JP2015048981A - Droplet scattering prevention device - Google Patents

Droplet scattering prevention device Download PDF

Info

Publication number
JP2015048981A
JP2015048981A JP2013181004A JP2013181004A JP2015048981A JP 2015048981 A JP2015048981 A JP 2015048981A JP 2013181004 A JP2013181004 A JP 2013181004A JP 2013181004 A JP2013181004 A JP 2013181004A JP 2015048981 A JP2015048981 A JP 2015048981A
Authority
JP
Japan
Prior art keywords
orifice
scattering prevention
pipe
droplet scattering
prevention device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013181004A
Other languages
Japanese (ja)
Inventor
浜田 紀昭
Noriaki Hamada
紀昭 浜田
孝次 難波
Koji Nanba
孝次 難波
純也 永田
Junya Nagata
純也 永田
久恒 眞一
Shinichi Hisatsune
眞一 久恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2013181004A priority Critical patent/JP2015048981A/en
Publication of JP2015048981A publication Critical patent/JP2015048981A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PROBLEM TO BE SOLVED: To provide a droplet scattering prevention device capable of preventing reduction in wall thickness of a pipeline caused by droplet collision in the downstream of an orifice, and reducing reduction in wall thickness as a fail-safe.SOLUTION: Fluid flows in a pipeline 16. An orifice 18 is provided in the pipeline 16, and has a hole 18H through which the fluid flows. A circulation flow suppression part 20 is provided in the pipeline 16 on the downstream side of the orifice 18, and has a hole 20H through which the fluid flows. The circulation flow suppression part 20 is positioned between an end surface OW on the downstream side of the orifice 18, which is perpendicular to the shaft of the pipeline 16, and a surface S1, which is a surface perpendicular to the shaft of the pipeline 16, and on which the diameter of a jet flow 21 of fluid flowing out from the hole 18H of the orifice 18 is maximum.

Description

本発明は、原子力発電プラントにおけるオリフィスの下流にある配管の液滴飛散防止装置に関する。   The present invention relates to a droplet scattering prevention device for piping located downstream of an orifice in a nuclear power plant.

一般的にオリフィスが果たす役割は2つある。   In general, the orifice plays two roles.

一つは、流量計としての役割である。流体が流れている管路にJIS(Japanese Industrial Standards)に従って作成したオリフィス(中央に丸い孔があいた円板)を入れて流れを絞ると、オリフィスの前後に差圧が発生する。   One is the role as a flow meter. When an orifice (a disc with a round hole in the center) created in accordance with JIS (Japanese Industrial Standards) is inserted into a pipe line in which fluid flows, the flow is throttled, and differential pressure is generated before and after the orifice.

この差圧は、流量と一定の関係があるため、ベルヌーイの定理から理論的に求められる。実流体に関しては、実験式によって差圧と流量の関係が与えられ、流量校正なしで流量測定の精度が保証されている。   This differential pressure is theoretically determined from Bernoulli's theorem because it has a certain relationship with the flow rate. For actual fluids, the relationship between differential pressure and flow rate is given by an empirical formula, and the accuracy of flow rate measurement is guaranteed without flow rate calibration.

もう一つは、減圧機構としての役割である。沸騰水型原子力発電プラントの配管系では、炉容器内から復水器までの圧力差が約7MPaあるため、蒸気が復水器に流入する流速は非常に大きくなり、蒸気が復水器に損傷を及ぼす懸念がある。そのため、復水器の上流にオリフィスを設置し圧力を低減させ、復水器に流入する流速の適正化が施されている。   The other is a role as a decompression mechanism. In the piping system of a boiling water nuclear power plant, the pressure difference from the reactor vessel to the condenser is about 7 MPa, so the flow velocity of steam into the condenser becomes very large and the steam is damaged in the condenser. There is a concern. For this reason, an orifice is installed upstream of the condenser to reduce the pressure and optimize the flow velocity flowing into the condenser.

ここで、減圧機構として複数のオリフィスが設けられた蒸気タービンプラントが知られている(例えば、特許文献1参照)。   Here, a steam turbine plant provided with a plurality of orifices as a pressure reducing mechanism is known (see, for example, Patent Document 1).

特開2007−182862号公報JP 2007-182862 A

Masahiro UMEHARA, Shinji EBARA, Hidetoshi HASHIZUME,Analysis of generating mechanism of liquid droplet jet stream at the orifice downstream area,NUTHOS-8: The 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety Shanghai, China, October 10-14, 2010Masahiro UMEHARA, Shinji EBARA, Hidetoshi HASHIZUME, Analysis of generating mechanism of liquid droplet jet stream at the orifice downstream area, NUTHOS-8: The 8th International Topical Meeting on Nuclear Thermal-Hydraulics, Operation and Safety Shanghai, China, October 10-14 , 2010

特許文献1に示すような技術によれば、配管を通る蒸気の圧力を段階的に低減することができる。   According to the technique shown in Patent Document 1, the pressure of the steam passing through the pipe can be reduced stepwise.

