JP2015048919A - Drive control device for electromagnetic valve - Google Patents

Drive control device for electromagnetic valve Download PDF

Info

Publication number
JP2015048919A
JP2015048919A JP2013182041A JP2013182041A JP2015048919A JP 2015048919 A JP2015048919 A JP 2015048919A JP 2013182041 A JP2013182041 A JP 2013182041A JP 2013182041 A JP2013182041 A JP 2013182041A JP 2015048919 A JP2015048919 A JP 2015048919A
Authority
JP
Japan
Prior art keywords
valve
time
valve closing
valve opening
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013182041A
Other languages
Japanese (ja)
Other versions
JP6092740B2 (en
Inventor
泰正 貝谷
Yasumasa Kaitani
泰正 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013182041A priority Critical patent/JP6092740B2/en
Publication of JP2015048919A publication Critical patent/JP2015048919A/en
Application granted granted Critical
Publication of JP6092740B2 publication Critical patent/JP6092740B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a drive control device for an electromagnetic valve capable of improving control accuracy during an actual valve opening period of an electromagnetic valve by acquiring the actual valve opening period of the electromagnetic valve correctly.SOLUTION: Valve closing timing tCL of a fuel injection valve is detected, valve opening timing tOP is estimated based on the valve closing timing tCL, and a valve opening command signal SDCTL of the fuel injection valve is output based on the valve opening timing tOP. A time point when the valve opening command signal SDCTL is turned off, that is valve closing operation time Toff corresponding to the time from valve closing command timing tIE to the valve closing timing tCL, is calculated, and the valve opening timing tOP of the fuel injection valve is estimated based on valve opening command time Ti at which the valve closing operation time Toff takes a peak value ToffP, the valve closing operation time Toff and transfer time ΔT required for the transfer from a valve opening state to a closed state by an energization force of a second spring for energizing a valve body in a valve closing direction.

Description

本発明は、電磁弁の駆動制御装置に関し、特に内燃機関に装着される燃料噴射弁や排気還流制御弁などのように流体の流量を制御する電磁弁の開閉制御を行う装置に関する。   The present invention relates to a drive control device for a solenoid valve, and more particularly to a device that controls opening and closing of a solenoid valve that controls the flow rate of a fluid, such as a fuel injection valve and an exhaust gas recirculation control valve mounted on an internal combustion engine.

特許文献1には、電磁弁の駆動電流波形に基づいて電磁弁の実開弁時期を検出するとともに、駆動電圧波形に基づいて電磁弁の実閉弁時期を検出する電磁弁制御装置が示されている。この装置によれば、電流波形の変曲点が実開弁時期として検出され、電圧波形の変曲点が実閉弁時期として検出される。   Patent Document 1 discloses an electromagnetic valve control device that detects an actual opening timing of an electromagnetic valve based on a driving current waveform of the electromagnetic valve and detects an actual closing timing of the electromagnetic valve based on a driving voltage waveform. ing. According to this device, the inflection point of the current waveform is detected as the actual valve opening timing, and the inflection point of the voltage waveform is detected as the actual valve closing timing.

特開平6−174139号公報JP-A-6-174139

上記従来の装置の手法を用いて実開弁時期を検出すると以下のような課題があり、図10はその課題を説明するために示す波形図である。図10には、燃料噴射弁の駆動電流波形ID(実線)及び駆動電流波形の2次微分波形IDD(破線)が示されており、2次微分波形IDDが極大値または極小値となるタイミングが、駆動電流波形IDの変曲点に相当する。なお、図10に示すSDCTLは駆動制御信号、LFTは弁体のリフト量である。   When the actual valve opening timing is detected using the method of the above-described conventional apparatus, there are the following problems, and FIG. 10 is a waveform diagram shown for explaining the problem. FIG. 10 shows the drive current waveform ID (solid line) of the fuel injection valve and the secondary differential waveform IDD (broken line) of the drive current waveform, and the timing at which the secondary differential waveform IDD becomes the maximum value or the minimum value is shown. This corresponds to the inflection point of the drive current waveform ID. Note that SDCTL shown in FIG. 10 is a drive control signal, and LFT is a lift amount of the valve body.

図10に示すように、駆動電流が増加していく過程では、開弁時期に相当する変曲点P1と比較近いタイミングで、駆動電流の増加に伴う磁気飽和に起因する変曲点P2が現れる場合があり、変曲点P1を正確に検出できないことがある。また、開弁に必要な駆動電流が早期に得られ、開弁時期の直後に通電を終了する場合には、通電終了による変曲点P3によって、変曲点P1が正確に検出できないおそれがある。   As shown in FIG. 10, in the process of increasing the drive current, an inflection point P2 due to magnetic saturation accompanying the increase in drive current appears at a timing close to the inflection point P1 corresponding to the valve opening timing. In some cases, the inflection point P1 may not be detected accurately. In addition, when the drive current necessary for opening the valve is obtained early and energization is terminated immediately after the valve opening timing, the inflection point P1 may not be accurately detected by the inflection point P3 due to the end of energization. .

本発明はこの課題を解決するためになされたものであり、電磁弁の実際の開弁時期をより正確に求めて、電磁弁の実開弁時間の制御精度を向上させることができる電磁弁の駆動制御装置を提供することを目的とする。   The present invention has been made to solve this problem. An electromagnetic valve that can more accurately determine the actual opening timing of the solenoid valve and improve the control accuracy of the actual opening time of the solenoid valve. An object is to provide a drive control device.

上記目的を達成するため請求項1に記載の発明は、流体の流量を制御する電磁弁(2)の駆動制御装置において、前記電磁弁の閉弁時期(tCL)を取得する閉弁時期取得手段と、前記閉弁時期取得手段により取得される閉弁時期(tCL)に基づいて、前記電磁弁の開弁時期(tOP)を推定する開弁時期推定手段と、前記開弁時期推定手段により推定された開弁時期(tOP)に基づいて前記電磁弁の駆動を制御する駆動信号(SDCTL)を出力する制御手段とを備え、前記開弁時期推定手段は、前記駆動信号をオフした時点(tIE)から前記閉弁時期(tCL)までの時間に相当する閉弁作動時間(Toff)を算出する閉弁作動時間算出手段を有し、該閉弁作動時間(Toff)がピーク値(ToffP)をとるときの前記駆動信号の継続時間(TiC)と、前記閉弁作動時間(Toff)と、前記電磁弁の弁体を閉弁方向に付勢するばね(40)の力による開弁状態から閉弁状態への移行に要する移行時間(ΔT)とに基づいて前記電磁弁の開弁時期(tOP)を推定することを特徴とする。   In order to achieve the above object, according to a first aspect of the present invention, there is provided a valve closing timing acquisition means for acquiring a valve closing timing (tCL) of the solenoid valve in a drive control device for the solenoid valve (2) for controlling the flow rate of fluid. And an opening timing estimating means for estimating the opening timing (tOP) of the solenoid valve based on the closing timing (tCL) acquired by the closing timing acquisition means, and the estimation by the opening timing estimation means Control means for outputting a drive signal (SDCTL) for controlling the drive of the electromagnetic valve based on the valve opening timing (tOP), and the valve opening timing estimation means is a time point (tIE) when the drive signal is turned off. ) To the valve closing timing (tCL), the valve closing operation time calculation means for calculating the valve closing operation time (Toff) corresponding to the time from the valve closing timing (tCL). The drive when taking Transition from a valve-open state to a valve-closed state by the force of the spring (40) that urges the valve body of the solenoid valve in the valve-closing direction and the valve closing operation time (Toff) The opening time (tOP) of the electromagnetic valve is estimated based on the transition time (ΔT) required for the operation.

