JP2015049220A - Magnetic oxygen analysis method and magnetic oxygen analyzer - Google Patents

Magnetic oxygen analysis method and magnetic oxygen analyzer Download PDF

Info

Publication number
JP2015049220A
JP2015049220A JP2013183125A JP2013183125A JP2015049220A JP 2015049220 A JP2015049220 A JP 2015049220A JP 2013183125 A JP2013183125 A JP 2013183125A JP 2013183125 A JP2013183125 A JP 2013183125A JP 2015049220 A JP2015049220 A JP 2015049220A
Authority
JP
Japan
Prior art keywords
auxiliary gas
flow
flow path
channel
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013183125A
Other languages
Japanese (ja)
Other versions
JP6318505B2 (en
Inventor
満 大石
Mitsuru Oishi
満 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013183125A priority Critical patent/JP6318505B2/en
Publication of JP2015049220A publication Critical patent/JP2015049220A/en
Application granted granted Critical
Publication of JP6318505B2 publication Critical patent/JP6318505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic oxygen analyzer that is insensitive to flow fluctuation of an auxiliary gas or a measurement gas, while allowing reduction in device cost.SOLUTION: The magnetic oxygen analyzer comprises: a bypass flow passage 11 for communicating an auxiliary gas flow passage 9 on a first auxiliary gas flow inlet 6 side and an auxiliary gas flow passage 10 on a second auxiliary gas flow inlet 7 side; a buffer flow passage 24 provided by expanding an intermediate portion of the bypass flow passage; a first flow sensor 21 arranged on the bypass flow passage closer to the first auxiliary gas flow inlet side from the buffer flow passage; a second flow sensor 22 arranged on the bypass flow passage closer to the second auxiliary gas flow inlet side from the buffer flow passage. An oxygen concentration calculation unit 23 calculates an oxygen concentration SC contained in a measurement gas, based on a difference between a first flow SA of an auxiliary gas flowing from the first auxiliary gas flow inlet detected by the first flow sensor and a second flow SB of an auxiliary gas, detected by the second flow sensor, flowing through the buffer flow passage into the bypass flow passage on the second auxiliary gas flow inlet side.

Description

本発明は、磁気式酸素分析方法及び磁気式酸素分析計に関する。   The present invention relates to a magnetic oxygen analysis method and a magnetic oxygen analyzer.

磁気式酸素分析計の測定原理について、図4(A)〜(C)を参照して説明する(例えば特許文献1を参照)。
図5(A)は、酸素を含むガス中に磁界を発生させる手段(磁石)を配置したときの酸素分子と磁界の関係を示したものである。図5(B)に示すように、磁界が強く、且つその強さが変化しているところ(不均一の磁界になっている磁極の端部)に酸素を引き付ける力が作用し、磁極の端部で右向きの力と左向きの力が押し合ってバランスし、酸素分子は磁界の影響を受けて引き付けられ、磁界(磁石のギャップ)内へ移動する。これにより、図5(C)に示すように、磁界内では、引き付けられた酸素の圧力(濃度)が磁界の外と比較して高くなる。
The measurement principle of the magnetic oxygen analyzer will be described with reference to FIGS. 4A to 4C (see, for example, Patent Document 1).
FIG. 5A shows the relationship between oxygen molecules and a magnetic field when a means (magnet) for generating a magnetic field is arranged in a gas containing oxygen. As shown in FIG. 5B, a force that attracts oxygen acts on the magnetic field that is strong and changes in strength (the end of the magnetic pole that is a non-uniform magnetic field). The right force and the left force are pressed against each other and balanced, and oxygen molecules are attracted by the influence of the magnetic field and move into the magnetic field (magnet gap). As a result, as shown in FIG. 5C, the pressure (concentration) of the attracted oxygen is higher in the magnetic field than in the magnetic field.

上述した測定原理を採用した磁気式酸素分析計として、図6に示す装置が知られている。この磁気式酸素分析計は、測定ガスを流す流路を備えたサンプルセル1と、このサンプルセル1内に設置した流量センサ12からの信号で測定ガスに含まれている酸素濃度を検出する検出回路2とからなる。
サンプルセル1は、断面が矩形形状のサンプル流路3と、このサンプル流路3の軸方向の一端側に連通して設けた測定ガス導入口4と、サンプル流路3の軸方向の他端側に連通して設けた測定ガス導出口5と、測定ガス導出口5側のサンプル流路3に連通し、このサンプル流路3の軸方向に直交する径方向から互いに対向して設けた第1補助ガス流入口6及び第2補助ガス流入口7と、補助ガス供給流路8に流れてきた補助ガスを第1補助ガス流入口6及び第2補助ガス流入口7からサンプル流路3に同一流量で供給する第1補助ガス分岐流路9及び第2補助ガス分岐流路10と、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfの領域を形成するポールピース((不図示)と、第1補助ガス分岐流路9及び第2補助ガス分岐流路10に連通するバイパス流路11と、を備えている。
An apparatus shown in FIG. 6 is known as a magnetic oxygen analyzer that employs the measurement principle described above. This magnetic oxygen analyzer detects a concentration of oxygen contained in a measurement gas using a signal from a sample cell 1 having a flow path for flowing the measurement gas and a flow sensor 12 installed in the sample cell 1. Circuit 2.
The sample cell 1 includes a sample channel 3 having a rectangular cross section, a measurement gas inlet 4 provided in communication with one end of the sample channel 3 in the axial direction, and the other end in the axial direction of the sample channel 3 A measurement gas outlet port 5 provided in communication with the sample gas passage and a sample channel 3 on the side of the measurement gas outlet port 5 and provided opposite to each other in a radial direction perpendicular to the axial direction of the sample channel 3. The auxiliary gas flowing into the first auxiliary gas inlet 6 and the second auxiliary gas inlet 7 and the auxiliary gas supply channel 8 is transferred from the first auxiliary gas inlet 6 and the second auxiliary gas inlet 7 to the sample channel 3. A pole piece that forms a region of the magnetic field Mf in the vicinity of the first auxiliary gas branch channel 9 and the second auxiliary gas branch channel 10 supplied at the same flow rate and the first auxiliary gas inlet 6 of the sample channel 3 communicate with each other. ((Not shown), the first auxiliary gas branch channel 9 and the second auxiliary gas component) A bypass passage 11 communicating with the passage 10, and a.

また、バイパス流路11の中間位置に流量センサ12が配置され、この流量センサ12に検出回路2が接続している。検出回路2は、流量センサ12の信号を受信して増幅することで、測定ガスに含まれている酸素濃度を検出する。
上記構成の磁気式酸素分析計は、サンプルセル1の測定ガス導入口4から導入された測定ガスが測定ガス導出口5に向けて流れる。また、補助ガス供給流路8から供給された補助ガスは、第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分流し、第1補助ガス流入口6及び第2補助ガス流入口7からサンプル流路3に流入し、測定ガスと合流して測定ガス導出口5に流れる。また、補助ガス供給流路8から第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分流した補助ガスの一部は、第1補助ガス分岐流路9に接続するバイパス流路11から流量センサ12に向けて流れるとともに、第2補助ガス分岐流路10に接続するバイパス流路11から流量センサ12に向けて流れる。
Further, a flow rate sensor 12 is disposed at an intermediate position of the bypass flow path 11, and the detection circuit 2 is connected to the flow rate sensor 12. The detection circuit 2 detects the oxygen concentration contained in the measurement gas by receiving and amplifying the signal from the flow sensor 12.
In the magnetic oxygen analyzer having the above configuration, the measurement gas introduced from the measurement gas inlet 4 of the sample cell 1 flows toward the measurement gas outlet 5. In addition, the auxiliary gas supplied from the auxiliary gas supply flow path 8 is divided into the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10, and the first auxiliary gas inlet 6 and the second auxiliary gas flow. It flows into the sample channel 3 from the inlet 7, merges with the measurement gas, and flows to the measurement gas outlet 5. Further, a part of the auxiliary gas that is branched from the auxiliary gas supply flow path 8 to the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 is a bypass flow path that is connected to the first auxiliary gas branch flow path 9. 11 flows from the bypass flow path 11 connected to the second auxiliary gas branch flow path 10 toward the flow sensor 12.