しかし、各オリフィスについてみると、オリフィスの下流は負圧であり、オリフィス上流と下流の圧力比が大きい。そのため、流れはオリフィス通過時には音速になり、オリフィスの下流では超音速になる。一般的に、その超音速流れは、配管全体に及ぶのではなく、配管中心あたりに噴流として、強いせん断および衝撃波の形成により独立した流れになることが知られている。   However, regarding each orifice, the downstream of the orifice is a negative pressure, and the pressure ratio between the upstream and downstream of the orifice is large. Therefore, the flow becomes sonic when passing through the orifice and becomes supersonic downstream from the orifice. In general, it is known that the supersonic flow does not reach the entire pipe, but becomes an independent flow due to the formation of strong shear and shock waves as a jet around the center of the pipe.

一方、オリフィスの下流には、噴流の進行方向に対して斜め後方に循環流が形成される。ここで、オリフィスの下流の配管壁面に液膜が存在する場合、循環流により液膜から引きちぎられた液滴が循環流に随伴する(非特許文献1参照)。そのため、循環流に随伴された液滴の衝突により配管が減肉する懸念がある。したがって、液滴衝突による配管減肉の懸念がある場合に、減肉を未然に防止し、フェイルセーフとして減肉を低減する対策を施す必要がある。   On the other hand, a circulating flow is formed downstream of the orifice obliquely rearward with respect to the traveling direction of the jet. Here, when a liquid film is present on the pipe wall surface downstream of the orifice, droplets that are torn off from the liquid film by the circulating flow accompany the circulating flow (see Non-Patent Document 1). Therefore, there is a concern that the pipe may be thinned by the collision of the droplets accompanying the circulation flow. Therefore, when there is a concern about pipe thinning due to droplet collision, it is necessary to take measures to prevent the thinning and reduce the thinning as a fail safe.

本発明は、かかる技術的な課題を解決するためになされたものである。本発明の目的は、オリフィスの下流において液滴衝突による配管の減肉を未然に防止し、フェイルセーフとして減肉を低減することができる液滴飛散防止装置を提供することにある。   The present invention has been made to solve the technical problem. An object of the present invention is to provide a droplet scattering prevention device capable of preventing pipe thinning due to droplet collision downstream of an orifice and reducing the thinning as a fail safe.

上記目的を達成するために、本発明は、流体が流れる配管と、前記配管に設けられ、前記流体が流れる第1の孔を有するオリフィスと、前記オリフィスの下流側の前記配管に設けられ、前記流体が流れる第2の孔を有する循環流抑制部と、を備え、前記循環流抑制部は、前記配管の軸に垂直な前記オリフィスの下流側の端面と、前記配管の軸に垂直な面であって、その面上で前記オリフィスの前記第1の孔から流出する前記流体の噴流の径が最大となる面との間に位置するようにしたものである。   In order to achieve the above object, the present invention is provided in a pipe through which a fluid flows, an orifice provided in the pipe and having a first hole through which the fluid flows, and the pipe downstream of the orifice, A circulation flow suppression portion having a second hole through which the fluid flows, and the circulation flow suppression portion includes an end face on the downstream side of the orifice perpendicular to the axis of the pipe and a plane perpendicular to the axis of the pipe. In this plane, the fluid jets flowing out from the first hole of the orifice are positioned between the plane having the maximum diameter.

本発明によれば、オリフィスの下流において液滴衝突による配管の減肉を未然に防止し、フェイルセーフとして減肉を低減することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, it is possible to prevent the pipe from being thinned by the droplet collision downstream of the orifice, and to reduce the thinning as a fail safe. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の第1の実施形態である液滴飛散防止装置を備えた原子力発電システムの系統図である。1 is a system diagram of a nuclear power generation system including a droplet scattering prevention device according to a first embodiment of the present invention. 本発明の第1の実施形態である液滴飛散防止装置をその軸を含む平面で切断した断面図である。It is sectional drawing which cut | disconnected the droplet scattering prevention apparatus which is the 1st Embodiment of this invention by the plane containing the axis | shaft. 図2Aに示す液滴飛散防止装置をその軸と垂直な平面で切断した断面図である。It is sectional drawing which cut | disconnected the droplet scattering prevention apparatus shown to FIG. 2A by the plane perpendicular | vertical to the axis | shaft. 比較例であるオリフィスをその軸を含む平面で切断した断面図である。It is sectional drawing which cut | disconnected the orifice which is a comparative example by the plane containing the axis | shaft. 図3Aに示すオリフィスをその軸と垂直な平面で切断した断面図である。It is sectional drawing which cut | disconnected the orifice shown to FIG. 3A by the plane perpendicular | vertical to the axis | shaft. 本発明の第2の実施形態である液滴飛散防止装置をその軸を含む平面で切断した断面図である。It is sectional drawing which cut | disconnected the droplet scattering prevention apparatus which is the 2nd Embodiment of this invention by the plane containing the axis | shaft. 図4Aに示す液滴飛散防止装置をその軸と垂直な平面で切断した断面図である。It is sectional drawing which cut | disconnected the droplet scattering prevention apparatus shown to FIG. 4A by the plane perpendicular | vertical to the axis | shaft. 本発明の第3の実施形態である液滴飛散防止装置をその軸を含む平面で切断した断面図である。It is sectional drawing which cut | disconnected the droplet scattering prevention apparatus which is the 3rd Embodiment of this invention by the plane containing the axis | shaft. 図5Aに示す液滴飛散防止装置をその軸と垂直な平面で切断した断面図である。It is sectional drawing which cut | disconnected the droplet scattering prevention apparatus shown to FIG. 5A by the plane perpendicular | vertical to the axis | shaft.