この構成によれば、電磁弁の閉弁時期が取得され、取得される閉弁時期に基づいて、電磁弁の開弁時期が推定され、推定された開弁時期に基づいて電磁弁の駆動を制御する駆動信号が出力される。具体的には、駆動信号をオフした時点から閉弁時期までの時間に相当する閉弁作動時間が算出され、閉弁作動時間がピーク値をとるときの駆動信号の継続時間と、閉弁作動時間と、電磁弁の弁体を閉弁方向に付勢するばねの力による開弁状態から閉弁状態への移行に要する移行時間とに基づいて電磁弁の開弁時期が推定される。閉弁作動時間がピーク値をとるときは、電磁弁の弁体が最大リフト位置に到達し、かつ最大リフト位置における跳ね返り(バウンス動作)が無い状態に対応するため、上記移行時間を予め算出しておくことができる。したがって、駆動信号の継続時間、閉弁作動時間、及び移行時間を用いることによって、弁体が最大リフト位置に到達するタイミングを実開弁時期として算出することができる。その結果、電磁弁の正確な実開弁時間(取得される閉弁時期−推定される実開弁時期)が得られ、得られた実開弁時間に応じて駆動信号を補正することにより、実開弁時間の制御精度を高めることができる。本明細書においては、弁体が最大リフト位置に到達した時期を実開弁時期と定義し、実開弁時期から実閉弁時期までの時間を実開弁時間と定義する。   According to this configuration, the closing timing of the solenoid valve is acquired, the opening timing of the solenoid valve is estimated based on the acquired closing timing, and the driving of the solenoid valve is performed based on the estimated opening timing. A driving signal to be controlled is output. Specifically, the valve closing operation time corresponding to the time from when the drive signal is turned off to the valve closing timing is calculated, the duration of the drive signal when the valve closing operation time takes a peak value, and the valve closing operation The opening timing of the solenoid valve is estimated based on the time and the transition time required for the transition from the opened state to the closed state by the force of the spring that biases the valve body of the solenoid valve in the closing direction. When the valve closing operation time takes a peak value, the transition time is calculated in advance in order to cope with a state where the valve body of the solenoid valve reaches the maximum lift position and there is no rebound (bounce operation) at the maximum lift position. I can keep it. Therefore, by using the duration of the drive signal, the valve closing operation time, and the transition time, the timing at which the valve body reaches the maximum lift position can be calculated as the actual valve opening timing. As a result, an accurate actual opening time of the solenoid valve (acquired valve closing timing−estimated actual valve opening timing) is obtained, and by correcting the drive signal according to the obtained actual valve opening time, The control accuracy of the actual valve opening time can be increased. In the present specification, the time when the valve body reaches the maximum lift position is defined as the actual valve opening time, and the time from the actual valve opening time to the actual valve closing time is defined as the actual valve opening time.

請求項2に記載の発明は、請求項1に記載の電磁弁の駆動制御装置において、前記開弁時期推定手段は、前記駆動信号の継続時間(Ti)を、前記電磁弁の弁体(32)が最大リフト位置に達する時間より短い時間から徐々に長くしていくことにより、前記閉弁作動時間(Toff)がピーク値(ToffP)をとるときの前記継続時間(TiC)を特定することを特徴とする。   According to a second aspect of the present invention, in the electromagnetic valve drive control device according to the first aspect, the valve opening timing estimating means determines the duration (Ti) of the drive signal as the valve body (32) of the electromagnetic valve. ) Is gradually increased from a time shorter than the time to reach the maximum lift position, thereby specifying the duration (TiC) when the valve closing operation time (Toff) takes a peak value (ToffP). Features.

この構成によれば、駆動信号の継続時間を電磁弁の弁体が最大リフト位置に達する時間より短い時間から徐々に長くしていくことにより、閉弁作動時間がピーク値をとるときの継続時間(ピーク開弁指令時間)が特定される。駆動信号の継続時間がピーク開弁指令時間より長い状態から徐々に短くしていく手法に比べて、ピーク開弁指令時間の誤検出が起き難いので、ピーク開弁指令時間を簡易且つ正確に特定し、正確な実開弁時期の推定を行うことができる。   According to this configuration, the continuation time when the valve closing operation time takes the peak value by gradually increasing the duration of the drive signal from a time shorter than the time when the valve body of the solenoid valve reaches the maximum lift position. (Peak valve opening command time) is specified. Compared to the method of gradually shortening the drive signal duration from a state longer than the peak valve opening command time, false detection of the peak valve opening command time is less likely to occur, so the peak valve opening command time can be specified easily and accurately. In addition, it is possible to accurately estimate the actual opening timing.

請求項3に記載の発明は、請求項1または2に記載の電磁弁の駆動制御装置において、前記電磁弁の弁体(32)が最大リフト位置に確実に保持された状態から閉弁動作を開始するように前記駆動信号の継続時間(Ti)を設定したときの、前記閉弁作動時間(Toff)に基づいて前記ばねのばね定数の推定値(kHAT)を算出するばね定数推定手段と、前記ばね定数の推定値(kHAT)に基づいて前記移行時間(ΔT)を補正する補正手段とをさらに備えることを特徴とする。   According to a third aspect of the present invention, in the electromagnetic valve drive control device according to the first or second aspect, the valve closing operation is performed from a state in which the valve body (32) of the electromagnetic valve is securely held at the maximum lift position. A spring constant estimating means for calculating an estimated value (kHAT) of the spring constant of the spring based on the valve closing operation time (Toff) when the duration (Ti) of the drive signal is set to start; And a correction means for correcting the transition time (ΔT) based on the estimated value (kHAT) of the spring constant.

この構成によれば、電磁弁の弁体が最大リフト位置に確実に保持された状態から閉弁動作を開始するように駆動信号の継続時間を設定したときの、閉弁作動時間に基づいてばね定数の推定値が算出され、ばね定数の推定値に基づいて移行時間が補正される。弁体を閉弁方向に付勢するばねのばね定数は、製造ばらつきを伴うとともに経時変化するため、実測される閉弁作動時間に基づいてばね定数の推定値を算出し、その推定値に基づいて移行時間を補正することにより、実開弁時期の推定精度を向上させ、維持することができる。   According to this configuration, the spring is based on the valve closing operation time when the duration of the drive signal is set so as to start the valve closing operation from the state where the valve body of the solenoid valve is securely held at the maximum lift position. An estimated value of the constant is calculated, and the transition time is corrected based on the estimated value of the spring constant. Since the spring constant of the spring that biases the valve body in the valve closing direction is accompanied by manufacturing variations and changes with time, an estimated value of the spring constant is calculated based on the actually measured valve closing operation time, and based on the estimated value. By correcting the transition time, the estimation accuracy of the actual valve opening timing can be improved and maintained.

請求項4に記載の発明は、請求項1から3の何れか1項に記載の電磁弁の駆動制御装置において、前記閉弁作動時間(Toff)がピーク値(ToffP)をとるときの前記駆動信号の継続時間(TiC)を特定できないときに、前記電磁弁に異常があると判定する異常判定手段をさらに備えることを特徴とする。   According to a fourth aspect of the present invention, in the electromagnetic valve drive control device according to any one of the first to third aspects, the drive when the valve closing operation time (Toff) takes a peak value (ToffP). An abnormality determining means for determining that there is an abnormality in the electromagnetic valve when the signal duration (TiC) cannot be specified is further provided.

この構成によれば、閉弁作動時間がピーク値をとるときの駆動信号の継続時間を特定できないときは、電磁弁に異常があると判定される。例えば、ソレノイドが発生する電磁力が設計値より小さいといった異常があると、弁体が最大リフト位置まで到達できずに開弁作動時間がピーク値をとる継続時間を特定できない可能性がある。したがって、そのような場合には異常があるとの判定を行って、警告ランプを点灯するといった対応することにより、早期に正常化することが可能となる。   According to this configuration, when the duration of the drive signal when the valve closing operation time takes the peak value cannot be specified, it is determined that the electromagnetic valve is abnormal. For example, if there is an abnormality such that the electromagnetic force generated by the solenoid is smaller than the design value, the valve body may not reach the maximum lift position, and the duration time during which the valve opening operation time takes the peak value may not be specified. Therefore, in such a case, it is possible to normalize at an early stage by determining that there is an abnormality and responding by turning on the warning lamp.

