JP2015055565A - Magnetic oxygen analysis method and magnetic oxygen analyzer - Google Patents

Magnetic oxygen analysis method and magnetic oxygen analyzer Download PDF

Info

Publication number
JP2015055565A
JP2015055565A JP2013189522A JP2013189522A JP2015055565A JP 2015055565 A JP2015055565 A JP 2015055565A JP 2013189522 A JP2013189522 A JP 2013189522A JP 2013189522 A JP2013189522 A JP 2013189522A JP 2015055565 A JP2015055565 A JP 2015055565A
Authority
JP
Japan
Prior art keywords
gas
auxiliary gas
auxiliary
flow path
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013189522A
Other languages
Japanese (ja)
Inventor
満 大石
Mitsuru Oishi
満 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2013189522A priority Critical patent/JP2015055565A/en
Publication of JP2015055565A publication Critical patent/JP2015055565A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic oxygen analyzer capable of measuring an oxygen concentration of a measurement gas with high sensitivity while allowing reduction in device cost.SOLUTION: The magnetic oxygen analyzer comprises: a sample flow passage 3; a measurement gas inlet 4 and a measurement gas outlet 5 formed on both ends of the sample flow passage; a first auxiliary gas flow inlet 6 and a second auxiliary gas flow inlet 7 provided on the sample flow passage on a measurement gas outlet side so as to oppose each other; an auxiliary gas flow passage 8 connected to the first and second auxiliary gas flow inlets; a bypass flow passage 11 communicating the auxiliary gas flow passage on a first auxiliary gas flow inlet side with the auxiliary gas flow passage on a second auxiliary gas flow inlet side; and a hot-wire sensor 12 disposed in the bypass flow passage. A gas (at least one kind of gases among Xe, Kr, COand Ar) as an auxiliary gas, which has low heat conductivity and large specific weight in comparison with reference gases, including N, Oand air, that are selected depending on the concentration of the measurement gas, is used.

Description

本発明は、磁気式酸素分析方法及び磁気式酸素分析計に関する。   The present invention relates to a magnetic oxygen analysis method and a magnetic oxygen analyzer.

磁気式酸素分析計の測定原理について、図3(A)〜(C)を参照して説明する(例えば特許文献1を参照)。
図3(A)は、酸素を含むガス中に磁界を発生させる手段(磁石)を配置したときの酸素分子と磁界の関係を示したものである。図3(B)に示すように、磁界が強く、且つその強さが変化しているところ(不均一の磁界になっている磁極の端部)に酸素を引き付ける力が作用し、磁極の端部で右向きの力と左向きの力が押し合ってバランスし、酸素分子は磁界の影響を受けて引き付けられ、磁界(磁石のギャップ)内へ移動する。これにより、図3(C)に示すように、磁界内では、引き付けられた酸素の圧力(濃度)が磁界の外と比較して高くなる。
The measurement principle of the magnetic oxygen analyzer will be described with reference to FIGS. 3A to 3C (see, for example, Patent Document 1).
FIG. 3A shows the relationship between oxygen molecules and a magnetic field when a means (magnet) for generating a magnetic field is provided in a gas containing oxygen. As shown in FIG. 3 (B), a force that attracts oxygen acts on a portion where the magnetic field is strong and the strength changes (the end of the magnetic pole that is a non-uniform magnetic field), and the end of the magnetic pole The right force and the left force are pressed against each other and balanced, and oxygen molecules are attracted by the influence of the magnetic field and move into the magnetic field (magnet gap). As a result, as shown in FIG. 3C, the pressure (concentration) of the attracted oxygen is higher in the magnetic field than in the magnetic field.

上述した測定原理を採用した磁気式酸素分析計として、例えば特許文献2に記載の装置が知られている。
この特許文献2に記載の磁気式酸素分析計は、円環形状に形成され、分流させた測定ガスの測定側サンプル流路及び比較側サンプル流路と、測定側サンプル流路に磁界印加領域を形成する磁界発生手段と、前記測定側及び前記比較側サンプル流路の対向する位置に導通させた同一量の補助ガスを流す第1及び第2の補助ガス流路と、前記第1及び第2の補助ガス流路に連通し、補助ガス導入口から平行同一方向に分流させた第1及び第2の流路と、前記平行同一方向に分流させた第1及び第2の流路のそれぞれに配置した第1及び第2の熱線センサと、第1流路と、第1及び第2の熱線センサから得られる信号に基づいて酸素濃度を検出する検出手段と、を備えた装置である。
As a magnetic oxygen analyzer adopting the above-described measurement principle, for example, an apparatus described in Patent Document 2 is known.
The magnetic oxygen analyzer described in Patent Document 2 is formed in an annular shape, and a magnetic field application region is provided in the measurement side sample flow path and the comparison side sample flow path of the divided measurement gas and the measurement side sample flow path. Magnetic field generating means to be formed; first and second auxiliary gas flow paths for flowing the same amount of auxiliary gas conducted to opposite positions of the measurement side and comparison side sample flow paths; and the first and second Each of the first and second flow paths that are branched in the same parallel direction from the auxiliary gas inlet, and each of the first and second flow paths that are branched in the same parallel direction. It is an apparatus provided with the arrange | positioned 1st and 2nd heat ray sensor, 1st flow path, and the detection means which detects oxygen concentration based on the signal obtained from the 1st and 2nd heat ray sensor.