(第1の実施形態)
以下、図1〜図3を用いて、本発明の第1の実施形態である液滴飛散防止装置100Aの構成及び動作を説明する。液滴飛散防止装置100Aは、例えば、原子力発電プラントで用いられる蒸気用配管に設けられたオリフィスの下流において配管璧に付着した液膜から液滴が飛散することを防止する装置である。
(First embodiment)
Hereinafter, the configuration and operation of the droplet scattering prevention apparatus 100A according to the first embodiment of the present invention will be described with reference to FIGS. The droplet scattering prevention device 100A is a device that prevents droplets from scattering from a liquid film adhering to a pipe wall downstream of an orifice provided in a steam pipe used in a nuclear power plant, for example.

最初に、図1を用いて、本発明の第1の実施形態である液滴飛散防止装置100Aを備えた原子力発電システムの全体構成を説明する。図1は、本発明の第1の実施形態である液滴飛散防止装置100Aを備えた原子力発電システムの系統図である。   Initially, the whole structure of the nuclear power generation system provided with the droplet scattering prevention apparatus 100A which is the 1st Embodiment of this invention is demonstrated using FIG. FIG. 1 is a system diagram of a nuclear power generation system including a droplet scattering prevention device 100A according to the first embodiment of the present invention.

本実施形態の原子力発電システムは、炉心1、原子炉容器2、主蒸気系配管3、高圧タービン4、湿分分離器5、低圧タービン6、軸7、発電機8、復水器9、復水ポンプ10、給復水系配管11、給水ポンプ12、給水加熱器13、給水ポンプ駆動用タービン14、抽気系配管15から主に構成されている。   The nuclear power generation system of the present embodiment includes a core 1, a reactor vessel 2, a main steam system piping 3, a high pressure turbine 4, a moisture separator 5, a low pressure turbine 6, a shaft 7, a generator 8, a condenser 9, a condenser 9 It is mainly composed of a water pump 10, a feed and condensate system pipe 11, a feed water pump 12, a feed water heater 13, a feed water pump driving turbine 14, and an extraction system pipe 15.

炉心1は、原子炉容器2内に収納された核分裂性物質を含む。主蒸気系配管3は、原子炉容器2から流出した蒸気を高圧タービン4及び低圧タービン6に送る。給復水系配管11は、仕事を終えた蒸気が復水器9にて凝縮された水を原子炉容器2に送る。   The core 1 contains a fissile material stored in a nuclear reactor vessel 2. The main steam system pipe 3 sends the steam flowing out from the reactor vessel 2 to the high pressure turbine 4 and the low pressure turbine 6. The feed water condensate system pipe 11 sends water in which the steam that has finished work is condensed in the condenser 9 to the reactor vessel 2.

発電機8は、高圧タービン4および低圧タービン6の軸7に連結される。復水ポンプ10、給水ポンプ12及び給水加熱器13は、復水器9の下流側で給復水系配管11に連結される。高圧タービン4と低圧タービン6の間にある湿分分離器5は、蒸気を給水ポンプ駆動用タービン14と給水加熱器13へ送る。   The generator 8 is connected to the shaft 7 of the high pressure turbine 4 and the low pressure turbine 6. The condensate pump 10, the feed water pump 12 and the feed water heater 13 are connected to the feed condensate system pipe 11 on the downstream side of the condenser 9. The moisture separator 5 between the high-pressure turbine 4 and the low-pressure turbine 6 sends steam to the feed water pump drive turbine 14 and the feed water heater 13.

本実施形態の原子力発電システムは、炉心1にて加熱された蒸気を、主蒸気系配管3に供給し、この蒸気を高圧タービン4及び低圧タービン6に導いて、発電機8により発電を行う。仕事に使用された蒸気は、復水器9で凝縮されて水となり、その後、給水ポンプ12及び給水加熱器13を通ってそれぞれ加熱及び昇圧され、給水される。   In the nuclear power generation system of the present embodiment, the steam heated in the core 1 is supplied to the main steam system pipe 3, the steam is guided to the high-pressure turbine 4 and the low-pressure turbine 6, and power is generated by the generator 8. The steam used for work is condensed in the condenser 9 to become water, and then heated and pressurized through the feed water pump 12 and the feed water heater 13 to be supplied.