請求項5に記載の発明は、請求項1から4の何れか1項に記載の電磁弁の駆動制御装置において、前記電磁弁(2)は、前記駆動信号が供給されるソレノイド(39)と、該ソレノイドによって発生する電磁力が作用するコア(35)と、前記弁体(32)が固定された弁軸(31)とを備え、前記コア(35)と前記弁軸(31)とが別体に構成されたハンマリングコア構造を有することを特徴とする。   According to a fifth aspect of the present invention, in the electromagnetic valve drive control device according to any one of the first to fourth aspects, the electromagnetic valve (2) includes a solenoid (39) to which the drive signal is supplied. A core (35) on which an electromagnetic force generated by the solenoid acts, and a valve shaft (31) to which the valve body (32) is fixed, the core (35) and the valve shaft (31) being It has a hammering core structure configured separately.

閉弁作動時間がピーク値をとるのは、弁体を最大リフト位置まで移動させたときにコアがバウンス動作をすることが主要な要因であるため、ハンマリングコア構造を有する電磁弁の駆動制御装置において、実開弁時期の推定精度を高める顕著な効果が得られる。   The valve closing operation time has a peak value because the main factor is that the core bounces when the valve body is moved to the maximum lift position. Therefore, the drive control device for the solenoid valve having the hammering core structure Thus, a remarkable effect of increasing the estimation accuracy of the actual valve opening timing can be obtained.

本発明の一実施形態にかかる内燃機関及びその制御装置を示す図である。1 is a diagram illustrating an internal combustion engine and a control device thereof according to an embodiment of the present invention. 図1に示す燃料噴射弁の要部の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the principal part of the fuel injection valve shown in FIG. 本明細書におけるパラメータの定義を説明するためのタイムチャートである。It is a time chart for demonstrating the definition of the parameter in this specification. 開弁指令時間(Ti)と閉弁作動時間(Toff)との関係、及びリフト量(LFT)の推移(開弁動作特性)を示す図である。It is a figure which shows the transition (valve opening operation characteristic) of the relationship between valve opening command time (Ti) and valve closing operation time (Toff), and lift amount (LFT). 閉弁作動時間(Toff)がピーク値(ToffP)をとる状態における移行時間(ΔT)を説明するための図である。It is a figure for demonstrating the transition time ((DELTA) T) in the state in which valve closing operation time (Toff) takes a peak value (ToffP). 燃料噴射制御処理のフローチャートである。It is a flowchart of a fuel injection control process. 図6の処理で実行されるTon算出処理のフローチャートである。7 is a flowchart of a Ton calculation process executed in the process of FIG. 図7の処理で実行されるΔT算出処理のフローチャートである。8 is a flowchart of a ΔT calculation process executed in the process of FIG. 図8の処理で参照されるテーブルを示す図である。It is a figure which shows the table referred by the process of FIG. 従来技術の課題を説明するための図である。It is a figure for demonstrating the subject of a prior art.

以下本発明の実施の形態を図面を参照して説明する。
図1は本発明の一実施形態にかかる内燃機関(以下「エンジン」という)及びその制御装置を示す図であり、本実施形態では、ソレノイドを有する電磁弁で構成される燃料噴射弁の開弁時間を変更することによって、エンジンに供給する燃料量の制御が行われる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a view showing an internal combustion engine (hereinafter referred to as an “engine”) and a control device thereof according to an embodiment of the present invention. In this embodiment, a fuel injection valve opened by a solenoid valve having a solenoid is opened. The amount of fuel supplied to the engine is controlled by changing the time.

4気筒のエンジン1は各気筒に対応して4つの燃料噴射弁2を備えており、燃料噴射弁2は、エンジン1の燃焼室内に直接燃料を噴射する。4つの燃料噴射弁2はそれぞれECU5に接続されており、ECU5によって、その作動が制御される。   The four-cylinder engine 1 includes four fuel injection valves 2 corresponding to the cylinders, and the fuel injection valves 2 directly inject fuel into the combustion chamber of the engine 1. Each of the four fuel injection valves 2 is connected to the ECU 5, and its operation is controlled by the ECU 5.

燃料噴射弁2は、燃料通路3を介してデリバリパイプ4に接続されており、デリバリパイプ4には図示しない高圧燃料ポンプによって加圧された燃料が供給される。デリバリパイプ4には、燃料圧PFを検出する燃料圧センサ12が取り付けられており、その検出信号はECU5に供給される。   The fuel injection valve 2 is connected to a delivery pipe 4 through a fuel passage 3, and fuel pressurized by a high-pressure fuel pump (not shown) is supplied to the delivery pipe 4. A fuel pressure sensor 12 for detecting the fuel pressure PF is attached to the delivery pipe 4, and the detection signal is supplied to the ECU 5.

ECU5には、燃料噴射弁2のソレノイドの両端の電圧VSL及びソレノイドに供給される駆動電流IDを検出する電圧電流センサ11、エンジン1の回転数NEを検出するエンジン回転数センサ13、エンジン1の吸入空気流量GAIRを検出する吸入空気流量センサ14、吸気温TAを検出する吸気温センサ15、エンジン冷却水温TWを検出する冷却水温センサ16などのエンジン運転状態を検出する各種センサが接続されており、それらのセンサの検出信号はECU5に供給される。ECU5は、これらのセンサの検出信号を用いてエンジン運転状態に応じた燃料噴射弁2の要求開弁時間TIBを算出し、要求開弁時間TIBに応じて開弁指令時間Tiを算出し、開弁指令時間Tiを用いて燃料噴射弁2の駆動制御を行う。   The ECU 5 includes a voltage / current sensor 11 that detects a voltage VSL across the solenoid of the fuel injection valve 2 and a drive current ID supplied to the solenoid, an engine speed sensor 13 that detects the speed NE of the engine 1, Various sensors for detecting an engine operating state such as an intake air flow rate sensor 14 for detecting an intake air flow rate GAIR, an intake air temperature sensor 15 for detecting an intake air temperature TA, and a cooling water temperature sensor 16 for detecting an engine cooling water temperature TW are connected. The detection signals from these sensors are supplied to the ECU 5. The ECU 5 calculates the required valve opening time TIB of the fuel injection valve 2 according to the engine operating state using the detection signals of these sensors, calculates the valve opening command time Ti according to the required valve opening time TIB, and opens it. Drive control of the fuel injection valve 2 is performed using the valve command time Ti.

図2は燃料噴射弁2の要部の構成を説明するための断面図であり、燃料噴射弁2は、弁軸31と、弁軸31の先端に固定された弁体32と、弁軸31に固定されたフランジ33,34と、電磁力が作用するコア35と、コア35とフランジ34との間に設けられた第1スプリング36と、弁座37と、スリーブ38と、ソレノイド39と、フランジ34を閉弁方向(図の下方向)に付勢する第2スプリング40と、燃料通路として機能する中空部を有するインナカラー41とを備えている。燃料噴射弁2は、コア35と、弁体32が固定された弁軸31とが別体に構成された、いわゆるハンマリングコア構造を有する。   FIG. 2 is a cross-sectional view for explaining a configuration of a main part of the fuel injection valve 2. The fuel injection valve 2 includes a valve shaft 31, a valve body 32 fixed to the tip of the valve shaft 31, and a valve shaft 31. Flanges 33, 34 fixed to the core, a core 35 on which electromagnetic force acts, a first spring 36 provided between the core 35 and the flange 34, a valve seat 37, a sleeve 38, a solenoid 39, A second spring 40 that urges the flange 34 in the valve closing direction (downward in the figure) and an inner collar 41 having a hollow portion that functions as a fuel passage are provided. The fuel injection valve 2 has a so-called hammering core structure in which a core 35 and a valve shaft 31 to which a valve body 32 is fixed are configured separately.