そして、測定ガス中に酸素分子が含まれていない場合、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfを印加しても、酸素分子が引き寄せられず、その部分の圧力は上昇しない。これにより、第1補助ガス分岐流路9及び第2補助ガス分岐流路10のそれぞれからサンプル流路3に補助ガスが流出する際の流体抵抗が同じになり、第1補助ガス分岐流路9からバイパス流路11内の流量センサ12を経由する補助ガスの流量と、第2補助ガス分岐流路10からバイパス流路11内の流量センサ12を経由する補助ガスの流量が同じとなる。これにより、流量センサ12の信号が得られず、検出回路2は酸素濃度を検出しない。   And when oxygen molecules are not contained in the measurement gas, even if the magnetic field Mf is applied in the vicinity of the first auxiliary gas inlet 6 of the sample flow path 3, oxygen molecules are not attracted, The pressure does not increase. Thereby, the fluid resistance when the auxiliary gas flows out from each of the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 to the sample flow path 3 becomes the same, and the first auxiliary gas branch flow path 9 The flow rate of the auxiliary gas passing through the flow rate sensor 12 in the bypass flow path 11 is the same as the flow rate of the auxiliary gas passing through the flow rate sensor 12 in the bypass flow path 11 from the second auxiliary gas branch flow path 10. Thereby, the signal of the flow sensor 12 is not obtained, and the detection circuit 2 does not detect the oxygen concentration.

一方、測定ガス中に酸素分子が含まれている場合、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfが印加されると、その部分に酸素分子が引き付けられ(図5(C)参照)、酸素の凝集圧により圧力が上昇する。そのため、第1補助ガス分岐流路9からサンプル流路3に補助ガスが流出する際の流体抵抗が増大し、流出量が減少する。逆に、サンプル流路3の第2補助ガス流入口7が連通する付近では磁界Mfが印加されていないため流体抵抗は増大せず、第1補助ガス流入口6側との比較により補助ガスの流出量が増加する。   On the other hand, when oxygen molecules are contained in the measurement gas, when the magnetic field Mf is applied in the vicinity of the first auxiliary gas inlet 6 of the sample flow path 3, the oxygen molecules are attracted to that portion (see FIG. 5 (C)), the pressure increases due to the cohesive pressure of oxygen. Therefore, the fluid resistance when the auxiliary gas flows out from the first auxiliary gas branch flow path 9 to the sample flow path 3 increases, and the outflow amount decreases. On the contrary, in the vicinity of the second auxiliary gas inlet 7 of the sample flow path 3, the magnetic resistance Mf is not applied since the magnetic field Mf is not applied, so that the fluid resistance does not increase. Outflow increases.

これにより、補助ガス供給流路8から第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分岐する地点P0(以下、分岐点P0と称する)で、補助ガスが第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分岐する際の分流比が変化し、第1補助ガス分岐流路9からバイパス流路11内の流量センサ12を経由する補助ガスの流量と、第2補助ガス分岐流路10からバイパス流路11内の流量センサ12を経由する補助ガスの流量に差が生じ、流量センサ12が補助ガスの流量変化の信号を得ることで、検出回路2が測定ガスの酸素濃度を検出する。   Thereby, the auxiliary gas is the first auxiliary gas at the point P0 (hereinafter referred to as the branch point P0) where the auxiliary gas supply flow path 8 branches to the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10. The diversion ratio at the time of branching to the branch channel 9 and the second auxiliary gas branch channel 10 changes, and the flow rate of the auxiliary gas from the first auxiliary gas branch channel 9 via the flow sensor 12 in the bypass channel 11 A difference occurs in the flow rate of the auxiliary gas passing through the flow rate sensor 12 in the bypass flow channel 11 from the second auxiliary gas branch flow channel 10, and the flow rate sensor 12 obtains a signal of change in the flow rate of the auxiliary gas. Detects the oxygen concentration of the measurement gas.

特開2004−325098号公報の図3FIG. 3 of JP 2004-325098 A

ところで、上述した従来の磁気式酸素分析計は、周囲に配置されているプラントなどから受ける振動などによって補助ガス、或いは測定ガスの流量が変動すると、測定ガス中の酸素濃度を正確に測定できない場合がある。
すなわち、測定ガス中に酸素分子が含まれている場合、第1補助ガス分岐流路9及びバイパス流路11から流量センサ12に酸素の凝集圧により上昇した圧力が通過し、流量センサ12がその圧力に応じた電気信号に変換する。ここで、補助ガス供給流路8から供給される補助ガスに流量変動が生じると、バイパス流路11に補助ガスの流量変動による脈流が発生し、この脈流が流量センサの電気信号に重畳する形でノイズ成分となり、測定ガス中の酸素濃度を正確に測定できない。
By the way, the conventional magnetic oxygen analyzer described above cannot accurately measure the oxygen concentration in the measurement gas when the flow rate of the auxiliary gas or the measurement gas fluctuates due to vibrations received from surrounding plants. There is.
That is, when oxygen molecules are contained in the measurement gas, the pressure increased by the coagulation pressure of oxygen passes from the first auxiliary gas branch channel 9 and the bypass channel 11 to the flow rate sensor 12, and the flow rate sensor 12 It converts into an electric signal according to the pressure. Here, when a flow rate fluctuation occurs in the auxiliary gas supplied from the auxiliary gas supply flow path 8, a pulsating flow due to the flow fluctuation of the auxiliary gas is generated in the bypass flow path 11, and this pulsating flow is superimposed on the electrical signal of the flow sensor. This becomes a noise component, and the oxygen concentration in the measurement gas cannot be measured accurately.

また、補助ガスの流量変動と同様に、測定ガス導入口4から供給される測定ガスの流量が変動する場合にも、バイパス流路11に測定ガスの流量変動による脈流が発生し、その脈流が流量センサの電気信号に重畳する形でノイズ成分となる。
そこで、補助ガス、或いは測定ガスの流量を一定に保つため、補助ガス及び測定ガスの供給側に精密な圧力制御弁を接続、或いは、圧力制御弁や各流路の温度変動の回避のために必要機器を恒温槽の中に配置するなど、補助ガス及び測定ガスの流量の変動を起きにくくする対策が考えられるが、そのような対策は、機構や部品の増大、コスト上昇などの面で問題がある。
本発明は上記事情に鑑みてなされたものであり、装置コストの低減化を図りながら補助ガス、或いは測定ガスの流量変動に強い磁気式酸素分析方法及び磁気式酸素分析計を提供することを目的としている。
Similarly to the flow rate variation of the auxiliary gas, when the flow rate of the measurement gas supplied from the measurement gas introduction port 4 varies, a pulsating flow due to the flow rate variation of the measurement gas occurs in the bypass channel 11, and the pulse The flow becomes a noise component in a form superimposed on the electric signal of the flow sensor.
Therefore, in order to keep the flow rate of auxiliary gas or measurement gas constant, a precise pressure control valve is connected to the supply side of auxiliary gas and measurement gas, or to avoid temperature fluctuations of the pressure control valve and each flow path. Measures to reduce fluctuations in the flow rates of the auxiliary gas and measurement gas, such as placing necessary equipment in a thermostatic bath, can be considered, but such measures are problematic in terms of increasing mechanisms and parts and increasing costs. There is.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetic oxygen analyzer and a magnetic oxygen analyzer that are resistant to fluctuations in the flow rate of auxiliary gas or measurement gas while reducing the cost of the apparatus. It is said.