高圧タービン4と低圧タービン6の間にある湿分分離器5から抽気された蒸気は給水ポンプ駆動用タービン14で仕事をし、給水ポンプ12を回転させる。その後、蒸気は復水器9に送られ水に戻される。また、その給水ポンプ駆動用タービン14の軸封部でも、シール部からケーシング外への漏洩を防ぐために、蒸気を復水器9に送り水に戻す。   The steam extracted from the moisture separator 5 between the high pressure turbine 4 and the low pressure turbine 6 works in the feed water pump drive turbine 14 and rotates the feed water pump 12. Thereafter, the steam is sent to the condenser 9 and returned to the water. Further, in the shaft seal portion of the feed water pump driving turbine 14, the steam is sent back to the condenser 9 and returned to the water in order to prevent leakage from the seal portion to the outside of the casing.

以上説明した原子力発電システムにおいて、本発明の第1の実施形態である液滴飛散防止装置100Aは、例えば、復水器9に接続される主蒸気系配管3および抽気系配管15に設けられる。   In the nuclear power generation system described above, the droplet scattering prevention device 100A according to the first embodiment of the present invention is provided, for example, in the main steam system pipe 3 and the extraction system pipe 15 connected to the condenser 9.

次に、図2(2A、2B)を用いて、本発明の第1の実施形態である液滴飛散防止装置100Aの構成を説明する。図2Aは、本発明の第1の実施形態である液滴飛散防止装置100Aをその軸を含む平面で切断した断面図である。図2Bは、図2Aに示す液滴飛散防止装置100Aをその軸と垂直な平面で切断した断面図である。なお、図2Aの例では、蒸気の主流17は、右方向(y軸方向)へ流れている。   Next, the configuration of the droplet scattering prevention apparatus 100A according to the first embodiment of the present invention will be described with reference to FIG. 2 (2A, 2B). FIG. 2A is a cross-sectional view of the droplet scattering prevention apparatus 100A according to the first embodiment of the present invention cut along a plane including its axis. 2B is a cross-sectional view of the droplet scattering prevention apparatus 100A shown in FIG. 2A cut along a plane perpendicular to the axis thereof. In the example of FIG. 2A, the main steam flow 17 flows in the right direction (y-axis direction).

本実施形態のオリフィス18の下流部の配管構造を図2(2A、2B)に示す。図2A及び図2Bに示すように、オリフィス18の下流の配管16の流路内に、配管16の周方向に循環流抑制機構20(循環流抑制部)を設置する。   FIG. 2 (2A, 2B) shows the piping structure downstream of the orifice 18 of the present embodiment. As shown in FIGS. 2A and 2B, a circulation flow suppression mechanism 20 (circulation flow suppression unit) is installed in the circumferential direction of the pipe 16 in the flow path of the pipe 16 downstream of the orifice 18.

循環流抑制機構20は、噴流の広がり22が径方向に一番大きい位置と、流れ方向と垂直なオリフィスの下流側の壁面OWとの間の位置にある。   The circulating flow suppression mechanism 20 is located between the position where the jet spread 22 is the largest in the radial direction and the wall surface OW on the downstream side of the orifice perpendicular to the flow direction.

換言すれば、循環流抑制機構20は、配管16の軸に垂直なオリフィス18の下流側の端面OWと、配管16の軸に垂直な面であって、その面上でオリフィス18の孔18Hから流出する噴流21の径が最大となる面S1との間に位置する。   In other words, the circulating flow suppressing mechanism 20 is a downstream end face OW of the orifice 18 perpendicular to the axis of the pipe 16 and a plane perpendicular to the axis of the pipe 16, and on the surface from the hole 18H of the orifice 18. It is located between the surface S1 where the diameter of the jet 21 flowing out is the maximum.

ここで、循環流抑制機構20は、円環状であり、配管16の軸に垂直な面S2と配管16の内周面16Wとの交線上に設けられる。なお、面S1、面S2及びオリフィス18の端面OWは平行である。面S1と面S2の距離は、所定の閾値以下である。図2Aの例では、面S1が面S2に重なっている。   Here, the circulation flow suppression mechanism 20 is annular, and is provided on the intersection line between the surface S2 perpendicular to the axis of the pipe 16 and the inner peripheral surface 16W of the pipe 16. The surface S1, the surface S2, and the end surface OW of the orifice 18 are parallel. The distance between the surface S1 and the surface S2 is not more than a predetermined threshold value. In the example of FIG. 2A, the surface S1 overlaps the surface S2.

また、循環流抑制機構20は、オリフィス18下流から流出する噴流21と配管壁面16Wとの間に位置する。   The circulation flow suppression mechanism 20 is located between the jet 21 flowing out from the downstream of the orifice 18 and the pipe wall surface 16W.

換言すれば、循環流抑制機構20の孔20Hの径は、噴流21の径の最大値より大きい。   In other words, the diameter of the hole 20 </ b> H of the circulation flow suppression mechanism 20 is larger than the maximum value of the diameter of the jet 21.

さらに、循環流抑制機構20の孔20Hの径は、オリフィス18の孔18Hの径よりも大きい。循環抑制機構20、オリフィス18及び配管16は、同軸である。   Further, the diameter of the hole 20H of the circulation flow suppressing mechanism 20 is larger than the diameter of the hole 18H of the orifice 18. The circulation suppression mechanism 20, the orifice 18 and the pipe 16 are coaxial.