図3は本明細書におけるパラメータの定義を説明するためのタイムチャートであり、弁体32のリフト量LFT及び開弁指令信号SDCTLの推移を示す。
実線で示すように、開弁指令信号SDCTLが出力されている時間、すなわち開弁指令時期tISから閉弁指令時期tIEまでの時間が開弁指令時間Tiであり、リフト量LFTが最大リフト量に達する時点が開弁時期tOPであり、開弁指令時期tISから開弁時期tOPまでの時間が開弁作動時間Tonであり、閉弁指令時期tIEの後にリフト量LFTが「0」に達する時点が閉弁時期tCLであり、閉弁指令時期tIEから閉弁時期tCLまでの時間が閉弁作動時間Toffであり、開弁時期tOPから閉弁時期tCLまでの時間が実開弁時間TOPである。このように実開弁時間TOPを定義することにより、実開弁時間TOPと、燃料噴射量との関係を比例関係に近づけることができる。
破線で示す特性は、開弁指令時間TiをTi1,Ti2に変更したときの開弁作動特性を示しており、閉弁作動時間はそれぞれToff1,Toff2で示される。
FIG. 3 is a time chart for explaining the definition of parameters in this specification, and shows the transition of the lift amount LFT of the valve element 32 and the valve opening command signal SDCTL.
As indicated by the solid line, the time during which the valve opening command signal SDCTL is output, that is, the time from the valve opening command timing tIS to the valve closing command timing tIE is the valve opening command time Ti, and the lift amount LFT becomes the maximum lift amount. The valve opening timing tOP is reached, the time from the valve opening command timing tIS to the valve opening timing tOP is the valve opening operation time Ton, and the time when the lift amount LFT reaches “0” after the valve closing command timing tIE. It is the valve closing timing tCL, the time from the valve closing command timing tIE to the valve closing timing tCL is the valve closing operation time Toff, and the time from the valve opening timing tOP to the valve closing timing tCL is the actual valve opening time TOP. By defining the actual valve opening time TOP in this way, the relationship between the actual valve opening time TOP and the fuel injection amount can be made closer to a proportional relationship.
The characteristic indicated by the broken line indicates the valve opening operation characteristic when the valve opening command time Ti is changed to Ti1 and Ti2, and the valve closing operation time is indicated by Toff1 and Toff2, respectively.

なお、図3(a)にRBで示す範囲では、リフト量LFTが増減する特性が示されているが、これはハンマリングコア構造を有する電磁弁に特有のバウンス動作に起因するものである。バウンス動作は、コア35が電磁力によって吸引されて弁軸31及び弁体32とともに上方向に移動し、スリーブ38の下端に達したときにコア35が跳ね返されてわずかに上下に振動する動作である。開弁指令時間Tiが大きくなると、弁体32は最大リフト位置に安定して保持される。   In addition, in the range shown by RB in FIG. 3A, the characteristic that the lift amount LFT increases or decreases is caused by the bounce operation unique to the solenoid valve having the hammering core structure. The bounce operation is an operation in which the core 35 is attracted by electromagnetic force and moves upward together with the valve shaft 31 and the valve body 32, and when reaching the lower end of the sleeve 38, the core 35 is bounced and vibrates slightly up and down. is there. When the valve opening command time Ti increases, the valve body 32 is stably held at the maximum lift position.

図4(a)は開弁指令時間Tiと閉弁作動時間Toffとの関係を示し、図4(b)は図3(a)と同様にリフト量LFTの推移(開弁動作特性)を示す。これらの図を参照して、開弁指令時間Tiと閉弁作動時間Toffとの関係を説明する。図4(b)に示す破線LA,LB,及びLCは閉弁作動時のリフト量LFTの推移を示し、それぞれ開弁指令時間Tiを図4(a)に示す第1時間TiA,第2時間TiB,及び第3時間TiCに設定した場合に対応する。   4 (a) shows the relationship between the valve opening command time Ti and the valve closing operation time Toff, and FIG. 4 (b) shows the transition of the lift amount LFT (valve opening operating characteristic) as in FIG. 3 (a). . With reference to these figures, the relationship between the valve opening command time Ti and the valve closing operation time Toff will be described. Dashed lines LA, LB, and LC shown in FIG. 4 (b) indicate the transition of the lift amount LFT during the valve closing operation, and the valve opening command time Ti is set to the first time TiA and the second time shown in FIG. 4 (a), respectively. This corresponds to the case where TiB and the third time TiC are set.

コア35がスリーブ38に当たる直前に開弁指令信号SDCTLをオフすると、コア35がスリーブ38に突き当たり、下向きの力がコア35に作用するため、閉弁作動時間Toffは短くなる。すなわち、開弁指令時間Tiを、第1時間TiAから徐々に短くしていくと、閉弁作動時間Toffは徐々に短くなる。開弁指令時間Tiが第2時間TiBであるときに、閉弁作動時間Toffが最小となる。   If the valve opening command signal SDCTL is turned off immediately before the core 35 hits the sleeve 38, the core 35 hits the sleeve 38, and a downward force acts on the core 35. Therefore, the valve closing operation time Toff is shortened. That is, when the valve opening command time Ti is gradually shortened from the first time TiA, the valve closing operation time Toff is gradually shortened. When the valve opening command time Ti is the second time TiB, the valve closing operation time Toff is minimized.

さらに開弁指令時間Tiを短くしていくと、コア35がスリーブ38に突き当たる力が弱くなり、したがってコア35に作用する下向きの力が弱くなるため、閉弁作動時間Toffは徐々に長くなる。開弁指令時間Tiが第3時間TiC(ピーク開弁指令時間)であるときに、閉弁作動時間Toffが最大となる(ピーク値ToffPをとる)。開弁指令時間Tiが第3時間TiCより短い範囲では、開弁指令時間Tiの減少にともなって閉弁作動時間Toffが減少する。   As the valve opening command time Ti is further shortened, the force with which the core 35 abuts against the sleeve 38 becomes weaker, and thus the downward force acting on the core 35 becomes weaker, so that the valve closing operation time Toff becomes gradually longer. When the valve opening command time Ti is the third time TiC (peak valve opening command time), the valve closing operation time Toff is maximized (takes a peak value ToffP). In a range where the valve opening command time Ti is shorter than the third time TiC, the valve closing operation time Toff decreases as the valve opening command time Ti decreases.

閉弁作動時間Toffがピーク値ToffPをとるのは、開弁指令信号SDCTLを、弁体32が最大リフト位置に達する前にオフし、コア35がスリーブ38にわずかに触れる位置、あるいはその直前の位置に達して閉弁方向へ移動するような挙動をする場合である。この場合には、弁体32のリフト特性は、単純なばね−質量系の特性となり、時刻tにおける弁体32の位置xは、下記式(1)で表すことができる。式(1)のmは、弁体32及び弁軸31、コア35等の可動部品の質量の合計であり、kは第2スプリング40のばね定数であり、A,Bは、実験的に決定される定数である。

Figure 2015048919
The valve closing operation time Toff takes the peak value ToffP because the valve opening command signal SDCTL is turned off before the valve element 32 reaches the maximum lift position, and the core 35 slightly touches the sleeve 38 or immediately before it. This is a case where the movement reaches the position and moves in the valve closing direction. In this case, the lift characteristic of the valve element 32 is a simple spring-mass characteristic, and the position x of the valve element 32 at time t can be expressed by the following equation (1). In Equation (1), m is the total mass of movable parts such as the valve body 32, the valve shaft 31, and the core 35, k is the spring constant of the second spring 40, and A and B are determined experimentally. Is a constant.
Figure 2015048919

式(1)を用いると、弁体32がストローク量Stを閉弁方向に移動するのに要する時間、すなわち全開状態から全閉状態へ移行するのに要する時間(以下「移行時間」という)ΔTを算出することができる。移行時間ΔTは、ストローク量St(最大リフト量)、ばね定数k、及び質量mが一定であれば一定となるパラメータであり、初期値としては予め算出された値を適用し、特にばね定数kのばらつきや経時変化に対しては、後述する補正を行うことによって、制御精度を維持する。   Using Expression (1), the time required for the valve body 32 to move the stroke amount St in the valve closing direction, that is, the time required to shift from the fully open state to the fully closed state (hereinafter referred to as “transition time”) ΔT Can be calculated. The transition time ΔT is a parameter that becomes constant if the stroke amount St (maximum lift amount), the spring constant k, and the mass m are constant, and a value calculated in advance is applied as an initial value, and in particular, the spring constant k. The control accuracy is maintained by performing the correction described later with respect to variations and changes with time.

