inductance of the power receiving coil.
上記受電コイルの巻数に対して上記共振用コイルの巻数を十分に大きな値に設定したことを特徴とする請求項1に記載の非接触給電装置。   2. The non-contact power feeding apparatus according to claim 1, wherein the number of turns of the resonance coil is set to a sufficiently large value with respect to the number of turns of the power receiving coil. 上記共振用コイルはトロイダルコイルにより構成されていることを特徴とする請求項2に記載の非接触給電装置。   The non-contact power feeding apparatus according to claim 2, wherein the resonance coil is configured by a toroidal coil.
JP2013182737A 2013-09-04 2013-09-04 Contactless power supply Active JP5978184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182737A JP5978184B2 (en) 2013-09-04 2013-09-04 Contactless power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182737A JP5978184B2 (en) 2013-09-04 2013-09-04 Contactless power supply

Publications (2)

Publication Number Publication Date
JP2015050888A true JP2015050888A (en) 2015-03-16
JP5978184B2 JP5978184B2 (en) 2016-08-24

Family

ID=52700469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182737A Active JP5978184B2 (en) 2013-09-04 2013-09-04 Contactless power supply

Country Status (1)

Country Link
JP (1) JP5978184B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070856A (en) * 1996-08-26 1998-03-10 Hitachi Kiden Kogyo Ltd Constant voltage induction feeding device
JP2010011654A (en) * 2008-06-27 2010-01-14 Sony Corp Power transmitter, power supplying device, and power receiving device
JP2010063324A (en) * 2008-09-07 2010-03-18 Hideo Kikuchi Induced power transmission circuit
JP2011147278A (en) * 2010-01-15 2011-07-28 Daifuku Co Ltd Lead-battery charger
JP2013219888A (en) * 2012-04-06 2013-10-24 Hitachi Cable Ltd Contactless feeding system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070856A (en) * 1996-08-26 1998-03-10 Hitachi Kiden Kogyo Ltd Constant voltage induction feeding device
JP2010011654A (en) * 2008-06-27 2010-01-14 Sony Corp Power transmitter, power supplying device, and power receiving device
JP2010063324A (en) * 2008-09-07 2010-03-18 Hideo Kikuchi Induced power transmission circuit
JP2011147278A (en) * 2010-01-15 2011-07-28 Daifuku Co Ltd Lead-battery charger
JP2013219888A (en) * 2012-04-06 2013-10-24 Hitachi Cable Ltd Contactless feeding system

Also Published As

Publication number Publication date
JP5978184B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6614272B2 (en) Power feeding device, power receiving device, power feeding system, and method for controlling power feeding device
JP5476917B2 (en) Wireless power feeding device, wireless power receiving device, and wireless power transmission system
JP5573190B2 (en) Wireless power supply system
JP6059522B2 (en) Wireless power supply system, power supply device, power reception device, and magnetic field space forming method
JP6025893B2 (en) Wireless power supply system
JP5968596B2 (en) Wireless power supply system
WO2016007674A1 (en) Resonator balancing in wireless power transfer systems
JP2013110947A (en) Contactless charging system, contactless power transmission apparatus, and control method thereof
KR20120080136A (en) Non-contact power transmission apparatus and power transmission method therefor
WO2013145788A1 (en) Power transmitting device, electronic equipment and wireless power transmission system
JP2014027102A (en) Coil unit and wireless power feeder using the same
JP6584896B2 (en) Power transmission or reception coil, wireless power transmission device using the same, and rotating body
JP2015513081A (en) Test system and method for testing high voltage technology equipment
JPWO2013125090A1 (en) Power transmission system
KR20130041870A (en) Wireless power transmission apparatus and method
US20140083623A1 (en) Ultrasonic Welding Device with Rotary Coupler
JP2012147560A (en) Wireless power transmission device
JP5978184B2 (en) Contactless power supply
JPWO2015015635A1 (en) Non-contact power transmission device and non-contact power transmission system
KR20130123349A (en) Wireless power transmission apparatus and method
KR101371058B1 (en) Coil assembly for power transmission, coil assembly for power receiving and wireless power transfer apparatus using electric resonance
KR20170075608A (en) wireless power transmission module having variable inductor
JP2016123187A (en) Wireless power transmitter
JP2012257374A (en) Non-contact power transmission device
WO2017208498A1 (en) Contactless power supply system and contactless power transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R150 Certificate of patent or registration of utility model

Ref document number: 5978184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150