このように循環抑制機構20を設けることで液膜19から液滴を飛散させる循環流を抑制することができる。   By providing the circulation suppressing mechanism 20 in this way, it is possible to suppress a circulating flow that causes droplets to scatter from the liquid film 19.

以上説明したように、本実施形態によれば、液膜19から液滴を飛散させる循環流を抑制することで、液滴衝突による配管減肉を未然に防止し、フェイルセーフとして減肉を低減することができる。   As described above, according to this embodiment, by suppressing the circulation flow that scatters droplets from the liquid film 19, pipe thinning due to droplet collision is prevented in advance, and the thinning is reduced as a fail safe. can do.

(比較例)
次に、図3(3A、3B)を用いて、循環流抑制機構20がないオリフィス18を比較例として説明する。
(Comparative example)
Next, referring to FIG. 3 (3A, 3B), an orifice 18 without the circulation flow suppressing mechanism 20 will be described as a comparative example.

図3Aは、比較例であるオリフィス18をその軸を含む平面で切断した断面図である。図3Bは、図3Aに示すオリフィス18をその軸と垂直な平面で切断した断面図である。   FIG. 3A is a cross-sectional view of the orifice 18 as a comparative example cut along a plane including its axis. 3B is a cross-sectional view of the orifice 18 shown in FIG. 3A cut along a plane perpendicular to its axis.

図3Aに示すように、オリフィス18付近の配管16内では、オリフィス18の上流と下流の圧力比が大きいので、配管中心あたりに強いせん断および衝撃波の形成により独立した噴流21が発生する。   As shown in FIG. 3A, since the pressure ratio between the upstream and downstream of the orifice 18 is large in the pipe 16 near the orifice 18, an independent jet 21 is generated around the pipe center due to strong shear and shock wave formation.

一方、オリフィス18の下流の配管壁面側における壁面16Wの近傍では、矢印25aで示すように噴流21と逆に流れ、オリフィス18と配管16で構成される隅でリターンし、矢印25bで示すように噴流21と同じ方向に噴流21の外側で噴流21に沿うような循環流25が形成され、配管壁面16Wに再付着する。   On the other hand, in the vicinity of the wall surface 16W on the pipe wall surface downstream of the orifice 18, it flows in the direction opposite to the jet 21 as indicated by the arrow 25a, returns at the corner constituted by the orifice 18 and the pipe 16, and as indicated by the arrow 25b. A circulating flow 25 is formed outside the jet 21 along the jet 21 in the same direction as the jet 21 and reattaches to the pipe wall surface 16W.

オリフィス18の下流の配管壁面16Wに液膜19が存在する場合、循環流25により液膜19から引きちぎられた液滴24が循環流25に随伴する。オリフィス18の下流近傍で噴流21の広がり22(噴流の径)が大きいと、配管16の壁面16Wと噴流21との間が狭くなり、オリフィス18と配管16で構成される隅近傍で循環流25が小さく強い。配管壁面16Wの一定の位置で循環流25が再付着するため、循環流25に随伴された液滴24の衝突により配管16が減肉する懸念がある。   When the liquid film 19 exists on the pipe wall surface 16 </ b> W downstream of the orifice 18, the droplets 24 that are torn off from the liquid film 19 by the circulation flow 25 accompany the circulation flow 25. When the spread 22 (jet diameter) of the jet 21 is large in the vicinity of the downstream of the orifice 18, the space between the wall surface 16 </ b> W of the pipe 16 and the jet 21 is narrowed, and the circulating flow 25 is near the corner formed by the orifice 18 and the pipe 16. Is small and strong. Since the circulating flow 25 is reattached at a fixed position on the piping wall surface 16W, there is a concern that the piping 16 may be thinned by the collision of the droplets 24 accompanying the circulating flow 25.

これに対し、前述した第1の実施形態である液滴飛散防止装置100Aによれば、このような循環流25を抑制することができる。   On the other hand, according to the droplet scattering prevention device 100A according to the first embodiment described above, such a circulating flow 25 can be suppressed.

(第2の実施形態)
次に、図4(4A、4B)を用いて、本発明の第2の実施形態である液滴飛散防止装置100Bの構成及び動作を説明する。
(Second Embodiment)
Next, the configuration and operation of the droplet scattering prevention device 100B according to the second embodiment of the present invention will be described with reference to FIG. 4 (4A, 4B).

図4Aは、本発明の第2の実施形態である液滴飛散防止装置100Bをその軸を含む平面で切断した断面図である。図4Bは、図4Aに示す液滴飛散防止装置100Bをその軸と垂直な平面で切断した断面図である。なお、図4(4A、4B)において、図2(2A、2B)と同一部分には同一符号を付す。   FIG. 4A is a cross-sectional view of the droplet scattering prevention device 100B according to the second embodiment of the present invention cut along a plane including its axis. FIG. 4B is a cross-sectional view of the droplet scattering prevention device 100B shown in FIG. 4A cut along a plane perpendicular to its axis. In FIG. 4 (4A, 4B), the same parts as those in FIG. 2 (2A, 2B) are denoted by the same reference numerals.