移行時間ΔTは、図5に示すように、閉弁作動時間Toffがピーク値ToffPをとる状態における開弁時期tOPから閉弁時期tCLまでの時間に相当する。また閉弁時期tCLは、例えば特許文献1に示された従来の手法を用いて検出され、閉弁作動時間Toffは、(tCL−tIE)として算出される。   As shown in FIG. 5, the transition time ΔT corresponds to the time from the valve opening timing tOP to the valve closing timing tCL in a state where the valve closing operation time Toff takes the peak value ToffP. The valve closing timing tCL is detected using, for example, a conventional technique disclosed in Patent Document 1, and the valve closing operation time Toff is calculated as (tCL-tIE).

したがって、開弁作動時間Tonは、下記式(2)にピーク開弁指令時間TiC、閉弁作動時間のピーク値ToffP、及び移行時間ΔTを適用することにより算出することができ、開弁時期tOPは、開弁指令時期tISに開弁作動時間Tonを加算することによって算出することができる(式(3))。
Ton=TiC+ToffP−ΔT (2)
tOP=tIS+Ton (3)
なお、開弁指令時期tISを基準時期「0」とすれば、tOP=Tonとなる。
Therefore, the valve opening operation time Ton can be calculated by applying the peak valve opening command time TiC, the peak value ToffP of the valve closing operation time, and the transition time ΔT to the following equation (2), and the valve opening timing tOP Can be calculated by adding the valve opening operation time Ton to the valve opening command timing tIS (formula (3)).
Ton = TiC + ToffP−ΔT (2)
tOP = tIS + Ton (3)
If the valve opening command time tIS is set to the reference time “0”, tOP = Ton.

図6は、本実施形態における燃料噴射制御処理のフローチャートであり、この処理は、ECU5によって実行される。この処理では、上述した手法を用いて開弁時期tOPが燃料噴射弁2毎に算出され、開弁時期tOPを用いて開弁指令時間Tiを補正しつつ燃料噴射が実行される。   FIG. 6 is a flowchart of the fuel injection control process in the present embodiment, and this process is executed by the ECU 5. In this process, the valve opening timing tOP is calculated for each fuel injection valve 2 using the above-described method, and fuel injection is performed while correcting the valve opening command time Ti using the valve opening timing tOP.

ステップS11では学習モードフラグFLRNが「1」であるか否かを判別する。学習モードフラグFLRNは、例えばエンジン1の暖機完了後のアイドル運転中において所定時間「1」に設定される。   In step S11, it is determined whether or not the learning mode flag FLRN is “1”. The learning mode flag FLRN is set to “1” for a predetermined time, for example, during idling after the engine 1 has been warmed up.

学習モードフラグFLRNが「1」であるときは、ステップS11からステップS12に進み、図7に示すTon算出処理を実行し、上述した手法で開弁作動時間Tonを算出する。ステップS13では、上記式(3)により、開弁時期tOPを算出する。   When the learning mode flag FLRN is “1”, the process proceeds from step S11 to step S12, the Ton calculation process shown in FIG. 7 is executed, and the valve opening operation time Ton is calculated by the method described above. In step S13, the valve opening timing tOP is calculated by the above equation (3).

学習モードフラグFLRNが「0」である通常運転モードでは、ステップS11からステップS14に進み、エンジン運転状態に応じて要求開弁時間TIBを算出し(ステップS14)、要求開弁時間TIBを下記式(4)に適用して、開弁指令時間Tiを算出する(ステップS15)。式(4)のDTIは、後述するステップS19で算出される補正時間である。
Ti=TIB+DTI (4)
In the normal operation mode in which the learning mode flag FLRN is “0”, the process proceeds from step S11 to step S14, and the required valve opening time TIB is calculated according to the engine operating state (step S14). Applying to (4), the valve opening command time Ti is calculated (step S15). The DTI in equation (4) is the correction time calculated in step S19 described later.
Ti = TIB + DTI (4)

ステップS16では算出された開弁指令時間Tiに対応する燃料噴射を実行し、ステップS17で閉弁時期tCLを検出する。ステップS18では、検出された閉弁時期tCL及びステップS13で算出された開弁時期tOPを下記式(5)に適用して、実開弁時間TOPを算出する。
TOP=tCL−tOP (5)
In step S16, fuel injection corresponding to the calculated valve opening command time Ti is executed, and in step S17, the valve closing timing tCL is detected. In step S18, the actual valve opening time TOP is calculated by applying the detected valve closing timing tCL and the valve opening timing tOP calculated in step S13 to the following equation (5).
TOP = tCL-tOP (5)

ステップS19では、下記式(6)に要求開弁時間TIB及び実開弁時間TOPを適用して補正時間DTIを算出する。
DTI=TIB−TOP (6)
In step S19, the correction time DTI is calculated by applying the required valve opening time TIB and the actual valve opening time TOP to the following equation (6).
DTI = TIB-TOP (6)

図7は、図6のステップS12で実行されるTon算出処理のフローチャートである。
ステップS31では図8に示すΔT算出処理を実行し、移行時間ΔTを算出する。ステップS32では、インデクスパラメータjを「1」に設定し、開弁指令時間T(j)を初期値TiINI(例えば0.4msec)に設定する。初期値TiINIは、図4(a)に示したピーク開弁指令時間TiCより短い時間、すなわち弁体32が最大リフト位置に達する開弁指令時間Tiの最小値より小さい値に設定される。
FIG. 7 is a flowchart of the Ton calculation process executed in step S12 of FIG.
In step S31, the ΔT calculation process shown in FIG. 8 is executed to calculate the transition time ΔT. In step S32, the index parameter j is set to “1”, and the valve opening command time T (j) is set to the initial value TiINI (for example, 0.4 msec). The initial value TiINI is set to a time shorter than the peak valve opening command time TiC shown in FIG. 4A, that is, a value smaller than the minimum value of the valve opening command time Ti for the valve body 32 to reach the maximum lift position.

ステップS33では、燃料圧PFを所定圧PFLRNに設定して燃料噴射を実行し、閉弁作動時間Toff(j)を検知する。具体的には、閉弁時期tCLを検出し、閉弁時期tCLから閉弁指令時期tIEまでの時間として閉弁作動時間Toff(j)が得られる。ステップS35では、閉弁作動時間Toff(j)が前回値Toff(j-1)より大きいか否かを判別する。Toff(0)は「0」に設定されており、最初はステップS35の答が否定(NO)となり、ステップS36に進む。   In step S33, the fuel pressure PF is set to a predetermined pressure PFLRN, fuel injection is performed, and the valve closing operation time Toff (j) is detected. Specifically, the valve closing timing tCL is detected, and the valve closing operation time Toff (j) is obtained as the time from the valve closing timing tCL to the valve closing command timing tIE. In step S35, it is determined whether or not the valve closing operation time Toff (j) is longer than the previous value Toff (j-1). Toff (0) is set to “0”, the answer to step S35 is negative (NO) at first, and the process proceeds to step S36.

ステップS36では、インデクスパラメータjを「1」だけ増加させるとともに、開弁指令時間Ti(j)を所定増分値DT(例えば0.005msec)だけ増加させる。ステップS37では、インデクスパラメータjが上限値jHL(例えば30)と等しいか否かを判別する。最初はこの答が否定(NO)であり、ステップS33に戻る。したがって、ステップS33〜S37により、開弁指令時間Ti(j)を所定増分値DTずつ徐々に増加させつつ、閉弁作動時間Toff(j)の検知が行われる。   In step S36, the index parameter j is increased by “1”, and the valve opening command time Ti (j) is increased by a predetermined increment value DT (for example, 0.005 msec). In step S37, it is determined whether or not the index parameter j is equal to an upper limit value jHL (for example, 30). Initially, this answer is negative (NO), and the process returns to step S33. Therefore, in steps S33 to S37, the valve closing operation time Toff (j) is detected while gradually increasing the valve opening command time Ti (j) by the predetermined increment value DT.