上記目的を達成するために、本発明の一態様に係る磁気式酸素分析方法は、サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記補助ガス流路の流量変化を検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析方法において、前記第1補助ガス流入口側の前記補助ガス流路と、前記第2補助ガス流入口側の前記補助ガス流路とを、バイパス流路で連通し、このバイパス流路の中間位置に、流路を拡大したバッファ流路を設け、このバッファ流路より前記第1補助ガス流入口側の前記バイパス流路に流れる補助ガスの第1流量を検出するとともに、前記バッファ流路を通過して前記第2補助ガス流入口側のバイパス流路に流れる補助ガスの第2流量を検出し、検出した前記第1流量及び前記第2流量の差に基づいて、前記測定ガスに含まれる酸素濃度を演算するようにした。   In order to achieve the above object, a magnetic oxygen analysis method according to an aspect of the present invention includes a sample channel, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample channel, and the measurement gas outlet. A first auxiliary gas inlet and a second auxiliary gas inlet provided opposite to each other on the side of the sample flow path, and an auxiliary gas flow path connected to the first and second auxiliary gas inlets. And detecting a change in the flow rate of the auxiliary gas channel caused by supplying the auxiliary gas from an intermediate position of the auxiliary gas channel and applying a magnetic field to the sample channel near the first auxiliary gas inlet. Thus, in the magnetic oxygen analysis method for calculating the oxygen concentration contained in the measurement gas, the auxiliary gas flow path on the first auxiliary gas inlet side and the auxiliary gas flow on the second auxiliary gas inlet side The road and the A buffer flow path that is enlarged in flow path is provided at an intermediate position of the bypass flow path, and the auxiliary gas flowing from the buffer flow path to the bypass flow path on the first auxiliary gas inlet side is provided. The first flow rate is detected, the second flow rate of the auxiliary gas that passes through the buffer flow channel and flows into the bypass flow channel on the second auxiliary gas inlet side is detected, and the detected first flow rate and the second flow rate are detected. Based on the difference in flow rate, the oxygen concentration contained in the measurement gas was calculated.

この発明の一態様に係る磁気式酸素分析方法によると、測定ガス或いは補助ガスに流量変動が生じている場合であっても、測定値である第1流量と、測定ガス或いは補助ガスに流量変動が生じたときの脈流発生によるノイズ成分と圧力変化に伴う流量とを合わせた補正値である第2流量との差分により測定ガスの濃度を演算しているので、測定ガス或いは補助ガスの流量変動による影響を除去して高精度の測定ガスの酸素濃度を測定することができる。   According to the magnetic oxygen analysis method according to one aspect of the present invention, even if the flow rate fluctuation occurs in the measurement gas or auxiliary gas, the flow rate fluctuation occurs in the measurement gas or auxiliary gas and the measurement gas or auxiliary gas. Since the concentration of the measurement gas is calculated based on the difference between the second flow rate, which is a correction value obtained by adding the noise component due to the pulsating flow and the flow rate associated with the pressure change, the flow rate of the measurement gas or auxiliary gas It is possible to measure the oxygen concentration of the measurement gas with high accuracy by removing the influence of fluctuation.

また、発明の一態様に係る磁気式酸素分析方法は、前記第1流量及び前記第2流量を検出する位置を、前記バッファ流路から等距離の前記バイパス流路としている。
この発明の一態様に係る磁気式酸素分析方法によると、バイパス流路の配管粘性や温度分布などの影響が偏るのを防止することができる。
また、発明の一態様に係る磁気式酸素分析方法は、前記第1流量及び前記第2流量の検出に、2線式熱流量計を用いている。
この発明の一態様に係る磁気式酸素分析方法によると、周囲の温度変動による影響が少なく、測定値及び補正値を高精度に検出することができる。
また、発明の一態様に係る磁気式酸素分析方法は、前記補助ガスを、前記補助ガス流路の中間位置及び前記バッファ流路に同時に供給するようにした。
この発明の一態様に係る磁気式酸素分析方法によると、測定ガス酸素分析の開始時間を大幅に短縮することができる。
In the magnetic oxygen analysis method according to one aspect of the invention, the position where the first flow rate and the second flow rate are detected is the bypass flow channel that is equidistant from the buffer flow channel.
According to the magnetic oxygen analysis method according to one aspect of the present invention, it is possible to prevent the influence of the pipe viscosity and temperature distribution of the bypass flow path from being biased.
The magnetic oxygen analysis method according to one aspect of the invention uses a two-wire thermal flow meter for detection of the first flow rate and the second flow rate.
According to the magnetic oxygen analysis method according to one aspect of the present invention, the measurement value and the correction value can be detected with high accuracy without being affected by the ambient temperature fluctuation.
In the magnetic oxygen analysis method according to one aspect of the invention, the auxiliary gas is supplied simultaneously to an intermediate position of the auxiliary gas channel and the buffer channel.
According to the magnetic oxygen analysis method according to one aspect of the present invention, the start time of the measurement gas oxygen analysis can be greatly shortened.

また、発明の一態様に係る磁気式酸素分析計は、サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記補助ガス流路の流量変化を検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析計において、前記第1補助ガス流入口側の前記補助ガス流路及び前記第2補助ガス流入口側の前記補助ガス流路を連通するバイパス流路と、このバイパス流路の中間位置に流路を拡大して設けたバッファ流路と、このバッファ流路より前記第1補助ガス流入口側の前記バイパス流路に配置した第1流量センサと、前記バッファ流路より前記第2補助ガス流入口側のバイパス流路に配置した第2流量センサと、前記第1流量センサが検出した前記第1補助ガス流入口から流れてきた補助ガスの第1流量と、前記第2流量センサが検出した前記バッファ流路を通過して前記第2補助ガス流入側のバイパス流路に流れる補助ガスの第2流量との差に基づいて、前記測定ガスに含まれる酸素濃度を演算する酸素濃度演算部と、を備えている。   The magnetic oxygen analyzer according to one aspect of the invention includes a sample flow path, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample flow path, and the sample flow path on the measurement gas outlet side. A first auxiliary gas inlet and a second auxiliary gas inlet provided opposite to each other; and an auxiliary gas channel connected to the first and second auxiliary gas inlets, the auxiliary gas channel The auxiliary gas is supplied from an intermediate position of the first auxiliary gas channel, and a change in the flow rate of the auxiliary gas channel caused by applying a magnetic field to the sample channel near the first auxiliary gas inlet is detected. In the magnetic oxygen analyzer for calculating the concentration of oxygen contained therein, a bypass flow path communicating the auxiliary gas flow path on the first auxiliary gas inlet side and the auxiliary gas flow path on the second auxiliary gas inlet side; , This bipa A buffer channel provided by enlarging the channel at an intermediate position of the channel, a first flow rate sensor disposed in the bypass channel on the first auxiliary gas inlet side from the buffer channel, and the buffer channel A second flow rate sensor disposed in a bypass flow path on the second auxiliary gas inlet side, a first flow rate of auxiliary gas flowing from the first auxiliary gas inlet detected by the first flow rate sensor, Based on the difference between the second flow rate of the auxiliary gas passing through the buffer flow path detected by the second flow rate sensor and flowing into the bypass flow path on the second auxiliary gas inflow side, the oxygen concentration contained in the measurement gas is determined. An oxygen concentration calculation unit for calculating.

この発明の一態様に係る磁気式酸素分析方計によると、測定ガス或いは補助ガスの流量変動による影響を除去して高精度の測定ガスの酸素濃度を測定する装置を提供することができる。また、測定ガス或いは補助ガスの流量を一定に保つ(流量変動を抑制する)ための機構や装置を使用しておらず、装置コストの低減化も図ることができる。   According to the magnetic oxygen analyzer according to one aspect of the present invention, it is possible to provide an apparatus for measuring the oxygen concentration of the measurement gas with high accuracy by removing the influence of the flow rate fluctuation of the measurement gas or the auxiliary gas. In addition, no mechanism or device for keeping the flow rate of the measurement gas or auxiliary gas constant (suppressing flow rate fluctuations) is used, and the device cost can be reduced.

また、発明の一態様に係る磁気式酸素分析計は、前記第1流量センサ及び前記第2流量センサは、前記バッファ流路から等距離の位置の前記バイパス流路に配置されている。
この発明の一態様に係る磁気式酸素分析計によると、バイパス流路の配管粘性や温度分布などの影響が偏るのを防止することができる。
また、発明の一態様に係る磁気式酸素分析計は、前記第1流量センサ及び前記第2流量センサは2線式熱流量計である。
この発明の一態様に係る磁気式酸素分析計によると、周囲の温度変動による影響が少なく、測定値及び補正値を高精度に検出することができる。
また、発明の一態様に係る磁気式酸素分析計は、前記補助ガスを前記補助ガス流路の中間位置及び前記バッファ流路に同時に供給する補助ガス供給部を設けた。
この発明の一態様に係る磁気式酸素分析計によると、装置起動時から測定ガス酸素分析を開始するまでの時間を大幅に短縮することができる。
In the magnetic oxygen analyzer according to one aspect of the invention, the first flow rate sensor and the second flow rate sensor are disposed in the bypass flow path at a position equidistant from the buffer flow path.
According to the magnetic oxygen analyzer according to one aspect of the present invention, it is possible to prevent the influence of the pipe viscosity, temperature distribution, and the like of the bypass flow path from being biased.
In the magnetic oxygen analyzer according to one aspect of the invention, the first flow sensor and the second flow sensor are two-wire thermal flow meters.
According to the magnetic oxygen analyzer according to one aspect of the present invention, the measurement value and the correction value can be detected with high accuracy with little influence by the ambient temperature fluctuation.
The magnetic oxygen analyzer according to an aspect of the invention includes an auxiliary gas supply unit that supplies the auxiliary gas to the intermediate position of the auxiliary gas channel and the buffer channel at the same time.
According to the magnetic oxygen analyzer according to one aspect of the present invention, the time from the start of the apparatus to the start of the measurement gas oxygen analysis can be greatly shortened.

本発明に係る磁気式酸素分析方法によれば、測定ガス或いは補助ガスに流量変動が生じている場合であっても、測定値である第1流量と、測定ガス或いは補助ガスに流量変動が生じたときの脈流発生によるノイズ成分と圧力変化に伴う流量とを合わせた補正値である第2流量との差分により測定ガスの濃度を演算しているので、測定ガス或いは補助ガスの流量変動による影響を除去して高精度の測定ガスの酸素濃度を測定することができる。
また、本発明に係る磁気式酸素分析計によれば、測定ガス或いは補助ガスの流量変動による影響を除去して高精度の測定ガスの酸素濃度を測定することができるとともに、測定ガス或いは補助ガスの流量変動を抑制するための機構や装置を使用しておらず、装置コストの低減化を図ることができる。
According to the magnetic oxygen analysis method of the present invention, even when the flow fluctuation occurs in the measurement gas or the auxiliary gas, the flow fluctuation occurs in the first flow rate as the measurement value and the measurement gas or the auxiliary gas. The concentration of the measurement gas is calculated based on the difference between the second flow rate, which is a correction value that combines the noise component due to the pulsating flow and the flow rate associated with the pressure change. The influence can be removed and the oxygen concentration of the measurement gas can be measured with high accuracy.
In addition, according to the magnetic oxygen analyzer of the present invention, it is possible to measure the oxygen concentration of the measurement gas with high accuracy by removing the influence of the flow rate variation of the measurement gas or auxiliary gas, and to measure the measurement gas or auxiliary gas. The mechanism and the device for suppressing the flow rate fluctuations are not used, and the device cost can be reduced.

本発明に係る第1実施形態の磁気式酸素分析計を示す概略構成図である。1 is a schematic configuration diagram showing a magnetic oxygen analyzer according to a first embodiment of the present invention. 本発明に係る第1実施形態の磁気式酸素分析計を構成する酸素濃度演算部の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the oxygen concentration calculating part which comprises the magnetic type oxygen analyzer of 1st Embodiment which concerns on this invention. 本発明に係る第1実施形態の磁気式酸素分析計が、流量変動が発生し、且つ酸素分子が含まれている測定ガスの酸素濃度を分析する方法を説明するための図である。It is a figure for demonstrating the method for which the magnetic oxygen analyzer of 1st Embodiment which concerns on this invention analyzes the oxygen concentration of the measurement gas which flow volume fluctuation | variation generate | occur | produced and the oxygen molecule is contained. 本発明に係る第2実施形態の磁気式酸素分析計を示す概略構成図である。It is a schematic block diagram which shows the magnetic-type oxygen analyzer of 2nd Embodiment which concerns on this invention. 磁気式酸素分析計の測定原理を示す図である。It is a figure which shows the measurement principle of a magnetic oxygen analyzer. 従来の磁気式酸素分析計を示す図である。It is a figure which shows the conventional magnetic oxygen analyzer.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。なお、図6で示した磁気式酸素分析計と同一構成部分には、同一符号を付して説明を省略する。
図1は、本発明に係る第1実施形態の磁気式酸素分析計を示すものであり、サンプルセル20と、このサンプルセル20内に設置した第1流量センサ21及び第2流量センサ22からの信号で測定ガスに含まれている酸素濃度を検出する検出回路23とからなる。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings. The same components as those of the magnetic oxygen analyzer shown in FIG.
FIG. 1 shows a magnetic oxygen analyzer according to a first embodiment of the present invention. A sample cell 20 and a first flow sensor 21 and a second flow sensor 22 installed in the sample cell 20 are shown in FIG. It comprises a detection circuit 23 for detecting the oxygen concentration contained in the measurement gas by a signal.

サンプルセル20は、断面が矩形形状のサンプル流路3と、このサンプル流路3の軸方向の一端側に連通して設けた測定ガス導入口4と、サンプル流路3の軸方向の他端側に連通して設けた測定ガス導出口5と、測定ガス導出口5側のサンプル流路3に連通し、このサンプル流路3の軸方向に直交する径方向から互いに対向して設けた第1補助ガス流入口6及び第2補助ガス流入口7と、補助ガス供給流路8に流れてきた補助ガスを第1補助ガス流入口6及び第2補助ガス流入口7からサンプル流路3に同一流量で供給する第1補助ガス分岐流路9及び第2補助ガス分岐流路10と、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfの領域を形成するポールピース((不図示)と、第1補助ガス分岐流路9及び第2補助ガス分岐流路10に連通するバイパス流路11と、を備えている。   The sample cell 20 includes a sample channel 3 having a rectangular cross section, a measurement gas inlet 4 provided in communication with one end of the sample channel 3 in the axial direction, and the other end in the axial direction of the sample channel 3 A measurement gas outlet port 5 provided in communication with the sample gas passage and a sample channel 3 on the side of the measurement gas outlet port 5 and provided opposite to each other in a radial direction perpendicular to the axial direction of the sample channel 3. The auxiliary gas flowing into the first auxiliary gas inlet 6 and the second auxiliary gas inlet 7 and the auxiliary gas supply channel 8 is transferred from the first auxiliary gas inlet 6 and the second auxiliary gas inlet 7 to the sample channel 3. A pole piece that forms a region of the magnetic field Mf in the vicinity of the first auxiliary gas branch channel 9 and the second auxiliary gas branch channel 10 supplied at the same flow rate and the first auxiliary gas inlet 6 of the sample channel 3 communicate with each other. ((Not shown), the first auxiliary gas branch channel 9 and the second auxiliary gas A bypass passage 11 communicating with the 岐流 path 10, and a.

本実施形態のサンプルセル20は、バイパス流路11の中間位置に流路を拡大したバッファ流路24が形成されている。このバッファ流路24より第1補助ガス分岐流路9側のバイパス流路11に第1流量センサ21が配置され、バッファ流路24より第2補助ガス分岐流路10側のバイパス流路11に第2流量センサ22が配置されており、バッファ流路24から等距離の位置に第1流量センサ21及び第2流量センサ22が配置されている。
これら第1流量センサ21及び第2流量センサ22は2線式熱流量計であり、検出回路23に接続されている。
In the sample cell 20 of the present embodiment, a buffer flow path 24 in which the flow path is enlarged is formed at an intermediate position of the bypass flow path 11. A first flow rate sensor 21 is disposed in the bypass flow path 11 on the first auxiliary gas branch flow path 9 side from the buffer flow path 24, and the bypass flow path 11 on the second auxiliary gas branch flow path 10 side from the buffer flow path 24. The second flow rate sensor 22 is disposed, and the first flow rate sensor 21 and the second flow rate sensor 22 are disposed at a position equidistant from the buffer flow path 24.
The first flow sensor 21 and the second flow sensor 22 are two-wire thermal flow meters, and are connected to the detection circuit 23.

検出回路23は、第1流量センサ21に接続されている第1検出回路23aと、第2流量センサ22に接続されている第2検出回路23bと、第1検出回路23a及び第2検出回路23bに接続されている差動増幅器23cと、を備えている。
図2は、検出回路23が行う測定ガス濃度算出方法のフローチャートを示すものであり、ステップST1では、第1検出回路23aが第1流量センサ21で検出した測定信号SAを得る。次いでステップST2では、第2検出回路23bが第2流量センサ22で検出した補正信号SBを得る。次いでステップST3では、差動増幅器23cが測定信号SA,補正信号SBの差を演算することで測定ガスの濃度信号SCを得る。
The detection circuit 23 includes a first detection circuit 23a connected to the first flow rate sensor 21, a second detection circuit 23b connected to the second flow rate sensor 22, and the first detection circuit 23a and the second detection circuit 23b. And a differential amplifier 23c connected to the.
FIG. 2 shows a flowchart of a method for calculating the measurement gas concentration performed by the detection circuit 23. In step ST1, the measurement signal SA detected by the first flow sensor 21 is obtained by the first detection circuit 23a. Next, in step ST2, the correction signal SB detected by the second flow sensor 22 by the second detection circuit 23b is obtained. Next, in step ST3, the differential amplifier 23c calculates the difference between the measurement signal SA and the correction signal SB to obtain the concentration signal SC of the measurement gas.

上記構成の磁気式酸素分析計は、サンプルセル20の測定ガス導入口4から導入された測定ガスが測定ガス導出口5に向けて流れる。また、補助ガス供給流路8から供給された補助ガスは、第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分流し、第1補助ガス流入口6及び第2補助ガス流入口7からサンプル流路3に流入し、測定ガスと合流して測定ガス導出口5に流れる。また、補助ガス供給流路8から第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分流した補助ガスの一部は、第1補助ガス分岐流路9に接続するバイパス流路11から第1流量センサ21に向けて流れるとともに、第2補助ガス分岐流路10に接続するバイパス流路11から第2流量センサ22に向けて流れる。   In the magnetic oxygen analyzer having the above configuration, the measurement gas introduced from the measurement gas inlet 4 of the sample cell 20 flows toward the measurement gas outlet 5. In addition, the auxiliary gas supplied from the auxiliary gas supply flow path 8 is divided into the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10, and the first auxiliary gas inlet 6 and the second auxiliary gas flow. It flows into the sample channel 3 from the inlet 7, merges with the measurement gas, and flows to the measurement gas outlet 5. Further, a part of the auxiliary gas that is branched from the auxiliary gas supply flow path 8 to the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 is a bypass flow path that is connected to the first auxiliary gas branch flow path 9. 11 flows toward the first flow rate sensor 21 and flows from the bypass flow path 11 connected to the second auxiliary gas branch flow path 10 toward the second flow rate sensor 22.

次に、本実施形態の磁気式酸素分析計の動作について説明する。
測定ガス導入口4から供給される測定ガス中に酸素分子が含まれていない場合、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfを印加しても、酸素分子が引き寄せられず、その部分の圧力は上昇しない。これにより、第1補助ガス分岐流路9及び第2補助ガス分岐流路10のそれぞれからサンプル流路3に補助ガスが流出する際の流体抵抗が同じになり、第1補助ガス分岐流路9からバイパス流路11に流入する補助ガスと、第2補助ガス分岐流路10からバイパス流路11に流入する補助ガスが同量となる。この場合、検出回路23は、第1検出回路23aが第1流量センサ21で検出した測定信号SAを得るとともに(図2のステップST1)、第2検出回路23bが第2流量センサ22で検出した補正信号SB(SA=SB)を得る(図2のステップST2)。そして、差動増幅器23cが測定信号SA,補正信号SBの差を演算して測定ガスの濃度信号SCを得る(図2のステップST3)。この場合、測定ガスの濃度信号SCがゼロ(0)の演算結果を得る。
Next, the operation of the magnetic oxygen analyzer of this embodiment will be described.
In the case where oxygen molecules are not contained in the measurement gas supplied from the measurement gas inlet 4, even if the magnetic field Mf is applied in the vicinity of the first auxiliary gas inlet 6 of the sample flow path 3, the oxygen molecules are not generated. It is not attracted and the pressure in that part does not increase. Thereby, the fluid resistance when the auxiliary gas flows out from each of the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 to the sample flow path 3 becomes the same, and the first auxiliary gas branch flow path 9 From the second auxiliary gas branch flow path 10 to the bypass flow path 11 becomes the same amount. In this case, the detection circuit 23 obtains the measurement signal SA detected by the first flow sensor 21 by the first detection circuit 23a (step ST1 in FIG. 2), and is detected by the second flow sensor 22 by the second detection circuit 23b. A correction signal SB (SA = SB) is obtained (step ST2 in FIG. 2). Then, the differential amplifier 23c calculates the difference between the measurement signal SA and the correction signal SB to obtain a measurement gas concentration signal SC (step ST3 in FIG. 2). In this case, a calculation result is obtained in which the concentration signal SC of the measurement gas is zero (0).

次に、測定ガスが流量変動を発生しながら測定ガス導入口4から供給されているとともに、測定ガス中に酸素分子が含まれている場合について、図3を参照して説明する。
サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfが印加されると、その部分に酸素分子が引き付けられ(図5(C)参照)、酸素の凝集圧により圧力が上昇する。そのため、第1補助ガス分岐流路9からサンプル流路3に補助ガスが流出する際の流体抵抗が増大し、流出量が減少して第1補助ガス分岐流路9の補助ガスの圧力がPに上昇する。
Next, a case where the measurement gas is supplied from the measurement gas inlet 4 while generating a flow rate variation and oxygen molecules are contained in the measurement gas will be described with reference to FIG.
When the magnetic field Mf is applied in the vicinity of the first auxiliary gas inlet 6 of the sample channel 3 communicating, oxygen molecules are attracted to that portion (see FIG. 5C), and the pressure rises due to the aggregation pressure of oxygen. To do. Therefore, the fluid resistance when the auxiliary gas flows out from the first auxiliary gas branch flow path 9 to the sample flow path 3 increases, the outflow amount decreases, and the pressure of the auxiliary gas in the first auxiliary gas branch flow path 9 becomes P. To rise.

測定ガスに流量変動が生じているため、バイパス流路11に測定ガスの流量変動による脈流が発生し、第1流量センサ21は、その脈流によるノイズ成分Snを測定信号SAとして検出する。また、第1流量センサ21は、圧力Pに伴う流量Qpと、測定ガスの流量変動の圧力変化に伴う流量Qfとを、ノイズ成分Sn1に加えて測定信号SAとして検出する(SA=Sn+Qp+Qf:図2のステップST1)。   Since the flow rate variation occurs in the measurement gas, a pulsating flow due to the flow rate variation of the measurement gas occurs in the bypass channel 11, and the first flow rate sensor 21 detects the noise component Sn due to the pulsating flow as the measurement signal SA. Further, the first flow sensor 21 detects the flow rate Qp associated with the pressure P and the flow rate Qf associated with the pressure change of the flow rate variation of the measurement gas as a measurement signal SA in addition to the noise component Sn1 (SA = Sn + Qp + Qf: FIG. Step ST1 of 2).

そして、第1流量センサ21を通過した補助ガスは、バッファ流路24を通過することで圧力Pに伴う流量Qpが減衰していき、第2流量センサ22は、脈流によるノイズ成分Snと、測定ガスの流量変動の圧力変化に伴う流量Qfとを補正信号SBとして検出する(SB=Sn+Qf:図2のステップST2)。そして、差動増幅器23cが測定信号SA,補正信号SBの差を演算し、以下の(1)式で示す測定ガスの濃度信号SCを得る(図2のステップST3)。
SC=SA−AB=(Sn1+Qp+Qf)−(Sn1+Qf)=QP ……(1)
(1)式から明らかなように、本実施形態の磁気式酸素分析計は、測定ガスに流量変動が発生しても、測定ガスの流量変動の脈流発生によるノイズ成分Snと、流量変動の圧力変化に伴う流量Qfとを除いた測定ガスの濃度信号SCが演算される。
Then, the auxiliary gas that has passed through the first flow rate sensor 21 passes through the buffer flow path 24, whereby the flow rate Qp associated with the pressure P is attenuated, and the second flow rate sensor 22 has a noise component Sn due to pulsation, The flow rate Qf accompanying the pressure change of the flow rate fluctuation of the measurement gas is detected as the correction signal SB (SB = Sn + Qf: step ST2 in FIG. 2). Then, the differential amplifier 23c calculates a difference between the measurement signal SA and the correction signal SB, and obtains a measurement gas concentration signal SC represented by the following equation (1) (step ST3 in FIG. 2).
SC = SA-AB = (Sn1 + Qp + Qf)-(Sn1 + Qf) = QP (1)
As is clear from the equation (1), the magnetic oxygen analyzer of the present embodiment has the noise component Sn due to the pulsation of the flow rate fluctuation of the measurement gas and the flow rate fluctuation even if the flow rate fluctuation occurs in the measurement gas. A concentration signal SC of the measurement gas excluding the flow rate Qf accompanying the pressure change is calculated.

なお、図3では測定ガスに流量変動を発生している場合について説明したが、補助ガス供給路8から供給される補助ガスに流量変動が発生している場合にも、補助ガスの流量変動の脈流発生によるノイズ成分と、補助ガスの流量変動の圧力変化に伴う流量とを除いた測定ガスの濃度信号SCが演算される。
ここで、本発明に係る測定ガス入口が測定ガス導入口4に対応し、本発明に係る測定ガス出口が測定ガス導出口5に対応し、本発明に係る補助ガス流路が第1補助ガス分岐流路9及び第2補助ガス分岐流路10に対応し、本発明に係る第1流量が、第1流量センサ21が検出する流量に対応し、本発明に係る第2流量が、第2流量センサ22が検出する流量に対応し、本発明に係る酸素濃度演算部が検出回路23に対応している。
In addition, although FIG. 3 demonstrated the case where flow volume fluctuation | variation generate | occur | produced in measurement gas, when flow volume fluctuation | variation has generate | occur | produced in the auxiliary gas supplied from the auxiliary gas supply path 8, the flow fluctuation of auxiliary gas is also demonstrated. The concentration signal SC of the measurement gas is calculated by removing the noise component due to the pulsating flow and the flow rate accompanying the pressure change of the auxiliary gas flow rate variation.
Here, the measurement gas inlet according to the present invention corresponds to the measurement gas inlet 4, the measurement gas outlet according to the present invention corresponds to the measurement gas outlet 5, and the auxiliary gas flow path according to the present invention is the first auxiliary gas. Corresponding to the branch flow path 9 and the second auxiliary gas branch flow path 10, the first flow rate according to the present invention corresponds to the flow rate detected by the first flow rate sensor 21, and the second flow rate according to the present invention is the second flow rate. Corresponding to the flow rate detected by the flow sensor 22, the oxygen concentration calculation unit according to the present invention corresponds to the detection circuit 23.

次に、本実施形態の作用効果について説明する。
本実施形態によると、測定ガス或いは補助ガスに流量変動が生じている場合であっても、バイパス流路11の中間位置に設けたバッファ流路24より第1補助ガス分岐流路9側で第1流量センサ21が補助ガスの流量(測定値と称する)を測定し、バッファ流路24より第2補助ガス分岐流路10側で、第2流量センサ22が測定ガス或いは補助ガスに流量変動が生じたときの脈流発生によるノイズ成分と圧力変化に伴う流量(以下、補正値と称する)とを測定し、検出回路23が補正値及び補正値の差分により測定ガスの濃度を演算しているので、測定ガス或いは補助ガスの流量変動による影響を除去して高精度の測定ガスの酸素濃度を測定することができる。
Next, the effect of this embodiment is demonstrated.
According to this embodiment, even when the flow rate of the measurement gas or the auxiliary gas is varied, the first auxiliary gas branching channel 9 side is closer to the buffer channel 24 provided at the intermediate position of the bypass channel 11. 1 The flow rate sensor 21 measures the flow rate (referred to as measurement value) of the auxiliary gas, and the second flow rate sensor 22 changes the flow rate of the measurement gas or auxiliary gas on the second auxiliary gas branch flow channel 10 side from the buffer flow channel 24. The noise component due to the generation of pulsating flow and the flow rate (hereinafter referred to as a correction value) accompanying the pressure change are measured, and the detection circuit 23 calculates the concentration of the measurement gas based on the difference between the correction value and the correction value. Therefore, it is possible to measure the oxygen concentration of the measurement gas with high accuracy by removing the influence of the flow rate variation of the measurement gas or auxiliary gas.

また、本実施形態の磁気式酸素分析方法によると、バッファ流路24から等距離の位置のバイパス流路11で測定値及び補正値を測定しているので、バイパス流路の配管粘性や温度分布などの影響が偏るのを防止し、さらに高精度の測定ガスの酸素濃度を測定することができる。
また、第1流量センサ21及び第2流量センサ22は2線式熱流量計を用いているので、周囲の温度変動による影響が少なく、測定値及び補正値を高精度に検出することができる。
また、本実施形態の磁気式酸素分析計は、測定ガス或いは補助ガスの流量を一定に保つ(流量変動を抑制する)ための機構や装置を使用しておらず、装置コストの低減化も図ることができる。
In addition, according to the magnetic oxygen analysis method of the present embodiment, the measured value and the correction value are measured in the bypass channel 11 at a position equidistant from the buffer channel 24. Therefore, the pipe viscosity and temperature distribution of the bypass channel are measured. It is possible to measure the oxygen concentration of the measurement gas with higher accuracy.
Further, since the first flow sensor 21 and the second flow sensor 22 use a two-wire thermal flow meter, there is little influence due to ambient temperature fluctuations, and the measurement value and the correction value can be detected with high accuracy.
Further, the magnetic oxygen analyzer of the present embodiment does not use a mechanism or device for keeping the flow rate of the measurement gas or the auxiliary gas constant (suppressing the flow rate fluctuation), and also reduces the device cost. be able to.

次に、図4に示すものは、本発明に係る第2実施形態の磁気式酸素分析計を示すものである。
第2実施形態の磁気式酸素分析計は、補助ガス供給流路8とバッファ流路24との間にバッファ専用流路25が設けられており、補助ガス供給流路8から供給された補助ガスが他の流路を迂回せず、直接バッファ流路24に流れ込むようになっている。
本実施形態は、装置起動時、補助ガス供給流路8から補助ガスの供給を開始すると同時に、バッファ専用流路25からバッファ流路24に補助ガスが流れ込む。これにより、バッファ流路24の大気は短時間で補助ガスに置換される。
Next, what is shown in FIG. 4 shows a magnetic oxygen analyzer according to a second embodiment of the present invention.
In the magnetic oxygen analyzer of the second embodiment, a buffer dedicated channel 25 is provided between the auxiliary gas supply channel 8 and the buffer channel 24, and the auxiliary gas supplied from the auxiliary gas supply channel 8. However, it flows directly into the buffer flow path 24 without bypassing the other flow paths.
In this embodiment, when the apparatus is activated, the supply of the auxiliary gas from the auxiliary gas supply channel 8 is started, and at the same time, the auxiliary gas flows from the buffer dedicated channel 25 into the buffer channel 24. Thereby, the atmosphere in the buffer channel 24 is replaced with the auxiliary gas in a short time.

なお、本発明に係る補助ガス供給部が、補助ガス供給流路8及びバッファ専用流路25に対応している。
本実施形態によると、補助ガス供給流路8からの補助ガスの供給と同時にバッファ専用流路25からバッファ流路24に補助ガスが流れ込み、第1補助ガス分岐流路9、第2補助ガス分岐流路10及びバッファ流路24を含むバイパス流路11が、短時間で補助ガスに置換されるので、装置起動時から測定ガス酸素分析の開始までの時間を大幅に短縮することができる。
The auxiliary gas supply unit according to the present invention corresponds to the auxiliary gas supply channel 8 and the buffer dedicated channel 25.
According to the present embodiment, the auxiliary gas flows from the buffer dedicated flow channel 25 into the buffer flow channel 24 simultaneously with the supply of the auxiliary gas from the auxiliary gas supply flow channel 8, and the first auxiliary gas branch flow channel 9 and the second auxiliary gas branch flow. Since the bypass flow path 11 including the flow path 10 and the buffer flow path 24 is replaced with the auxiliary gas in a short time, the time from the start of the apparatus to the start of the measurement gas oxygen analysis can be greatly shortened.

3…サンプル流路、4…測定ガス導入口、5…測定ガス導出口、6…第1補助ガス流入口、7…第2補助ガス流入口、8…補助ガス供給流路、9…第1補助ガス分岐流路、10…第2補助ガス分岐流路、11…バイパス流路、20…サンプルセル、21…第1流量センサ、22…第2流量センサ、23…検出回路、23a…第1検出回路、23b…第2検出回路、23c…差動増幅器、24…バッファ流路、25…バッファ専用流路   DESCRIPTION OF SYMBOLS 3 ... Sample flow path, 4 ... Measurement gas inlet, 5 ... Measurement gas outlet, 6 ... 1st auxiliary gas inflow port, 7 ... 2nd auxiliary gas inflow port, 8 ... Auxiliary gas supply flow path, 9 ... 1st Auxiliary gas branch channel, 10 ... second auxiliary gas branch channel, 11 ... bypass channel, 20 ... sample cell, 21 ... first flow sensor, 22 ... second flow sensor, 23 ... detection circuit, 23a ... first Detection circuit, 23b ... second detection circuit, 23c ... differential amplifier, 24 ... buffer channel, 25 ... buffer channel

Claims (8)

サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記補助ガス流路の流量変化を検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析方法において、
前記第1補助ガス流入口側の前記補助ガス流路と、前記第2補助ガス流入口側の前記補助ガス流路とを、バイパス流路で連通し、
このバイパス流路の中間位置に、流路を拡大したバッファ流路を設け、
このバッファ流路より前記第1補助ガス流入口側の前記バイパス流路に流れる補助ガスの第1流量を検出するとともに、
前記バッファ流路を通過して前記第2補助ガス流入口側のバイパス流路に流れる補助ガスの第2流量を検出し、
検出した前記第1流量及び前記第2流量の差に基づいて、前記測定ガスに含まれる酸素濃度を演算することを特徴とする磁気式酸素分析方法。
A sample flow path, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample flow path, and a first auxiliary gas flow inlet and a first gas flow path provided opposite to the sample flow path on the measurement gas outlet side Two auxiliary gas inlets, and auxiliary gas passages connected to the first and second auxiliary gas inlets, supplying the auxiliary gas from an intermediate position of the auxiliary gas passages, and In the magnetic oxygen analysis method for calculating the oxygen concentration contained in the measurement gas by detecting a change in the flow rate of the auxiliary gas channel caused by applying a magnetic field to the sample channel near the gas inlet,
The auxiliary gas channel on the first auxiliary gas inlet side and the auxiliary gas channel on the second auxiliary gas inlet side communicate with each other by a bypass channel,
In the middle position of this bypass channel, a buffer channel that expands the channel is provided,
While detecting the first flow rate of the auxiliary gas flowing from the buffer channel to the bypass channel on the first auxiliary gas inlet side,
Detecting a second flow rate of the auxiliary gas passing through the buffer flow path and flowing into the bypass flow path on the second auxiliary gas inlet side;
A magnetic oxygen analysis method, wherein an oxygen concentration contained in the measurement gas is calculated based on the detected difference between the first flow rate and the second flow rate.
前記第1流量及び前記第2流量を検出する位置を、前記バッファ流路から等距離の前記バイパス流路としたことを特徴とする請求項1記載の磁気式酸素分析方法。   The magnetic oxygen analysis method according to claim 1, wherein a position where the first flow rate and the second flow rate are detected is the bypass flow channel that is equidistant from the buffer flow channel. 前記第1流量及び前記第2流量の検出に、2線式熱流量計を用いることを特徴とする請求項1又は2記載の磁気式酸素分析方法。   The magnetic oxygen analysis method according to claim 1 or 2, wherein a two-wire thermal flow meter is used to detect the first flow rate and the second flow rate. 前記補助ガスを、前記補助ガス流路の中間位置及び前記バッファ流路に同時に供給することを特徴とする請求項1乃至3の何れか1項記載の磁気式酸素分析方法。   4. The magnetic oxygen analysis method according to claim 1, wherein the auxiliary gas is supplied simultaneously to an intermediate position of the auxiliary gas channel and the buffer channel. 5. サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記補助ガス流路の流量変化を検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析計において、
前記第1補助ガス流入口側の前記補助ガス流路及び前記第2補助ガス流入口側の前記補助ガス流路を連通するバイパス流路と、
このバイパス流路の中間位置に流路を拡大して設けたバッファ流路と、
このバッファ流路より前記第1補助ガス流入口側の前記バイパス流路に配置した第1流量センサと、
前記バッファ流路より前記第2補助ガス流入口側のバイパス流路に配置した第2流量センサと、
前記第1流量センサが検出した前記第1補助ガス流入口から流れてきた補助ガスの第1流量と、前記第2流量センサが検出した前記バッファ流路を通過して前記第2補助ガス流入側のバイパス流路に流れる補助ガスの第2流量との差に基づいて、前記測定ガスに含まれる酸素濃度を演算する酸素濃度演算部と、を備えていることを特徴とする磁気式酸素分析計。
A sample flow path, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample flow path, and a first auxiliary gas flow inlet and a first gas flow path provided opposite to the sample flow path on the measurement gas outlet side Two auxiliary gas inlets, and auxiliary gas passages connected to the first and second auxiliary gas inlets, supplying the auxiliary gas from an intermediate position of the auxiliary gas passages, and In a magnetic oxygen analyzer that calculates the oxygen concentration contained in the measurement gas by detecting a change in the flow rate of the auxiliary gas flow path caused by applying a magnetic field to the sample flow path near the gas inlet,
A bypass passage communicating the auxiliary gas passage on the first auxiliary gas inlet side and the auxiliary gas passage on the second auxiliary gas inlet side;
A buffer channel provided by enlarging the channel at an intermediate position of the bypass channel;
A first flow rate sensor disposed in the bypass flow path on the first auxiliary gas inlet side from the buffer flow path;
A second flow rate sensor disposed in a bypass flow path on the second auxiliary gas inlet side from the buffer flow path;
The first auxiliary gas flowing from the first auxiliary gas inlet detected by the first flow sensor and the second auxiliary gas inflow side passing through the buffer flow path detected by the second flow sensor. An oxygen concentration calculation unit that calculates an oxygen concentration contained in the measurement gas based on a difference from the second flow rate of the auxiliary gas flowing in the bypass flow path of the magnetic oxygen analyzer .
前記第1流量センサ及び前記第2流量センサは、前記バッファ流路から等距離の位置の前記バイパス流路に配置されていることを特徴とする請求項5記載の磁気式酸素分析計。   6. The magnetic oxygen analyzer according to claim 5, wherein the first flow sensor and the second flow sensor are arranged in the bypass flow path at a position equidistant from the buffer flow path. 前記第1流量センサ及び前記第2流量センサは2線式熱流量計であることを特徴とする請求項5又は6記載の磁気式酸素分析計。   The magnetic oxygen analyzer according to claim 5 or 6, wherein the first flow sensor and the second flow sensor are two-wire thermal flow meters. 前記補助ガスを前記補助ガス流路の中間位置及び前記バッファ流路に同時に供給する補助ガス供給部を設けたことを特徴とする請求項5乃至7の何れか1項記載の磁気式酸素分析計。   8. The magnetic oxygen analyzer according to claim 5, further comprising an auxiliary gas supply unit that supplies the auxiliary gas to an intermediate position of the auxiliary gas channel and the buffer channel at the same time. .
JP2013183125A 2013-09-04 2013-09-04 Magnetic oxygen analysis method and magnetic oxygen analyzer Active JP6318505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013183125A JP6318505B2 (en) 2013-09-04 2013-09-04 Magnetic oxygen analysis method and magnetic oxygen analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183125A JP6318505B2 (en) 2013-09-04 2013-09-04 Magnetic oxygen analysis method and magnetic oxygen analyzer

Publications (2)

Publication Number Publication Date
JP2015049220A true JP2015049220A (en) 2015-03-16
JP6318505B2 JP6318505B2 (en) 2018-05-09

Family

ID=52699339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183125A Active JP6318505B2 (en) 2013-09-04 2013-09-04 Magnetic oxygen analysis method and magnetic oxygen analyzer

Country Status (1)

Country Link
JP (1) JP6318505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022141320A1 (en) * 2020-12-30 2022-07-07 深圳迈瑞生物医疗电子股份有限公司 Paramagnetic gas measurement device and medical ventilation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319095A (en) * 1976-08-04 1978-02-21 Fuji Electric Co Ltd Oxygen analyzer of magnetic type
JPS60256047A (en) * 1984-05-16 1985-12-17 インストルメンタリウム・オサケイーテイエー Quick response type paramagnetic gas-in-oxygen analyzer
JPH04130066U (en) * 1991-05-18 1992-11-30 株式会社堀場製作所 Magnetic oxygen analyzer
WO1994020846A1 (en) * 1993-03-08 1994-09-15 Increa Oy A device for measuring mixtures of gases
JP2000088811A (en) * 1998-09-11 2000-03-31 Horiba Ltd Gas analyzing system
JP2007315930A (en) * 2006-05-26 2007-12-06 Yokogawa Electric Corp Magnetic oxygen measurement method and magnetic oxygen meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319095A (en) * 1976-08-04 1978-02-21 Fuji Electric Co Ltd Oxygen analyzer of magnetic type
JPS60256047A (en) * 1984-05-16 1985-12-17 インストルメンタリウム・オサケイーテイエー Quick response type paramagnetic gas-in-oxygen analyzer
JPH04130066U (en) * 1991-05-18 1992-11-30 株式会社堀場製作所 Magnetic oxygen analyzer
WO1994020846A1 (en) * 1993-03-08 1994-09-15 Increa Oy A device for measuring mixtures of gases
JP2000088811A (en) * 1998-09-11 2000-03-31 Horiba Ltd Gas analyzing system
JP2007315930A (en) * 2006-05-26 2007-12-06 Yokogawa Electric Corp Magnetic oxygen measurement method and magnetic oxygen meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022141320A1 (en) * 2020-12-30 2022-07-07 深圳迈瑞生物医疗电子股份有限公司 Paramagnetic gas measurement device and medical ventilation system

Also Published As

Publication number Publication date
JP6318505B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6926168B2 (en) Mass flow controller
JP5425902B2 (en) Compound gas flow measuring method and apparatus
KR101802380B1 (en) Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter
RU2015106923A (en) DETERMINATION OF THE CHARACTERISTIC OF A FLUID FOR A MULTI-COMPONENT FLUID WITH A COMPRESSIBLE AND AN INCOMPRESSIBLE COMPONENTS
US10139259B2 (en) System and method for metering gas based on amplitude and/or temporal characteristics of an electrical signal
KR20140003611A (en) Pressure-based flow control device with flow monitor
JP2012233776A (en) Flow rate measuring device
JP2011515689A (en) Real-time measurement system for instantaneous fluid flow
JP2019035640A (en) Thermal flow meter
JP6318505B2 (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
JP2014059191A (en) Thermal flowmeter
JP6303342B2 (en) Magnetic oxygen analyzer
JP2014526704A (en) Non-contact measurement method and apparatus for mass flow rate or volume flow rate of conductive fluid
JP2017026410A (en) Magnetic oxygen analyzer
JP2015090349A (en) Magnetic oxygen analyzer, and sensor unit for magnetic oxygen analyzer
JP4761204B2 (en) Magnetic oxygen measuring method and magnetic oxygen meter
JP6497062B2 (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
JP4992579B2 (en) Analyzer
EP3312573B1 (en) System and method for fluid metering
JP2015055565A (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
JP2008139254A (en) Flow measuring device and flow controlling device
JP2021015040A (en) Magnetic oxygen analyzer
JP2014149274A (en) Control device and control program
KR20080056816A (en) Method and appratus for estimating amount of flow using difference of input and output pressure
KR20050120921A (en) Mass flow measurement sensor for mass flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6318505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250