図4では、図2と比較して、循環流抑制機構20は、配管16の軸方向に貫通し、配管16に付着した液膜19(液体)が通る間隙23(孔)を備えている点が異なる。図4Bの例では、4個の間隙23(23〜23)は、円環状の循環流抑制機構20の外周部(配管の内周面に隣接する部分)に周方向に一定間隔で形成される。 In FIG. 4, compared with FIG. 2, the circulation flow suppression mechanism 20 includes a gap 23 (hole) that penetrates in the axial direction of the pipe 16 and through which the liquid film 19 (liquid) attached to the pipe 16 passes. Is different. In the example of FIG. 4B, the four gaps 23 (23 1 to 23 4 ) are formed at regular intervals in the circumferential direction on the outer peripheral portion (portion adjacent to the inner peripheral surface of the pipe) of the annular circulation flow suppressing mechanism 20. Is done.

図4Aに示すように、噴流21の断熱膨張により、オリフィス18下流で、温度が低下し、湿り蒸気から水分が抽出される場合がある。抽出された水分はオリフィス18と循環流抑制機構20までの配管16の空間に液膜19として溜ると考えられる。液膜19の量が多くなると、オリフィス18から流出した噴流21によって吹き飛ばれ、液滴24となって飛散する懸念がある。   As shown in FIG. 4A, due to the adiabatic expansion of the jet 21, the temperature may decrease downstream of the orifice 18, and moisture may be extracted from the wet steam. It is considered that the extracted water is accumulated as a liquid film 19 in the space of the pipe 16 to the orifice 18 and the circulation flow suppressing mechanism 20. When the amount of the liquid film 19 is increased, there is a concern that the liquid film 19 is blown off by the jet flow 21 flowing out from the orifice 18 and scattered as droplets 24.

オリフィス18と循環流抑制機構20までの配管16の空間で流れがよどむため、循環流抑制機構20の下流よりオリフィス18と循環流抑制機構20までの配管16の空間のほうが、圧力が高くなると考えられる。循環流抑制機構20に液膜19を通す間隙23が構成されることよって、間隙23から空間に溜まる液膜19を除去できる効果が得られる。   Since the flow stagnates in the space of the piping 16 to the orifice 18 and the circulation flow suppression mechanism 20, it is considered that the pressure is higher in the space of the piping 16 to the orifice 18 and the circulation flow suppression mechanism 20 than the downstream of the circulation flow suppression mechanism 20. It is done. By forming the gap 23 through which the liquid film 19 is passed through the circulation flow suppressing mechanism 20, the effect of removing the liquid film 19 accumulated in the space from the gap 23 can be obtained.

以上説明したように、本実施形態によれば、液膜19から液滴24を飛散させる循環流25を抑制することで、液滴衝突による配管減肉を未然に防止し、フェイルセーフとして減肉を低減することができる。また、オリフィス18の下流側の壁面OWと循環流抑制機構20の間の空間に液膜19が溜まらない。これにより、配管減肉の原因となる液滴24の発生源をなくすことができる。   As described above, according to the present embodiment, by suppressing the circulation flow 25 that scatters the droplets 24 from the liquid film 19, pipe thinning due to droplet collision is prevented in advance, and the thickness is reduced as fail-safe. Can be reduced. Further, the liquid film 19 does not accumulate in the space between the wall surface OW on the downstream side of the orifice 18 and the circulation flow suppressing mechanism 20. Thereby, the generation source of the droplet 24 which causes pipe thinning can be eliminated.

(第3の実施形態)
次に、図5(5A、5B)を用いて、本発明の第3の実施形態である液滴飛散防止装置100Cの構成及び動作を説明する。
(Third embodiment)
Next, with reference to FIGS. 5 (5A, 5B), the configuration and operation of the droplet scattering prevention apparatus 100C according to the third embodiment of the present invention will be described.

図5Aは、本発明の第3の実施形態である液滴飛散防止装置100Cをその軸を含む平面で切断した断面図である。図5Bは、図5Aに示す液滴飛散防止装置100Cをその軸と垂直な平面で切断した断面図である。なお、図5(5A、5B)において、図2(2A、2B)と同一部分には同一符号を付す。   FIG. 5A is a cross-sectional view of a droplet scattering prevention apparatus 100C according to a third embodiment of the present invention cut along a plane including its axis. FIG. 5B is a cross-sectional view of the droplet scattering prevention device 100C shown in FIG. 5A cut along a plane perpendicular to its axis. In FIG. 5 (5A, 5B), the same parts as those in FIG. 2 (2A, 2B) are denoted by the same reference numerals.

本実施形態のオリフィス18の下流部の配管構造を図5(5A、5B)に示す。図5Aに示すように、オリフィス18と循環流抑制機構20までの配管16の空間を配管の部材26(接続部)で構成する。   FIG. 5 (5A, 5B) shows the piping structure downstream of the orifice 18 of the present embodiment. As shown in FIG. 5A, the space of the pipe 16 to the orifice 18 and the circulation flow suppressing mechanism 20 is constituted by a pipe member 26 (connecting portion).