ステップS35の答が否定(NO)、すなわち閉弁作動時間Toff(j)が前回値以下となると、ステップS38に進み、下記式(2a)により、開弁作動時間Tonを算出する。すなわち、閉弁作動時間Toff(j)の変化が増加から減少に変化したときに、直前の値をピーク値ToffPであるとみなして、開弁作動時間Tonが算出される。
Ton=Ti(j-1)+Toff(j-1)−ΔT (2a)
If the answer to step S35 is negative (NO), that is, if the valve closing operation time Toff (j) is equal to or less than the previous value, the process proceeds to step S38, and the valve opening operation time Ton is calculated by the following equation (2a). That is, when the change in the valve closing operation time Toff (j) changes from increase to decrease, the valve opening operation time Ton is calculated by regarding the immediately preceding value as the peak value ToffP.
Ton = Ti (j−1) + Toff (j−1) −ΔT (2a)

ステップS35の答が否定(NO)とならずに、インデクスパラメータjが上限値jHLに達すると、ステップS37の答が肯定(YES)となり、異常検出フラグFERRORを「1」に設定する(ステップS39)。燃料噴射弁2が正常であれば、インデクスパラメータjが上限値jHLに達する前にステップS35の答が否定(NO)となるように、上限値jHLが設定されており、ステップS37の答が肯定(YES)となったときは、燃料噴射弁2に異常があると判定する。異常検出フラグFERRORが「1」に設定されると、例えば警告灯を点灯して運転者に異常発生を知らせる。   If the answer to step S35 is not negative (NO) and the index parameter j reaches the upper limit value jHL, the answer to step S37 is affirmative (YES), and the abnormality detection flag FERROR is set to “1” (step S39). ). If the fuel injection valve 2 is normal, the upper limit value jHL is set so that the answer to step S35 is negative (NO) before the index parameter j reaches the upper limit value jHL, and the answer to step S37 is affirmative. When (YES), it is determined that there is an abnormality in the fuel injection valve 2. When the abnormality detection flag FERROR is set to “1”, for example, a warning lamp is turned on to notify the driver of the occurrence of abnormality.

図8は、図7のステップS31で実行されるΔT算出処理のフローチャートである。
ステップS41では、開弁指令時間Tiを所定学習時間TiLRN(例えば2msec)に設定する。所定学習時間TiLRNは、図3(a)に示すコア35のバウンス動作が発生する開弁指令時間の範囲より大きな値、すなわち弁体32が最大リフト位置に確実に保持された状態から閉弁動作が開始されるような値に設定される。
FIG. 8 is a flowchart of the ΔT calculation process executed in step S31 of FIG.
In step S41, the valve opening command time Ti is set to a predetermined learning time TiLRN (for example, 2 msec). The predetermined learning time TiLRN is larger than the range of the valve opening command time in which the bounce operation of the core 35 shown in FIG. 3A occurs, that is, the valve closing operation is performed from the state in which the valve body 32 is securely held at the maximum lift position. Is set to such a value that will start.

ステップS42では、燃料圧PFを所定圧PFLRNに設定して、燃料噴射を実行し、閉弁作動時間Toffを検知する(ステップS43)。得られた閉弁作動時間Toffに応じて図9(a)に示すばね定数kと閉弁作動時間Toffとの関係が設定されたkテーブルを検索し、ばね定数推定値kHATを算出する(ステップS44)。kテーブルは、閉弁作動時間Toffが増加するほど、ばね定数kが減少するように設定されている。   In step S42, the fuel pressure PF is set to a predetermined pressure PFLRN, fuel injection is performed, and the valve closing operation time Toff is detected (step S43). The k table in which the relationship between the spring constant k and the valve closing operation time Toff shown in FIG. 9A is set according to the obtained valve closing operation time Toff is searched, and the spring constant estimated value kHAT is calculated (step) S44). The k table is set so that the spring constant k decreases as the valve closing operation time Toff increases.

ステップS45では、ばね定数推定値kHATに応じて図9(b)に示すDTCテーブルを検索し、補正値DTCを算出する。DTCテーブルは、ばね定数推定値kHATと、式(1)とを用いて予め設定されたものであり、ばね定数推定値kHATが減少するほど、補正値DTCが増加するように設定されている。図9(b)のk0は、ばね定数kの設計中央値である。
ステップS46では、現在の移行時間ΔTに補正値DTCを加算することにより、移行時間ΔTの更新を行う。
In step S45, the DTC table shown in FIG. 9B is searched according to the spring constant estimated value kHAT, and the correction value DTC is calculated. The DTC table is preset using the spring constant estimated value kHAT and the equation (1), and is set so that the correction value DTC increases as the spring constant estimated value kHAT decreases. In FIG. 9B, k0 is the design median value of the spring constant k.
In step S46, the transition time ΔT is updated by adding the correction value DTC to the current transition time ΔT.

以上のように本実施形態では、燃料噴射弁2の閉弁時期tCLが検出され、検出される閉弁時期tCLに基づいて、開弁時期tOPが推定され、推定された開弁時期tOPに基づいて燃料噴射弁2の開弁指令信号SDCTLが出力される。具体的には、開弁指令信号SDCTLをオフした時点、すなわち閉弁指令時期tIEから閉弁時期tCLまでの時間に相当する閉弁作動時間Toffが算出され、閉弁作動時間Toffがピーク値ToffPをとるときのピーク開弁指令時間TiCと、ピーク値ToffPと、弁体32を閉弁方向に付勢する第2スプリング40の付勢力による開弁状態から閉弁状態への移行に要する移行時間ΔTとに基づいて燃料噴射弁2の開弁時期tOPが推定される。閉弁作動時間Toffがピーク値ToffPをとるときは、弁体32が最大リフト位置に到達し、かつ最大リフト位置における跳ね返り(バウンス動作)が無い状態に対応するため、移行時間ΔTを予め算出しておくことができる。したがって、ピーク開弁指令時間TiC、閉弁作動時間のピーク値ToffP、及び移行時間ΔTを用いることによって、弁体32が最大リフト位置に到達するタイミングを開弁時期tOPとして算出することができる。その結果、燃料噴射弁2の正確な実開弁時間TOP(閉弁時期tCL−開弁時期tOP)が得られ、得られた実開弁時間TOPに応じて要求開弁時間TIBを補正することにより、実開弁時間TOPの制御精度、すなわち燃料噴射量の制御精度を高めることができる。   As described above, in this embodiment, the closing timing tCL of the fuel injection valve 2 is detected, the opening timing tOP is estimated based on the detected closing timing tCL, and based on the estimated opening timing tOP. Then, the valve opening command signal SDCTL for the fuel injection valve 2 is output. Specifically, when the valve opening command signal SDCTL is turned off, that is, the valve closing operation time Toff corresponding to the time from the valve closing command timing tIE to the valve closing timing tCL is calculated, and the valve closing operation time Toff is the peak value ToffP. The valve opening command time TiC, the peak value ToffP, and the transition time required to shift from the valve opening state to the valve closing state by the urging force of the second spring 40 that urges the valve body 32 in the valve closing direction. Based on ΔT, the opening timing tOP of the fuel injection valve 2 is estimated. When the valve closing operation time Toff takes the peak value ToffP, the transition time ΔT is calculated in advance in order to correspond to the state in which the valve body 32 reaches the maximum lift position and there is no rebound (bounce operation) at the maximum lift position. I can keep it. Therefore, the timing at which the valve body 32 reaches the maximum lift position can be calculated as the valve opening timing tOP by using the peak valve opening command time TiC, the peak value ToffP of the valve closing operation time, and the transition time ΔT. As a result, an accurate actual valve opening time TOP (valve closing timing tCL−valve opening timing tOP) of the fuel injection valve 2 is obtained, and the required valve opening time TIB is corrected according to the obtained actual valve opening time TOP. Thus, the control accuracy of the actual valve opening time TOP, that is, the control accuracy of the fuel injection amount can be increased.

また開弁指令時間Tiを弁体32が最大リフト位置に達する時間(図4、TiC)より短い時間から徐々に長くしていくことにより、閉弁作動時間Toffがピーク値ToffPをとるときの開弁指令時間であるピーク開弁指令時間TiCが特定される。開弁指令時間Tiがピーク開弁指令時間TiCより長い状態から徐々に短くしていく手法に比べて、ピーク開弁指令時間TiCの誤検出が起き難いので、ピーク開弁指令時間TiCを簡易且つ正確に特定し、正確な実開弁時期tOPの推定を行うことができる。   Further, the valve opening command time Ti is gradually increased from a time shorter than the time when the valve body 32 reaches the maximum lift position (FIG. 4, TiC), so that the valve opening operation time Toff is opened when the peak value ToffP is taken. The peak valve opening command time TiC, which is the valve command time, is specified. Compared to the method in which the valve opening command time Ti is gradually shorter than the peak valve opening command time TiC, the peak valve opening command time TiC is less likely to be detected. It is possible to accurately identify and accurately estimate the actual valve opening timing tOP.