そして、この装置は、測定ガス導入口から導入された測定ガスが測定側サンプル流路及び比較側サンプル流路の二方向に分流した後、測定ガス導出口へ合流するように流れる。
また、補助ガス導入口から導入された補助ガスは、第1及び第2の熱線センサを配置した第1及び第2の流路を経由し、第1及び第2の補助ガス流路を経由して測定側サンプル流路及び比較側サンプル流路を流れる測定ガスと合流し、測定ガス導出口へ流れる。
And this apparatus flows so that the measurement gas introduce | transduced from the measurement gas introduction port may be diverted into two directions, a measurement side sample flow path and a comparison side sample flow path, and it may merge with a measurement gas outlet.
Further, the auxiliary gas introduced from the auxiliary gas introduction port passes through the first and second auxiliary flow paths where the first and second heat ray sensors are arranged, and passes through the first and second auxiliary gas flow paths. The measurement gas flows through the measurement side sample flow path and the comparison side sample flow path and flows to the measurement gas outlet.

このような状況下で、測定ガス中に酸素分子が含まれていない場合、第1の熱線センサから得られる出力信号と、第2の熱線センサから得られる出力信号が同一となり、検出手段が、測定ガス中の酸素濃度が「0」(ゼロ)であると出力する。
一方、測定ガス中に酸素分子が含まれている場合、測定側サンプル流路に形成した磁界印加領域の磁力作用により測定ガス中の酸素分子が引き付けられて部分流れが生じる。このため、第1の熱線センサを経由する補助ガスの流量と第2の熱型流量センサ18bを経由する補助ガスの流量に差が生じるようになり、第1の熱線センサの出力信号と第2の熱線センサの出力信号が同一でなくなり、検出手段は、測定ガス中の酸素分子量に対応した値を示す。
Under such circumstances, when oxygen molecules are not included in the measurement gas, the output signal obtained from the first heat ray sensor is the same as the output signal obtained from the second heat ray sensor, and the detection means is Output when the oxygen concentration in the measurement gas is “0” (zero).
On the other hand, when oxygen molecules are contained in the measurement gas, the oxygen molecules in the measurement gas are attracted by the magnetic force action of the magnetic field application region formed in the measurement-side sample flow path, and a partial flow is generated. For this reason, a difference occurs between the flow rate of the auxiliary gas passing through the first heat ray sensor and the flow rate of the auxiliary gas passing through the second heat type flow rate sensor 18b, and the output signal of the first heat ray sensor and the second The output signals of the hot wire sensors are not the same, and the detection means shows a value corresponding to the molecular weight of oxygen in the measurement gas.

特開2004−325098号公報の図3FIG. 3 of JP 2004-325098 A 特開2004−325368号公報の図1及び図21 and 2 of JP 2004-325368 A

ところで、磁気式酸素分析計において実用化されている測定レンジは1〜2%であるが、近年、生成ガスの純度監視、或いはプロセス用ガスなどのように低濃度の酸素を測定するために、酸素濃度を高感度で測定する要求が高まってきている。
酸素濃度の測定感度を上げるために、磁界発生手段の磁性材料の磁気的性質の改善、コイルの巻き数を増大して磁界印加領域の磁界強度を大きくする方法、検出手段の駆動電流や周波数の最適化などを図ることなどが考えられるが、このようにすると、部品の高騰化、装置の大型化などによって装置コストが上昇するおそれがある。
By the way, although the measurement range put into practical use in the magnetic oxygen analyzer is 1 to 2%, in recent years, in order to measure low concentration oxygen such as purity monitoring of a produced gas or process gas, The demand for measuring oxygen concentration with high sensitivity is increasing.
In order to increase the measurement sensitivity of oxygen concentration, improve the magnetic properties of the magnetic material of the magnetic field generation means, increase the number of turns of the coil to increase the magnetic field strength of the magnetic field application area, the drive current and frequency of the detection means Although optimization etc. can be considered, if it does in this way, there exists a possibility that apparatus cost may rise by the rise of components, the enlargement of an apparatus, etc.

本発明は上記事情に鑑みてなされたものであり、装置コストの低減化を図りながら測定ガス中の酸素濃度を高感度で測定することができる磁気式酸素分析方法及び磁気式酸素分析計を提供することを目的としている。   The present invention has been made in view of the above circumstances, and provides a magnetic oxygen analyzer and a magnetic oxygen analyzer capable of measuring the oxygen concentration in a measurement gas with high sensitivity while reducing the apparatus cost. The purpose is to do.