ここで、配管の部材26は、オリフィス18の孔18Hと循環流抑制機構20の孔20Hを接続する円錐状の面26Sを有する。   Here, the piping member 26 has a conical surface 26 </ b> S that connects the hole 18 </ b> H of the orifice 18 and the hole 20 </ b> H of the circulation flow suppressing mechanism 20.

このような部材26によれば、循環流25を低減することが可能になり、液膜19から飛散した液滴24が循環流25に随伴し、壁面16Wに液滴が衝突することによる減肉を未然に防止し、フェイルセーフとして減肉を低減できる。   According to such a member 26, it becomes possible to reduce the circulating flow 25, and the droplet 24 scattered from the liquid film 19 is accompanied by the circulating flow 25, and the thickness is reduced by the collision of the droplet with the wall surface 16W. Can be prevented, and the thickness reduction can be reduced as fail-safe.

以上説明したように、本実施形態によれば、液膜19から液滴24を飛散させる循環流25を抑制することで、液滴衝突による配管減肉を未然に防止し、フェイルセーフとして減肉を低減することができる。また、オリフィス18の下流の配管璧16Wに液膜が付着することを抑制することができる。   As described above, according to the present embodiment, by suppressing the circulation flow 25 that scatters the droplets 24 from the liquid film 19, pipe thinning due to droplet collision is prevented in advance, and the thickness is reduced as fail-safe. Can be reduced. Further, it is possible to suppress the liquid film from adhering to the pipe wall 16W downstream of the orifice 18.

本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

例えば、第3の実施形態である液滴飛散防止装置100Cに用いられる部材26では、オリフィス18の壁面OW(端面)と、配管壁面16Wと、循環流抑制機構20の端面と円錐状の面26Sで囲まれる領域が埋められているが、埋められていなくてもよい。つまり、部材26は、円錐状の面26Sのみから構成されていてもよい。   For example, in the member 26 used in the droplet scattering prevention apparatus 100C according to the third embodiment, the wall surface OW (end surface) of the orifice 18, the pipe wall surface 16W, the end surface of the circulation flow suppressing mechanism 20, and the conical surface 26S. The area surrounded by is filled, but it does not have to be filled. That is, the member 26 may be composed only of the conical surface 26S.

1…炉心
2…原子炉容器
3…主蒸気系配管
4…高圧タービン
5…湿分分離器
6…低圧タービン
7…軸
8…発電機
9…復水器
10…復水ポンプ
11…給復水系配管
12…給水ポンプ
13…給水加熱器
14…給水ポンプ駆動用タービン
15…抽出系配管
16…配管
17…主流
18…オリフィス
19…液膜
20…循環流抑制機構(循環流抑制部)
21…噴流
22…噴流の配管径方向の広がり
23…間隙(孔)
24…液滴
25…循環流
26…配管部材(接続部)
DESCRIPTION OF SYMBOLS 1 ... Core 2 ... Reactor vessel 3 ... Main steam system piping 4 ... High pressure turbine 5 ... Moisture separator 6 ... Low pressure turbine 7 ... Shaft 8 ... Generator 9 ... Condenser 10 ... Condensate pump 11 ... Supply condensate system Pipe 12 ... Feed pump 13 ... Feed heater 14 ... Feed pump driving turbine 15 ... Extraction system pipe 16 ... Pipe 17 ... Main flow 18 ... Orifice 19 ... Liquid film 20 ... Circulation flow suppression mechanism (circulation flow suppression unit)
21 ... Jet 22 ... Pipe radial spread 23 ... Gap (hole)
24 ... Droplet 25 ... Circulating flow 26 ... Piping member (connection part)

Claims (7)