また弁体32が最大リフト位置に確実に保持された状態から閉弁動作を開始するように開弁指令時間Tiを所定学習時間TiLRNに設定したときの、閉弁作動時間Toffに基づいてばね定数推定値kHATが算出され、ばね定数推定値kHATに基づいて移行時間ΔTが補正される。弁体32を閉弁方向に付勢する第2スプリング40のばね定数kは、製造ばらづきを伴うとともに経時変化するため、実測される閉弁作動時間Toffに基づいてばね定数の推定値kHATを算出し、その推定値kHATに基づいて移行時間ΔTを補正することにより、実開弁時期tOPの推定精度を向上させ、維持することができる。   Further, the spring constant is based on the valve closing operation time Toff when the valve opening command time Ti is set to the predetermined learning time TiLRN so that the valve closing operation is started from the state where the valve body 32 is securely held at the maximum lift position. The estimated value kHAT is calculated, and the transition time ΔT is corrected based on the spring constant estimated value kHAT. Since the spring constant k of the second spring 40 that biases the valve body 32 in the valve closing direction is accompanied by manufacturing variations and changes with time, the estimated value kHAT of the spring constant is calculated based on the actually measured valve closing operation time Toff. By calculating and correcting the transition time ΔT based on the estimated value kHAT, it is possible to improve and maintain the estimation accuracy of the actual valve opening timing tOP.

また閉弁作動時間Toffがピーク値ToffPをとるときのピーク開弁指令時間TiCを特定できないときは、燃料噴射弁2に異常があると判定される。例えば、ソレノイド39が発生する電磁力が設計値より小さいといった異常があると、弁体32が最大リフト位置まで到達できずに閉弁作動時間Toffがピーク値ToffPをとるピーク開弁指令時間TiCを特定できない可能性がある。したがって、そのような場合には異常があるとの判定を行って、警告ランプを点灯するといった対応することにより、早期に正常化することが可能となる。   Further, when the valve opening command time TiC when the valve closing operation time Toff takes the peak value ToffP cannot be specified, it is determined that the fuel injection valve 2 is abnormal. For example, if there is an abnormality such that the electromagnetic force generated by the solenoid 39 is smaller than the design value, the peak valve opening command time TiC at which the valve closing operation time Toff takes the peak value ToffP without the valve body 32 reaching the maximum lift position is set. There is a possibility that it cannot be identified. Therefore, in such a case, it is possible to normalize at an early stage by determining that there is an abnormality and responding by turning on the warning lamp.

また閉弁作動時間Toffがピーク値ToffPをとるのは、弁体32を最大リフト位置まで移動させたときにコア35がバウンス動作をすることが主要な要因であるため、ハンマリングコア構造を有する燃料噴射弁の駆動制御装置において、実開弁時期tOPの推定精度を高める顕著な効果が得られる。   Further, the reason why the valve closing operation time Toff takes the peak value ToffP is that the core 35 bounces when the valve body 32 is moved to the maximum lift position, and therefore the fuel having the hammering core structure. In the injection valve drive control device, a remarkable effect of increasing the estimation accuracy of the actual valve opening timing tOP can be obtained.

本実施形態では、電圧電流センサ11が閉弁時期取得手段の一部を構成し、ECU5が、閉弁時期取得手段の一部、閉弁作動時間算出手段、開弁時期推定手段、制御手段、ばね定数推定手段、補正手段、及び異常判定手段を構成する。具体的には、図7のステップS34が閉弁時期取得手段及び閉弁作動時間算出手段に相当し、ステップS34〜S38が開弁時期推定手段に相当し、ステップS37及びS39が異常判定手段に相当し、図8のステップS41〜S44がばね定数推定手段に相当し、ステップS45及びS46が補正手段に相当する。   In the present embodiment, the voltage / current sensor 11 constitutes part of the valve closing timing acquisition means, and the ECU 5 includes part of the valve closing timing acquisition means, valve closing operation time calculation means, valve opening timing estimation means, control means, A spring constant estimation unit, a correction unit, and an abnormality determination unit are configured. Specifically, step S34 in FIG. 7 corresponds to valve closing timing acquisition means and valve closing operation time calculation means, steps S34 to S38 correspond to valve opening timing estimation means, and steps S37 and S39 serve as abnormality determination means. 8 corresponds to the spring constant estimation means, and steps S45 and S46 correspond to the correction means.

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では、ピーク開弁指令時間TiCを特定する際に、開弁指令時間Tiをピーク開弁指令時間TiCより小さな値から徐々に増加させるようにしたが、逆にピーク開弁指令時間TiCより大きな値から徐々に減少させるようにしてもよい。   The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the above-described embodiment, when specifying the peak valve opening command time TiC, the valve opening command time Ti is gradually increased from a value smaller than the peak valve opening command time TiC. You may make it reduce gradually from the larger value than instruction | command time TiC.

また上述した実施形態では、内燃機関の燃料噴射弁の駆動制御装置に本発明を適用した例を示したが、流体の流量を制御するための一般的な電磁弁、例えば排気還流量を制御する電磁弁や自動変速機の作動油の流量を制御する電磁弁などの駆動制御装置にも適用可能である。   In the above-described embodiment, an example in which the present invention is applied to a drive control device for a fuel injection valve of an internal combustion engine has been described. However, a general electromagnetic valve for controlling the flow rate of fluid, for example, an exhaust gas recirculation amount is controlled. The present invention can also be applied to a drive control device such as a solenoid valve or a solenoid valve that controls the flow rate of hydraulic oil in an automatic transmission.

1 内燃機関
2 燃料噴射弁(電磁弁)
5 電子制御ユニット(閉弁時期取得手段、閉弁作動時間算出手段、開弁時期推定手段、制御手段、ばね定数推定手段、補正手段、異常判定手段)
11 電圧電流センサ(閉弁時期取得手段)
1 Internal combustion engine 2 Fuel injection valve (solenoid valve)
5 Electronic control unit (valve closing timing acquisition means, valve closing operation time calculation means, valve opening timing estimation means, control means, spring constant estimation means, correction means, abnormality determination means)
11 Voltage current sensor (valve closing time acquisition means)

Claims (5)