上記目的を達成するために、本発明の一態様に係る磁気式酸素分析方法は、サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、前記第1補助ガス流入口側の前記補助ガス流路及び前記第2補助ガス流入口側の前記補助ガス流路を連通したバイパス流路と、このバイパス流路に配置した熱線センサと、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記バイパス流路の流量変化を前記熱線センサで検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析方法において、前記補助ガスとして、前記測定ガスの濃度によって選択される基準ガスと比較して熱伝導率が低く、且つ比重が大きいガスを使用している。   In order to achieve the above object, a magnetic oxygen analysis method according to an aspect of the present invention includes a sample channel, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample channel, and the measurement gas outlet. A first auxiliary gas inlet and a second auxiliary gas inlet provided opposite to each other on the side of the sample flow path, an auxiliary gas flow path connected to the first and second auxiliary gas inlets, A bypass channel communicating the auxiliary gas channel on the first auxiliary gas inlet side and the auxiliary gas channel on the second auxiliary gas inlet side, and a heat ray sensor disposed in the bypass channel, A change in the flow rate of the bypass channel caused by supplying the auxiliary gas from an intermediate position of the auxiliary gas channel and applying a magnetic field to the sample channel near the first auxiliary gas inlet is detected by the hot wire sensor. By doing In the magnetic oxygen analysis method for calculating the oxygen concentration contained in the measurement gas, as the auxiliary gas, a gas having a low thermal conductivity and a large specific gravity compared to a reference gas selected according to the concentration of the measurement gas Is used.

また、発明の一態様に係る磁気式酸素分析方法は、前記補助ガスを、Xe、Kr、CO、Arのうち少なくとも1種類のガスを含むものとすることが好ましい。
ここで、基準ガスは、N,O,Air(空気)である。
この発明の一態様に係る磁気式酸素分析方法によると、測定ガスの濃度レベルによって選択される基準ガス(N,O,Airなど)と比較して熱伝導率が低く、且つ比重が大きいXe、Kr、CO、Arの少なくとも1種類のガスを補助ガスとして使用すると、測定ガス中の低濃度の酸素を検出する場合であっても、熱線センサの出力値が高くなる。
In the magnetic oxygen analysis method according to one embodiment of the present invention, it is preferable that the auxiliary gas includes at least one gas selected from Xe, Kr, CO 2 , and Ar.
Here, the reference gas is N 2 , O 2 , Air (air).
According to the magnetic oxygen analysis method according to one aspect of the present invention, the thermal conductivity is low and the specific gravity is large as compared with the reference gas (N 2 , O 2 , Air, etc.) selected according to the concentration level of the measurement gas. When at least one kind of gas of Xe, Kr, CO 2 , and Ar is used as an auxiliary gas, the output value of the heat ray sensor becomes high even when detecting low concentration oxygen in the measurement gas.

また、N,O,Air(空気)などの基準ガスと比較して比重が大きい補助ガスは、周囲に配置されているプラントなどから振動を受けても流量変動が発生し難くなる。
また、発明の一態様に係る磁気式酸素分析計は、サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、前記第1補助ガス流入口側の前記補助ガス流路及び前記第2補助ガス流入口側の前記補助ガス流路を連通したバイパス流路と、このバイパス流路に配置した熱線センサと、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記バイパス流路の流路の流量変化を前記熱線センサで検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析計において、前記補助ガスとして、前記測定ガスの濃度によって選択される基準ガスと比較して熱伝導率が低く、且つ比重が大きいガスを使用した。
Further, the auxiliary gas having a specific gravity larger than that of the reference gas such as N 2 , O 2 , Air (air), etc., is less likely to cause flow rate fluctuations even when subjected to vibration from a plant or the like disposed around.
The magnetic oxygen analyzer according to one aspect of the invention includes a sample flow path, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample flow path, and the sample flow path on the measurement gas outlet side. A first auxiliary gas inlet and a second auxiliary gas inlet provided opposite to each other, an auxiliary gas flow path connected to the first and second auxiliary gas inlets, and the first auxiliary gas inlet side A bypass passage communicating the auxiliary gas passage and the auxiliary gas passage on the second auxiliary gas inlet side, and a heat ray sensor disposed in the bypass passage, By detecting the flow rate change of the flow path of the bypass flow path caused by supplying the auxiliary gas from a position and applying a magnetic field to the sample flow path near the first auxiliary gas inlet, In the measurement gas The magnetic oxygen analyzer for calculating the Murrell oxygen concentration, as the auxiliary gas, the compared with a reference gas selected by the concentration of the measurement gas low thermal conductivity, was used and the specific gravity is larger gas.

また、発明の一態様に係る磁気式酸素分析計は、前記補助ガスを、Xe、Kr、CO、Arのうち少なくとも1種類のガスを含むものとすることが好ましい。
この発明の一態様に係る磁気式酸素分析計によると、測定ガス中の酸素濃度を高感度で測定することができるとともに、酸素濃度の測定感度を上げるために、磁界発生領域の磁界強度を大きくし、或いは、検出回路の精度を高めるための機構や装置を使用しておらず、部品点数の増大や装置の大型化を抑制することができる。
In the magnetic oxygen analyzer according to one embodiment of the present invention, it is preferable that the auxiliary gas includes at least one gas selected from Xe, Kr, CO 2 , and Ar.
According to the magnetic oxygen analyzer of one aspect of the present invention, the oxygen concentration in the measurement gas can be measured with high sensitivity, and the magnetic field strength in the magnetic field generation region is increased in order to increase the measurement sensitivity of the oxygen concentration. Alternatively, no mechanism or device for increasing the accuracy of the detection circuit is used, and an increase in the number of components and an increase in the size of the device can be suppressed.

本発明に係る磁気式酸素分析方法によれば、測定ガスの濃度レベルによって選択される基準ガスと比較して熱伝導率が低く、且つ比重が大きいガスを補助ガスとして使用したことで、測定ガス中の低濃度の酸素を検出する場合であっても、熱線センサの出力値が高くなり、測定ガス中の酸素濃度を高感度で測定することができる。
また、本発明に係る磁気式酸素分析計によれば、測定ガス中の酸素濃度を高感度で測定することができるとともに、酸素濃度の測定感度を上げるために、磁界発生領域の磁界強度を大きくし、或いは、検出回路の精度を高めるための機構や装置を使用しておらず、部品点数の増大や装置の大型化を抑制しているので、装置コストの低減化を図ることができる。
According to the magnetic oxygen analysis method of the present invention, a gas having a low thermal conductivity and a large specific gravity is used as an auxiliary gas compared to a reference gas selected according to the concentration level of the measurement gas. Even when a low concentration of oxygen is detected, the output value of the heat ray sensor becomes high, and the oxygen concentration in the measurement gas can be measured with high sensitivity.
Further, according to the magnetic oxygen analyzer of the present invention, the oxygen concentration in the measurement gas can be measured with high sensitivity, and the magnetic field strength in the magnetic field generation region is increased in order to increase the measurement sensitivity of the oxygen concentration. Alternatively, no mechanism or device for increasing the accuracy of the detection circuit is used, and an increase in the number of parts and an increase in the size of the device are suppressed, so that the device cost can be reduced.

本発明に係る一実施形態の磁気式酸素分析計を示す概略構成図である。1 is a schematic configuration diagram showing a magnetic oxygen analyzer according to an embodiment of the present invention. 本発明に係る一実施形態の磁気式酸素分析計で使用する補助ガスの種類の特性について示すグラフである。It is a graph shown about the characteristic of the kind of auxiliary gas used with the magnetic oxygen analyzer of one embodiment concerning the present invention. 磁気式酸素分析計の測定原理を示す図である。It is a figure which shows the measurement principle of a magnetic oxygen analyzer.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。
図1は、本発明に係る1実施形態の磁気式酸素分析計を示すものであり、測定ガスを流す流路を備えたサンプルセル1と、このサンプルセル1内に設置した熱線センサ12からの信号で測定ガスに含まれている酸素濃度を検出する検出回路2とからなる。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings.
FIG. 1 shows a magnetic oxygen analyzer according to an embodiment of the present invention. A sample cell 1 having a flow path for flowing a measurement gas, and a hot wire sensor 12 installed in the sample cell 1 are shown. It comprises a detection circuit 2 for detecting the oxygen concentration contained in the measurement gas by a signal.

サンプルセル1は、円筒形状のサンプル流路3と、このサンプル流路3の軸方向の一端側に連通して設けた測定ガス導入口4と、サンプル流路3の軸方向の他端側に連通して設けた測定ガス導出口5と、測定ガス導出口5側のサンプル流路3に連通し、このサンプル流路3の軸方向に直交する径方向から互いに対向して設けた第1補助ガス流入口6及び第2補助ガス流入口7と、補助ガス供給流路8に流れてきた補助ガスを第1補助ガス流入口6及び第2補助ガス流入口7からサンプル流路3に同一流量で供給する第1補助ガス分岐流路9及び第2補助ガス分岐流路10と、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfの領域を形成するポールピース((不図示)と、第1補助ガス分岐流路9及び第2補助ガス分岐流路10に連通するバイパス流路11と、を備えている。   The sample cell 1 includes a cylindrical sample flow path 3, a measurement gas introduction port 4 provided in communication with one end side in the axial direction of the sample flow path 3, and the other end side in the axial direction of the sample flow path 3. The first auxiliary gas provided in communication with the measurement gas outlet 5 and the sample channel 3 on the measurement gas outlet 5 side and provided opposite to each other from the radial direction perpendicular to the axial direction of the sample channel 3 The auxiliary gas flowing into the gas inlet 6 and the second auxiliary gas inlet 7 and the auxiliary gas supply flow path 8 is supplied at the same flow rate from the first auxiliary gas inlet 6 and the second auxiliary gas inlet 7 to the sample flow path 3. The pole piece (() forms the region of the magnetic field Mf in the vicinity of the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 to be supplied with the first auxiliary gas inlet 6 of the sample flow path 3 communicates (Not shown), the first auxiliary gas branch channel 9 and the second auxiliary gas branch channel It includes a bypass flow path 11 communicating, to 0.

そして、バイパス流路11の中間位置に熱線センサ12が配置され、この熱線センサ12に検出回路2が接続している。
熱線センサ12は、バイパス流路11内の補助ガスとの接触による温度変化に伴う抵抗変化に応じて電圧が変化し、その電圧変化の信号を検出回路2に出力する。検出回路2は、熱線センサ12からの電圧信号を受信して増幅することで、測定ガスに含まれている酸素濃度を検出する。
And the heat ray sensor 12 is arrange | positioned in the intermediate position of the bypass flow path 11, and the detection circuit 2 is connected to this heat ray sensor 12. FIG.
The heat ray sensor 12 changes in voltage according to a resistance change accompanying a temperature change due to contact with the auxiliary gas in the bypass flow path 11, and outputs a signal of the voltage change to the detection circuit 2. The detection circuit 2 detects the oxygen concentration contained in the measurement gas by receiving and amplifying the voltage signal from the hot wire sensor 12.

上記構成の磁気式酸素分析計は、サンプルセル1の測定ガス導入口4から導入された測定ガスが測定ガス導出口5に向けて流れる。また、補助ガス供給流路8から供給された補助ガスは、第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分流し、第1補助ガス流入口6及び第2補助ガス流入口7からサンプル流路3に流入し、測定ガスと合流して測定ガス導出口5に流れる。また、補助ガス供給流路8から第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分流した補助ガスの一部は、第1補助ガス分岐流路9に接続するバイパス流路11から流量センサ12に向けて流れるとともに、第2補助ガス分岐流路10に接続するバイパス流路11から流量センサ12に向けて流れる。   In the magnetic oxygen analyzer having the above configuration, the measurement gas introduced from the measurement gas inlet 4 of the sample cell 1 flows toward the measurement gas outlet 5. In addition, the auxiliary gas supplied from the auxiliary gas supply flow path 8 is divided into the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10, and the first auxiliary gas inlet 6 and the second auxiliary gas flow. It flows into the sample channel 3 from the inlet 7, merges with the measurement gas, and flows to the measurement gas outlet 5. Further, a part of the auxiliary gas that is branched from the auxiliary gas supply flow path 8 to the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 is a bypass flow path that is connected to the first auxiliary gas branch flow path 9. 11 flows from the bypass flow path 11 connected to the second auxiliary gas branch flow path 10 toward the flow sensor 12.

そして、測定ガス中に酸素分子が含まれていない場合、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfを印加しても、酸素分子が引き寄せられず、その部分の圧力は上昇しない。これにより、第1補助ガス分岐流路9及び第2補助ガス分岐流路10のそれぞれからサンプル流路3に補助ガスが流出する際の流体抵抗が同じになり、第1補助ガス分岐流路9からバイパス流路11内の流量センサ12を経由する補助ガスの流量と、第2補助ガス分岐流路10からバイパス流路11内の流量センサ12を経由する補助ガスの流量が同じとなる。これにより、流量センサ12の信号が得られず、検出回路2は酸素濃度を検出しない。   And when oxygen molecules are not contained in the measurement gas, even if the magnetic field Mf is applied in the vicinity of the first auxiliary gas inlet 6 of the sample flow path 3, oxygen molecules are not attracted, The pressure does not increase. Thereby, the fluid resistance when the auxiliary gas flows out from each of the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10 to the sample flow path 3 becomes the same, and the first auxiliary gas branch flow path 9 The flow rate of the auxiliary gas passing through the flow rate sensor 12 in the bypass flow path 11 is the same as the flow rate of the auxiliary gas passing through the flow rate sensor 12 in the bypass flow path 11 from the second auxiliary gas branch flow path 10. Thereby, the signal of the flow sensor 12 is not obtained, and the detection circuit 2 does not detect the oxygen concentration.

一方、測定ガス中に酸素分子が含まれている場合、サンプル流路3の第1補助ガス流入口6が連通する付近に磁界Mfが印加されると、その部分に酸素分子が引き付けられ(図5(C)参照)、酸素の凝集圧により圧力が上昇する。そのため、第1補助ガス分岐流路9からサンプル流路3に補助ガスが流出する際の流体抵抗が増大し、流出量が減少する。逆に、サンプル流路3の第2補助ガス流入口7が連通する付近では磁界Mfが印加されていないため流体抵抗は増大せず、第1補助ガス流入口6側との比較により補助ガスの流出量が増加する。   On the other hand, when oxygen molecules are contained in the measurement gas, when the magnetic field Mf is applied in the vicinity of the first auxiliary gas inlet 6 of the sample flow path 3, the oxygen molecules are attracted to that portion (see FIG. 5 (C)), the pressure increases due to the cohesive pressure of oxygen. Therefore, the fluid resistance when the auxiliary gas flows out from the first auxiliary gas branch flow path 9 to the sample flow path 3 increases, and the outflow amount decreases. On the contrary, in the vicinity of the second auxiliary gas inlet 7 of the sample flow path 3, the magnetic resistance Mf is not applied since the magnetic field Mf is not applied, so that the fluid resistance does not increase. Outflow increases.

これにより、補助ガス供給流路8から第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分岐する地点P0(以下、分岐点P0と称する)で、補助ガスが第1補助ガス分岐流路9及び第2補助ガス分岐流路10に分岐する際の分流比が変化し、第1補助ガス分岐流路9からバイパス流路11内の流量センサ12を経由する補助ガスの流量と、第2補助ガス分岐流路10からバイパス流路11内の流量センサ12を経由する補助ガスの流量に差が生じ、流量センサ12が補助ガスの流量変化の信号を得ることで、検出回路2が測定ガスの酸素濃度を検出する。   Thereby, the auxiliary gas is the first auxiliary gas at the point P0 (hereinafter referred to as the branch point P0) where the auxiliary gas supply flow path 8 branches to the first auxiliary gas branch flow path 9 and the second auxiliary gas branch flow path 10. The diversion ratio at the time of branching to the branch channel 9 and the second auxiliary gas branch channel 10 changes, and the flow rate of the auxiliary gas from the first auxiliary gas branch channel 9 via the flow sensor 12 in the bypass channel 11 A difference occurs in the flow rate of the auxiliary gas passing through the flow rate sensor 12 in the bypass flow channel 11 from the second auxiliary gas branch flow channel 10, and the flow rate sensor 12 obtains a signal of change in the flow rate of the auxiliary gas. Detects the oxygen concentration of the measurement gas.

ここで、図2を参照して本実施形態の補助ガスの種類について説明する。
従来の磁気式酸素分析計では、補助ガスとしてN,O,Air(空気)が使用されていた。これらN、O、Airは、測定ガスの濃度レベルによって選択されるガスであり、以下では、基準ガスと称する。
本実施形態は、図2に示すように、Xe(キセノン)、Kr(クリプトン)、CO(二酸化炭素)及びAr(アルゴン)の少なくとも1種類のガスを、補助ガスとして使用している。
Here, with reference to FIG. 2, the kind of auxiliary gas of this embodiment is demonstrated.
In a conventional magnetic oxygen analyzer, N 2 , O 2 , and Air (air) are used as auxiliary gases. These N 2 , O 2 , and Air are gases selected according to the concentration level of the measurement gas, and are hereinafter referred to as reference gases.
In the present embodiment, as shown in FIG. 2, at least one gas of Xe (xenon), Kr (krypton), CO 2 (carbon dioxide), and Ar (argon) is used as an auxiliary gas.

これらXe、Kr、CO、Arは、基準ガス(例えばNを基準ガス)と比較して、熱伝導率が低く、且つ比重(空気1に対する比重)が大きいガスである。なお、図2では示していないが、Oの熱伝導率は0.0229(W/(m・K))、比重が1.1053程度であり、Airの熱伝導率は0.0241(W/(m・K))、比重が1である。
このように、基準ガスと比較して熱伝導率が低く、且つ比重が大きいガスは、例えばCO、Arを補助ガスとして使用した場合には基準ガスに対して2倍の熱線センサ12の出力値を得ることができ、Xeを補助ガスとして使用した場合には基準ガスに対して3倍の熱線センサ12の出力値を得ることができる。
These Xe, Kr, CO 2 , and Ar are gases having a lower thermal conductivity and a higher specific gravity (specific gravity with respect to air 1) than a reference gas (for example, N 2 is a reference gas). Although not shown in FIG. 2, the thermal conductivity of O 2 is 0.0229 (W / (m · K)), the specific gravity is about 1.1053, and the thermal conductivity of Air is 0.0241 (W / (M · K)) and the specific gravity is 1.
As described above, when the gas having a low thermal conductivity and a large specific gravity is used as the auxiliary gas, for example, when CO 2 and Ar are used as the auxiliary gas, the output of the heat ray sensor 12 is twice that of the reference gas. A value can be obtained, and when Xe is used as an auxiliary gas, the output value of the hot wire sensor 12 can be obtained three times that of the reference gas.

このように、熱伝導率が低く、且つ比重が大きいXe、Kr、CO、Arを補助ガスとして使用すると、熱線センサ12から多くの熱を奪い易くなるので、熱線センサ12の出力値が高くなるのである。
また、N,O,Air(空気)などの基準ガスと比較して比重が大きい補助ガスは、周囲に配置されているプラントなどから振動を受けても流量変動が発生し難い。
As described above, when Xe, Kr, CO 2 , and Ar having a low thermal conductivity and a large specific gravity are used as auxiliary gas, it is easy to take a lot of heat from the heat ray sensor 12, so that the output value of the heat ray sensor 12 is high. It becomes.
In addition, the auxiliary gas having a specific gravity larger than that of the reference gas such as N 2 , O 2 , Air (air), etc., is less likely to cause fluctuations in flow rate even when subjected to vibration from a plant or the like disposed around.

ここで、本発明に係る測定ガス入口が測定ガス導入口4に対応し、本発明に係る測定ガス出口が測定ガス導出口5に対応し、本発明に係る補助ガス流路が第1補助ガス分岐流路9及び第2補助ガス分岐流路10に対応している。
次に、本実施形態の作用効果について説明する。
本実施形態によると、測定ガスの濃度レベルによって選択される基準ガス(N,O,Airなど)と比較して熱伝導率が低く、且つ比重が大きいXe、Kr、CO、Arの少なくとも1種類のガスを補助ガスとして使用すると、測定ガス中の低濃度の酸素を検出する場合であっても熱線センサ12の出力値が高くなるので、測定ガス中の酸素濃度を高感度で測定することができる。
Here, the measurement gas inlet according to the present invention corresponds to the measurement gas inlet 4, the measurement gas outlet according to the present invention corresponds to the measurement gas outlet 5, and the auxiliary gas flow path according to the present invention is the first auxiliary gas. It corresponds to the branch channel 9 and the second auxiliary gas branch channel 10.
Next, the effect of this embodiment is demonstrated.
According to the present embodiment, Xe, Kr, CO 2 , and Ar are low in thermal conductivity and large in specific gravity as compared with a reference gas (N 2 , O 2 , Air, etc.) selected according to the concentration level of the measurement gas. If at least one kind of gas is used as an auxiliary gas, the output value of the heat ray sensor 12 becomes high even when detecting low concentration oxygen in the measurement gas, so the oxygen concentration in the measurement gas is measured with high sensitivity. can do.

また、N,O,Air(空気)などの基準ガスと比較して比重が大きい補助ガスは、周囲に配置されているプラントなどから振動を受けても流量変動が発生し難いので、高精度の測定ガスの酸素濃度を測定することができる。
さらに、酸素濃度の測定感度を上げるために、磁界Mfの領域の磁界強度を大きくし、或いは、検出回路の精度を高めるための機構や装置を使用しておらず、部品点数の増大や装置の大型化を抑制しているので、装置コストの低減化を図ることができる。
In addition, the auxiliary gas having a specific gravity larger than that of the reference gas such as N 2 , O 2 , Air (air), etc., is less likely to generate flow rate fluctuations even when subjected to vibration from a plant or the like disposed around it. It is possible to measure the oxygen concentration of the measurement gas with high accuracy.
Furthermore, in order to increase the measurement sensitivity of the oxygen concentration, the magnetic field strength in the region of the magnetic field Mf is increased, or no mechanism or device for increasing the accuracy of the detection circuit is used. Since the increase in size is suppressed, the cost of the apparatus can be reduced.

1…サンプルセル、2…検出回路、3…サンプル流路、4…測定ガス導入口、5…測定ガス導出口、6…第1補助ガス流入口、7…第2補助ガス流入口、8…補助ガス供給流路、9…第1補助ガス分岐流路、10…第2補助ガス分岐流路、11…バイパス流路、12…熱線センサ DESCRIPTION OF SYMBOLS 1 ... Sample cell, 2 ... Detection circuit, 3 ... Sample flow path, 4 ... Measurement gas inlet, 5 ... Measurement gas outlet, 6 ... 1st auxiliary gas inlet, 7 ... 2nd auxiliary gas inlet, 8 ... Auxiliary gas supply channel, 9 ... first auxiliary gas branch channel, 10 ... second auxiliary gas branch channel, 11 ... bypass channel, 12 ... heat ray sensor

Claims (4)

サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、前記第1補助ガス流入口側の前記補助ガス流路及び前記第2補助ガス流入口側の前記補助ガス流路を連通したバイパス流路と、このバイパス流路に配置した熱線センサと、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記バイパス流路の流量変化を前記熱線センサで検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析方法において、
前記補助ガスとして、前記測定ガスの濃度によって選択される基準ガスと比較して熱伝導率が低く、且つ比重が大きいガスを使用したことを特徴とする磁気式酸素分析方法。
A sample flow path, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample flow path, and a first auxiliary gas flow inlet and a first gas flow path provided opposite to the sample flow path on the measurement gas outlet side 2 auxiliary gas inlets, auxiliary gas passages connected to the first and second auxiliary gas inlets, the auxiliary gas passages on the first auxiliary gas inlet side, and the second auxiliary gas inlet side A bypass passage communicating with the auxiliary gas passage and a heat ray sensor disposed in the bypass passage, supplying the auxiliary gas from an intermediate position of the auxiliary gas passage, and supplying the first auxiliary gas flow In the magnetic oxygen analysis method for calculating the oxygen concentration contained in the measurement gas by detecting a change in the flow rate of the bypass flow path caused by applying a magnetic field to the sample flow path near the inlet with the heat ray sensor. ,
A magnetic oxygen analysis method characterized in that a gas having a low thermal conductivity and a large specific gravity is used as the auxiliary gas as compared with a reference gas selected according to the concentration of the measurement gas.
前記補助ガスを、Xe、Kr、CO、Arのうち少なくとも1種類のガスを含むものとしたことを特徴とする請求項1記載の磁気式酸素分析方法。 The magnetic oxygen analysis method according to claim 1, wherein the auxiliary gas includes at least one kind of gas selected from Xe, Kr, CO 2 and Ar. サンプル流路と、このサンプル流路の両端に形成された測定ガス入口及び測定ガス出口と、前記測定ガス出口側の前記サンプル流路に互いに対向して設けられた第1補助ガス流入口及び第2補助ガス流入口と、前記第1及び第2補助ガス流入口に接続された補助ガス流路と、前記第1補助ガス流入口側の前記補助ガス流路及び前記第2補助ガス流入口側の前記補助ガス流路を連通したバイパス流路と、このバイパス流路に配置した熱線センサと、を備え、前記補助ガス流路の中間位置から前記補助ガスを供給し、前記第1補助ガス流入口の近くの前記サンプル流路に磁界をかけることにより生じる前記バイパス流路の流路の流量変化を前記熱線センサで検出することによって、前記測定ガスに含まれる酸素濃度を演算する磁気式酸素分析計において、
前記補助ガスとして、前記測定ガスの濃度によって選択される基準ガスと比較して熱伝導率が低く、且つ比重が大きいガスを使用したことを特徴とする磁気式酸素分析計。
A sample flow path, a measurement gas inlet and a measurement gas outlet formed at both ends of the sample flow path, and a first auxiliary gas flow inlet and a first gas flow path provided opposite to the sample flow path on the measurement gas outlet side 2 auxiliary gas inlets, auxiliary gas passages connected to the first and second auxiliary gas inlets, the auxiliary gas passages on the first auxiliary gas inlet side, and the second auxiliary gas inlet side A bypass passage communicating with the auxiliary gas passage and a heat ray sensor disposed in the bypass passage, supplying the auxiliary gas from an intermediate position of the auxiliary gas passage, and supplying the first auxiliary gas flow Magnetic oxygen analysis for calculating the oxygen concentration contained in the measurement gas by detecting a change in the flow rate of the bypass channel caused by applying a magnetic field to the sample channel near the inlet by the heat ray sensor In total Stomach,
A magnetic oxygen analyzer characterized in that a gas having a low thermal conductivity and a large specific gravity is used as the auxiliary gas as compared with a reference gas selected according to the concentration of the measurement gas.
前記補助ガスを、Xe、Kr、CO、Arのうち少なくとも1種類のガスを含むものとしたことを特徴とする請求項3記載の磁気式酸素分析計。

The magnetic oxygen analyzer according to claim 3, wherein the auxiliary gas contains at least one kind of gas selected from Xe, Kr, CO 2 and Ar.

JP2013189522A 2013-09-12 2013-09-12 Magnetic oxygen analysis method and magnetic oxygen analyzer Pending JP2015055565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189522A JP2015055565A (en) 2013-09-12 2013-09-12 Magnetic oxygen analysis method and magnetic oxygen analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189522A JP2015055565A (en) 2013-09-12 2013-09-12 Magnetic oxygen analysis method and magnetic oxygen analyzer

Publications (1)

Publication Number Publication Date
JP2015055565A true JP2015055565A (en) 2015-03-23

Family

ID=52820051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189522A Pending JP2015055565A (en) 2013-09-12 2013-09-12 Magnetic oxygen analysis method and magnetic oxygen analyzer

Country Status (1)

Country Link
JP (1) JP2015055565A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131095A (en) * 1977-04-21 1978-11-15 Fuji Electric Co Ltd Oxygen analyzer of magnetic pressure type
JPH07333028A (en) * 1993-11-04 1995-12-22 Semiconductor Energy Lab Co Ltd Measuring apparatus and measuring method
WO2012111368A1 (en) * 2011-02-18 2012-08-23 学校法人 東北学院 Heat conduction-type sensor having influence of temperature and kind of fluid corrected therein, and heat-type flow sensor and heat-type barometric sensor using the heat conduction-type sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131095A (en) * 1977-04-21 1978-11-15 Fuji Electric Co Ltd Oxygen analyzer of magnetic pressure type
JPH07333028A (en) * 1993-11-04 1995-12-22 Semiconductor Energy Lab Co Ltd Measuring apparatus and measuring method
WO2012111368A1 (en) * 2011-02-18 2012-08-23 学校法人 東北学院 Heat conduction-type sensor having influence of temperature and kind of fluid corrected therein, and heat-type flow sensor and heat-type barometric sensor using the heat conduction-type sensor

Similar Documents

Publication Publication Date Title
JP5425902B2 (en) Compound gas flow measuring method and apparatus
US7628080B1 (en) Magnetic flow meter providing quasi-annular flow
JP2007167616A5 (en)
JP5259452B2 (en) Electromagnetic pump discharge measurement method
JP2015055565A (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
JP6318505B2 (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
JP6255916B2 (en) Sensor unit for magnetic oxygen analyzer
JP4493010B2 (en) Flow rate / residual chlorine concentration measuring instrument and tap water flow rate / residual chlorine concentration measurement method
JP6303342B2 (en) Magnetic oxygen analyzer
JP2017026410A (en) Magnetic oxygen analyzer
US3471776A (en) Fluid bridge method and means of detecting gases having magnetic susceptibility
JP4761204B2 (en) Magnetic oxygen measuring method and magnetic oxygen meter
JP6497062B2 (en) Magnetic oxygen analysis method and magnetic oxygen analyzer
WO2004059257A3 (en) A system and method ofmeasuring convection induced impedance gradients to determine liquid flow rates
JP5525808B2 (en) Magnetic pressure oxygen analyzer
JP2021015040A (en) Magnetic oxygen analyzer
JP4756343B2 (en) Magnetic oxygen meter
JP2013205062A (en) Magnetic oxygen analyzer
JPH02103418A (en) Insertion type electromagnetic flowmeter
JP2005207755A (en) Electromagnetic flowmeter
JP5260436B2 (en) Thermal flow meter with diagnostic function
JP2004325098A (en) Magnetic oxygen analyzer
JP2009014422A (en) Analyzer
JP2014149274A (en) Control device and control program
KR101335545B1 (en) Mass flow measurement sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171107