流体が流れる配管と、
前記配管に設けられ、前記流体が流れる第1の孔を有するオリフィスと、
前記オリフィスの下流側の前記配管に設けられ、前記流体が流れる第2の孔を有する循環流抑制部と、を備え、
前記循環流抑制部は、
前記配管の軸に垂直な前記オリフィスの下流側の端面と、
前記配管の軸に垂直な面であって、その面上で前記オリフィスの前記第1の孔から流出する前記流体の噴流の径が最大となる第1の面との間に位置する
ことを特徴とする液滴飛散防止装置。
Piping through which fluid flows;
An orifice provided in the pipe and having a first hole through which the fluid flows;
A circulation flow suppression unit provided in the pipe on the downstream side of the orifice, and having a second hole through which the fluid flows,
The circulating flow suppression unit is
An end face on the downstream side of the orifice perpendicular to the axis of the pipe;
It is a surface perpendicular to the axis of the piping, and is located between the first surface where the diameter of the jet of the fluid flowing out from the first hole of the orifice is the maximum on the surface. Droplet scattering prevention device.
請求項1に記載の液滴飛散防止装置であって、
前記循環流抑制部は、
円環状であり、前記配管の軸に垂直な第2の面と前記配管の内周面との交線上に設けられる
ことを特徴とする液滴飛散防止装置。
The droplet scattering prevention device according to claim 1,
The circulating flow suppression unit is
A droplet scattering prevention device, wherein the droplet scattering prevention device is provided on a line of intersection between a second surface perpendicular to the axis of the pipe and an inner peripheral surface of the pipe.
請求項2に記載の液滴飛散防止装置であって、
前記循環流抑制部の前記第2の孔の径は、前記噴流の径の最大値より大きい
ことを特徴とする液滴飛散防止装置。
The droplet scattering prevention device according to claim 2,
The diameter of the said 2nd hole of the said circulation flow control part is larger than the maximum value of the diameter of the said jet flow. The droplet scattering prevention apparatus characterized by the above-mentioned.
請求項3に記載の液滴飛散防止装置であって、
前記循環流抑制部の前記第2の孔の径は、前記オリフィスの前記第1の孔の径よりも大きい
ことを特徴とする液滴飛散防止装置。
The droplet scattering prevention device according to claim 3,
The diameter of the 2nd hole of the said circulation flow control part is larger than the diameter of the said 1st hole of the said orifice. The droplet scattering prevention apparatus characterized by the above-mentioned.
請求項1に記載の液滴飛散防止装置であって、
前記循環流抑制部は、
前記配管の軸方向に貫通し、前記配管に付着した液体が通る第3の孔を有する
ことを特徴とする液滴飛散防止装置。
The droplet scattering prevention device according to claim 1,
The circulating flow suppression unit is
A droplet scattering prevention device characterized by having a third hole that penetrates in the axial direction of the pipe and through which the liquid attached to the pipe passes.
請求項5に記載の液滴飛散防止装置であって、
前記第3の孔は、
前記循環流抑制部の外周部に形成される
ことを特徴とする液滴飛散防止装置。
The droplet scattering prevention device according to claim 5,
The third hole is
It is formed in the outer peripheral part of the said circulation flow control part. The droplet scattering prevention apparatus characterized by the above-mentioned.
請求項1に記載の液滴飛散防止装置であって、
前記オリフィスの前記第1の孔と前記循環流抑制部の前記第2の孔を接続する円錐状の面を有する接続部をさらに備えることを特徴とする液滴飛散防止装置。
The droplet scattering prevention device according to claim 1,
The droplet scattering prevention device, further comprising: a connecting portion having a conical surface connecting the first hole of the orifice and the second hole of the circulation flow suppressing portion.
JP2013181004A 2013-09-02 2013-09-02 Droplet scattering prevention device Pending JP2015048981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013181004A JP2015048981A (en) 2013-09-02 2013-09-02 Droplet scattering prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013181004A JP2015048981A (en) 2013-09-02 2013-09-02 Droplet scattering prevention device

Publications (1)

Publication Number Publication Date
JP2015048981A true JP2015048981A (en) 2015-03-16

Family

ID=52699155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013181004A Pending JP2015048981A (en) 2013-09-02 2013-09-02 Droplet scattering prevention device

Country Status (1)

Country Link
JP (1) JP2015048981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408026B2 (en) 2013-08-23 2019-09-10 Chevron U.S.A. Inc. System, apparatus, and method for well deliquification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10408026B2 (en) 2013-08-23 2019-09-10 Chevron U.S.A. Inc. System, apparatus, and method for well deliquification

Similar Documents

Publication Publication Date Title
US8297540B1 (en) Reverse-flow nozzle for generating cavitating or pulsed jets
JP2011202601A (en) Rotor oscillation preventing structure and steam turbine using the same
TW201906665A (en) Air bubble generation apparatus
FR3014478B1 (en) AIRCRAFT TURBOMACHINE ASSEMBLY COMPRISING A FLUID CIRCULATION DEVICE WITH IMPROVED DESIGN WITH RESPECT TO LEAKAGE HAZARDS
JP2015048981A (en) Droplet scattering prevention device
JP2008023515A (en) Microbubble generator
CN105164377A (en) Device for washing a turbmachine air intake casing
GB2530216A (en) A seal assembly
JP2013155725A (en) Steam turbine and stationary blade of steam turbine
KR101100801B1 (en) Hydrodynamic cavitation apparatus
Srinivasarao et al. Effect of co-flow on near field shock structure
JP2010270900A (en) Valve device
WO2018147013A1 (en) Steam turbine
CN203431406U (en) Restriction orifice
JP5524392B2 (en) Valve device
JP2014029214A (en) Valve device
RU2489597C1 (en) Device for improvement of operating stability of radial-axial hydraulic turbine
CN105626581A (en) Stress application centrifugal pump with pressurization hole
JP4933104B2 (en) Submerged water jet injection device and cavitation erasing device used therefor
JP2015511168A5 (en)
CN112138888B (en) Jet cavitation generator
JP5776801B2 (en) Fixed swirler, bubble generating device and bath water heater using the fixed swirler
JP2009209986A (en) Vapor jet inhibiting device for high-temperature pipe
Hwang et al. A study on the cause analysis for the wall thinning and leakage in small bore piping downstream of orifice
CN104069966A (en) Internal-slot layered type purging nozzle for compressed air