流体の流量を制御する電磁弁の駆動制御装置において、
前記電磁弁の閉弁時期を取得する閉弁時期取得手段と、
前記閉弁時期取得手段により取得される閉弁時期に基づいて、前記電磁弁の開弁時期を推定する開弁時期推定手段と、
前記開弁時期推定手段により推定された開弁時期に基づいて前記電磁弁の駆動を制御する駆動信号を出力する制御手段とを備え、
前記開弁時期推定手段は、前記駆動信号をオフした時点から前記閉弁時期までの時間に相当する閉弁作動時間を算出する閉弁作動時間算出手段を有し、該閉弁作動時間がピーク値をとるときの前記駆動信号の継続時間と、前記閉弁作動時間と、前記電磁弁の弁体を閉弁方向に付勢するばねの力による開弁状態から閉弁状態への移行に要する移行時間とに基づいて前記電磁弁の開弁時期を推定することを特徴とする電磁弁の駆動制御装置。
In a drive control device for a solenoid valve that controls the flow rate of fluid,
Valve closing timing acquisition means for acquiring the valve closing timing of the solenoid valve;
Based on the valve closing timing acquired by the valve closing timing acquiring means, the valve opening timing estimating means for estimating the valve opening timing of the solenoid valve;
Control means for outputting a drive signal for controlling the drive of the electromagnetic valve based on the valve opening time estimated by the valve opening time estimating means;
The valve opening timing estimating means includes valve closing operation time calculating means for calculating a valve closing operation time corresponding to a time from when the drive signal is turned off to the valve closing timing, and the valve closing operation time is peaked. Required for transition from the open state to the closed state by the duration of the drive signal when taking the value, the valve closing operation time, and the force of the spring that biases the valve body of the electromagnetic valve in the valve closing direction An electromagnetic valve drive control device that estimates the valve opening timing of the electromagnetic valve based on a transition time.
前記開弁時期推定手段は、前記駆動信号の継続時間を、前記電磁弁の弁体が最大リフト位置に達する時間より短い時間から徐々に長くしていくことにより、前記閉弁作動時間がピーク値をとるときの前記継続時間を特定することを特徴とする請求項1に記載の電磁弁の駆動制御装置。   The valve opening timing estimation means is configured to gradually increase the duration of the drive signal from a time shorter than a time when the valve body of the solenoid valve reaches the maximum lift position, thereby causing the valve closing operation time to reach a peak value. The drive control device for an electromagnetic valve according to claim 1, wherein the duration time when taking a value is specified. 前記電磁弁の弁体が最大リフト位置に確実に保持された状態から閉弁動作を開始するように前記駆動信号の継続時間を設定したときの、前記閉弁作動時間に基づいて前記ばねのばね定数の推定値を算出するばね定数推定手段と、
前記ばね定数の推定値に基づいて前記移行時間を補正する補正手段とをさらに備えることを特徴とする請求項1または2に記載の電磁弁の駆動制御装置。
The spring of the spring based on the valve closing operation time when the duration of the drive signal is set so as to start the valve closing operation from the state where the valve body of the electromagnetic valve is securely held at the maximum lift position. Spring constant estimating means for calculating an estimated value of the constant;
The electromagnetic valve drive control device according to claim 1, further comprising a correction unit that corrects the transition time based on the estimated value of the spring constant.
前記閉弁作動時間がピーク値をとるときの前記駆動信号の継続時間を特定できないときに、前記電磁弁に異常があると判定する異常判定手段をさらに備えることを特徴とする請求項1から3の何れか1項に記載の電磁弁の駆動制御装置。   4. The apparatus according to claim 1, further comprising an abnormality determination unit that determines that the electromagnetic valve is abnormal when the duration of the drive signal when the valve closing operation time takes a peak value cannot be specified. The drive control apparatus of the solenoid valve any one of these. 前記電磁弁は、前記駆動信号が供給されるソレノイドと、該ソレノイドによって発生する電磁力が作用するコアと、前記弁体が固定された弁軸とを備え、前記コアと前記弁軸とが別体に構成されたハンマリングコア構造を有することを特徴とする請求項1から4の何れか1項に記載の電磁弁の駆動制御装置。   The solenoid valve includes a solenoid to which the drive signal is supplied, a core to which an electromagnetic force generated by the solenoid acts, and a valve shaft to which the valve body is fixed. The core and the valve shaft are separated from each other. 5. The drive control device for an electromagnetic valve according to claim 1, further comprising a hammering core structure configured on the body.
JP2013182041A 2013-09-03 2013-09-03 Solenoid valve drive control device Expired - Fee Related JP6092740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182041A JP6092740B2 (en) 2013-09-03 2013-09-03 Solenoid valve drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182041A JP6092740B2 (en) 2013-09-03 2013-09-03 Solenoid valve drive control device

Publications (2)

Publication Number Publication Date
JP2015048919A true JP2015048919A (en) 2015-03-16
JP6092740B2 JP6092740B2 (en) 2017-03-08

Family

ID=52699106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182041A Expired - Fee Related JP6092740B2 (en) 2013-09-03 2013-09-03 Solenoid valve drive control device

Country Status (1)

Country Link
JP (1) JP6092740B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098965A1 (en) * 2015-12-08 2017-06-15 株式会社デンソー Control device
CN113446427A (en) * 2020-03-24 2021-09-28 株式会社京滨 Solenoid valve driving device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6769418B2 (en) * 2017-09-25 2020-10-14 株式会社デンソー Current controller

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174139A (en) * 1992-12-02 1994-06-24 Jatco Corp Solenoid valve controller
JPH11153247A (en) * 1997-10-06 1999-06-08 Husco Internatl Inc Device and method for detecting armature position in reluctance electro-magnetic actuator
JP2000179391A (en) * 1998-12-16 2000-06-27 Denso Corp Solenoid valve driving device
EP1130300A1 (en) * 2000-02-29 2001-09-05 Whirlpool Corporation Method for controlling pulse width modulation-operated solenoid valves
JP2001280189A (en) * 2000-03-30 2001-10-10 Hitachi Ltd Control method for electromagnetic fuel injection valve
JP2012047128A (en) * 2010-08-27 2012-03-08 Keihin Corp Fuel injection control device and method
US20120116702A1 (en) * 2009-07-10 2012-05-10 Johannes Beer Determining the closing time of a fuel injection valve based on evaluating the actuation voltage
JP2014234922A (en) * 2013-06-05 2014-12-15 本田技研工業株式会社 Solenoid valve driving controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174139A (en) * 1992-12-02 1994-06-24 Jatco Corp Solenoid valve controller
JPH11153247A (en) * 1997-10-06 1999-06-08 Husco Internatl Inc Device and method for detecting armature position in reluctance electro-magnetic actuator
JP2000179391A (en) * 1998-12-16 2000-06-27 Denso Corp Solenoid valve driving device
EP1130300A1 (en) * 2000-02-29 2001-09-05 Whirlpool Corporation Method for controlling pulse width modulation-operated solenoid valves
JP2001280189A (en) * 2000-03-30 2001-10-10 Hitachi Ltd Control method for electromagnetic fuel injection valve
US20120116702A1 (en) * 2009-07-10 2012-05-10 Johannes Beer Determining the closing time of a fuel injection valve based on evaluating the actuation voltage
JP2012047128A (en) * 2010-08-27 2012-03-08 Keihin Corp Fuel injection control device and method
JP2014234922A (en) * 2013-06-05 2014-12-15 本田技研工業株式会社 Solenoid valve driving controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098965A1 (en) * 2015-12-08 2017-06-15 株式会社デンソー Control device
JP2017106354A (en) * 2015-12-08 2017-06-15 株式会社デンソー Control device
US10408156B2 (en) 2015-12-08 2019-09-10 Denso Corporation Control device
CN113446427A (en) * 2020-03-24 2021-09-28 株式会社京滨 Solenoid valve driving device

Also Published As

Publication number Publication date
JP6092740B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
KR102001978B1 (en) Fuel injection control in an internal combustion engine
KR101784735B1 (en) Determining the closing point in time of an injection valve on the basis of an analysis of the actuating voltage using an adapted reference voltage signal
US7930089B2 (en) Controller for a solenoid operated valve
JP5792227B2 (en) Solenoid valve drive control device
KR101724172B1 (en) Method and control tool for operating a valve
EP2850307B1 (en) Method for monitoring an injection valve
JP5087641B2 (en) Internal combustion engine with variable intake valve and self-regulating control of the air-fuel ratio and monitoring the control function
US20170306879A1 (en) Device for controlling at least one switchable valve
US20180258877A1 (en) Fuel injection control device for internal combustion engine
US9284865B2 (en) Method of controlling fluid pressure-actuated switching component and control system for same
JP6092740B2 (en) Solenoid valve drive control device
WO2016091848A1 (en) Fuel injection control in an internal combustion engine
JP5707445B2 (en) Solenoid valve drive control device
US11365700B2 (en) Fuel injection control device for internal combustion engine
JP6010480B2 (en) Solenoid valve drive control device
JP6022427B2 (en) Solenoid valve drive control device
JP5659256B2 (en) Solenoid valve drive control device
JP5392277B2 (en) Fuel injection control device
JP2003120393A (en) Fuel injection quantity controller of internal combustion engine
JP2015055277A (en) Drive control device of electromagnetic valve
GB2543260A (en) Fuel injection control in an internal combustion engine
JP6405935B2 (en) Fuel injection valve learning control device and learning control method
US11236697B2 (en) Fuel injection control device and fuel injection control method
KR101826691B1 (en) Compensation Method for Closing Time of Injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6092740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees